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Metagenome-assembled genomes uncover
a global brackish microbiome
Luisa W. Hugerth1, John Larsson2, Johannes Alneberg1, Markus V. Lindh2, Catherine Legrand2, Jarone Pinhassi2

and Anders F. Andersson1*

Abstract

Background: Microbes are main drivers of biogeochemical cycles in oceans and lakes. Although the genome is a

foundation for understanding the metabolism, ecology and evolution of an organism, few bacterioplankton

genomes have been sequenced, partly due to difficulties in cultivating them.

Results: We use automatic binning to reconstruct a large number of bacterioplankton genomes from a

metagenomic time-series from the Baltic Sea, one of world’s largest brackish water bodies. These genomes

represent novel species within typical freshwater and marine clades, including clades not previously sequenced. The

genomes’ seasonal dynamics follow phylogenetic patterns, but with fine-grained lineage-specific variations,

reflected in gene-content. Signs of streamlining are evident in most genomes, and estimated genome sizes

correlate with abundance variation across filter size fractions. Comparing the genomes with globally distributed

metagenomes reveals significant fragment recruitment at high sequence identity from brackish waters in North

America, but little from lakes or oceans. This suggests the existence of a global brackish metacommunity whose

populations diverged from freshwater and marine relatives over 100,000 years ago, long before the Baltic Sea was

formed (8000 years ago). This markedly contrasts to most Baltic Sea multicellular organisms, which are locally

adapted populations of freshwater or marine counterparts.

Conclusions: We describe the gene content, temporal dynamics and biogeography of a large set of new

bacterioplankton genomes assembled from metagenomes. We propose that brackish environments exert such

strong selection that lineages adapted to them flourish globally with limited influence from surrounding aquatic

communities.

Keywords: Metagenome, Bacterioplankton, Ecology, Evolution, Marine, Brackish, Baltic Sea

Background
Microorganisms in aquatic environments play a crucial
role in determining global fluxes of energy and turnover
of elements essential to life. To understand these pro-
cesses through comprehensive analyses of microbial
ecology, evolution and metabolism, sequenced reference
genomes of representative native prokaryotes are crucial.
If these are obtained from isolates, the encoded informa-
tion can be complemented by phenotypic assays and
ecophysiological response experiments to provide in-
sights into the factors that regulate the activity of these

populations, in particular biogeochemical processes.
However, obtaining and characterizing new pure cultures
is invariably a slow process, even with recent advances in
high-throughput dilution culturing approaches [1]. Most
notoriously, the highly abundant, slow-growing oligo-
trophic lineages typical of pelagic environments [2, 3]
remain severely underrepresented in current culture
collections [4].
A very powerful alternative to obtain coherent data

from individual lineages without cultivation or enrich-
ment is single-cell sequencing [3, 5, 6]. This approach al-
lows researchers to select certain targets of interest,
based on, e.g., cell characteristics or genetic markers, to
address specific research questions [5, 7, 8]. However,
single-cell sequencing requires a highly specialized la-
boratory facility, and single amplified genomes (SAGs)
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typically have fairly low genome coverage, due to the
small amount of DNA in each cell and associated whole-
genome amplification biases [9].
Metagenomics offers an alternative shortcut to much

of the information obtained from pure culture genome
sequencing [10, 11]. The last decade’s revolution in
DNA sequencing throughput and cost has provided re-
searchers with the unprecedented possibility of obtaining
sequences from thousands of genomes at a time in nat-
ural samples. However, despite vast amounts of se-
quence data allowing inferences on global distribution of
phylogenetic lineages and metabolic potentials [11–14],
many biogeochemical, ecological and evolutionary ana-
lyses require structuring data into genomes. This is
critical because, while individual genes or genome frag-
ments provide useful information on the metabolic po-
tential of a community, in practice most biochemical
transformations take place inside a cell, involving sets of
genes structured in controlled pathways. Furthermore,
genomes from naturally abundant microbes can function
as references that allow high-quality annotations to be
made in subsequent high-throughput environmental
studies where otherwise a majority of sequences or pep-
tides would remain unclassified [15–17]. Through the
process of binning, contigs or scaffolds derived from the
same lineage can be clustered and genomes recon-
structed. The metagenome binning approach has been
successfully applied to a range of environments, includ-
ing aquatic ones [18–30]. Initially, approaches based on
sequence composition (e.g., tetranucleotide frequencies)
were successfully used to reconstruct near-complete ge-
nomes from metagenomic contigs without the use of
reference genomes, but these methods can generally
only discriminate down to the genus level [18, 20, 31].
More recently, coverage variation across multiple sam-
ples has been used, allowing binning down to species
and sometimes strain level [24, 29, 32–35]. At the same
time as genomes are reconstructed, the abundance dis-
tribution of these genomes across the samples is ob-
tained, allowing ecological inferences. One alternative
for automated and reproducible metagenomic binning is
the CONCOCT (Clustering of contigs based on coverage
and composition) program, which uses Gaussian mixture
models to bin contigs using a combination of sequence
composition and coverage across samples. CONCOCT was
previously shown to give high accuracy and recall on both
model and real human gut microbial communities [36].
The Baltic Sea is, in many aspects, one of the most

thoroughly studied aquatic ecosystems [37]. It presents
unique opportunities for obtaining novel understanding
of how environmental forcing determines ecosystem
structure and function, thanks to its strong gradients in
salinity (north–southwest), redox (across depths) and or-
ganic and nutrient loading (from coasts to center), as

well as pronounced seasonal changes in growth condi-
tions. 16S rRNA gene-based studies have revealed prom-
inent shifts in the microbial community composition
along these dimensions [38–41]. The community com-
position of surface waters changes gradually along the
2000 km salinity gradient, from mainly freshwater line-
ages in the low salinity north to mostly marine lineages
in the higher salinity southwest, and a mixture in the
mesohaline central Baltic Sea [40]. The phylogenetic
resolution of 16S amplicons, however, does not permit
determining whether prokaryotic lineages are locally
adapted freshwater and marine populations or represent
distinct brackish strains. A recent Baltic Sea metage-
nomic study showed how a shift in genetic functional
potential along the salinity gradient paralleled this phylo-
genetic shift in bacterial community composition [13].
However, since genes were not binned into genomes,
different sets of distinguishing gene functions could not
be assigned to the genomic context of specific taxa. Ref-
erence genomes would therefore be invaluable for a
richer exploration of available and future omics data.
Here, we used metagenome time-series data from a

sampling station in the central Baltic Sea to generate
metagenome-assembled genomes (MAGs) correspond-
ing to several of the most abundant, and mostly uncul-
tured, lineages in this environment. We use these data
to compare functional potentials between phylogenetic
lineages and relate functionality with seasonal succes-
sion. By comparing the MAGs with metagenome data
from globally distributed sites, we propose that these are
specialized brackish populations that evolved long before
the formation of the Baltic Sea and whose closest rela-
tives are today found in other brackish environments
across the globe.

Results and discussion

Metagenome-assembled genomes

We conducted shotgun metagenomic sequencing on 37
surface water samples collected from March to December
in 2012 at the Linnaeus Microbial Observatory (LMO), 10
km east of Öland, in the central Baltic Sea. On average,
14.5 million read pairs were assembled from each sample,
yielding a total of 1,443,953,143 bp across 4,094,883 con-
tigs. In order to bin contigs into genomes, the CONCOCT
software [36] was run on each assembled sample separ-
ately, using information on the contigs’ coverages across
all samples (Figure S1 in Additional file 1). Single-copy
genes (SCGs) were used to assess completeness and purity
of the bins. We approved bins having at least 30 of 36
SCGs present (Additional file 2), of which not more than
two were in multiple copies. This resulted in the identifi-
cation of 83 genomic bins, hereafter referred to as meta-
genome assembled genomes (MAGs). The completeness
of these MAGs was further validated by assessing the
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presence and uniqueness of a set of phylum- and class-
specific SCGs (n = 119–332; detailed in Additional files 2
and 3). Based on these SCGs, we estimate the MAGs to
be, on average, 82.7 % complete with 1.1 % of bases misas-
sembled or wrongly binned, with some MAGs estimated
to be 100 % complete (Table 1). In comparison, recent sin-
gle amplified genome studies of free-living aquatic bacteria
have obtained average completeness of 55–68 % [3, 6]. Im-
portantly, the number of MAGs reconstructed from each
sample correlates with the number of reads generated
from it and there is no sign of saturation in this trend
(Figure S2 in Additional file 1), meaning that more ge-
nomes can easily be reconstructed by deeper sequencing
of the same samples. Every sample with over 20 million
reads passing quality control yielded at least three ap-
proved genome bins. Further, while only highly complete
genomes were selected for this study, other research ques-
tions might be adequately addressed with partial genomes,
many more of which were generated.
In the original CONCOCT study [36], we performed

binning on a coassembly of all samples. Here we
employed an alternative strategy, where binning was run
on each sample separately, using the abundance profile
over all samples. This way, community complexity was
minimized and binning accuracy increased. Since this
strategy may reconstruct the same genome multiple
times over the time-series, the 83 complete MAGs were
further clustered based on sequence identity. Thirty dis-
tinct clusters (Baltic Sea genome clusters [BACLs] 1–30)
with >99 % intra-cluster sequence identity were formed
(<70 % between-cluster identity; 95 % sequence identity
is a stringent cut-off for bacterial species definition [42]),
that included between one and 14 MAGs each (Table 1;
Figure S3 in Additional file 1). Having several MAGs in
the same cluster increases the reliability of the analyses
performed, especially in the case of results based on the
absence of a sequence, such as missing genes.
The genome clusters generated represent environmen-

tally abundant strains, together corresponding to, on
average, 13 % of the shotgun reads in each sample (range
4–23 %; Table 1 displays average and maximum abun-
dance for individual genome clusters). This shows that
the CONCOCT approach successfully reconstructs novel
genomes of environmentally relevant bacteria.

Phylogeny and functional potential of MAGs

The reconstructed genomes belong to Actinobacteria,
Bacteroidetes, Cyanobacteria, Verrucomicrobia, Alpha-,
Beta- and Gammaproteobacteria and Thaumarchaeota

(Table 1, Fig. 1). Phylogenetic reconstruction using >400
concatenated core proteins [43] placed all MAGs
consistently with other members in their respective
MAG clusters, lending further support to the binning
(see Figure S4 in Additional file 1 and Additional file 4

for detailed phylogenetic trees). Based on average nu-
cleotide identity, only BACL8 was estimated to have >70
% DNA identity with its nearest neighbor in the phylo-
genetic tree. In this and many other cases, the closest
relative was not an isolate, but a SAG, reflecting these
methods’ ability to recover genomes from abundant, but
yet uncultivated, species.
This broad phylogenetic representation allowed us to

compare functional potential between taxonomic groups
in this ecosystem. Non-metric multidimensional scaling
based on counts of functional genes grouped the MAG
clusters according to their phylogeny (Fig. 2; Figure S5
in Additional file 1; Additional file 5), which was con-
firmed by ANOSIM (Analysis of Similarity; Table S1 in
Additional file 1). Alphaproteobacterial clusters encoded a
significantly higher proportion of genes in the “amino acid
transport and metabolism” COG category compared with
all other clusters (Welch’s t-test p < 0.001). In contrast,
Actinobacteria were significantly enriched in genes in the
“carbohydrate transport and metabolism” COG category
(p = 0.04), while enzymes involved in carboxylate degrad-
ation were significantly more abundant in Gammaproteo-

bacteria compared with all other clusters (p = 0.019).
Carboxylate degradation enzymes were also abundant in
Alphaproteobacteria and Bacteroidetes, but significantly
lower in proportion among the Actinobacteria (p < 0.01),
suggesting these heterotrophs might have distinct roles in
the degradation of allochthonous organic matter.
Bacteroidetes and Verrucomicrobia had the largest

number of glycoside hydrolase genes, including xyla-
nases, endochitinases and glycogen phosphorylases
(Figure S6 in Additional file 1), and thus appear well
suited for degradation of polysaccharides such as cellu-
lose, chitin and glycogen, in line with previous findings
connecting these groups to algal degradation [5, 27, 44].
Transporter proteins mediate many of the interactions
between a cell and its surroundings, thus providing in-
sights into an organism’s niche. A detailed analysis of
transporter genes in the 30 MAG clusters is found in
Figure S7 in Additional file 1 and in Additional file 6.

Novelly sequenced lineages

The MAG approach has previously proven useful for
closing gaps in the tree of life by the reconstruction of
genomes from uncultivated species (e.g., [29, 30, 45, 46]).
Here we report the first draft genomes for the oligotrophic
marine Gammaproteobacteria OM182, and for the typic-
ally freshwater Verrucomicrobia subdivision LD19 and
Actinobacteria clade acIV. Annotations for these genomes
are found in Additional files 5 and 6.
OM182 is a globally abundant Gammaproteobacteria

which has been grown in enrichment culture but never
sequenced. BACL3 includes a 16S rRNA gene 99 % iden-
tical to that of the OM182 isolate HTCC2188 [47]. This
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Table 1 Overview of clusters, sorted by taxonomy

Cluster Number
of MAGs

Average bin
size (Mb)

Coding (%) GC (%) Taxonomy Percentage average
abundance (maximum)

Percentage average
completeness (maximum)

BACL2 7 1.07 94.3 44.3 Actinobacteria; acI 1.20 (6.47) 78.7 (88.2)

BACL4 6 1.01 94.8 41 Actinobacteria; acI 0.36 (1.16) 80.8 (90.4)

BACL15 2 1.11 94.9 47.1 Actinobacteria; acI 0.37 (1.19) 84.2 (93.4)

BACL6 4 1.55 94.8 51.3 Actinobacteria; acIV 0.34 (2.92) 80.0 (86.0)

BACL17 2 1.45 95.5 52.3 Actinobacteria; acIV 0.21 (1.10) 82.7 (93.4)

BACL19 1 1.26 95.3 58.1 Actinobacteria; acIV 0.09 (0.57) 59.6

BACL27 1 1.67 94.7 50.4 Actinobacteria; acIV 0.29 (1.73) 69.9

BACL25 1 1.26 93.5 55.7 Actinobacteria; Luna 0.08 (0.62) 77.2

BACL28 1 1.12 94 51.7 Actinobacteria; Luna 0.13 (0.96) 65.4

BACL10 3 2.57 90.2 50.5 Alphaproteobacteria;
Rhodobacter

1.22 (10.91) 84.0 (88.7)

BACL5 5 1.08 96.5 30.1 Alphaproteobacteria; SAR11 0.79 (2.92) 80.2 (89.5)

BACL20 1 1.14 95.8 30.9 Alphaproteobacteria; SAR11 0.59 (2.56) 66.9

BACL7 3 1.74 95.4 49 Bacteroidetes;
Cryomorphaceae

0.32 (1.40) 99.4 (100)

BACL11 3 1.19 96 32.9 Bacteroidetes;
Cryomorphaceae

0.43 (1.70) 75.1 (84.9)

BACL18 2 1.32 94.5 57.5 Bacteroidetes;
Cryomorphaceae

0.18 (0.93) 78.6 (85.7)

BACL23 1 1.73 95.3 54.6 Bacteroidetes;
Cryomorphaceae

0.15 (1.45) 98.3

BACL8 3 1.74 93.6 38.7 Bacteroidetes;
Flavobacteriaceae

0.51 (1.54) 89.4 (98.3)

BACL21 1 1.92 93.1 44.1 Bacteroidetes;
Flavobacteriaceae

0.21 (1.09) 97.5

BACL22 1 2.41 91 32.1 Bacteroidetes;
Flavobacteriaceae

0.14 (0.98) 91.6

BACL29 1 1.48 95.2 30 Bacteroidetes;
Flavobacteriaceae

0.08 (0.49) 88.2

BACL12 2 2.64 93.6 47.2 Bacteroidetes;
Sphingobacteriales

0.20 (2.14) 85.3 (93.3)

BACL14 2 1.19 94.2 38.7 Betaproteobacteria; OM43 0.42 (1.44) 86.5 (87.8)

BACL30 1 1.81 92.2 63.6 Cyanobacteria; Cyanobium 0.38 (1.26) 79.2

BACL3 6 2.23 90.5 53 Gammaproteobacteria;
OM182

0.80 (3.54) 85.8 (90.9)

BACL1 14 1.37 95.2 40 Gammaproteobacteria;
SAR86

1.74 (5.23) 85.9 (90.9)

BACL16 2 2.26 91 51.3 Gammaproteobacteria;
SAR92

0.37 (2.41) 96.2 (97.2)

BACL26 1 1.91 91 46 Gammaproteobacteria;
SAR92

0.13 (0.70) 83.2

BACL13 2 1.01 90.9 31.9 Thaumarchaeota;
Nitrosopumilaceae

0.11 (0.88) 70.0 (78.4)

BACL9 3 1.50 93.7 56.1 Verrucomicrobia; LD19 0.36 (1.54) 73.6 (76.4)

BACL24 1 2.98 88.4 53.1 Verrucomicrobia;
Opitutaceae

0.08 (2.25) 92.1

BACL Baltic Sea genome cluster
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MAG cluster shares common features with other Gamma-

proteobacteria, such as a variety of glycoside hydrolases and
carboxylate degradation enzymes. It also encodes the ATP-
driven sulfate transporter and a complete set of genes for
assimilatory sulfate reduction to sulfide and for production
of cysteine from sulfide and serine via cysK and cysE. Genes
for sulfite production from both thiosulfate (via glpE) and
taurine (via tauD) are also encoded in the genome, and this
is the only MAG cluster to encode the full set of genes
for intracellular sulfur oxidation (dsrCEFH). BACL3 thus

appears remarkably well-suited for metabolizing different
inorganic and organic sulfur sources, the latter potentially
originating from phytoplankton blooms [48], even more so
than previously sequenced isolates of oligotrophic marine
Gammaproteobacteria [49].
Two verrucomicrobial genome MAG clusters were re-

constructed. BACL9 MAGs include 16S rRNA genes 99 %
identical to that of the globally distributed freshwater clade
LD19 [50], a subdivision within the Verrucomicrobia still
lacking cultured or sequenced representatives. Previous

Fig. 1 Phylogenetic tree of reconstructed genomes. In instances where several genomes were collapsed, the taxonomic label of highest

resolution is displayed. Phyla and proteobacterial classes for which MAGs were generated are highlighted with colored branches. Leaf labels are

colored according to the origin of the genome(s). Shimodaira-Hasegawa support for each node partition is displayed. The complete tree in

newick format is available as Additional file 4 in the electronic version of this work
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16S-based analyses placed LD19 as a sister group to a sub-
division with acidophilic methanotrophs [51]. Accordingly,
BACL9 is placed as a sister clade to the acidophilic
methanotroph Methylacidiphilum infernorum [52] in the
genome tree (Fig. 1; Figure S4g in Additional file 1), but
does not present methane monooxygenase genes and
thus likely lacks the capacity for methane oxidation seen
in M. infernorum. Interestingly, BACL9 contains a set of
genes that together allow for production of 2,3-butanediol
from pyruvate (via acetolactate and acetoin). Butanediol
plays a role in regulating intracellular pH during fermen-
tative anaerobic growth and biofilm formation [53]. This
is also the only MAG with the genetic capacity to
synthesize hopanoid lipids, which have been implicated in
enhanced pH tolerance in bacteria by stabilizing cellular
membranes [54]. This indicates adaptation to withstand-
ing lowered intracellular pH such as that induced by fer-
mentative growth under anaerobic conditions. Such
conditions occur in biofilms [53], and it remains to be
shown whether these planktonic bacteria can form bio-
films to grow attached to particles in the water column.
BACLs 6, 17, 19 and 27 all belong to the actinobacterial

order Acidimicrobiales and reconstructed 16S rRNA genes
placed them in clade acIV. Most isolates of the order
Acidimicrobiales are acidophilic, and no genomes have been
reported for acIV, despite its numerical importance in lake

water systems [55]. Previous work presented a cluster of ge-
nomes named acAcidi and tentatively placed it as an acIV [56].
However, it was at that point impossible to untangle the ge-
nomes that form the cluster, and no 16S rRNA could be
assembled. Thus, the MAGs reported here are the first
species-level draft genomes for this clade, and the phylogenetic
tree constructed here supports the placement of cluster acA-
cidi as acIV (Fig. 1; Figure S4a in Additional file 1). Compared
with the other typically freshwater clades acI (BACLs 2, 4, 15)
and Luna (BACLs 25, 28), which belong to the order Actino-
mycetales, acIV MAG clusters have larger genome sizes and
contain a significantly lower proportion of genes in the "carbo-
hydrate transport and metabolism" COG category (p < 0.01),
particularly ABC-type sugar transporters (Additional file 6).
AcIV and acI are also impoverished for phosphotransferase
(PTS) genes and amino acid transporters, comparedwithLuna
MAGs. In contrast, acIVMAG clusters contain a significantly
higher proportion of genes in the "lipid transport andmetabol-
ism" COG category (p = 0.02), and a significantly
higher total proportion of enzymes involved in fatty-
acid oxidation (p < 0.001), indicating that these Acti-

nobacteria may use lipids as carbon source.
The only cyanobacterial genome assembled was

BACL30. While it is placed in the phylogenetic tree as a
distant neighbor to Cyanobium gracile (Fig. 1; Figure S4f
in Additional file 1), its 16S rRNA gene is only 97 %

Fig. 2 Non-metric multidimensional scaling (NMDS) of MAG clusters (BACLs) based on counts of COGs in the genomes. MAG clusters are

displayed with abbreviated lineage names and BACL numbers in parentheses, and are colored according to Phyla/Class. Cya Cyanobium, Cryo

Cryomorphaceae, Fla Flavobacteriaceae, Opit Opitutaceae, Rho Rhodobacter, Sphi Sphingobacteriales. The taxonomy of each BACL can also be found

in Table 1
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identical with it, the same identity as with Synechococcus

and Prochlorococcus. This genome contains genes for
the pigments phycocyanin and phycoerythrin and har-
bors the type IIB pigment gene organization recently
identified as being dominant in Baltic Sea picocyano-
bacteria [57]. The phycocyanin genes cpcBA and the
intergenic spacer are 100 % identical to sequences in
the type IIB pigment clade. Phylogenies of phycocyanin
and phycoerythrin subunits as well as six ribosomal pro-
teins consistently placed this cyanobacterial MAG
within the type IIB pigment clades and within the clade
of picocyanobacteria whose members are abundant in
the Baltic Sea, but for which a reference genome has
been unavailable (Fig. S8 in Additional file 1). BACL30
contains the high affinity pstS phosphate transporter,
but lacks the phoU regulatory gene as well as an alkaline
phosphatase. In this respect the genome is similar to the
coastal strain Synechococcus CC9311 [58], likely reflecting
adaptation to higher phosphorous loads compared with the
open oceans.

Genome streamlining and inferred cell sizes

Oligotrophic bacterioplankton are characterized by
streamlined genomes, i.e., small genomes with high
coding densities and low numbers of paralogs [59]. For
the few cultured oligotrophs, such as Prochlorococcus

[60] and SAR11 [61], this coincides with small cell sizes.
The small cells render high surface-to-volume ratios,
beneficial for organisms that compete for very low con-
centration nutrients [62]. SAG sequencing has shown
that genomic streamlining is a widely distributed feature
among abundant bacterioplankton [3], contrasting with
most cultured marine bacteria. Lauro et al. [2] identified
genome features for predicting whether an organism or
community is oligotrophic or copiotrophic. Ordination
using some of these features (coding density, GC content
and proportion of five COG categories [2, 3]) separated
our MAG clusters from marine isolate genomes (Fig. 3a).
The exceptions were isolates of picocyanobacteria,
SAR11 and OM43 that overlapped with our MAG clus-
ters, and the SAR92, OM182 and Opitutaceae MAG
clusters that overlapped with the isolates. Hence, most
of the MAGs displayed pronounced signs of streamlin-
ing. These features, with the exception of GC content,
were found to be highly correlated with genome size
(Figure S9 in Additional file 1), and genome size alone
gave equally strong separation (Fig. 3b, c).
Interestingly, several of the Bacteroidetes MAG clus-

ters appear to be streamlined, despite Bacteroidetes be-
ing generally described as copiotrophic [59]. One of
them (BACL11), which represents a novel branch in the
Cryomorphaceae (Fig. 1), has a particularly small gen-
ome (1.19 Mbp [range 1.16–1.21] MAG size, at 75 % es-
timated completeness) with only 4 % non-coding DNA.

It encodes a smaller number of transporters than the
other Bacteroidetes MAG clusters and only one type of
glycoside hydrolase. It also has a comparatively low GC-
content (33 %). However, the Polaribacter MAG cluster
(BACL22), which has the largest genome and lowest
gene density of the Bacteroidetes genome MAG clusters,
has equally low GC content (32 %), as previously ob-
served in planktonic and algae-attached Polaribacter iso-
lates [63]. Since, in general, GC content correlates only
weakly with both genome size and gene density (Figure S9
in Additional file 1), this may not be an optimal marker
for genome streamlining. Supporting the impression
that MAGs represent small and streamlined genomes,
with little metabolic flexibility, most MAG clusters (25
of 30) encode rhodopsins (PF01036; Additional file 5),
which allows them to adopt a photoheterotrophic lifestyle
when their required substrates for chemoheterotrophy are
not available.
By mapping shotgun reads from different filter frac-

tions (0.1–0.8, 0.8–3.0 and >3.0 μm) from a previous
spatial metagenomic survey of the Baltic Sea [13], we
could investigate how MAG cluster cells were distrib-
uted across size fractions. Comparing counts of mapped
reads between the 0.8–3.0 and 0.1–0.8 μm fractions
showed that Bacteroidetes tended to be captured on the
0.8 μm filter to a higher extent than Actinobacteria

(Fig. 3d). This bias could be driven by Bacteroidetes be-
ing, to a higher extent, attached to organic matter parti-
cles or phytoplankton. However, comparing the >3.0 μm
with the 0.8–3.0 μm fraction showed a clear bias only
for one of the Bacteroidetes clusters (BACL12; Fig. 3e).
This cluster has the largest genomes (2.5 and 2.8 Mbp)
of the reconstructed Bacteroidetes and is the only repre-
sentative of the Sphingobacteriales (Fig. 1). Sphingobac-
teria have previously been suggested to bind to algal
surfaces with the assistance of glycosyltransferases [64].
We did not find significantly more glycosyltransferases
in BACL12 than in the other Bacteroidetes. Rather, it en-
codes a greater number of genes containing carbohydrate-
binding module domains than the other clusters (x̄ = 12
in BACL12 versus 1.3 in the other Bacteroidetes and 1.4 in
all clusters), which may facilitate adhesion to particles or
phytoplankton [65].
Since only one Bacteroidetes MAG cluster was biased

toward the >3 μm filter, attachment to organic particles
doesn’t seem to be the main reason behind the difference
in filter capture between Bacteroidetes and Actinobacteria,
unless the particles are mainly in the 0.8–3.0 μm size
range. Another possibility is that this bias reflects cell size
distributions; each population has a specific size distribu-
tion that will influence what proportion of cells will pass
through each membrane. Interestingly, the (0.8–3.0 μm)/
(0.1–0.8 μm) read count ratio is correlated to genome size
of the MAGs (Spearman rho = 0.76; p = 10−5; Fig. 3f),
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indicating a positive correlation between cell size and gen-
ome size.
The reason for the streamlining of genomes in oligo-

trophs is not known [59]. Lowered energetic costs for
replication is one possibility. Despite the energetic re-
quirements for DNA replication being low (<2 % of
the total energy budget [66]), the extremely large ef-
fective population sizes of oligotrophic pelagic bacteria
could explain selection for this trait [59]. Another pos-
sibility is spatial constraints. In Pelagibacter the gen-
ome occupies 30 % of the cell volume [61], so that cell
size minimization may be constrained by the genome
size. A strong correlation between cell and genome
size for oligotrophic microbes would favor such an ex-
planation. Further analyses with more reconstructed
genomes and higher resolution of filter sizes could
shed more light on the mechanisms behind genome
streamlining.

Seasonal dynamics

Pronounced seasonal changes in environmental condi-
tions with associated phytoplankton spring blooms are
characteristic of temperate coastal waters. As is typical
for the central Baltic Sea, in 2012 an early spring bloom
of diatoms was followed by a dinoflagellate bloom, caus-
ing inorganic nitrogen to decrease rapidly; later in sum-
mer, diazotrophic filamentous cyanobacteria bloomed
(Fig. 4; Figure S10 in Additional file 1). The only recon-
structed picocyanobacteria genome (BACL30) peaked in
early summer, between the spring and summer blooms
of the larger phytoplankton. A similar pattern was pre-
viously observed for an operational taxonomic unit
identical to the 16S rRNA gene of this reconstructed
genome [39].
The seasonal dynamics of heterotrophic MAGs were

highly influenced by the phytoplankton blooms, with dif-
ferent populations co-varying with different phytoplankton

Fig. 3 Genome properties and filter size fraction distributions of MAGs. a Principal components analysis (PCA) on our 30 MAG clusters and 135

genomes from marine isolates [4] based on log-transformed percentages of non-coding DNA, GC content, COG categories "transcription" (K),

"signal transduction" (T), "defense mechanism" (V), "secondary metabolites biosynthesis" (Q) and "lipid transport and metabolism" (I). Only isolates

belonging to the phyla (classes for proteobacteria) represented by MAGs were included. b, c Genome size versus percentage of non-coding DNA

plotted for the same set of genomes (b), with a zoom-in on the smaller and denser genomes (c). d, e Number of sequence reads matching to

the MAG clusters (in log scale) per 10,000 reads compared from each filter fraction in Dupont et al. [13]. f The ratio of matches between the

0.8–3.0 and the 0.1–0.8 μm fraction versus genome size, both in log scale
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(Fig. 4). Phylum-level patterns were present, with a Bacter-
oidetes-dominated community in spring and early summer
(7/9 Bacteroidetes MAG clusters), coinciding with the
spring phytoplankton blooms, and Actinobacteria being
more predominant in the second half of the year (8/9 Acti-

nobacterial MAG clusters). This pattern is in large agree-
ment with observations by Lindh and colleagues in the
same station in 2011 [41].
The pattern also broadly agrees with what is known

for Bacteroidetes: being better adapted to feeding on
complex carbohydrates abundant for the duration of
phytoplankton blooms [44]. This was also reflected in
the functional annotations, where Bacteroidetes MAGs
contained several enzymes for degradation of polysac-
charides and were enriched for certain aminopeptidases.
For Actinobacteria, no such general correlation pattern
to phytoplankton has been shown, but there are indica-
tions of association with and active uptake of photosyn-
thates from cyanobacterial blooms [67, 68]. Actinobacteria
MAGs, which were enriched in genes for the uptake and
metabolism of monosaccharides such as galactose and
xylose, became abundant as levels of dissolved organic
carbon increased in the water (Fig. 4; Figure S10 in
Additional file 1).

Besides these phylum- and order-level trends, tem-
poral patterns were also observed at finer phylogenetic
scales. The peaks of Luna clades coincide with spring
phytoplankton blooms, while acI and acIV are more
abundant in autumn, after these blooms. As previously
reported for acI SAGs [6], cyanophycinase was found in
two of the three acI MAG clusters, potentially allowing
degradation of the storage compound cyanophycin syn-
thesized by Cyanobacteria. These two acI MAG clusters
(BACL2 and 4) became abundant in late July, as filament-
ous Cyanobacteria, which typically produce cyanophycin,
started to peak in abundance (Fig. 4). In contrast, all acIV
and Luna MAGs lacked this gene.
Furthermore, contrasting dynamics between members

of the same clade, as exemplified by one acIV population
blooming in spring, highlight that, despite the general
similarities in their functional repertoire, lineage-specific
adaptations allow different microniches to be occupied
by different strains (Figs. 2 and 4). As an example, the
spring blooming acIV BACL6 contained several genes
for nucleotide degradation that were missing in the sum-
mer blooming acIV MAG clusters, such as adenine
phosphoribosyltransferase, thymidine phosphorylase and
pyrimidine utilization protein B. In addition, BACL6

Fig. 4 Seasonal dynamics of MAG clusters and phytoplankton. The heatmap shows the relative abundance (Z-score) of each MAG cluster in the

time-series, based on calculated coverage from read mappings. In addition, the relative abundance of phytoplankton groups, assessed by

microscopy, is shown for the same samples (prefixed by "MIC"). MAG clusters and eukaryotic groups were hierarchically clustered using Spearman

correlations as shown in the dendrogram on the left. Colored rows at the top indicate month and season of each sample
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contained genes sulP and phnA for uptake of sulfate and
uptake and utilization of alkylphosphonate, respectively.
These genes were also found in the spring blooming
BACL25 (Luna clade), but were notably absent from the
summer blooming acI, acIV and Luna MAG clusters.
The capability to utilize nucleotides and phosphonates
as carbon and phosphorous sources thus potentially set
BACL6 and 25 apart from other closely related lineages.
The two SAR11 MAG clusters also showed contrast-

ing seasonal patterns, with BACL20 being abundant in
spring and peaking in early summer, while BACL5
appeared later and showed a stable profile from July on-
wards. Functional analysis showed that BACL5 contained
several genes related to phosphate acquisition and storage
that were missing from BACL20. These included the
high-affinity pstS transporter, polyphosphate kinase and
exopolyphosphatase, as well as the phosphate starvation-
inducible gene phoH. BACL5 therefore appears better
adapted to the low concentrations of phosphate found in
mid- to late summer (Figure S10 in Additional file 1). In
addition, proteorhodopsin was found in BACL5, but not
in BACL20. However, since the latter consists of only one
MAG, this gene may have been missed due to incomplete
genome assembly.

Biogeography of the brackish microbiome

To assess how abundant the MAGs presented here are
in other marine and freshwater environments around
the globe, fragment recruitment was performed from a
collection of samples comprising a wide range of salinity
levels. At intermediate levels of sequence identity (85 %),
different phylogenetic lineages recruit preferentially fresh
or marine water fragments. Most markedly, SAR11,
whose two MAG clusters belong to the marine subclade
Ia (Figure S4c in Additional file 1), displays a clear mar-
ine profile, while acI and acIV Actinobacteria have a dis-
tinct freshwater signature (Fig. 5a; Figs. S11a and S12 in
Additional file 1). In addition, MAGs belonging to Bac-

teroidetes and Gammaproteobacteria show signs of a
marine rather than a freshwater signature that fits with
the presence of the Na+-transporting NADH dehydro-
genase in these lineages (Fig. S7 in Additional file 1).
However, at a high identity level (99 %) only reads from
brackish environments are recruited, including estuaries
in North America (Chesapeake Bay, salinity = 3.5 prac-
tical salinity units (PSU); Delaware Bay, salinity = 15
PSU), to the exclusion of fresh and marine waters much
closer geographically to the Baltic Sea (Fig. 5b; Figures.
S11b and S12 in Additional file 1). Neither do Atlantic
ocean waters sampled within a few days of these North-
American estuaries show the same remarkable level of
recruitment, indicating that salinity, not seasonality, is the
determining factor in this pattern. Indeed, it is remarkable
that BACL8 is placed phylogenetically as a single clade

together with a SAG sampled in the brackish Chesapeake
Bay (Figure S4b in Additional file 1). Despite being sepa-
rated by thousands of kilometers of salt water, these cells
share 99 % identity over the entire length of the SAG (70
% of MAG length), thus most likely representing the same
species [42].
Some BACLs recruit markedly more fragments from

the North American estuaries than others. This could
be due to seasonal effects, since each North American
station is represented by a single time-point, in which
not all populations were equally abundant. The lower
recruitment by certain BACLs could also reflect disper-
sal limitation and site-specific environmental differ-
ences, if these populations are never detectable in the
North American estuaries. Nevertheless, our analysis
shows that the reconstructed genomes recruited se-
quences primarily from brackish estuary environments
at various levels of sequence identity, which holds true
even when considering a co-assembly of reads from all
the samples sequenced in this work. While most of the
recruitment from brackish environments happens at
96–99 % identity, freshwater and marine environments
don’t present significant recruitment until 80–90 %
identity (Fig. 6).
The Baltic Sea is a young system, formed by the open-

ing of the Danish straits to the North Sea in a long
process between 13,000 and 8,000 years ago. The initially
high salinity has slowly decreased due to the influx of
freshwater from the surrounding area and the narrow
connection to the open ocean, forming a stable brackish
system around 4000 years ago, that now has a water re-
newal time of approximately 50 years [69]. Even consid-
ering fast rates of evolution for bacteria, the high degree
of separation observed at the whole-genome level be-
tween the Baltic metagenome and global fresh and mar-
ine metagenomes cannot be explained by isolation in the
Baltic alone. Based on the rates of evolution presented
by [70], it would take over 100,000 years for free-living
bacteria to accumulate 1 % genome divergence. These
specialists must therefore have evolved before current
stable bodies of brackish water, such as the Baltic Sea,
the Black Sea and the Caspian Sea, were formed in the
end of the last glacial period. Intriguingly, brackish-
typical green sulfur bacteria have been observed in sedi-
ment layers of 217,000 years in the now highly saline
Mediterranean [71], suggesting that brackish populations
might migrate between these transient environments as
salinity shifts. This is in agreement with the well docu-
mented separation between freshwater and marine spe-
cies, which indicates that salinity level is a main barrier
isolating populations (reviewed in [72]). Strains previ-
ously adapted to brackish environments and transported
through winds, currents or migratory animals can thus
proliferate and occupy available niches before fresh
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Fig. 5 (See legend on next page.)

Hugerth et al. Genome Biology  (2015) 16:279 Page 11 of 18



and marine strains can effectively adapt to the new
environment.
The prokaryotic populations of the Baltic Sea thus ap-

pear to have adapted to its intermediate salinity levels
via a different mode than its multicellular species, most
of which are recently adapted to brackish environments
from the surrounding fresh and marine waters [73, 74].
Indeed, while there is low multicellular species richness
and intra-species diversity in the Baltic [75], suggestive
of a recent evolutionary bottleneck, no such observation
has been made for bacteria in the region [13, 40].
A key question that arises is what adaptations the pop-

ulations have undergone that allowed the transition from
freshwater or marine conditions to the brackish. When
comparing aquatic metagenomes from different salinities
at the whole community level, composition of functional
genes is highly correlated with salinity (Figure S13 in
Additional file 1), as has previously been observed
[13, 76]. Brackish samples from the Baltic Sea cluster
with North American estuary samples of similar salinities,
surrounded by freshwater and marine samples at each
end. Also, >50 % of the detected COGs correlate signifi-
cantly in their abundance with salinity. The difference in

gene composition between the brackish and the marine
and freshwater metagenomes is, however, not necessarily
reflecting genomic adaptations. Rather, it likely reflects
that brackish communities comprise mixtures of lineages
most closely related to freshwater and marine counter-
parts [40]. As more pairs of genomes of brackish and close
freshwater or marine relatives become available, it will be
possible to more directly assess how the populations have
adapted to the altered salinity levels. Such analysis will po-
tentially identify functional genes that have been inde-
pendently gained or lost, or display elevated evolutionary
rates, in multiple lineages during the transition from
either freshwater or marine conditions to brackish.

Conclusions

Here we present 83 genomes, corresponding to 30 clus-
ters at >99 % nucleotide identity, reconstructed from
metagenomic shotgun sequencing assemblies using an
unsupervised binning approach. Many of the recon-
structed genomes belong to lineages with no previous
reference genome, including lineages known from 16S-
amplicon studies to be highly abundant. We show that
the seasonal dynamics of these bacterioplankton follow
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Fig. 6 Fragment recruitment at different nucleotide identity, expressed as number of reads aligned per 10K reads. The reads from each sample

were aligned to a co-assembly of all samples sequenced in this work, and recruitment values calculated at various percentage identity cutoffs.

Boxes show average and variation of recruitment within sample groups. The number of samples included in each group is given in the legend
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Fig. 5 Biogeographical abundance profiles of MAGs. Heatmap plots showing the abundance of recruited reads from various samples and sample

groups to each of the 30 MAG clusters as well as to a co-assembly of all samples in the time-series (“BalticAsm”) at the (a) 85 % and (b) 99 %

identity cutoff levels. Shown values represent number of recruited reads/kb of genome per 10,000 queried reads. For clarity, several sample

groups have been collapsed with recruitment values averaged over samples in the group. Sample groups are indicated by the lower color strip

above the plot and samples are ordered by salinity (shown in the upper color strip). See Fig. S11 in Additional file 1 for full visualizations

of samples
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phylogenetic divisions, but with fine-grained lineage-
specific adaptations. We confirm previous observations
on the prevalence of genome streamlining in pelagic
bacteria and our data indicate this is related to cell size
minimization. Finally, we propose that brackish envi-
ronments exert such strong selection for tolerance to
intermediate salinity that lineages adapted to it flourish
throughout the globe with limited influence from
surrounding aquatic communities. The new genomes
are now available to the wider research community to
explore further questions in microbial ecology and
biogeography.

Materials and methods

Sample collection, library preparation and sequencing

Water samples were collected on 37 occasions between
March and December of 2012, at 2 m depth, at the
LMO (N 56°55.851, E 17°03.640), 10 km off the coast of
Öland (Sweden), using a Ruttner sampler. All samples
are referred to in the text and figures by their sampling
date, in the format yymmdd. Samples were filtered suc-
cessively at 3.0 μm and 0.22 μm. The 0.22 μm fraction
was used for DNA extraction. The procedures for DNA
extraction, phytoplankton counts and chlorophyll a and
nutrient concentration measurement are described in
[41]. DNA (2–10 ng) from each sample were prepared
with the Rubicon ThruPlex kit (Rubicon Genomics, Ann
Arbor, Michigan, USA) according to the instructions
of the manufacturer. Cleaning steps were performed
with MyOne™ carboxylic acid-coated superparamagnetic
beads (Invitrogen, Carlsbad, CA, USA). Finished libraries
were sequenced in SciLifeLab/NGI (Solna, Sweden) on a
HiSeq 2500 (Illumina Inc., San Diego, CA, USA). On
average, 31.9 million paired-end reads of 2 × 100 bp were
generated.

Sequence data quality filtering and assembly

Reads were quality trimmed using sickle [77] to elimin-
ate stretches where average quality scores fall below 30.
Cutadapt [78] was used to eliminate adapter sequences
from short fragments detected by FastQC [79]. Finally,
FastUniq [80] was used to eliminate reads which were,
on both forward and reverse strands, identical prefixes
of longer reads (on average, 49 % of the reads from each
sample). Each sample was then assembled separately,
using Ray 2.1 (Ray Meta) [81] with kmer lengths of 21,
31, 41, 51, 61, 71 and 81. Contigs from each of these as-
semblies were cut up to 2000 bp in sliding windows
every 100 bp using Metassemble [82], which keeps one
copy of each subcontig, or two copies of subcontigs on
the edges of contigs or of small (<1100 bp) contigs that
are not cut, preventing loss of information due to low
coverage. Subcontigs were then reassembled using 454
Life Science’s software Newbler (v.2.9; Roche, Basel,

Switzerland), with default parameters (minimum overlap
length of 40 bp, minimum overlap identity of 90 %).
Assembly statistics for each MAG are available in
Additional file 2.
Similar ensemble assembly approaches, where a de

Bruijn assembler was used to repeatedly assemble reads
using different kmer lengths, followed by overlap-layout
consensus assembly of contigs from the individual as-
semblies, have been used and evaluated before on meta-
genome datasets and shown to generate longer contigs
and higher accuracy than using only the de Bruijn as-
semblers [83–85]. Similarly to us, Luo et al. [83] used
Newbler for the overlap-layout consensus step, although
they used other de Bruijn graph assemblers than Ray.
However, Ray has been evaluated for metagenome data
with good results [81].
To assess the suitability of this approach to our par-

ticular dataset, an in silico spike-in experiment was per-
formed by cutting up the genome of the Pelagibacter

ubique isolate HTCC1062 in stretches of 1000 bp on a
sliding window of 100 bp and adding the resulting artifi-
cial contigs to the background of contigs coming from
Ray with all different k-mer lengths from sample
120322, one of the most deeply sequenced samples in
this study. Newbler was run with default parameters.
The Newbler report revealed that the sequence frag-
ments from HTCC1062 were distributed over 86 con-
tigs. Comparing these contigs with the reference genome
using MUMmer [86] showed that 99.66 % of the
1,308,759 bp HTCC1062 genome was recovered. Only
0.2 % of bases in these 86 contigs did not map back to
the reference genome. Over the whole alignment, 99.97
% of residues were identical between the reference gen-
ome and the assembled contigs. In contrast, in the ab-
sence of the spike-in, only 5.4 % of the HTCC1062
genome was covered by contigs with ≥90 % identity. The
average identity of these alignments was 92.25 %.

Binning of sequencing data and construction of MAGs

The quality-filtered reads of each sample were mapped
against the contigs of all other samples using Bowtie2
[87], Samtools [88], Picard [89] and BEDTools [90].
Contigs from each sample were then binned based on
their tetranucleotide composition and covariation across
all samples using CONCOCT [36] and accepting contigs
over 1000, 3000 or 5000 bp in length (three runs per
sample). As in the original CONCOCT publication [36],
contigs ≥20 kb in length were split into 10-kb fragments
(sub-contigs) before CONCOCT was run. After binning,
sub-contigs ending up in the same bin and that were ad-
jacent in the original contigs were joined again. Prodigal
[91] was used to predict proteins on contigs for each
bin, and these were compared with the COG database
with RPS-BLAST. The resulting hits were compared
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with a small set of 36 SCGs used by CONCOCT, only
considering a protein hit if it covered more than half of
the reference length. Bins were considered good if they
presented at least 30 of the 36 SCGs, no more than two
of which were in multiple copies. Another set of
phylum-specific SCGs was used to evaluate each selected
bin more carefully. Both the general prokaryotic SCGs
and phylum-specific SCGs were selected such that they
were present in at least 97 % of sequenced representa-
tives within that taxon and had an average gene count of
less than 1.03. For the phylum-specific SCGs, Proteobac-
teria was divided down to class level for increased sensi-
tivity. The full list of SCGs used can be found in
Additional files 2 and 3.
For each sample, only one CONCOCT run was chosen

for downstream analysis. For most samples, the 1000-bp
cutoff provided the maximum number of good bins, but
samples 120705, 120828 and 121004 had best results
with 3000 bp. This resulted in 83 good bins in total. As
the same, or highly similar, genome could have been in-
dependently found in more than one sample, MUMmer
[86] was used to compare all good bins against each
other. The distance between two bins was set as one
minus average nucleotide identity, given a minimum of
50 % bin coverage of the smallest bin in each pair. This
procedure yielded 30 clearly distinct clusters (BACLs),
independently of the clustering method used (average,
full or single linkage).

Abundance estimation and comparison of MAGs

The relative abundance of each MAG was estimated
using the fraction of reads in each sample mapping to
the respective MAG. Normalized on the size of that bin,
this yielded the measure fraction of reads per nucleotide

in bin. This measure was chosen since it is comparable
across samples with varying sequencing output and
different bin sizes. Using the CONCOCT input table,
multiplying the average coverage per nucleotide with the
length of the contig in question and summing over all
contigs within a bin and within a sample gave the num-
ber of reads per bin within a sample. The fraction of
reads in each sample mapping to each bin was then cal-
culated by dividing this value with the total number of
reads from each sample, after having removed duplicated
reads.

Functional analysis

Contigs in each genome cluster were annotated using
PROKKA (v.1.7) [92], modified so that partial genes cover-
ing edges of contigs were included, to suit metagenomic
datasets, and extended with additional annotations so
that Pfam [93], TIGRFAMs (v.15.0) [94], COG [95] and
Enzyme Commission [96] numbers were given for all
sequences where applicable. The extended annotation

was performed using homology search with RPS-
BLAST. Metabolic pathways were predicted in MAGs
using MinPath (v.1.2) [97] with the Metacyc database
(v.18.1) [98] as a reference. Counts of COGs, Pfams,
TIGRFAMs, enzymes or metabolic pathways were
averaged within genome clusters (BACLs) and non-
metric multidimensional scaling (NMDS) analysis was
applied to the genome clusters based on either of these
type of features, calculating pairwise cluster distances
using Bray-Curtis dissimilarities. The NMDS analysis
was performed using function ‘metaMDS’ in R package
vegan (v.2.2-0) with the number of dimensions set to
four after manual inspection of scree plots. Abun-
dances of functional features were explored, and statis-
tical analyses of functional differences between groups
of MAGs performed using STAMP (v.2.0.9) [99] with
multiple test correction using the Benjamini-Hochberg
false discovery rate method.

Taxonomic and phylogenetic annotation

Initial taxonomy assignment for each MAG was done
with Phylosift [100]. Phylosift annotates contigs based
on core genes and assigns a mass-probability to its clas-
sification. To go from contig-level annotation to MAG-
level annotation, this mass-probability was weighted by
the number of bases in each contig. The last common
ancestor for all annotations reaching at least 30 % of
weighted support was considered as bin-level annota-
tion. This provided 86–100 % support to phylum-level
classification and 66–100 % at the class level, except for
the three bins in BACL9, which had >40 % support for
classification as virus. To improve the resolution of an-
notations, classification of 16S rRNA genes was also
used. Complete or partial 16S genes were identified on
contigs using WebMGA [101]. Further, since rRNA is
difficult both to assemble and to bin, a complementary
approach was used where partial 16S rRNA genes were
assembled for each MAG using reads classified as SSU
rRNA by SortMeRNA [102], but whose paired-end read
was assembled in another contig belonging to the same
MAG. The identified and reconstructed 16S fragments
were classified with stand-alone SINA 1.2.13 [103] and
by Blasting against the data by Newton et al. [55].
Using the information provided by Phylosift and 16S

analysis, relevant isolate genomes and SAGs were se-
lected. These were combined with all complete prokary-
otic genomes in the RefSeq database. Prodigal was used
for protein prediction in each genome. These proteomes,
together with the proteomes of our MAGs, were used
for phylogenetic tree reconstruction using Phylophlan
[43]. Phylophlan’s reference database was not used as we
noticed that, in instances where genomes that were
already present in the reference were processed by us
and added, they tended to branch closer to the MAG

Hugerth et al. Genome Biology  (2015) 16:279 Page 14 of 18



than otherwise, thus indicating a role of protein predic-
tion method in the phylogeny. The tree visualizations
displayed here were generated with Archaeopteryx [104]
and FigTree [105]. For the sake of clarity, not all species
included in the tree are maintained in the overview or
clade-specific insets. Since the distance between MAGs
and their nearest neighbors in database: RefSeq were, as
a rule, too large for average nucleotide identity (ANI)
calculation, we adopted Genome BLAST Distance for
this comparison, using the online Genome-to-Genome
Distance Calculator [106].

Genome streamlining analysis

The dataset of marine microbial isolates from [4] was
downloaded from CAMERA [107]. These were function-
ally annotated in the same way as the MAGs. For
streamlining analysis, the GC content, genome length,
and average fraction of non-coding nucleotides were
calculated. To avoid bias of shorter contigs, the average
fraction of non-coding nucleotides was only based on
sequences longer than 5000 nucleotides. For clarity, only
genomes belonging to the same phyla as our recon-
structed MAGs were included in the analysis. For quan-
tifying how MAG cluster cells were distributed across
filter size fractions in [13], 10,000 random reads were
sampled from each size fraction from 21 samples and
aligned to the MAGs by BLAST, using 95 % identity and
alignment length of 100 bp as cutoff.

Fragment recruitment

Fragment recruitment [12] was used to estimate the
presence of the reconstructed MAGs in various locations
around the globe. We selected a total of 86 metage-
nomic samples obtained from a wide range of salinity
levels and geographic locations (Table 2). The missing
salinity value for Delaware Bay (GS011) was set to
15 PSU after consulting the Delaware Bay Operational
Forecast System [108]. All samples were sub-sampled to
10,000 sequences, each 350 bp in length, and all reads
were queried against a database of the reconstructed
genome bins using Blast + (v.2.2.30). Non-coding inter-
genic sequences were excluded by using only the nucleo-
tide sequences of predicted open reading frames. Only
samples comprising the 0.1–0.8 μm filter fraction were
used and only hits with e-value < 1e-5 and alignment

length >200 bp were considered. For visualizations, the
number of hits for MAGs in each sample was normal-
ized against the total size (in base pairs) of the MAG.
These normalized counts were then averaged over the
MAGs of each BACL.

Functional gene content analysis in metagenomes

Metagenomic assemblies of the Global Ocean Sampling
expedition (http://data.imicrobe.us/project/view/26) [12],
the Global Ocean Sampling Baltic Sea (http://data.imi
crobe.us/project/view/114) [13], and of nine metage-
nomic samples from freshwater lakes in Sweden and
USA (Sequence Read Archive study ERP004168) [109]
were concatenated. All three assemblies were con-
structed using Newbler (454 Life Science, Roche, Basel,
Switzerland) with default settings. A total of 24,041,069
genes were identified in the concatenated assembly using
Prodigal [110] with default settings, and were given
COG annotations by RPSBlast against the CDD database
[111]. Samples used for the assemblies were sub-
sampled to 100,000 sequences and samples with fewer
sequences were excluded, resulting in a total of 114 sam-
ples. In addition, one sample per month (ten in total)
was chosen from the LMO time-series (this study). To
make the 454 and Illumina datasets comparable, all se-
quences were cut to 90 nucleotides. Genes were quanti-
fied by blasting (Blastn) the 100,000 sub-sampled reads
from each sample against the concatenated assembly.
Best hits were counted if the alignment had >90 % iden-
tity over an alignment of >63 bp. Finally, counts were
summed per COG annotation for each sample. For the
principal coordinates analysis, pairwise sample distances
were calculated using Spearman correlations of COG
counts.

Availability of supporting data

The metagenome sequencing reads have been submitted
to NCBI’s Sequence Read Archive under accession num-
bers SRR2053273–SRR2053308. Contigs for each MAG are
available at NCBI’s Whole Genome Shotgun database
under accession numbers LIAK00000000–LIDO00000000.

Ethics approval

Ethics approval was not required for the study.

Table 2 Metagenomic projects used as queries for biogeographic fragment recruitments

Project Project ID Samples Salinity range (PSU) Reference

Global Ocean Sampling Expedition CAM_PROJ_GOS 56 0.1–37, 63 (hypersaline) [12]

Global Ocean Sampling Baltic Sea CAM_P_0001109 19 0–34 [13]

Freshwater metagenomes PRJEB4844 9 0 [109]

Lake Lanier metagenome by 454 SRR063691 1 0 [76]

Metagenomics of the Amazon SRR091234 1 0 [113]
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Additional files

Additional file 1: Figure S1. The assembly and binning workflow.

Figure S2. The correlation between various assembly parameter qualities

and number of MAG generated. Figure S3. Heatmap of the similarity

between each of the 83 MAGs generated. Figure S4. Phylum and

class-level insets of the phylogeny of each MAG. Figure S5. NMDS of

BACL based on their functional gene content. Figure S6. Heatmap of the

abundance of glycoside hydrolases in each BACL. Figure S7. Heatmap of

the abundance of transporters in each BACL. Figure S8. Core genome and

pigment phylogeny of picocyanobacteria including BACL30. Figure S9.

Pairwise scatterplots of various genomic features in MAGs and isolates.

Figure S10. Line plots of physico-chemical parameters of the studied

station throughout the year. Figure S11. Heatmap of the fragment

recruitment by each BACL of various aquatic metagenomes from

previous studies. Figure S12. Fragment recruitment dot plots for

selected MAGs. Fig. S13 Principal coordinates analysis of functional

gene content of various metagenomes showing salinity explains

most of the variance. Table S1. ANOSIM results of clustering MAGs

according to their coding potential. (PDF 6175 kb)

Additional file 2: Summary statistics of MAGs. For each MAG, the

number of bases, number of contigs, N50, N50 length, N90, N90 length,

length of longest contig, coverage, taxonomy and copy number of single-

copy core and phylum-specific COGs are reported. Universal single-copy

genes are defined here as present in >97 % of relevant genomes with

an average copy number <1.03. The name of each MAG has the format

yymmdd-bin##, where yymmdd is the date of sample collection and ##

is a unique numerical identifier assigned by CONCOCT. (XLSX 99 kb)

Additional file 3: Depicting COGs used as phylum-specific, or

class-specific for proteobacteria, single-copy genes (SCGs). A COG is

considered a SCG for a clade if it is present in >97 % of the respective

reference genomes with an average copy number <1.03. A COG marked

with a 1 is considered an SCG for the clade corresponding to that

column. Only clades with at least three genera represented by reference

genomes are included in the table. (XLS 320 kb)

Additional file 4: Phylogenetic tree in Newick format including

all complete prokaryotic genomes in NCBI [112], all approved

reconstructed bins (MAGs), and selected single amplified

genomes, metagenome bins and isolate genomes from previous

studies. (NWK 191 kb)

Additional file 5: Counts of COGs, PFAMs, TIGRFAMs and enzymes

in each MAG. (XLSX 2595 kb)

Additional file 6: Mean counts of transporter genes encoded in

each MAG cluster (BACL). (XLSX 97 kb)
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