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Abstract 

Background: Biogas production is an economically attractive technology that has gained momentum worldwide 

over the past years. Biogas is produced by a biologically mediated process, widely known as “anaerobic digestion.” This 

process is performed by a specialized and complex microbial community, in which different members have distinct 

roles in the establishment of a collective organization. Deciphering the complex microbial community engaged in 

this process is interesting both for unraveling the network of bacterial interactions and for applicability potential to 

the derived knowledge.

Results: In this study, we dissect the bioma involved in anaerobic digestion by means of high throughput Illumina 

sequencing (~51 gigabases of sequence data), disclosing nearly one million genes and extracting 106 microbial 

genomes by a novel strategy combining two binning processes. Microbial phylogeny and putative taxonomy per-

formed using >400 proteins revealed that the biogas community is a trove of new species. A new approach based 

on functional properties as per network representation was developed to assign roles to the microbial species. 

The organization of the anaerobic digestion microbiome is resembled by a funnel concept, in which the microbial 

consortium presents a progressive functional specialization while reaching the final step of the process (i.e., methano-

genesis). Key microbial genomes encoding enzymes involved in specific metabolic pathways, such as carbohydrates 

utilization, fatty acids degradation, amino acids fermentation, and syntrophic acetate oxidation, were identified. Addi-

tionally, the analysis identified a new uncultured archaeon that was putatively related to Methanomassiliicoccales but 

surprisingly having a methylotrophic methanogenic pathway.

Conclusion: This study is a pioneer research on the phylogenetic and functional characterization of the microbial 

community populating biogas reactors. By applying for the first time high-throughput sequencing and a novel bin-

ning strategy, the identified genes were anchored to single genomes providing a clear understanding of their meta-

bolic pathways and highlighting their involvement in anaerobic digestion. The overall research established a reference 

catalog of biogas microbial genomes that will greatly simplify future genomic studies.
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Background

Biogas production from agricultural and industrial 

wastes allows the simultaneous treatment of organic 

residues with generation of a versatile energy carrier 

(i.e., methane), which in turn can be transformed into 

electricity and heat [1]. �e biogas is produced through 

a biologically mediated process, the so called “anaerobic 

digestion” (AD), which is divided into four steps, namely 

hydrolysis, acidogenesis, acetogenesis, and methano-

genesis [2]. All steps are executed by an extremely spe-

cialized and complex microbial community, in which 

different members have distinct roles in a collective 

organization [3]. �ese intricate sets of relationships 

between the microorganisms hamper the investigation 

of the microbial community through traditional micro-

biological methods. To address this problem is manda-

tory to go beyond a simple identification of the microbial 

species, unveiling their functional roles in the biogas pro-

duction system.

In most of the shotgun sequencing studies performed 

on the AD microbial community, the functional charac-

terization of the microbes was performed directly on the 

short reads [4] without prior assembly, or at best, gene 

finding was performed on a small number of short scaf-

folds [5, 6]. However, it is well known that a high-quality 

assembly strongly improves the reliability of gene finding 

and annotation [7]. Only recently, the metagenome of a 

single biogas plant was assembled but it was not binned 

to extract genomes [8].

Till now, the identification of species in the biogas 

community was performed using sequence similarity 

search against reference genomes present in public data-

bases [5, 9, 10]. However, these genomes were isolated 

from different environments and, even if they belong to 

phylogenetically related groups, they might have differ-

ent functional properties. For this reason, a “predictive 

metagenomic approach,” based on 16S gene sequencing, 

was tentatively applied to the AD microbial community 

[3], but it was found that this strategy is more reliable 

when adequate reference genomes are available in the 

public databases [3, 11]. Another weak point of many 

metagenomic studies is that they are conducted with-

out performing assembly and binning processes. It is 

known that short reads are error prone and contain only 

minimal signal for homology searches, hampering direct 

annotation against reference databases [12]. As a conse-

quence, the AD microbiome still remains a “black box” 

due to the small number of complete microbial genomes 

obtained from the biogas community [13, 14]. �erefore, 

the development of an appropriate database representing 

the biogas microbial community will allow the correla-

tion of genome characteristics, phylogenetic, and meta-

bolic properties of these uncultivated microorganisms.

To achieve this outcome is mandatory to perform a de 

novo assembly of the shotgun sequence data. �is pro-

cess offers several advantages for analyzing metagen-

omics datasets, as for example: (a) improved accuracy 

of sequences obtained by removing random sequencing 

errors, (b) more reliable gene finding and annotation pro-

cess, (c) significant reduction of the data for subsequent 

processing and obviously, (d) possibility to discover novel 

genomic elements. Despite these advantages, de novo 

assembly in microbial community is extremely complex 

because it results in a large set of scaffolds that are dif-

ficult to be classified in single biological entities [i.e., 

Genomes Bin (GB)]. �is classification was previously 

performed on other microbial communities with differ-

ent methods such as tetranucleotide composition assign-

ment [15], tetranucleotide composition combined with 

abundance of the scaffold in a small number of conditions 

[16], and binning of co-abundant genes across a series of 

metagenomic samples [17]. �ese methods are based on 

the rationale that the relative concentrations of a micro-

bial species can change in different contexts; thus, scaf-

folds can be assembled in the same individual genome if 

their coverage changes concertedly. �is process is called 

binning. Nevertheless, procedures based on nucleotide 

genomic composition can be inconsistent due to uneven 

tetranucleotide distribution into the same genome. On 

the other hand, abundance-based methods cannot give 

comprehensive segregation of all entities in complex 

samples [16, 18] and a reliable binning of co-abundant 

genes requires numerous samples. Recently, fully auto-

mated binning procedures have been developed such as 

CONCOCT [19], GroopM [20], or MetaBAT [21].

In this study, we applied a novel two-stage approach 

strategy, combining the two procedures previously pro-

posed [16, 17]. �is allowed the extraction of 106 GBs 

from the biogas microbial community which adds a new 

chapter in the study of the anaerobic digestion (AD). 

Annotation of the identified genes and functional anal-

ysis of the species gave for the first time a clear under-

standing of the AD microbiome and allowed to establish 

a reference collection of biogas microbial genomes that 

will greatly simplify future genomic studies.

Results and discussion

Approximately, 340  millions high-quality paired-end 

reads (~51  gigabases of metagenomic sequence) were 

obtained from high throughput sequencing of 15 sam-

ples collected from 8 anaerobic digesters, representing 

conventional biogas reactors. �e assembly of the reads 

resulted in 409,831 scaffolds (~686  Mbp) ranging in 

size from 500 to 313,754 bp (N50 2338). �e percentage 

of reads aligned to the assembly varied from 57 to 73 % 

(with a mean average of 67  %) as shown in Additional 
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file  1: Table S1. No differences were found between the 

samples included in the assembly and those used only 

for the binning process, suggesting that the assembly 

was fairly representative for all the reactors. It should 

be mentioned that  ~242  Mbp are in scaffolds larger 

than 5  kbp (“Methods” and Additional file  1). After the 

assembly process, the gene finding and annotation are 

more reliable and led to the identification of nearly one 

million protein encoding genes, 23.6 % of which could be 

assigned to GBs (Additional file  2). �e protein encod-

ing genes were annotated using COG [22], KEGG [23], 

and Pfam [24] (Additional file 2). �e results showed that 

569,645 genes (60.8  %) had a match in the COG data-

base, 418,103 (44.6  %) in KEGG and 579,337 (61.8  %) 

had a protein domain annotated in Pfam. Finally, 277,604 

genes (29.6  %) were completely unknown. �e number 

of predicted proteins is approximately 70 times and 3.7 

times more than those obtained in the two best previous 

assemblies of a biogas microbial community reported in 

the literature [6, 8].

�e number of genes belonging to each KEGG category 

in the assembly was compared with the scaffold coverage, 

which is directly related to species abundance (Additional 

file  1 and Additional file  1: Figure S2). �is means that 

the categories with the higher ratio between “coverage” 

and “number of genes in the category” are those associ-

ated with most abundant GBs. �is analysis allowed an 

evaluation of the relevance of the KEGG classes consid-

ering both the number of genes in the pathway and the 

abundance of the species in the microbial community. 

From these data, it was evident that some metabolic 

pathways included genes with a high average cover-

age because they were encoded (also) in the genomes of 

the more abundant species of the microbial community 

as shown in Additional file  1: Figure S2. �e metabolic 

pathway of methanogenesis is the most straightforward 

example indicating that some methanogenic archaea (i.e., 

Eu01) dominate the microbial community in terms of 

abundance. We can assume that, for the same reason, the 

riboflavin KEGG pathway, which led to the biosynthesis 

of the proteins’ cofactor F430 involved in methanogen-

esis [25], is one of the highly ranked in the list.

On the contrary, the KEGG pathway modules related 

to the degradation of xenobiotic compounds like “sty-

rene,” “naphthalene,” “fluorobenzoate,” and “aromatic 

compounds” were mainly encoded in low abundant spe-

cies and frequently belong to scaffolds that could not be 

assigned through the binning process. For example, only 

22 % of the genes involved in “xylene degradation” were 

binned vs. 36 % of the “RNA-transport” and 33 % of the 

“riboflavin metabolism” (Additional file 2). �is suggests 

that the degradation of xenobiotic compounds is specific 

to the rare biosphere in the biogas reactors. �e only 

notable exception is “nitrotoluene degradation” but this is 

expected as the degradation of this compound and incor-

poration into the bacterial biomass in anaerobic condi-

tions has been previously demonstrated [26–28].

Carbohydrate phosphotransferase (PTS) system, 

despite being represented by 1261 genes, is the second 

least abundant category considering the ratio “coverage/

number of genes.” �is suggests that mainly low abun-

dant community members utilize this system to trans-

port sugars. �is result is totally unexpected, as PTS is 

widely spread among bacteria [29]. However, our data 

evidence that, in the AD microbiome, ABC transporters 

are more frequent in the high abundant species.

Moreover, it was found that “nitrogen metabolism” 

includes genes mostly represented in low abundance 

species. �is could be due to the average low nitrogen 

concentration contained in cattle manure (in compari-

son for example to pig or poultry manure) [30]. It can be 

expected that, due to the high dynamicity of the biogas 

community [3, 14, 31], modification of the manure com-

position (for example a higher quantity of ammonia) can 

lead to an increase in the abundance of some species that 

in our experiment are associated to the rare biosphere.

Binning process and taxonomic classi�cation

Mapping reads from each sampling point to the assembled 

scaffolds indicated that the microbial species were differen-

tially represented due to heterogeneous manure feedstock 

composition. �e differences in the microbial abundance 

allowed the clustering of the scaffolds and resulted in the 

extraction of 106 GBs from the total assembly. A detailed 

explanation of the binning assembly procedure is reported 

in Additional file 1 together with a schematic representa-

tion of the binning strategy in Additional file 1: Figure S3. 

In the first part of our procedure, high-quality GBs were 

manually extracted using the procedure of Albertsen et al. 

[16]. �ese GBs served as internal controls and were used 

to drive the second part of the binning. By an automatic 

extraction process based on clustering of scaffolds having 

similar coverage profiles, 61 additional GBs were identi-

fied. �e estimated completeness of the GBs, based on 

the presence of 107 conserved marker genes [32], ranged 

from 15 % to more than 99 % (with a mean of 83 %) (Addi-

tional file 3). In order to validate this finding, an additional 

analysis was performed using CheckM [33], which gave 

as output very similar values (85 % completeness on aver-

age). �e level of genome contamination was estimated 

both considering the number of duplicated essential genes 

and also with CheckM; the contamination was found to be 

extremely low and ranging on average between 3 and 5 % 

depending on the method used (Additional file  3). With 

our procedure, we have successfully identified 60 genomes 

with estimated completeness higher than 90 % considering 
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the 107 essential genes, or 51 genomes according to 

CheckM. �e result obtained is of a very high quality if 

compared with previous studies obtained from single-cell 

genome sequencing, where genome completeness aver-

ages around 40 % [34].

An additional analysis was performed using MetaBAT 

software [21] in order to evaluate the performance of our 

binning strategy. Considering as thresholds a) genome 

completeness higher than 90  % and b) contamination 

level lower than 20 %, MetaBAT managed to extract 42 

GBs, while our binning strategy led to the identification 

of 51 GBs. Even by lowering the completeness threshold 

(e.g., to 70  %), our binning strategy was able to extract 

more GBs. �e outcome of this comparison validated the 

high accuracy and efficiency of the binning strategy pre-

sented in the current manuscript.

Taxonomic assignment showed that none of the GBs 

could be assigned to species level, only 10 GBs were 

assigned to the genus level, while the vast majority were 

assigned to phylum level (Table  1; Additional file  3). 

�is confirms that most of the species in the biogas 

microbial community were not previously character-

ized at a genomic level [35]. �e more affordable taxo-

nomic assignments were obtained for Euryarchaeota 

Eu01, Eu02, Eu04, Eu05 suggesting that archaea are bet-

ter characterized than bacteria in the biogas community 

(with the exception of Eu03). On the contrary, bacteria 

are completely unknown at genomic level. �e results 

revealed that the biogas microbial community is domi-

nated by the phylum Firmicutes (69 GBs) followed by the 

phyla Proteobacteria (10 GBs) and Bacteroidetes (6 GBs), 

which is in accordance with other studies [36–40] (Fig. 1). 

Sixty-nine of the GBs belong to Firmicutes (Fig. 5; Addi-

tional file  3). �e species included in this division are 

extremely relevant from a functional point of view since 

they are involved in many metabolic processes including 

the degradation of carbohydrates, fatty acids utilization, 

Wood–Ljungdahl pathway (WLP) (homoacetogenesis) 

or syntrophic acetate oxidation (SAO). �e comprehen-

sive high-resolution microbial tree (Fig. 1) evidenced that 

these GBs can be subdivided into six main sub-groups 

(Additional file 3). �ree GBs belong to Eubacteriaceae, 

17 to the family Clostridiaceae, seven to the family Syn-

trophomonadaceae and 22 can be assigned only to the 

class Clostridia and are distantly related to the other Fir-

micutes. It is worth mentioning that the GBs assigned to 

the class Clostridia are the most cryptic inside the com-

munity, as they are distantly related to other Firmicutes, 

showing deeply branched GBs (Fig.  1). Moreover, four 

of the GBs initially assigned to the Firmicutes using the 

107 essential genes were then re-assigned to the family 

Acholeplasmataceae, of the phylum Tenericutes (Te01, 

Te02, Te03, Te04) using Phylophlan.

Proteobacteria is the second most abundant group 

(10  GBs), including Alcaligenaceae (Pr05, Pr06, Pr10), a 

group of three GBs that can only be assigned to the Gam-

maproteobacteria group (Pr01, Pr02, Pr04), two GBs 

belonging to the Deltaproteobacteria (Pr09, Pr11) and 

one belonging to the Campylobacteraceae (Pr07). Alca-

ligenaceae are not frequently reported in analysis of the 

biogas reactors [41, 42] and the analysis of their genomic 

composition can provide a first glimpse into their pos-

sible role. GB Pr09 has been tentatively assigned to the 

Desulfomicrobium group and it is one of the most inter-

esting members of Proteobacteria because it is compet-

ing with methanogens in anaerobic enrichment cultures 

degrading oleate and palmitate [43, 44]. Finally, Pr11 is 

relevant because members of the Desulfobacterales are 

involved in acetate oxidation by parallel reduction of 

sulfur, a key process in the biogas microbial community 

[45].

Bacteroidetes is the third most abundant group (6 GBs) 

which is composed of two subgroups: Porphyromona-

daceae (Ba03, Ba05, Ba06) and Rikenellaceae (Ba01, Ba02, 

Ba07). Both subgroups are dominant microorganisms in 

biogas plants [46, 47].

Synergistetes, which was a recently introduced phylum 

having only Synergistaceae family, was represented by 6 

GBs in our study.

�e remaining GBs are included in the phyla Actino-

bacteria (Ac01), �ermotogae (�01, �02), and Spiro-

chaete (Sp01, Sp02). �e abundance of all these GBs 

was low in the samples examined. Species of the phylum 

�ermotogae were identified also in thermophilic biogas-

production plants utilizing renewable primary products 

for biomethanation, even at low abundances [48–50]. 

�eir role in utilization of complex carbohydrates has 

been recently suggested on the basis of the gene content 

of Defluviitoga tunisiensis [51]. �e low frequency of Spi-

rochaetes is in agreement with relevant works in anaer-

obic digesters and their abundance seems to be highly 

variable depending on the operational conditions of the 

reactor [52]. Also, Actinobacteria have been previously 

reported at low abundance in biogas reactors [53, 54] 

but in the cited research their functional role was diffi-

cult to be predicted due to the lack of genomic sequences 

and their highly variable physiological and metabolic 

properties.

In the tree of life obtained using PhyloPhlAn, Tm01 

was one of the most difficult taxonomic assignments as 

this GB was deeply branched from the candidate phylum 

TM7 composed only by the Candidatus Saccharimonas 

aalborgensis [16]. Despite its genome that is not com-

pletely closed (72 % completeness), it is one of the most 

complete TM7 reported in database and its small genome 

size (~1.2 Mbp) confirms data reported in the literature 
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Table 1 Taxonomic assignment and basic genome characteristics of the 106 GBs extracted from biogas reactors

Genome 
bin ID

Genome bin  
“species name”

GB size 
(Mbp)

Estimated com-
pleteness (%)

Genome 
bin ID

Genome bin  
“species name”

GB size  
(Mbp)

Estimated  
completeness (%)

Pr02 Gammaproteobacteria 
sp. DTU038

4.2 84 Fi16 Clostridia sp. DTU025 2.0 95

Fi48 Clostridiaceae sp. 
DTU079

3.1 99 Fi13 Clostridia sp. DTU022 2.0 89

Fi49 Clostridia sp. DTU080 3.1 86 Fi32 Clostridiales sp. DTU060 2.0 88

Pr05 Alcaligenaceae sp. 
DTU041

2.9 96 Fi21 Halothermothrix sp. 
DTU029

2.0 94

Fi40 Clostridiales sp. DTU070 2.9 97 Ac01 Actinomycetales sp. 
DTU046

1.9 67

Fi30 Clostridiales sp. DTU058 2.9 99 Ba02 Rikenellaceae sp.  
DTU002

1.9 88

Pr01 Gammaproteobacteria 
sp. DTU037

2.8 96 Ba01 Rikenellaceae sp. DTU001 1.9 95

Eu04 Methanosarcina sp. 
DTU009

2.8 95 Fi17 Clostridia sp. DTU026 1.9 82

Ba06 Porphyromonadaceae 
sp. DTU048

2.7 84 Fi19 Clostridiales sp. DTU053 1.9 96

Fi65 Pelotomaculum sp. 
DTU098

2.6 97 Fi52 Clostridiales sp. DTU083 1.9 93

Fi67 Clostridiales sp. DTU100 2.6 80 Fi35 Clostridiales sp. DTU064 1.9 86

Fi09 Syntrophomonas sp. 
DTU018

2.6 97 Sy04 Synergistales sp. DTU085 1.9 93

Fi43 Clostridiales sp. DTU074 2.6 92 Fi53 Clostridia sp. DTU084 1.9 79

Fi28 Clostridiales sp. DTU055 2.6 91 Fi22 Clostridia sp. DTU030 1.8 94

Fi39 Clostridiales sp. DTU069 2.6 92 Eu03 Euryarchaeota sp. 
DTU008

1.8 98

Fi62 Clostridia sp. DTU095 2.5 88 Fi69 Clostridiales sp. DTU071 1.8 52

Fi08 Syntrophomonas sp. 
DTU017

2.5 88 Fi06 Clostridia sp. DTU015 1.7 90

Fi15 Clostridiales sp. DTU024 2.5 94 Ba05 Porphyromonadaceae 
sp. DTU047

1.7 88

Fi12 Clostridia sp. DTU021 2.5 87 Pr07 Campylobacterales sp. 
DTU103

1.7 86

Fi51 Clostridiales sp. DTU082 2.5 75 Fi33 Clostridia sp. DTU062 1.7 79

Fi57 Clostridiales sp. DTU089 2.5 92 Fi29 Bacilli sp. DTU057 1.7 98

Pr10 Alcaligenaceae sp. 
DTU106

2.4 87 Sp02 Treponemaceae sp. 
DTU108

1.7 71

Fi34 Tepidanaerobacter sp. 
DTU063

2.3 95 Fi02 Clostridia sp. DTU011 1.7 83

Ba03 Porphyromonadaceae 
sp. DTU003

2.3 84 Fi11 Clostridiales sp. DTU020 1.7 71

Pr11 Desulfobulbaceae sp. 
DTU107

2.3 86 Fi42 Clostridiales sp. DTU073 1.7 93

Pr06 Alcaligenaceae sp. 
DTU102

2.3 76 Fi23 Clostridiales sp. DTU031 1.6 82

Fi07 Syntrophothermus sp. 
DTU052

2.3 97 Fi24 Clostridiales sp. DTU032 1.6 89

Fi05 Clostridia sp. DTU014 2.3 94 Fi41 Clostridiales sp. DTU072 1.6 96

Fi68 Clostridiales sp. DTU101 2.2 75 Sy02 Synergistaceae sp. 
DTU044

1.6 85

Fi20 Clostridiaceae sp. 
DTU054

2.2 91 Sy03 Synergistaceae sp. 
DTU045

1.5 92

Fi66 Clostridiales sp. DTU099 2.2 88 Ba07 Rikenellaceae sp. DTU049 1.5 68

Fi36 Clostridia sp. DTU065 2.2 94 Fi46 Clostridia sp. DTU077 1.5 68
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indicating that it is one of the smallest in the AD micro-

bial community.

Functional characterization of the biogas microbial 

community

In the cited literature, the role of the majority of micro-

bial groups involved in biogas production has been 

hypothesized considering the functional characteris-

tics of distantly related species. Nevertheless, the lack 

of genome sequences prevents a clear understanding of 

their physiology and behavior. �erefore, our analyses 

targeted to give answers to two questions; (a) how much 

specialized are the microorganisms, and (b) which are 

their roles in the metabolic pathways of AD process.

In order to elucidate the microorganisms’ speciali-

zation, we converted the results from SEED analy-

sis (“Methods” and Additional file  1) into a Network 

Representation of the Biogas Functional Organiza-

tion (NRBFO). For the construction of the NRBFO, we 

selected only the GBs that were ranked among the top 

1/8 of each SEED functional category based on the num-

ber of corresponding genes. If one GB belonged in two 

categories, these were connected with an edge (Fig.  2; 

Additional file 4). �is revealed that the GBs in the AD 

microbiome could be classified into two distinct groups 

according to their functional properties.

�e first group consists of GBs specialized on a sin-

gle metabolic process, as the ones enriched in genes 

Table 1 continued

Genome 
bin ID

Genome bin  
“species name”

GB size 
(Mbp)

Estimated com-
pleteness (%)

Genome 
bin ID

Genome bin  
“species name”

GB size  
(Mbp)

Estimated  
completeness (%)

Pr04 Gammaproteobacteria 
sp. DTU040

2.2 91 Fi26 Clostridiales sp. DTU035 1.5 90

Fi38 Clostridia sp. DTU068 2.2 93 Te02 Acholeplasmatales sp. 
DTU061

1.5 87

Fi55 Clostridiales sp. DTU087 2.2 94 Fi25 Clostridiales sp. DTU033 1.5 93

Fi47 Clostridiales sp. DTU078 2.2 91 Te03 Acholeplasmatales sp. 
DTU067

1.5 94

Fi10 Syntrophomonas sp. 
DTU019

2.2 91 Th01 Thermotogaceae sp. 
DTU111

1.4 82

Fi31 Clostridiaceae sp. 
DTU059

2.2 94 Fi58 Clostridiales sp. DTU090 1.4 75

Eu01 Methanoculleus sp. 
DTU006

2.2 93 Fi50 Clostridiales sp. DTU081 1.4 71

Fi18 Peptococcaceae sp. 
DTU027

2.1 93 Fi27 Clostridiales sp. DTU036 1.4 77

Fi37 Clostridiales sp. DTU066 2.1 90 Fi14 Clostridiale sp. DTU023 1.4 82

Fi04 Clostridiales sp. DTU013 2.1 89 Sy06 Synergistales sp. DTU110 1.4 55

Fi03 Clostridiales sp. DTU012 2.1 94 Sy01 Anaerobaculum sp. 
DTU043

1.4 59

Fi45 Clostridiales sp. DTU076 2.1 96 Eu05 Methanothermobacter 
sp. DTU051

1.2 78

Fi54 Clostridiales sp. DTU086 2.1 90 Te01 Acholeplasmatales sp. 
DTU056

1.2 95

Fi60 Clostridiales sp. DTU092 2.1 90 Tm01 TM7 DTU050 1.2 65

Sp01 Spirochaeta sp. DTU042 2.1 90 Fi56 Clostridia sp. DTU088 1.2 48

Fi64 Clostridia sp. DTU097 2.1 72 Fi59 Erysipelothrix sp. DTU091 1.1 96

Fi01 Clostridiales sp. DTU010 2.1 92 Te04 Acholeplasmatales sp. 
DTU094

0.8 85

Eu02 Methanoculleus sp. 
DTU007

2.0 97 Sy05 Synergistaceae sp. 
DTU109

0.8 57

Fi44 Clostridiales sp. DTU075 2.0 92 Fi63 Eubacteriaceae sp. 
DTU096

0.7 34

Fi61 Clostridiales sp. DTU093 2.0 89 Pr09 Desulfomicrobium sp. 
DTU105

0.7 30

Pr08 Rhodocyclaceae sp. 
DTU104

2.0 74 Th02 Thermotogales sp. 
DTU112

0.6 15
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belonging to the general functional category of “carbohy-

drate utilization and metabolism” (blue nodes in Fig.  2). 

More specifically, some GBs were only involved in “central 

carbohydrate metabolism,” others in “aminosugars utiliza-

tion,” or “di- and oligosaccharides utilization,” and so on, 

generating a very complex and faceted organization inside 

the microbial community. On the contrary, the second 

group includes GBs possessing multifunctional roles (i.e., 

they have high number of genes in more SEED catego-

ries). �ese GBs are inside the nodes connected by thick 

edges in the network (Fig.  2). It was found that 10 GBs 

have high number of SEED feature counts both in “sugar 

fermentation” and “fatty acids oxidation,” �ree of these 

GBs belong to Syntrophomonadaceae family (Fi07, Fi08, 

Fi09), two belong to Alcaligenaceae family (Pr05, Pr10), 

two to Gammaproteobacteria (Pr01, Pr02) and three to 

Fig. 1 Phylogenetic assignment of the 106 GBs. High-resolution microbial tree of life with taxonomic annotations, microbial phylogeny, and puta-

tive taxonomy, obtained with PhyloPhlAn using 400 broadly conserved proteins used to extract phylogenetic signal [66]. The tree was built using 

FigTree and contains a total of 3737 microbial genomes plus the 106 GBs identified (represented by small colored dots). Organisms are colored based 

on phyla, those in light grey color text, were absent
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Clostridia class (Fi12, Fi62, Fi68) (Additional file 5). It is 

known that common functionalities can be shared by 

species of the same taxonomic group [11]. However, our 

analysis proved that in some cases, species of completely 

different taxonomic groups can share the same functional 

role and therefore compete for the same niche.

As an additional step, the species were functionally clas-

sified considering the proposed organization of the AD 

process, which is divided in four layers (i.e., hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis) (Fig.  3; 

Additional file  1: Figures S4–S7; Additional files 5, 6, 7, 

8). In order to do this, a putative functional role for the 

GBs was assigned taking into account their annotation 

obtained by COG, KEGG, SEED, and Pfam (Additional 

file 1). �e assignment showed that the AD microbiome 

bears resemblance to a funnel concept; during the ini-

tial step of organic substrate degradation (i.e., carbohy-

drates, proteins, and lipids), a wide variety of GBs (even 

Fig. 2 Network Representation of the Biogas Functional Organization (NRBFO). Nodes represent SEED functional categories. The size of each node 

is correlated to the number of GBs ranked among the top one-eighth of each functional category. Edges thickness is proportional to the number 

of GBs shared by two nodes; edge colors were used to simplify the visual observation of the connections. Thick edges connect nodes including GBs 

with high number of SEED feature counts in the two categories. Categories having thin edges are those comprising GBs that tend to have special-

ized functions
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belonging to different phyla) are involved. In contrast, 

while proceeding to the next steps of the AD process (i.e., 

acetogenesis, acidogenesis, and methanogenesis), the 

involved GBs become gradually more specialized.

Particular attention was drawn to key functional steps 

of the AD process in order to elucidate the role of GBs. 

For example, proteins involved in polysaccharide deg-

radation are important as it is well known that the raw 

manure contains a high fraction of fibers due to ani-

mal nutrition. �ese proteins were identified using the 

SEED annotation (polysaccharides category) and also 

by selecting those with significant matches to at least 

one of the carbohydrate-binding modules proposed by 

Hess et al. [55]. Analysis of the Pfam domains was per-

formed in order to minimize the dependence on the 

overall sequence similarity of candidate genes to known 

carbohydrate-active enzymes. Out of 7161 carbohy-

drate-binding proteins found in the global assembly, 

1896 of them (~26  %) were assigned to specific GBs. 

Most of the GBs with high number of carbohydrate-

binding modules belong to Clostridiales and considering 

the similarity of the 107 essential genes obtained using 

BLAST, can be related to Ruminoclostridium or Clostrid-

ium. �ese genera are well known for their involvement 

in polysaccharides degradation, and some species have 

been previously isolated in biogas plants [56]. �e car-

bohydrates utilization process involves numerous spe-

cies which are specialized in degradation of different 

carbohydrates groups (Fig.  3). �ese microorganisms 

cooperate with species involved in lipids or proteins deg-

radation to generate the byproducts for the subsequent 

steps of methanogenesis.

Fig. 3 Functional roles of the GBs in the biogas production “food chain.” The main steps of the anaerobic degradation process are highlighted, 

together with the more relevant GBs involved. Functional roles were defined considering nearly complete KEGG pathways (Wood–Ljungdahl 

pathway, methanogenesis, propionate and butyrate metabolism), SEED categories (fatty acid degradation, carbohydrates utilization, denitrification, 

sulfate reduction), COG (amino acids fermentation) and Pfam (polysaccharides). Ovals refer to the compounds used by the microbial community 

(carbohydrates, fatty acids, proteins), intermediates (volatile fatty acids (VFA)-propionate, butyrate), and final products (carbon dioxide and meth-

ane)
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In the fermentation of sugars to organic acids, an 

important role is played by the Wood-Ljungdahl path-

way (WLP), which is characteristic for some acetogenic 

bacteria and archaea [57]. In this process, carbon diox-

ide is reduced to carbon monoxide and then converted 

to acetyl-CoA, with hydrogen serving as electron donor. 

From KEGG analysis performed on selected genes of the 

WLP, it was found that a specific subset of 8 bacterial spe-

cies (Fig.  3; Additional file  1: Figure S6) features a com-

plete or nearly-complete pathway. All these bacteria were 

assigned to Firmicutes and more specifically to Clostridia 

sp. (Fi12, Fi13, Fi38, Fi46, and Fi62), Clostridiales sp. 

(Fi61), Peptococcaceae sp. (Fi18), and Tepidianaerobacter 

sp. (Fi34). It is known that specific microbes are capable 

to perform also the reverse WLP (i.e., the so called Syn-

trophic Acetate Oxidation, SAO), which includes the 

same genes of the WLP. By this pathway, they oxidize 

acetate to hydrogen and carbon dioxide when growing 

syntrophically with hydrogenotrophic methanogens that 

utilize the hydrogen and carbon dioxide produced to gen-

erate methane [58]. �e overall process can be viewed as 

an additional mechanism of methane formation from ace-

tate, and was originally proposed by Barker [59] and later 

confirmed by Zinder and Koch [58]. �e mechanism was 

initially described in thermophilic anaerobic processes 

[58, 60, 61] and was later on identified to occur also in 

reactors operating at mesophilic temperatures [62–64].

Another finding is related to the synergistic behavior 

between Synergistetes with other microorganisms. SEED 

subsystem revealed that the most similar sequenced spe-

cies to Sy02, Sy03, Sy05, and Sy06 is �ermanaerovibrio 

acidaminovorans DSM 6589 and for Sy01 is Anaerobacu-

lum hydrogeniformans ATCC BAA-1850. �erefore, the 

presence of numerous ABC transporters for branched-

chain amino acids (AA) (Additional file 5) together with 

the large number of genes involved in AA metabolism 

(Additional file  1) indicates that Synergistetes, similarly 

to T. acidaminivorans, could operate synergistically with 

other species, to ferment AAs to acetate and propionate 

[65].

Archaeal community characterization

As previously discussed, the archaeal species are the 

best characterized in the biogas community. Archaea are 

dominated by the hydrogenotrophic methanogen Eu01 

belonging to the Methanoculleus genus. Eu01, together 

with Eu02 (another Methanoculleus sp.), features all the 

central enzymes and complexes of methanogenesis: Mcr, 

Mtr, Fpo, and Hdr (Fig.  4). In addition, they feature all 

the complementary genes necessary for the reduction 

of CO2 to methane: fmd/fwd, ftr, mch, mtd, and mer. On 

the contrary, they both lack the gene phosphate acetyl-

transferase (pta), involved in the conversion of acetate 

to methane (aceticlastic pathway) and also all the genes 

coding for the methylamine and methanol corrinoid pro-

teins, essential for the conversion of methyl groups from 

methanol and methylamines to methane (methylotrophic 

pathway).

Eu04, belonging to the Methanosarcinales genus, has 

a very low abundance (Fig.  5). It features all the genes 

belonging to the methylotrophic and aceticlastic path-

way. Interestingly, it lacks the gene coding for Mtd, which 

catalyzes the fourth reaction in the reduction of CO2 to 

methane. As stated before, Eu01 and Eu02 are instead 

able to perform all the reactions of this pathway, and the 

fact that these two GBs are approximately 4000 and 270 

folds more abundant than Eu04 (Fig. 5) is an indication 

that the hydrogenothrophic pathway is the most favora-

ble at the tested conditions. �is finding is in accordance 

with several studies performed in similar conditions [5, 

6, 10].

Interestingly, the second most abundant archaeon 

is represented by a completely new Euryarchaeota 

(Eu03). It is remarkable that Eu03 was the second most 

abundant archaeal species in the microbial commu-

nity. It has very small genome size (~1.76  Mbp) simi-

larly to Candidatus Methanoplasma termitum and Ca. 

Methanomassiliicoccus intestinalis (1.48 and 1.93 Mbp, 

respectively). Comparative analysis of the methane 

pathway (performed on all the archaeal GBs) using 

KEGG (Fig. 4) revealed that, differently from the other 

archaeal GBs, Eu03 completely lacks the coenzyme F420 

biosynthesis pathway. �is feature is also evident in 

the recently sequenced Ca. M. termitum [66]. Interest-

ingly, it was possible to identify pivotal methanogenic 

genes in Eu03, including some belonging to the meth-

ylotrophic pathway, which are instead absent in the 

Methanomassiliicoccales species previously sequenced. 

Due to the small number of archaeal genomes in pub-

lic databases, all the taxonomic analyses performed on 

the essential genes (Additional file  3) failed to assign 

Eu03 to any previously defined lineage. Only by using 

BLASTP similarity search and analysis of the 16S rRNA, 

it was possible to identify a distant correlation with 

the recently discovered seventh order of methanogens, 

the Methanomassiliicoccales (previously referred to as 

“Methanoplasmatales”).

It is important to highlight that this new uncultured 

archaeon (Eu03) was identified, quantified, and assigned 

to a putative functional role only thanks to the binning 

strategy, which is the fundament of the present work.

Conclusions

�is study demonstrated that the metagenomic assem-

bly and binning of the shotgun sequences obtained from 

biogas reactors allowed the identification of 106 GBs that 
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Fig. 4 Comparison of the KEGG methane pathways of the 5 archaeal GBs (Eu01–05). In the upper part of the figure the reference KEGG methane 

metabolism pathway is represented, in the lower part archaeal GBs’ genes present and absent in the pathway are highlighted. Genes identified in 

the archaeal GBs were labeled with a small colored dot. Genes absent in the GBs and present in the reference genomes are marked with a “X” (Eu01–

Eu02—Methanoculleus marisnigri; Eu03—Candidatus Methanoplasma termitum; Eu04—Methanosarcina acetivorans; Eu05—Methanothermobacter 

thermoautotrophicus). Genes identified in the GBs and absent in the reference are labeled with a circled dot
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can be assigned into the context of the biogas degrada-

tion food chain by means of bioinformatic analysis. �is 

is a major step forward in the characterization of the 

biogas microbial community especially when compared 

to previous studies, where the functional roles have been 

inferred from those assigned to the more similar species 

identified considering 16S rRNA similarity. In the case of 

the biogas microbial community, the identified GBs are 

distantly related to species for which the genomes are 

available in the databases and, as previously discussed, a 

predictive metagenomics approach is not accurate. �is 

is clearly demonstrated by the high fraction of new GBs 

identified and assigned only at high taxonomic level, as 

for example the newly identified methanogenic archaea 

(Eu03). Another concluding remark drawn by the binning 

process revealed that approximately 70  % of the assem-

bly cannot be assigned to a specific GB. �is suggests the 

presence of more than 450 GBs in the biogas microbial 

community. As this is the first attempt to deeply char-

acterize the AD microbiome, it is expected that further 

studies performed under different operational conditions 

(e.g., different temperatures and substrate) will allow in 

the next future to enrich the genome database. Finally, 

this study opens new avenues in deciphering the func-

tional interactions between microbial species involved 

in the AD process and provides a solid reference that 

will greatly simplify further metatranscriptomics and 

metaproteomics analyses.

Methods

Biogas reactors’ con�guration

Eight laboratory scale Continuous Stirred Tank Reactors 

(CSTR) operating at thermophilic conditions (54 ± 1 °C) 

were selected for sampling as shown in Additional file 1: 

Figure S1. �e influent substrate of the reactors was cattle 

manure with varying chemical composition. �e reactor’s 

operating temperature and influent feedstock composi-

tion were chosen to resemble typical conditions occur-

ring in centralized full-scale biogas plants. �e Organic 

Loading Rate (OLR) of all reactors varied between 1.9–

2.9  gVS/L reactor-day and the hydraulic retention time 

was kept constant at 15 days. �e initial inoculum used 

derived from Snertinge biogas plant, Denmark.

Sample collection

Eighteen samples for microbial analyses (~15 ml each) were 

collected at various times during the operation of the reac-

tors (Additional file 9). �e samples were denoted with the 

name of the reactor followed by a letter to designate the 

sampling time period (e.g., CSTR01a and CSTR01b).

DNA extraction

Barley residues present in the manure were removed by fil-

tering with a 100-μm nylon cell strainer filter. �e filtered 

sample was centrifuged at 5000  rpm for 10  min and the 

supernatant was discarded leaving ~2 g of material. Genomic 

DNA was extracted from these 2 g of material using the RNA 

PowerSoil® DNA Elution Accessory Kit (MO BIO labora-

tories, Carlsbad, CA, USA). �e quality and the quantity of 

the extracted DNA were determined both using NanoDrop 

(�ermoFisher Scientific, Waltham, MA, USA) and Qubit 

fluorometer (Life Technologies, Carlsbad, CA, USA).

Metagenome sequencing

Genomic DNA extracted from the samples was pre-

pared for sequencing using two different procedures. A 

pool obtained using identical quantities of the samples 

CSTR01a, CSTR02a, CSTR03a, CSTR01b, CSTR02b, and 

CSTR03b was used to prepare libraries using TruSeq DNA 

PCR-free Kit v2 (Illumina, San Diego, CA, USA). Nextera 

DNA Library Preparation Kit (Illumina, San Diego, CA, 

USA) was used to prepare libraries for all the individual 

samples from the reactors (Additional file 1: Figure S1). All 

the samples (both pooled and individual) were paired-end 

sequenced (2 × 150 bp) using Illumina HiSeq 2500 (Illu-

mina, San Diego, CA, USA). One lane of the sequencer was 

allocated to the pooled sample prepared with the TruSeq 

kit (~250 millions filtered reads) and one to the samples 

prepared using the Nextera kit (from 26–58 millions fil-

tered reads for each sample). �e TruSeq DNA PCR-free 

kit was used due to its superior coverage of DNA regions, 

which are traditionally difficult to sequence, such as high 

Fig. 5 Graphic representation of the GBs abundance in the biogas 

microbial community. The GBs coverages are represented as circles 

where the area is proportional to the coverage. GBs are grouped con-

sidering the taxonomic assignment at phylum level (Sp Spirochetes, 

Sy Synergistetes, Th Thermotogae, Pr Proteobacteria, Fi Firmicutes, Te 

Tenericutes, Ac Actinobacteria, Ba Bacteroidetes, Tm TM7 phylum, Eu 

Euryarchaeota). Outlines colors correspond to those reported in Fig. 1
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GC-rich regions. �e sequences obtained from samples 

CSTR01a, CSTR02a, CSTR03a, CSTR01b, CSTR02b, and 

CSTR03b were assembled since they represented more 

than 50 % of the total obtained reads.

Sequence data reported in this study have been sub-

mitted to the National Center for Biotechnology Infor-

mation (BioProject PRJNA283298). Raw sequence data 

have been deposited at Sequence Read Archive under 

accession SRP058179 and Whole Genome Shotgun pro-

jects have been deposited at DDBJ/EMBL/GenBank 

under the accession LFRM00000000-LFTS00000000. 

�e versions described in this paper are the first version 

LFRM01000000-LFTS01000000.

Reads trimming and de novo metagenome assembly

Reads in FASTQ format were quality-filtered and the 

adaptors were removed using Trimmomatic software 

[67]. Overlapped paired-ends were merged using Flash 

[68] with standard parameters, except from the maxi-

mum overlap parameter, which was set to 150. Assembly 

was performed using both paired-end reads (with insert 

size equal to 470 bp for TrueSeq and 280 bp for Nextera) 

and single-end reads (both those merged using Flash 

and those which only one end passed the filtering step). 

Reads were imported to CLC Genomics workbench v. 5.1 

(CLC Bio, Aarhus, DK, USA) and assembled using CLC’s 

de novo assembly algorithm, using a kmer of 63, a bubble 

size of 60 and a minimum scaffold length of 500 bp.

Gene �nding and annotation

Gene finding on the scaffolds obtained from the assembly 

was performed using Prodigal, run in metagenomic mode 

[69]. Conserved protein families and domains were iden-

tified using reverse position-specific BLAST algorithm 

(RPSBLAST of NCBI BLAST+) performed on all pre-

dicted proteins, and using COG only [22] and Pfam [24] 

RPSBLAST databases. Only results with e-value lower than 

1e-5 were considered, and additionally for COG only the 

best match was considered. KEGG annotation was per-

formed using usearch7.0.1090_i86linux32 (-ublast) on the 

KEGG Orthology (KO) database [23] with e value cutoff 

1e-5 (-maxhits 1) (http://www.drive5.com/usearch/). From 

the output file, KEGG pathway modules were identified 

using KOBAS [70]. After the binning process, scaffolds 

assigned to each GB were re-annotated via Rapid Annota-

tion using Subsystem Technology (RAST) server [71]. �e 

entire protein set of the five archaeal GBs were analyzed 

using KEGG Automatic Annotation Server (KAAS) [72].

Taxonomic and functional analysis of the metagenome 

assembly

All the scaffolds obtained from the shotgun assembly 

were uploaded to the MG-RAST metagenomics analysis 

server [73] and analyzed using standard parameters, 

except from the minimum alignment length that was set 

to 100 bp. It should be noted that scaffold coverage was 

not assigned at the uploading. Results were visualized 

using KRONA software [74].

Taxonomic assignment of the GBs was performed with 

four different methods, and the detailed procedure is 

reported in the Additional file 1; results were then compared 

to extract the best possible one (Additional file 3). Briefly, 

the essential genes associated to each GB were checked by 

sequence similarity to the NR database using BLASTN, with 

e-value threshold 1e-5. �e taxonomic assignment of the 

best match was recovered and sequence similarity of 95, 85, 

and 75 % or better was used for species, genus, and phylum 

level taxonomical assignment [17], respectively. A similar 

analysis was performed using BLASTP. �e phylogenetic 

result and the microbial tree of life (Fig. 1; Additional file 10) 

were determined using Phylophlan [75] and the scaffolds of 

each GB were analyzed using Phylopythia [76].

Taxonomy was determined from NR database align-

ment, while functional classification was determined 

using COG [22] and SEED [71] (Additional file  1: Fig-

ure S8). Results are available at the MG-RAST database 

(meta-assembly) under accession number 4636806.3.

Hypergeometric analysis

Hypergeometric analysis was performed to calculate the 

probability of observing the number of genes belonging 

to a specific functional category in each GB [77]. �e 

probability P of finding at least k genes of a specific func-

tional category within a group of n genes (the total num-

ber of genes of a GB) is given by

where f is the total number of genes of a specific func-

tional category determined considering all the GBs 

together, g is the total number of genes determined in all 

the GBs. Finally, we recursively repeated the calculation 

on SEED functional categories, KEGG pathways, and 

finally on COG functional categories. All the statistical 

calculations were performed using the R package.

Calculation of the sca�old coverage

Reads obtained individually (using the Nextera kit) for 

18 samples collected from all the reactors were aligned 

on the scaffolds larger than 500  bp with Bowtie2 soft-

ware [78] and scaffold coverage was determined with the 

genomecov software of the BEDTools package [79]. Cov-

erage was normalized considering the number of aligned 

P =

n
∑

i=k

(

f

i

)(

g − f

n − i

)

(

g

n

)

http://www.drive5.com/usearch/
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reads and using the sample with the lower number as a 

reference. �e coverage obtained was considered both for 

comparison between the number of genes of each KEGG 

pathway and its average coverage (Additional file  1 and 

Additional file 1: Figure S2), and also for the “refinement” 

of the binning process (“Methods” “Binning refinement 

through identification of co-abundant scaffolds,” a more 

detailed description is reported in Additional file 1).

Identi�cation of conserved marker genes

A set of 107 Hidden Markov Models of essential single-

copy genes [32] were searched against the predicted open 

reading frames using HMMER3 (http://hmmer.janelia.

org/) [80], following the strategy of Albertsen et al. [16]. 

�e results were used to predict completeness and level 

of duplication of the GBs identified using the script 

“determine_bins_completenes.pl.”

Identi�cation of 16S rRNA genes

Scaffolds encoding the 16S rRNA genes were identi-

fied using the method described by Albertsen et al. [16]. 

Taxonomical assignment of the 16S rRNA genes was 

determined using RDP classifier [81] with a confidence 

threshold of 0.8.

Binning of genomes using tetranucleotide composition 

and coverage

Initial binning was performed using the procedure of 

Albersten et al. [16] which is based on “sequence compo-

sition-independent binning and tetranucleotide binning.” 

During the first step, distinct groups of scaffolds were 

identified based on their coverage similarity in a pair of 

samples. During the second step, principal component 

analysis of tetranucleotide frequencies was used to sepa-

rate species present in the same coverage-defined GBs.

Binning re�nement through identi�cation of co-abundant 

sca�olds

�e GBs extracted with the procedure described above 

are of high quality and were used as “internal controls” to 

verify the binning procedure based on the coverage strat-

egy. MeV software [82] was used to examine the coverage 

profile of the scaffolds, which contain the essential single 

copy genes and are assigned to the GBs in all the 18 sam-

ples. Using Euclidean distance calculation (single linkage) 

on the coverage profiles of the scaffolds, the GBs were 

separated and manually checked. Visual analysis of the 

clusters previously assigned to the GBs allowed the selec-

tion of those that were clearly separated from the others. 

Subsequently, each group of scaffolds was used to gen-

erate a “canopy profile.” Each profile was used to extract 

(from the entire list of scaffolds) those having Euclidean 

distance smaller than 1 SD from the distribution of the 

“canopy scaffolds.” �is step was performed using the 

script “extract_scaffold_euclidean.pl.” Finally, the paired-

end connections between scaffolds were used to assign 

scaffolds to the GBs using the procedure reported by 

Albersten et  al. [16]. Due to the high number of GBs, 

the procedure was not performed “manually” but imple-

mented in the script “recover_interacting_scaffold.pl.” To 

minimize the misassignments, only scaffolds having aver-

age coverage within threefolds from the interacting scaf-

fold and having a number of paired-end connections of at 

least 1/3rd of the scaffold average coverage were consid-

ered. Genome contamination, which can inflate genome 

completeness estimates, was determined both by check-

ing the number of essential genes present in more than 

one copy on a single GB and also using CheckM soft-

ware [33]. More details regarding the binning procedure 

are reported in Additional file  1 (Binning strategy). �e 

extracted GBs and the scripts used for binning refine-

ment can be downloaded from http://www.biogasmicro-

biome.com together with the manual and the test files. 

MetaBAT [21] was used in order to evaluate the perfor-

mance of the binning strategy proposed in the current 

manuscript. �e software was executed using default 

parameters but also “–sensitive” and “–specific.” �e 

results reported refer to the “–sensitive” test.

Recovery of the multifasta �les and of the protein 

sequences encoded by the GBs

Using the IDs of the scaffolds, it was possible to recover 

the multifasta file from the entire metagenome assem-

bly multifasta using the script “extract_sequences_from_

fasta.pl.” Moreover, with the same script, it was possible to 

extract the protein sequences from the fasta file contain-

ing all the proteins predicted using Prodigal software [69].

Additional �les

Additional �le 1. Additional text file that contains supplementary 

information regarding: assembly, gene finding and annotation, compari-

son between number of genes belonging to each KEGG pathway and 

coverage, binning strategy, taxonomic assignment of the GBs, functional 

roles of the microbial species, number of genes for each KEGG pathways 

modules identified in the genome bins, number of genes identified in the 

genome bins for some selected KEGG pathways, methanogenic archaea.

Additional �le 2. Gene annotation. Annotation of the genes identified in 

the assembly using COG, KEGG and Pfam databases.

Additional �le 3. Taxonomy assignment and characteristics of the GBs. 

The taxonomy of the GBs identified was determined using different 

methods and a taxonomic assignment was suggested considering the 

results obtained. In columns (A–V) are reported: (A) the acronym of the 

GBs as reported in the main text (Sp = Spirochetes; Sy = Synergistetes; 

Th = Thermotogae; Pr = Proteobacteria; Fi = Firmicutes; Te = Tenericutes; 

Ac = Actinobacteria; Ba = Bacteroidetes; Tm = TM7 phylum; Eu = Euryar-

chaeota) the Phylum was determined using Phylophlan and, secondly, 

the results obtained from BLASTP search versus nr databases filtered 

using MEGAN; (B) the tentative taxonomic assignment; (C) domain of the 

http://hmmer.janelia.org/
http://hmmer.janelia.org/
http://www.biogasmicrobiome.com
http://www.biogasmicrobiome.com
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
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genome bin; (D) phylum; (E) taxonomic level considered for the name 

assignment (the result obtained using Phylopythia was used when more 

than 50 % of the genome bin sequence was assigned to the same taxo-

nomic group); (F) confidence for taxonomic assignment obtained using 

Phylophlan; (G–I) domain, phylum, class determined using Phylophlan; 

(J) taxonomic assignment determined using Phylopythia; (K) percentage 

of the genome assigned as reported in “J”; (L) taxonomic level reported 

in “J”; (M) number of genes having BLASTP e-value lower than 1*E-5; (N) 

average similarity for BLASTP results; (O) number of genes having BLASTN 

e-value lower than 1*E-5; (P) average similarity for BLASTN results; (Q) the 

species having the highest number of best match in BLASTP column “M”; 

(R) taxonomy assignment obtained using RDP classifier on the 16S rRNA 

gene, similarity, contig where the 16S gene was identified; (S) total length 

of the scaffolds assigned to the genome bin; (T) number of scaffolds, (U) 

scaffolds N50, (V) scaffolds N90, (W) average scaffolds length, (X) number 

of contigs determined after splitting scaffolds on stretched of 10 or more 

unknown bases “N”, (Y) contigs N50, (Z) contigs N90, (AA) average contigs 

length, (AB) number of protein encoding genes identified using SEED sub-

system; (AC) number of protein encoding genes identified using Prodigal; 

(AD) total number of essential genes identified, (AE) univocal number of 

essential genes (removed those in multiple copies); (AF) estimated com-

pleteness of the GB; (AG) average number of essential genes in phylum 1. 

Bold text in columns (A, U, Y, Z, AA, AF) refers to GBs that satisfy the Human 

Microbiome Project quality criteria; (AH) estimated contamination level 

determined considering the univocal number of essential genes and the 

total number of essential genes in multiple copies; (AI) estimated com-

pleteness of the GB determined using CheckM software; (AJ) estimated 

level of contamination determined using CheckM software.

Additional �le 4. Input files used for the network Representation of 

the Biogas Functional Organization (NRBFO). Functional analysis of the 

microbial community begins with the identification of the GBs enriched in 

SEED subsystem counts (ranked among the top one eighth of each SEED 

category). Starting from the entire list of SEED sub-categories (Data Set 6) 

56 were selected (the more relevant for the characterization of the biogas 

community) and the GBs with high number of subsystem counts were 

identified (“node abundance” worksheet). The subsystem categories were 

compared in order to identify if they shared the same GBs and the couples 

with three or more common genome bins were identified (“edge_size_

connections” worksheet). The number of GBs identified for each category 

was used to set the node size and the number of GBs shared was used to 

set the edge size (Fig. 2).

Additional �le 5. Functional characterization of the GBs according to 

SEED. (“SEED” worksheet) GBs were annotated using SEED subsystem and 

for each category (row 1) the subcategories are reported (row 2). Numbers 

refer to the subsystem feature counts. The SEED categories are reported in 

columns highlighted in grey (C, R, X, AF, AH, AL, AP, AX, BN, BR, BV, BZ, CF, CJ, 

CO, CV, DG, DN, DT, DW, DZ, EH, ER, EW, FH, FL, FN). In columns at right of 

each category are reported the results for the subcategories (for example, 

columns D-Q refer to the “super-category” “C”). Rows 110–114 report the 

median, the third and the first quartile results for each column. In red and 

in blue are highlighted the GBs having high and low numbers of subsys-

tem feature counts (those in the third and first quartile of each category). 

(“hypergeometric” worksheet) For each GB and each SEED functional cat-

egory the P value obtained from hypergeometric distribution is reported.

Additional �le 6. Functional characterization of the GBs according to 

COG. (“COG_gene_numb” worksheet) GBs were annotated using COG. 

Numbers refer to the genes identified on each GB for each COG category. 

The COG categories are reported in columns (C–AA), the GBs are reported 

in rows (2–107). (“COG_perc” worksheet) Percentages of genes belonging 

to COG categories are calculated with respect to the total number of COG 

results for each GB (note that some genes belong to more than one COG 

category). In red and green are highlighted, for each COG category, the 

GBs having the 10 highest and the 10 lowest percentages. (“hypergeo-

metric” worksheet). For each GB and each COG functional category, the P 

value obtained from hypergeometric distribution is reported.

Additional �le 7. Functional characterization of the GBs according to 

KEGG. (“KEGG” worksheet) GBs were annotated using KEGG. Numbers refer 

to the genes identified on each GB for each KEGG pathway. The KEGG 

pathways are reported in columns (C–EZ), the GBs are reported in rows 

(2–107). (“hypergeometric” worksheet) For each GB and each KEGG path-

way, the P value obtained from hypergeometric distribution is reported.

Additional �le 8. Database resources used for functional characteriza-

tion of the GBs. Functional processes of the GBs analyzed in the AD 

community are reported in the first column. The SEED subsystems, KEGG 

pathway maps, COG categories and Pfam domains used are reported in 

columns 3 and 4.

Additional �le 9. Metadata regarding the operational conditions of the 

reactors. Metadata regarding the operational parameters of the reactors 

including pH, methane yield and volatile fatty acid concentration.

Additional �le 10. Suggested viewer: FigTree http://tree.bio.ed.ac.uk/

software/figtree/. Newick format of the file representing the microbial 

tree of life. The tree reports the 106 GBs of the AD microbial community 

together with other 3,737 microbial genomes. The file was obtained 

with PhyloPhlAn using 400 broadly conserved proteins used to extract 

phylogenetic signal.

http://www.biogasmicrobiome.com
http://www.biogasmicrobiome.com
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://dx.doi.org/10.1186/s13068-016-0441-1
http://tree.bio.ed.ac.uk/software/figtree/
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