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Abstract

Speleothems are secondary mineral deposits normally formed by water supersaturated

with calcium carbonate percolating into underground caves, and are often associated with

low-nutrient and mostly non-phototrophic conditions. Tjuv-Ante’s cave is a shallow-depth

cave formed by the action of waves, with granite and dolerite as major components, and

opal-A and calcite as part of the speleothems, making it a rare kind of cave. We generated

two DNA shotgun sequencing metagenomic datasets from the interior of a speleothem from

Tjuv-Ante’s cave representing areas of old and relatively recent speleothem formation. We

used these datasets to perform i) an evaluation of the use of these speleothems as past bio-

diversity archives, ii) functional and taxonomic profiling of the speleothem’s different forma-

tion periods, and iii) taxonomic comparison of the metagenomic results to previous

microscopic analyses from a nearby speleothem of the same cave. Our analyses confirm

the abundance of Actinobacteria and fungi as previously reported by microscopic analyses

on this cave, however we also discovered a larger biodiversity. Interestingly, we identified

photosynthetic genes, as well as genes related to iron and sulphur metabolism, suggesting

the presence of chemoautotrophs. Furthermore, we identified taxa and functions related to

biomineralization. However, we could not confidently establish the use of this type of spe-

leothems as biological paleoarchives due to the potential leaching from the outside of the

cave and the DNA damage that we propose has been caused by the fungal chemical

etching.

Introduction

Speleothems are secondary mineral deposits, most of them form when water supersaturated

with calcium carbonate percolates down to caves and precipitates carbonate minerals, normally
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in the form of calcite [1]. Speleothems are an interesting environment to study given the com-

position and the chemical process of its formation. These aspects have an impact in its micro-

biome, which should be adapted to the speleothem’s mostly non-phototropic and low-nutrient

characteristics, as well being capable of performing calcite precipitation (i.e. biomineralization).

And given the long time required for its formation, the study of the DNA in different formation

periods in the speleothem could provide information on species (e.g. bacteria or higher-level

eukaryotes living above the cave) present in the past, at the time of its formation. However, no

study has been performed on the interior of them and compared different vertical samples rep-

resenting different formation points.

A few studies, most of them based on microscopy and DNAmetabarcoding, have been

done to analyze the taxonomical and functional characteristics of the microbiome from the

surface of speleothems [2–6]. Bacterial profiling from the surface of speleothems from a lime-

stone cave in Arizona showed that DNA from Actinobacteria and Proteobacteria dominated

the samples [4]. And a functional study on the speleothem surface microbiome from a carbon-

ate cave suggested that it is adapted to low-nutrient conditions through the use of nitrogen as

the main energy-production strategy with contributions from archaea and bacteria, as well as

through the use of CO2-fixation pathways [6]. Given that carbon isotope fractionation rates

vary with different microbial CO2-fixation pathways, this highlights the importance of under-

standing the microbial contributions to speleothem isotopic signatures [7] when speleothems

are used as climate archives through the use of carbon isotopes. However, these studies do not

explore the use of speleothems as past biodiversity archives, functional and taxonomic profiling

of the speleothem’s different formation periods. Also, so far there has not been a direct com-

parison of microscopic to DNA shotgun metagenomic datasets from speleothems of the same

cave. In this study we aim at exploring these three aspects using a speleothem from Tjuv-

Ante’s cave.

Tjuv-Ante’s cave is situated at an elevation of 90 meters above sea level in Storrisberget’s

Nature Reserve on the north-eastern Swedish coast at N 63° 35.6’, E 19° 22.8’. It belongs to a

rare kind of caves, given that it was formed by wave abrasion in a dolerite dyke intruded in

granite gneiss and so the walls are of granite and the ceiling of dolerite [8,9]. Most caves studied

so far have a more stable microclimate with temperatures ranging from 13 to 15°C, while Tjuv-

Ante’s cave, due to its shallow depth, has a much more variable microclimate closely tracking

the temperature variation of the surface above the cave, ranging from -10°C to 15°C [10].

The process of speleothem formation in this cave is of particular interest because the main

speleothem forming mineral is calcite, which is not reported as a major speleothem forming

mineral in granite caves [5]. A previous study combining Environmental Scanning Electron

Microscope (ESEM) and fluorescent microscopy on this cave has shown an abundance of fungi

and Actinobacteria that together play important roles in the speleothem life cycle through a

constructive-destructive interplay [5]. Actinobacteria are commonly identified in cave biofilms

[11], speleothems, and cave soils from various locations, and can induce mineral precipitation

[12,13], while fungi are mostly destructive agents [14] due to chemical etching and physical

breakdown of the mineral substrate.

It has been suggested that the speleothem microbiome from Tjuv-Ante’s cave consists of

heterotrophs probably living of organic matter transported from the surface by percolating flu-

ids [5]. However, it is not known if there are any chemoautotrophs in the dolerite that can act

as a carbon source for the heterotrophic communities on the cave walls. In Tjuv-Ante’s cave,

microbial biofilms are absent from the granite walls, but present all over the dolerite ceiling

and are also incorporated within the dark layers of the speleothem, which are rich in organic

compounds and opal-A (an amorphous, hydrated silica mineraloid). The speleothem is

thought to grow seasonally, with the biofilms extensively growing during spring and summer
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and then being mineralized and overgrown by calcite during autumn and winter, thus the bio-

films may play a role in the speleothem formation [5].

Given the slow deposition of mineral in the speleothem, this environment provides an inter-

esting substrate for its evaluation as paleo biodiversity archives. Deep ice cores, permafrost,

and sediments analyzed with genetic techniques have been used to identify plant and animal

DNA that has been preserved there since the Holocene and Pleistocene. This has allowed the

reconstruction of paleo fauna and paleo vegetation even in the absence of obvious macrofossils

[15,16]. Importantly, these studies have been possible not only from cold environments, but

also from temperate cave sediments including dry silty sediments from a subalpine cave in

New Zealand [15].

These studies are possible due to the ability of the environmental DNA to bind to soil min-

eral particles through ionic interactions between the negatively charged phosphate groups of

DNA and positively charged surface groups [17]. If the surface is positively charged, the low

pH functional groups of the nucleic acids may be the ones playing part in the adsorption [18].

The adsorption strength of DNA to different mineral surfaces has been tested, including calcite

and silica [19,20]. It is also believed that DNA extraction of microbial communities in consoli-

dated sediments poses extraction difficulties due to the DNA being bound to the silica sedi-

ment, which is known to effectively bind DNA at neutral pH [19,21,22].

In order to characterize the microbiome of a speleothem from Tjuv-Ante’s cave by perform-

ing a deep functional and taxonomic profiling, we analyzed samples drilled from two different

locations from the dark layers of the interior of the speleothem. A speleothem of similar size

and close proximity to the sampled one has been radiocarbon dated to 1259 BP [5], serving as

a proxy for the age of the sampled speleothem. One sample (from here on called sample 1) was

taken from the interior of a relatively basal part of the speleothem, and the other (from here on

called sample 2) was taken from the interior of a location closer to the tip of the speleothem

(Fig 1). Thus, the samples represent different formation dates, an older and a more recent one,

respectively. In contrast to previous DNA studies, we focused not only on identifying bacteria

and archaea, but also fungi, algae, virus, protozoa, as well as non-microbial species given our

use of shotgun DNA sequencing metagenomic approach. Our analyses confirm the previous

microscopy findings and suggest the presence of chemoautotrophs; furthermore, we identified

taxa and functions related to biomineralization. However, the use of speleothems as biological

paleoarchives could not be confidently established.

Materials and Methods

Sample collection

We are very thankful to the Länsstyrelsen Västerbotten, which granted us a sampling permit

for Tjuv-Ante’s cave (case number 521-6864-2010). The speleothem samples were collected as

described in [5]. Briefly, sampling was done using a Multitool drill (Dremel) to obtain ca. 30

mg of calcite powder from two places of the interior of the speleothem. One sample (sample 1)

comes from a basal part of the speleothem, and the other (sample 2) comes from closer to the

tip of the speleothem. Sterile tools were used and the samples were wrapped in aluminum foil

after sampling. Moreover, the samples were only handled with stainless steel forceps and not

touched by ungloved hands. Afterwards, they were stored on ice and transferred to a -20°C

freezer where they were stored until analysis. For more information on the cave see S1 File.

DNA extraction and sequencing

DNA from the calcite powder was extracted following the approach outlined in [23]. Briefly,

DNA was extracted using a silica-based method. Roughly 15–50 mg calcite powder from each
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Fig 1. Tjuv-Ante’s cave sampled speleothem type. Sample 1 was taken from the basal part of the speleothem, from a relatively old formation. Sample 2
was taken from a higher up location in the speleothem and comes from a relatively recent formation.

doi:10.1371/journal.pone.0151577.g001
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sample was incubated under motion overnight at 55°C in 715 μl extraction buffer (0.45M

EDTA, 0.1M urea, 150 μg proteinase K) [24]. Following this, the samples were centrifuged at

2,300 rpm for 5 minutes and the supernatants were collected and concentrated to a volume of

20–100 μl using 30K MWCO Vivaspin filters (Sartorius). The concentrated supernatants were

subsequently mixed with 5X PB buffer (Qiagen), purified on Qiaquick silica spin columns

using PE buffer (Qiagen). Unfortunately, the DNA concentration was too low to visualize the

size distribution on a gel. Afterwards, the supernatants were eluted twice using 2x50μl EB

buffer (Qiagen). Aliquots from the DNA extracts were subsequently converted into Illumina

libraries using a NEBNext1 DNA Library Prep Master Mix Set 2 (New England Biolabs,

E6070) following the manufacturer’s instructions with the following modifications. The

extracts were not nebulized; reaction volumes were cut down from the manufacturer’s protocol

by a quarter in the end-repair step and by half in the ligation and fill-in steps. After the end-

repair and ligation incubations, the reaction was purified through MinElute spin columns and

eluted in 15 μl and 21 μl volumes, respectively, after a 5-minute incubation at 37°C with Qiagen

EB. Ligation reaction was performed for 25 minutes at 20°C using Illumina-specific adapters

specified in [25]. A fill-in reaction was performed for 20 minutes at 65°C. Libraries were ampli-

fied in two rounds.

The purified libraries were amplified as follows: 5 μl DNA library, 1X High Fidelity PCR

buffer, 2 mMMgSO4, 200 μM dNTPs each (Invitrogen, Carlsbad, CA), 200 nM Illumina Mul-

tiplexing PCR primer inPE1.0 (5’AATGATACGG CGACCACCGA GATCTACACT CTTTCCCTA

C ACGACGCTCT TCCGATCT), 4 nM Illumina Multiplexing PCR primer inPE2.0 (5’GTGACT

GGAG TTCAGACGTG TGCTCTTCCG ATCT), 200 nM Illumina Index PCR primer (5’CAAGC

AGAAG ACGGCATACG AGATNNNNNN GTGACTGGAG TTC, where N’s correspond to a 6 nucle-

otide index tag), 1 U of Platinum Taq DNA Polymerase (High Fidelity) (Invitrogen, Carlsbad,

CA) and water to 50 μl. Cycling conditions were: initial denaturing at 94°C for 4 minutes, 18

cycles of 94°C for 30 seconds, 59°C for 30 seconds, 68°C for 40 seconds, and a final extension at

72°C for 7 minutes. PCR products were purified through MinElute spin columns and eluted in

10 μl of Qiagen Buffer EB, following a 10-minute incubation at 37°C. A second round of PCR

(two parallel reactions for each library) was set up as follows: 5 μl of purified product from the

first PCR round, 1X High Fidelity PCR buffer, 2 mMMgSO4, 200 μM dNTPs each, 500 nM

Illumina Multiplexing PCR primer 1.0, 10 nM Illumina Multiplexing PCR primer 2.0, 500 nM

Illumina Index PCR primer, 1 U of Platinum Taq DNA Polymerase (High Fidelity), and water

to 50 μl. Cycling conditions included an initial denaturing at 94°C for 4 minutes, 12 cycles of:

94°C for 30 seconds, 59°C for 30 seconds, 68°C for 40 seconds, and a final extension at 72°C for

7 minutes. All libraries were run on a 2% agarose gel and size selected 150–300 bp. All products

were purified with Qiagen QIAquick gel extraction kit (Qiagen, Valencia, California). Samples

were pooled equimolarly and sequenced on one lane of llumina HiSeq 2000 (100 cycles, single-

end read mode) at the Danish National High-Throughput DNA Sequencing Centre.

Sequence length distribution

We used MGmapper v1.07 [26] to map the datasets against the next databases: human, bacte-

ria, virus, fungi, protozoa, invertebrates, toxin, mammalian vertebrates, other vertebrates, and

common meat (pig, cow, chicken, and sheep). These databases consist of whole genome entries

obtained from NCBI. Subsequently, we looked at the reads length distribution from the results

in order to differentiate endogenous DNA from contaminant DNA [27]. To this end, we plot-

ted with R v2.15.2 the density distribution of the length of the reads mapping uniquely to the

bacteria, fungi, and protozoa databases. To test for multimodality on the distributions we used

the CRAN package diptest [28] that implements the Hartigan's dip test statistic (D). The dip
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test measures multimodality in a sample by the maximum difference, over all sample points,

between the empirical distribution and the unimodal distribution function that minimizes that

maximum difference. The p value is calculated by comparing the D obtained with those for

repeated samples of the same size from a uniform distribution. Specifically, we used the “dip.

test” function with the parameter B set to 2000 and the p value to be calculated via linear inter-

polation. We then compared the taxa identified by uniquely mapping long (>90 nts) and short

(<90 nts) reads and mined those microbes identified only by long reads. Furthermore, in order

to test whether shorter reads originate from ancient specimens trapped in the speleothem,

reads mapping to the Bacteria database with a length up to a certain threshold selected based

on the hit length distribution were classified as short (<50 nts) or long (>70 nts) and the

ancient pattern was tested with MapDamage v2 [29]. MapDamage approximates a bayesian

estimation of damage parameters. The examined damage patterns are i) the probability of ter-

minating in overhang, ii) the cytosine deamination probability in double strand context, iii) the

cytosine deamination probability in single strand context, and iv) the mean difference rate

between the reference and the sequenced sample not due to DNA damage. When counting

misincorporations, the impact of sequencing errors is taken into account by setting a quality

threshold.

Taxonomic and functional profiling

Using the taxonomic hits obtained with MGmapper, we generated taxonomic profiles from

phylum to the species level using the biom format v1.1.1 [30] and Qiime [31]. We also analyzed

the dataset with MG-RAST v3 [32], from where they are publicly available under the ids

4571211.3 for sample 1, and 4571212.3 for sample 2. In MG-RAST the optional dereplication

step was used, in which redundant technical replicate sequences are removed. One copy of

each 50 bp identical bin was retained. Briefly, the functional profiling in MG-RAST works by

first predicting coding regions within the sequences using FragGeneScan [33], an ab initio pro-

karyotic gene-calling algorithm. After this prediction, sequences are clustered with 90% iden-

tity. The functional profiling was performed using the KEGG and Subsystems annotations. We

used a maximum e-value of 1e-5, a minimum identity of 60% and 75%, and a minimum align-

ment length of 15 measured in amino acids for protein and base pairs for RNA databases. Heat

maps were obtained with Ward clustering with Bray-Curtis distance metric using normalized

counts.

Briefly, the taxonomic profiling in MG-RAST for each sample is performed by first pre-

screening the sequences using QIIME-UCLUST [31,34] for at least 70% identity to ribosomal

sequences from the following RNA databases: Greengenes [35], Silva LSU and SSU [36], and

RDP [37]. Afterwards, sequences are clustered de novo at 97% identity using QIIME-UCLUST.

We also perform taxonomic profiling using the databases M5NR, KEGG, and RefSeq. For the

taxonomic comparison of both samples, the data was compared using a maximum e-value of

1e-5, a minimum identity of 75% and 60%, and a minimum alignment length of 15 measured

in amino acids. Comparison of the two samples was made with Ward clustering with Bray-

Curtis distance metric, grouped by phylum and class using normalized values. The comparison

was also visualized through a tree with the lowest common ancestor. The data was compared

using a maximum e-value of 1e-5, a minimum identity of 75%, and a minimum alignment

length of 15 measured in amino acids from the M5NR database. Leaf weights were displayed as

stacked bar chart maximum level order and colored by phylum.

Furthermore, we generated a de novo assembly of the two metagenomes using Ray Meta

v2.3.2-devel [38]. Subsequently we predicted genes using prodigal v2.6 [39], and then blasted

the predicted genes against the nt database and analyzed the taxonomy of the results with
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MEGAN [40]. Furthermore, as a second means of exploring the origin of the short and long

reads, we mapped the reads cleaned with MOCAT [41] to the assembled scaffolds and exam-

ined the lengths of the hits. Based on the read length distribution we classified as short reads

those less than 50 nts long, and as long those longer than 70 nts. Afterwards the ancient signal

was tested on the two groups with MapDamage v2 [29].

In order to test for significantly abundant bacterial taxa and functions in both samples as

well as differentially abundant bacterial taxa between the samples, we used the species level

identifications fromMGmapper against the bacteria database using only the unique mapping

reads and the level 3 functions annotated from KEGG. We obtained the Bonferroni corrected p

values of the counts normalized by percentage under a Poisson distribution.

Results

Sequence length distribution

We tried to differentiate DNA derived from contamination or DNA leaching from the surface

above the cave from actual fossil DNA from microorganisms trapped within the speleothem

during the growth and/or recent DNA from microorganisms native to the interior of the spe-

leothem. To this end, we first investigated the distribution of the length of the reads mapping

uniquely to bacteria, fungi and protozoa. In both samples we found a bimodal distribution on

the tested datasets of bacteria, fungi, and protozoa from both samples, with the majority of the

reads falling in the short length range of the distribution (Fig 2). As a second method to test for

the ability to differentiate ancient from modern DNA, we analyzed the damage pattern of the

reads mapped to the bacteria database (Fig 3, S1 Fig) and the de novo assembled contigs (S2

and S3 Figs), separating the hits of the long and the short reads. We identified damage at both

ends of the reads characteristic of ancient DNA (aDNA) (Fig 3, S1–S3 Figs), however we also

observe other types of substitutions. Thus, the damage characteristic of aDNA cannot be

uniquely distinguished in the reads since also other types of damage are present.

Taxonomic profiling

In MG-RAST, from the initial 44,846,754 sequences from sample 1 and the 32,491,609

sequences from the dataset from the sample 2, 66.9% and 71.9% of the datasets passed the qual-

ity control with mean sequence length of 89 ± 9 bp, respectively (S1 Table). From the sequences

that passed the quality control steps from sample 1, a total of 1,004,935 sequences (2.2%) con-

tain ribosomal RNA genes. The cleaned dataset from sample 2 contains 587,443 sequences

(1.8%) from rRNA genes (S2 Table). Using the ribosomal genes the α-diversity of sample 1 is

381.111 species and 533.045 species for the second sample, and 301.02 and 421.62, respectively,

when using the RefSeq database. The saturation curve from both samples does not reach a pla-

teau, with both samples closely together in the exponential phase (S4 Fig). MGmapper identi-

fied a total of 1,008,956 and 589,148 reads mapping to bacteria from samples 1 and 2,

respectively, and a total of 10,265 in sample 1 and 5,989 in sample 2 mapping to the virus,

fungi, and protozoa databases (S3 Table).

We de novo assembled a total of 6,645 contigs larger than 500 nts in sample 1, and 723 from

sample 2. The N50 is 947 nts for sample 1, and 742 for sample 2. The largest contig from sam-

ple 1 is 11,043 nts and 5,262 nts from sample 2. From the de novo assembly we predicted

80,393 genes from sample 1 and 66,557 from sample 2.

Results fromMGmapper could identify a total of 2,908 reads uniquely mapping to protozoa

species in sample 1, and 1,986 in sample 2. The most abundant protozoa in both samples were

Physarum polycephalum with 705, and 467 uniquely mapping reads in sample 1 and sample 2,

respectively. The following most abundant protozoa on sample 1 are the alga Nannochloropsis

Metagenomics of a Speleothem in Tjuv-Ante's Cave
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and the plant pathogen Pythium with 246 and 228, respectively. For sample 2 the following

most abundant protozoan species are Pythium and the alga Aureococcus with 193 and 172,

respectively. Virus identified by MGmapper total only 249 unique mapping reads from sample

1 and 180 on the second sample. Among them, the most abundant phage was Streptococcus

phage with 32 and 23 unique mapping reads from sample 1 and 2, respectively. Those identi-

fied by MG-RAST at the phylum level only includeHerpesvirales and Caudovirales.

When taking into account only the uniquely mapping long reads from the MGmapper

results, a similar number of bacteria, fungi and protozoa database entries were identified on

both samples. Sample 1 contained 884 bacteria, 172 protozoa, and 117 fungi identified by long

uniquely mapping reads, and sample 2 contained 834, 100, and 68 respectively. When remov-

ing the hits with both long and short reads and keeping those identified by only long reads, the

number of hits to the databases was largely reduced. Sample 1 contains 28, 94, and 29 hits to

the databases of bacteria, protozoa, and fungi databases, respectively. Sample 2 contains 16, 60,

and 24, respectively.

In general both samples share very similar taxonomic composition at the phylum (Fig 4, S5

Fig) and order levels (S6 Fig). In both samples, the most abundant taxa are the class Alphapro-

teobacteria (629,932 sequences in sample 1, and 268,869 in sample 2), followed by the class

Actinobacteria (200,786 sequences for sample 1 and 120,571 for sample 2) (S7 Fig, S2 File). A

species level comparison using the MEGAN identifications from our de novo assembled and

Fig 2. Density plot of the DNA fragments length distribution from the two sampled metagenomesmapping uniquely to different genome
databases. (A) Bacteria from sample 1, p-value < 2.2e-16 (B) Fungi from sample 1, p-value < 2.2e-16 (C) Protozoa from sample 1, p-value < 2.2e-16 (D)
Bacteria from sample 2, p-value < 2.2e-16 (E) Fungi from sample 2, p-value < 2.2e-16 (F) Protozoa from sample 2, p-value = 2.7e-05.

doi:10.1371/journal.pone.0151577.g002

Metagenomics of a Speleothem in Tjuv-Ante's Cave

PLOS ONE | DOI:10.1371/journal.pone.0151577 March 17, 2016 8 / 23



predicted genes, highlights Brevundimonas subvibrioides, two Polaromonas species, and Ery-

throbacter litoralis as the most abundant species, with the rest of the identifications being in

much less abundance (Fig 5, S2 File). In sample 1 we identified 204 significantly abundant bac-

teria, and 229 in sample 2, and 11 differentially abundant when comparing the two samples (S3

File).

Fig 3. Damage pattern. Damage pattern on the reads from sample 1 uniquely mapping to the bacteria database in MGmapper from (A) all the mapping
reads, (B) the subset of long reads, (C) the subset of short reads. C to T damage is depicted in red color, and G to A is depicted in blue color. Grey lines
represent other nucleotides derived from other types of DNA damage. The orange line represents soft-clipped bases, those that are not aligned to the
reference.

doi:10.1371/journal.pone.0151577.g003
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Functional profiling

The gene prediction with MG-RAST on both datasets generated a total of 1,392,269 annotated

features from sample 1 and 816,342 annotated features from sample 2 (S1 Table). A wide vari-

ety of functional categories were identified in both samples, including iron acquisition, sulphur

metabolism, and photosynthesis (Fig 6, S4 File, S8A Fig). The genes predicted from the de novo

assembly are also related to similar functions, as well as nitrogen and carbon fixation, and ure-

ases from uncultured rumen, soil and marine bacteria.

The most abundant functions are the metabolism of amino acids and derivatives, carbohy-

drates, and clustering-based subsystems—those for which there is evidence that genes belong

together but their functions are still unknown. KEGG orthologies (KOs) were also identified

(Fig 6B), showing that only very few are related to human diseases. Also, as expected, KOs

related to organismal systems (e.g. immune, endocrine, circulatory, and digestive systems) are

the least abundant, given that they mostly pertain to multicellular organisms. Also as

expected, we found genes related to biofilm formation and heat and cold shock stress

response. However, no function was found as statistically significantly abundant within or

between the samples.

Fig 4. Phylum taxonomic level heat map derived frommapping against the RefSeq database. (A) Bacteria phylum. (B) Eukaryota phylum. The most
abundant bacterial phyla are Proteobacteria, Actinobacteria, and Bacteroidetes. Cyanobacteria are also present at high abundance. Different phyla of fungi
are also present at high abundance, however we also identify higher-level eukaryotes like insects, worms, and marine species, at both large and low
abundances.

doi:10.1371/journal.pone.0151577.g004
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Discussion

DNA binding and leaching on the interior of Tjuv-Ante’s cave speleothem

The DNA adsorption capacity of the opal-A and calcite present in the speleothem could have

provided an appropriate DNA binding surface in the environmental conditions of Tjuv-Ante’s

cave. In spite of the components of this speleothem, which pose DNA extraction challenges, we

were able to generate the present datasets. Although contamination from the outside of the

Fig 5. Top 30most abundant species identified from the de novo predicted genes.

doi:10.1371/journal.pone.0151577.g005
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speleothem during the drilling process cannot be completely excluded, this dataset represents

one of the first metagenomic studies from the interior part of a speleothem.

It is difficult to differentiate the microbial community of the interior from that of the surface

of the speleothem, and it cannot be ruled out that some of the identified microorganisms are

due to contamination from communities from the surface of the speleothems, as well as from

the cave walls, given the likely occurrence of DNA leaching. A study of archeological dog

Fig 6. Comparison of the top 50most abundant functions. Heat map of the top 50 most abundant L3 functions identified with KEGG.

doi:10.1371/journal.pone.0151577.g006
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samples contaminated with human DNA found that authentic aDNA is shorter than the longer

retrieved fragments which mostly originate from contamination sources [27]. Thus we investi-

gated the distribution of the length of the reads mapping uniquely to bacteria, fungi and proto-

zoa in order to differentiate allochthonous DNA (i.e. derived from contamination and/or DNA

from microorganisms trapped within the speleothem during the growth) from autochthonous

DNA (DNA from native microorganisms). We hypothesized that a bimodal distribution would

be indicative of DNA derived from both sources being present, with those from longer frag-

ments coming from the allochthonous species that are able to grow on the speleothem, while

the short fragments derived from aDNA of degraded microorganisms already present during

the growth of the speleothem and/or damaged leaked DNA from the surface above the cave.

We found a bimodal distribution of the length of the reads from both samples mapping to the

databases of bacteria, fungi and protozoa. The majority of the reads fell in the short length

range of the distribution (Fig 6). This suggests that the majority of the DNA of our datasets

comes from damaged DNA and also potentially suggests that the diversity of autochthonous

bacteria adapted to the speleothem conditions is more restricted [42–44].

Tjuv-Ante’s cave speleothem as biodiversity archive

The use of molecular studies such as shotgun DNA sequencing could in principle allow the

detection of macro-organisms to test for the presence of fauna and vegetation from outside the

cave. Importantly, speleothems might act as an archive, not only for climate reconstruction by

isotope measurements, but also for historical biodiversity of the area above the cave. Thus we

tested our metagenomic datasets for identification of the paleo diversity from above the cave.

We identified land plants, which could come from above the cave, and marine taxa (such as

fish, macro algae, mollusks, crustaceans, and corals). The cave is only 20 km away from the

coast of the Baltic Sea, and the speleothem was formed after the uplift of the cave, so it has not

been in contact with waves. In light of this, we suggest two potential explanations for this result.

First, that DNA from marine organisms has been transported to the cave by air dispersion. Sec-

ond, that these results could be due to misidentification of some taxa.

Given the damage patterns of the long and short reads mapping to bacteria (Fig 3 and S1

Fig), it was not possible to differentiate real aDNA from modern DNA derived from autochto-

nous microbes living in the speleothem. In aDNA an excess of C-T and G-A substitutions are

expected at the extremes of the reads [45,46], however we observed all types of substitutions at

similar proportions. Furthermore, the contigs assembled with Ray Meta are suggested to derive

mainly from long DNA strands of a modern origin from either endogenous species or derived

from recently leaked DNA from above the cave. Thus, reads mapping to these contigs would

not be expected to present damage. However, we also observe various types of damage patterns

in those reads (S2 and S3 Figs). Also, there are no analyses that can be implemented to

unequivocally differentiate endogenous from leached DNA, which is very likely to occur in this

substrate. For instance, the various identified worms, spiders, and insects (S6 Fig) might come

from natural cave inhabitants, thus representing contamination from the surface of the

speleothem.

These observations show that both modern and the possible aDNA present in the sample

have suffered damage. One possible cause for the damage might be the action of fungi. Fungi

play the destructive role in the constructive-destructive interplay of the speleothem formation

by secreting enzymes and acids. These fungal secretions might hamper the potential of spe-

leothems as paleoarchives with the use of shotgun metagenomics. Targeted amplification of

barcodes such as ribulose-bisphosphate carboxylase, mitochondrial 16S, 12S, cytochrome b,

and control region genes could provide more reliable species level resolution and allow a more
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direct comparison of the fauna and vegetation identified within the speleothem to the current

ones above the cave and those on records from the past in order to conclude the evaluation of

the potential of speleothems as paleoarchives.

Molecular and microscopic analyses comparison

These datasets complement previous microscopic analyses performed from this same cave by

Lundberg et al. 2013 and Sallstedt et al. 2014 [5,9]. These metagenomic datasets provide a

wider characterization of the microbiota from this speleothem, with our results indicating a

higher diversity than that previously reported. The rarefaction curve (S4 Fig) shows that satura-

tion has not been reached, suggesting that even deeper sequencing would likely increase even

more the diversity by detecting the less abundant taxa.

Actinomycetales have been morphologically detected by the previous microscopic studies

performed on this cave, and we also identified them in our datasets as a major speleothem

microbial component (Fig 4). The microscopic analyses suggested that they are the dominant

bacteria, however we found that they are actually the second dominating organisms, with Pro-

teobacteria in the first place. Chemoautotrophs were suggested to exist in this environment in

the two previous studies, although they could not identify them. In the metagenomics datasets

we could detect some autotrophs such as Spirochaetes (see further discussion below). Further-

more, these previous studies highlighted the absence of photosynthetic bacteria, while our

study identified various genes related to this process (see further discussion below).

Furthermore, we could identify various algae that could not be identified with microscopic

studies. Nannochloropsis was the most abundant alga in sample 1 and is known to be undistin-

guishable by light and electron microscopy given their morphological indistinctive features

[47]. It is also known to occur in fresh and dirty water [48], thus its presence can be associated

with the percolated water from the exterior into the speleothem. Sample 2 showed Aureococcus

as the most abundant alga, this is of relevance given that it is known to cause algal blooms [49].

We also identified diatoms (Bacillariophyta), which can be associated to biofilms [50] and were

not identified in the microscopic analyses. Altogether, this comparison highlights the greater

identification power provided by metagenomics datasets.

Autotrophic organisms

The identified genes related to iron and sulfur metabolism indicate the presence of autotrophic

organisms. It is most probable that such microorganisms exist in the dolerite, which has

reduced forms of iron, sulfur and manganese accessible to chemosynthetic microorganisms.

The identification of Spirochaetes, which are chemoheterotrophic in nature, also supports this

indication. Chemoautotrophs are archaea and bacteria living in environments out of reach of

sunlight, such as deep-sea vents, where elements with redox potential, such as Fe, Mn, and S,

are the only accessible energy sources. Mafic subterranean rocks have been shown to host

microbial communities [51], thus, it is probable that the chemosynthetic microorganisms lived

in cracks and pore spaces in the dolerite where Tjuv-Ante’s cave was formed. While alive or

upon their death they can be transported downwards by percolating fluids into the cave system

and into the speleothem where they may serve as carbon source for heterotrophs in the cave.

One possible explanation to the identification of photosynthetic genes on both samples,

pointing to the presence of photoautotrophs, is that they originate from the photoautotrophic

Cyanobacteria and Chlorophyta identified in the samples. Even though the sample was taken

from the dark zone of the cave, where photosynthesis is not expected to occur, we also identi-

fied Chlorobi, light-harvesting green-sulfur photoautotrophic bacteria [52] found at low lights

and in deep stratified water columns, which could also be conducting photosynthesis in the
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biofilm. Furthermore, the bedrock above the cave is thin and the surface is only a few meters

above the sampled passage. It is thus likely that small fissures and cracks could facilitate the

contact with the surface and provide passage for meteoric water to enter the cave, along with

microorganisms from the exterior that may then adapt to survive in the speleothem. Survival

of photosynthetic organisms in darkness has been documented for various species [53,54]. The

identification of bacterial species residents of microbial mats or hydrothermal settings belong-

ing to the Chloroflexi phylum further supports this suggestion, given that Chloroflexi is a

photoheterotroph that can switch to a non-photosynthetic metabolism [55,56].

Another possible explanation to the identification of photosynthetic genes on both samples

is that the presence of the photosynthetic genes derives from entire living or recently dead

microorganisms from the surface that were transported to the speleothem, incorporated and

preserved in the mineral material. This could be the reason for the identified photosynthetic

green algae (Chlorophyceae) and the various identified plant species.

In order to deeper explore the existence of photosynthetic organisms in the speleothem, we

looked for chloroplast related genes in the de novo assembly. We identified plant and bacterial

chloroplast related genes in both samples. It is known that carbonate precipitation can be

caused by photosynthetic organisms, thus it is likely that the two previous possible explana-

tions are responsible for the presence of photosynthetic genes, with the identified Cyanobacte-

ria actively carrying out carbonate mineralization [57], and the plant photosynthetic genes

derived from leached DNA from above the cave.

Taxonomic microbial composition from ancient and modern speleothem
formation

As for the paleoarchive interpretation, it is important to also take into account DNA leaching

when describing features unique to one of the two samples. Interestingly, Alkaliphilus metallir-

edigens QYMF and Thermoanaerobacterium thermosaccharolyticum DSM 571 were identified

by uniquely mapping long DNA reads and not by any short read only in sample 1. Alkaliphilus

metalliredigensQYMF is a metal-reducing alkaliphile species [58], and Thermoanaerobacter-

ium thermosaccharolyticum DSM 571 employs a variety of enzymes for the efficient degrada-

tion of pullulans, which are polysaccharides that favor the formation of biofilms [1,2].

We identified various classes of fungi, including Agaricomycetes, Blastocladiomycetes, Pezi-

zomycetes, Saccharomycetes, and Schizosaccharomycetes. Some of these identified fungi corre-

spond to plant pathogens. Particularly,Melampsora larici-populina 98AG31 was found only

in sample 2. This fungus is the one of the most devastating and widespread pathogen of pop-

lars (deciduous flowering plants native to most of the Northern Hemisphere) [59]. The fact

that many of them are plant pathogens supports the suggestion of DNA leaching in the

speleothem.

The taxonomic comparison from the MG-RAST results reveals some differences at the

phylum taxonomic level (Fig 4, S5 Fig). It is interesting to note that although there is a large

difference in abundance between the two samples for the top abundant class (sample 1 has

42.89% and sample 2 has 32.19% of its sequences assigned to Alphaproteobacteria), this differ-

ence is not statistically significant. The only class with a statistically significant (corrected p

value< 0.05) difference in abundance was Verrucomicrobiae, which is found in fresh water

and soil samples, with sample 1 having 1,447 sequences mapping to it and sample 2 has 85

(S2 File).

It is also interesting to note the presence of Physarum polycephalum as the most abundant

protoan. It is a light-sensitive slime mold known to inhabit shady cool and moist areas [60],

such as decaying leaves and wood, thus the dark-zone area of the speleothem provides a
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suitable substrate for its growth. Notably, P. polycephalum feeds on fungal spores and bacteria,

as well as other microorganisms. This suggests that it might have a role on the speleothem for-

mation believed to occur by seasonal growth by Actinomycetales action and degradation by

fungi. Importantly, we identified some significantly abundant bacteria (corrected p value

< 0.05) that produce antifungal compounds, such as Streptomyces rapamycinicus [61], and

Streptomyces violaceusniger [62].

Among the bacteria found as having a significantly different abundance within the samples

(corrected p value< 0.05), we identified various marine bacteria, as well as bacteria isolated

from calcareous stones (Blastococcus saxobsidens [63]) or rock varnish in deserts (Geodermato-

philus obscurus [64]), even bacteria able to grow on living fungal hyphae (Collimonas fungi-

voras [65]). We also identified the presence of the biofilm-forming bacteriaMaricaulis maris,

Stigmatella aurantiaca, and Parvibaculum lavamentivorans [66–68].

Functional microbial composition from ancient and modern speleothem
formation

The level 2 and 3 KEGG and Subsystems hierarchical functional annotations do not reveal any

significant differences between or within the two samples (S8A Fig, S4 File). However, sample

1 is richer in KO functions related to metabolism and genetic and environmental information

processing (S8B Fig). Given that sample 1 represents a relatively older formation, these results

suggests that there might be living microorganisms adapted to live in the relatively more stable

conditions of the speleothem area that is not subject to periodic episodes of growth due to bac-

terial activity and degradation due to fungal activity. The speleothem growth episodes involve

extensive formation of biofilms, which are mostly formed by exopolysaccharides and water

[69]. Thus, it is interesting to note that we identified functions related to bacterial biofilm for-

mation and exopolysaccharide production (S4 File), such as xanthan, an industrially relevant

exopolysaccharide produced by Xanthomonas campestris [70], which we also identified in the

taxonomic profiling.

The identification of genes related to fluorobenzoate degradation and in general to xenobi-

otic metabolism on the newer formation part of the speleothem (sample 2) suggests an active

competition between destructive agents and other bacteria. Since biodegradation of fluorinated

hydrocarbons (which are herbicides, fungicides, and pharmaceuticals) has been poorly studied

[71,72], we suggest that future research on this kind of environments would make important

contributions to the understanding of such microbial functions. Interestingly, the identification

of cold and heat shock stress response suggests the adaptation to the large microclimate tem-

perature change that ranges from -10 to 15°C in Tjuv-Ante’s cave.

Notably, the alpha diversity in sample 1 is lower than in sample 2 (381.111 and 533.045,

respectively). This could be due to two reasons. First, DNA from allochthonous species from

the surface of the cave could have leached to the speleothem, thus artificially inflating the alpha

diversity. Second, there could be fewer bacteria adapted to the low nutrients conditions of the

older formation part of the speleothem, since they would require more specialized functions in

order to thrive, while the newer formation part of the speleothem contains more nutrients car-

ried by the percolating water, allowing more species to survive. We suggest that both scenarios

are possible. Although we identified some specialized bacteria in sample 2 (such as Desulfuro-

monadales, Chloroflexales, and Prochlorales), other phyla found in harsh environmental set-

tings such as Aquificales, Methanosarcinales, and Halobacteriales were found in higher

abundance in sample 1 than in sample 2, thus supporting the first explanation. And the second

explanation is supported by the fact that species found mostly in sample 2 include more

macro-species (plants and mammals), which likely derive form leached DNA.
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Biomineralization

As discussed above, we identified taxa and functions from each of the types of bacteria

known to precipitate carbonate: a) photosynthetic organisms, such as algae and Cyanobacte-

ria, b) sulphate reducing bacteria, c) organic acids utilizers, d) microbes involved in the nitro-

gen cycle (amino acids ammonification, nitrate reduction and hydrolysis or urea) [73], with

the calcium precipitation induced by urea hydrolysis being the simplest and most studied

method [74,75].

Specifically, we identified some of the most important bacteria capable of biomineralization

of calcium carbonate that have also been applied to the industry. Their applications range from

the CO2 sequestration as a new means to reducing atmospheric CO2, to the rescue of buildings

of historical value. For example, we identified Bacillus cereus, which has been used for improv-

ing the compressive strength of cement mortar [76], andMyxococcus xanthus, which has been

applied to restore limestone buildings [77].

Among the fungi we identified Fusarium species. This fungus causes serious damage on his-

torical buildings [78], and bacteria also identified in this study such as Desulfovibrio desulfuri-

cans, D. vulgaris, and Shewanella oneidensis have been shown to aid in their restoration by

removing the black sulphate crust, by generating a protective calcium oxalate patina on the

stone surface, and by inhibiting the rate of calcite dissolution [79–82]. In the genes identified

from the de novo assembly we could also identify bacterial carbonic hydratase genes. This ubiq-

uitous enzyme is fundamental to processes such as photosynthesis, respiration, ion and CO2

transport [83]. Importantly, it has been shown that this enzyme accelerates CO2 hydration and

thus calcium carbonate precipitation [84]. Thus, the study of environments where microbes

are adapted to naturally induce calcium carbonate precipitation, such as the speleothem exam-

ined in this study, is of importance and should be further explored.

Conclusions

Given the provenance of the samples, a cave formed by the action of seawater on igneous rock

with calcite as a major component and with traces of opal-A, the datasets presented here are

different from other speleothems-derived datasets that have been studied so far. Thus, they are

a new source of information for future comparisons to other environments with similar charac-

teristics. Our metagenomic datasets generated from shotgun DNA sequencing from two sam-

ples drilled from different vertical locations from the interior of a speleothem in Tjuv-Ante’s

cave represent areas of early and relatively recent speleothem formation. The taxonomic identi-

fication results agree with previous microscopy reports of a dominance of Actinobacteria and

fungi, although we discovered a larger biodiversity. Furthermore, we identified variations in

the bacterial taxonomic composition between the two different examined speleothem forma-

tion periods. Due to the possibility of DNA leaching from above the cave as well as fungi-

induced DNA damage, the use of speleothems as biological paleoarchives could not be

unequivocally verified without the use of targeted sequencing. Notably, we detected genes

related to photosynthesis, iron and sulfur metabolism, suggesting the presence of autotrophic

bacteria, as well as microbes known to cause calcium carbonate precipitation. Microbes that

cause mineralization have promising potential in a variety of technological applications, thus

environments such as the one presented here should be further explored.
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S1 Fig. Damage pattern of the reads from sample 2 mapping uniquely to the bacterial data-

base in MGmapper. A) Damage pattern of all the reads. B) Damage pattern of the subsampled

long reads. C) Damage pattern of the subsampled short reads. C to T damage is depicted in red
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color, and G to A is depicted in blue color. Grey lines represent other nucleotides derived from

other types of DNA damage. The orange line represents soft-clipped bases, those that are not

aligned to the reference.

(PDF)

S2 Fig. Damage pattern of the reads from sample 1 mapping to the de novo assembled con-

tigs. A) Damage pattern of the subsampled long reads. B) Damage pattern of the subsampled

short reads. C to T damage is depicted in red color, and G to A is depicted in blue color. Grey

lines represent other nucleotides derived from other types of DNA damage.

(PDF)

S3 Fig. Damage pattern of the reads from sample 2 mapping to the de novo assembled con-

tigs. A) Damage pattern of the subsampled long reads. B) Damage pattern of the subsampled

short reads. C to T damage is depicted in red color, and G to A is depicted in blue color. Grey

lines represent other nucleotides derived from other types of DNA damage.

(PDF)

S4 Fig. Rarefaction curves. The red line is from sample 1 and the blue line is from the sample

taken from sample 2.

(TIF)

S5 Fig. Phylum taxonomic level heat map. The metagenome from sample 1 has the

MG-RAST id 4571211.3, and the 4571212.3 id is from sample 2, mapping against the M5NR

database. The most abundant phyla are Bacteroidetes, Proteobacteria, and Actinobacteria, while

most of the unexpected biodiversity not previously identified by microscopic analyses is pres-

ent in lower amounts. The abundances are very similar between the two compared samples.

(TIF)

S6 Fig. Tree taxonomic comparison. Leaf abundance weights are displayed as stacked bar

charts. The maximum taxonomical level is order and the leaves are colored by phylum.

(TIF)

S7 Fig. Rank abundance plots. Abundance from the top 20 most abundant phyla. The y-axis

plots the abundances of annotations in each phylum on a log scale. A) Metagenome from sam-

ple 1 B) Metagenome from sample 2.

(TIF)

S8 Fig. Functional profiling. The metagenome from sample 1 has the MG-RAST id 4571211.3,

and the metagenome from sample 2 has the id 4571212.3. A) Subsystems hierarchical functional

classification of both datasets. B) KO predicted functions.

(TIF)

S1 File. Tjuv-Ante’s Cave supplemental information.

(DOCX)

S2 File. Taxonomic profiling. Excel file containing identified taxa at class and species level.

Sheet one contains the counts comparison of the samples at the phylum and class levels

(“MG-RAST-TaxonomyPhylumAndClass”). Sheet two (“KEGG-TaxonomyClass”) contains

the classes identified with the KEGG database with normalized values, and sheet three (Ray-

Meta-MEGAN) contains the species identified with MEGAN using the predicted genes from

the de novo assembly.

(XLSX)
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S3 File. Taxonomic abundance comparison. Excel file containing the significantly abundant

bacteria within the two samples (sheet 1 and 2), and the differentially abundant bacteria

between the two samples (sheet 3).

(XLSX)

S4 File. Functional profiling. Excel file containing the level 2 and 3 functional identifications

with KEGG (sheets 1 and 2), and levels 2 and 3 using Subsystems (sheets 3 and 4).
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