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Abstract

The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from
environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine
which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral
communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral
communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the
airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized.
CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage
communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses,
including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar,
and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different
metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by
an over-representation of Guanosine-59-triphosphate,39-diphosphate pyrophosphatase, an enzyme involved in the bacterial
stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic
profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more
effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident
microbiota.
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Introduction

Each day the human respiratory tract comes into contact with

billions of airborne particles, including viruses, microbes and

allergens [1]. Particle size and the local airway host immune

response determine which inhaled viruses and particles will adhere

to epithelial surfaces and persist in the airways [1,2]. The lungs

and lower respiratory tract have generally been considered sterile

in the absence of respiratory disease although very little is known

about the microbiota of the upper and lower airways of non-

diseased individuals. Microbes and viruses, including phage, have

been implicated in chronic pulmonary diseases, such as chronic

obstructive pulmonary disease (COPD), asthma, and cystic fibrosis

(CF) [3–8]. However, most of this work has been performed using

standard microbial cultures and PCR-based studies, which provide

an incomplete picture of the airway microbiota and little

opportunity for viral discovery compared to metagenomic

techniques.

Metagenomics is a powerful tool for viral and microbial

community characterization since nucleic acids are isolated

directly from environmental samples and sequenced, requiring

no culturing, cloning, or a priori knowledge of what viruses may be

present. Viruses are the most numerous and diverse biological

entities on Earth, and metagenomics has been used extensively to

describe viral communities in marine ecosystems [9–12]. The first

metagenomic studies of the human microbiome were of viruses in

blood, feces, and the lungs, and went far to describe previously

unexplored viral communities [13–17]. Recent metagenomic

studies of the human microbiome have largely focused on

microbial populations, predominantly in the gut and the surface

of the skin [18–21].

Cystic fibrosis is an autosomal recessive genetic disease caused

by a mutation in the cystic fibrosis transmembrane conductance

regulator protein (CFTR), a gated ion channel [22,23]. CF affects

paranasal sinuses as well as the lower respiratory, hepatobiliary,

pancreatic and lower gastro-intestinal tracts [23]. The current
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median age of survival for individuals with CF is approximately 38

years. Over 80% of CF mortalities are attributable to respiratory

failure from chronic bacterial infections of the lungs, most

commonly caused by Pseudomonas aeruginosa, Staphylococcus aureus,

and Burkholderia cepacia [4,24]. Individuals with CF have impaired

mucociliary clearance (MCC) which results in airway mucus

plugging [2][25][2]. This creates hypoxic microenvironments,

forcing invasive microbial species to adapt [2]. This unique airway

environment is believed to increase viral replication and

susceptibility to viral infections in individuals with CF [8,22].

Expectorated sputum provides a sample of airway secretions from

the proximal airways. Sputum also contains material from the

entire respiratory tract including airway mucus, cellular debris,

DNA, and degraded proteins as well as microbes, their associated

phage, and eukaryotic viruses [26,27].

Here we report the first metagenomic study of airway DNA

viral communities using sputum samples from both cystic fibrosis

and Non-cystic fibrosis (Non-CF) individuals, including the spouse

of an individual with CF and an individual with mild asthma. Viral

communities from Non-CF volunteers were characterized and

compared to viromes of individuals with cystic fibrosis to

determine if there is a core respiratory tract virome in non-

diseased individuals. Metabolic profiles inferred from metage-

nomic sequences were distinctly different between Non-CF and

CF viromes. Our results indicate that regardless of the presence or

absence of shared taxa, a core set of metabolic functions defines

the non-diseased and diseased respiratory tract DNA viromes.

Results and Discussion

Phage taxonomy reflects airway pathology
In all metagenomes, the majority of sequences (.90%) were

unknown when compared to the non-redundant database using

BLASTn (Table S1), which is comparable to the percentage of

unknown sequences in other environmental viromes [9,12,28]. CF

viromes had more tBLASTx similarities to phage genomes overall

than Non-CF viromes, and were similar to a wider range of phage

(Figure 1, Table S2). The tBLASTx analysis identified a core set of

Figure 1. Mapping of best tBLASTx hits to the phage proteomic tree by percentage for Non-CF (A) and CF (B) viromes. The phage
genome with the highest percentage of hits (normalized to the length of the genome) is labeled for each virome.
doi:10.1371/journal.pone.0007370.g001

Respiratory Viromes

PLoS ONE | www.plosone.org 2 October 2009 | Volume 4 | Issue 10 | e7370



19 phage genomes which had similarities to sequences in all

metagenomes (Table S3). An additional 12 genomes had

significant similarities to viromes from all CF individuals but none

of the Non-CF individuals. This suggests a core set of phage

characteristic of the human respiratory tract, and an additional

core group in CF individuals. A few phage genomes appeared to

dominated the Non-CF2, Non-CF3, and Non-CF5 viromes when

tBLASTx similarities to phage genomes were plotted against the

Phage Proteomic Tree (Figure 1). Over 90% of tBLASTx hits to

phage in Non-CF2 were to Streptococcus phage Cp-1, and 80% of

tBLASTx similaritites in Non-CF3 were attributable to two phage,

Haemophilus influenza phage HP-1 and Brucella melitensis 16 M BrucI

prophage. The large relative abundance of these phage may reflect

their prevalence in inhaled air, since environmental air has been

shown to contain diverse bacterial communities [29].

The phage profiles of Non-CF1Asthma and Non-CF4Spouse

were more similar to those of CF individuals than to other Non-CF

individuals. This likeness was confirmed by PCA (Figure 2). Non-

CF1Asthma and Non-CF4Spouse had values for the first and

second principal components which were nearly identical to those

of the CF metagenomes. The other Non-CF metagenomes had

more random distribution of phage genotypes and did not appear

to cluster on the PCA graph. More specifically, Non-CF2,

NonCF3, and Non-CF5 all had positive values for the first

principal component (0.40, 0.42, and 0.27 respectively) while all

other metagenomes had negative values. This was driven by a

large positive loading of the first principal component by the

Streptococcus phage Cp-1, which segregated Non-CF2, and negative

loadings on the set of phage genomes shared by Non-CF1Asthma,

Non-CF4Spouse and the CF metagenomes. Additionally, the

second principal component was positively loaded by the Brucella

melitensis 16 M phi Bruc1 prophage genome which was nearly

absent in Non-CF2, giving a negative value of the second principal

component for Non-CF2.

These results indicate that the sputum phage community in

Non-CF individuals appears to represent a random, transient

sampling of the exterior environment. In CF individuals, phage

communities are driven by airway pathology, and correspond to a

shared internal respiratory environment. The phage community in

the Non-CF4Spouse virome reflects a continuous sampling of CF-

associated phage via a shared external environment. Common

phage taxonomy in CF individuals and Non-CF1Asthma occurs

because of shared respiratory pathology (i.e., similar internal

environments). Both CF and asthma are conditions marked by

impaired mucociliary clearance (MCC) [2,25,30]. MCC is slowed

in asthma, leading to increased retention of microbes and hence

their phage [30]. In CF, mucus is extremely viscous and stagnant,

forming obstructive plugs, and creating hypoxic microenviron-

ments that serve as scaffolds for bacterial biofilm formation [2,25].

Therefore, in both asthma and CF, phage communities are

derived from microbes which persist in the airways for longer

periods of time than in healthy individuals.

Inferred host ranges for respiratory tract phage
The putative microbial host range of respiratory tract phage

reflected a few dominant but distinct phage in Non-CF2, Non-

CF3, and Non-CF5 (Figure 3).Host ranges of Non-CF1Asthma

and Non-CF4Spouse were highly similar to those of the CF phage

communities, but were under-represented in Streptococcus and

Staphylococcus phage. The higher abundance of Staphylococcus phage

in CF is consistent with the increased induction of Staphylococcus

prophage by antibiotics in CF individuals, as shown by previous

studies [31]. P. aeruginosa was cultured from the sputum of all CF

participants, yet Pseudomonas phage were not abundant in the

metagenomes. Pseudomonas phage may be of novel types not closely

related to those in the database, making them undetectable by

tBLASTx. Even if known phage are present, infections of

Pseudomonas in CF may be unsuccessful, since phage may not be

able to penetrate the biofilm to access susceptible microbial hosts

[32]. Alternatively, P. aeruginosa may not be as abundant in the CF

airway as indicated by culturing, an idea supported by 16S rDNA

and Terminal Restriction Fragment Polymorphism (T-RFLP)

analysis of bacteria in CF sputum and bronchoalveolar lavage fluid

[33–35]. T-RFLP uses fluorescently labeled 59 PCR primers

coupled with restriction digests to allow for rapid profiling of

unknown microbial communities, providing a less biased picture of

microbial diversity than culture-based studies [35].

Diversity of respiratory tract viruses
There were approximately 175 unique species of DNA viruses

in respiratory tract viral communities (Table 1). There were no

significant differences in the estimated number of species between

CF and Non-CF viromes. Diversity estimates were based on

sequence assemblies and PHACCs, so all metagenomic sequences

were used, not just those with BLAST similarities to viral

databases [36]. The estimated number of DNA viral species has

been reported to be as low as 1440 in hot springs, and as high as

129,000 in the open ocean [9,37]. In comparison with other

environmental viromes, the respiratory tract viromes had low

species richness. Similarly, Rogers et al. [34] found low diversity of

Bacteria in CF sputum using T-RFLP analysis. Low species

richness probably results from physical and biological barriers to

microbial and viral persistence, including both MCC as well as

innate and adaptive immunity [2,38]. Richness may be further

depressed in CF individuals because of antibiotic therapies and the

metabolic adaptations required for microbial and viral survival in

the unique microenvironment of the CF airway [26,27].

Cross-BLASTn analysis showed that CF viromes shared more

sequences with each other than Non-CF viromes. Sequences from

each metagenome were compared pairwise to all other metagen-

omes using BLASTn to identify shared sequences as explained in

Figure 2. Principal components analysis (PCA) of respiratory
tract viromes based on phage taxonomic composition. Non-CF
metagenomes are shown in blue and CF metagenomes are shown in
red. Inputs to PCA were normalized percentages of best tBLASTx hits to
completely sequenced phage genomes. Non-CF1Asthma and Non-
CF4Spouse cluster with the CF metagenomes.
doi:10.1371/journal.pone.0007370.g002
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Methods [39]. The majority of the common CF sequences were

not found in any Non-CF metagneomes. Sequential BLAST

analysis identified 31,413 sequences common to all CF viromes,

and 12,824 of these did not appear in any of the Non-CF viromes.

Non-CF viromes shared 11,995 sequences, and 330 could not be

found in any CF virome. Both the larger group of shared and

unique sequences in CF metagenomes suggests that CF viral

communities are more similar than Non-CF communities.

Taxonomy of eukaryotic viruses
Eukaryotic DNA viral communities in CF individuals were

dominated by a few viral genomes which were highly variable in

their abundances. Non-CF individuals shared numerous eukary-

otic viruses with more even abundances, suggestive of a core

virome (Figure 4A). All CF metagenomes had similarities (.1%) to

Reticuloendotheliosis virus (Figure S1) and other retro-transcrib-

ing viruses (Figure 4B). We confirmed bioinformatically that

similarities to retroviruses were not actually similarities to the

human genome, therefore, we assume that retroviruses must have

been present in the metagenomes as DNA intermediates.

indicating that retroviruses may establish persistent infections in

the airways, and could be useful therapeutic vectors for CF as

previously suggested [40]. CF viromes also shared several human

herpesviruses (HHV) including Epstein-Barr virus (HHV-4),

HHV-6B, and HHV-8P. Infection with Epstein-Barr virus in

adolescent CF patients has been linked to exacerbations and poor

clinical outcomes, and has also been observed in adults [41].

CF2 and CF4 had many similarities to Geminiviruses and

Nanoviruses, single-stranded DNA viruses of plants (Figure 4B).

However, these similarities were concentrated at one location in

the genome, the coding sequence for the replication initiator (Rep)

protein. Specifically, they were localized to the WalkerA and

WalkerB motifs of Rep which correspond to an ATP-binding

domain in the translated protein [42]. ATP-binding motifs are

common to Rep proteins from a variety of viruses, including

Geminiviruses, Nanoviruses, Circoviruses, Parvoviruses, and

phage [42]. Therefore, tBLASTx similarities to specific Rep

motifs indicate the presence of a virus, but not specifically a

Gemini- or Nanovirus.

Non-CF viromes had similarities to fewer unique viral genomes,

that is, there were fewer genomes with tBLASTx hits only in one

virome (Table S4). Non-CF3 had significant similarities to a

Geminivirus, but all hits were to the WalkerA and Walker B motifs

of the Rep protein. Human papillomavirus Type 34 comprised

Figure 3. Putative host range for phage communities in respiratory tract viromes. Host range was inferred from normalized best tBLASTx
hits to phage genomes. Host ranges for CF viromes and for Non-CF1Asthma and Non-CF4Spouse were not statistically significantly different as
determined by XIPE and were combined.
doi:10.1371/journal.pone.0007370.g003

Table 1. Diversity estimates for human respiratory tract DNA
viromes.

Sample Species Richness Evenness Shannon Index

NonCF1Asthma 164 0.89 4.52

NonCF2 156 0.95 4.81

NonCF3 113 0.94 4.45

NonCF4Spouse 187 0.94 4.92

NonCF5 594 0.86 5.46

NonCF Mean 243 0.92 4.83

CF1 69 0.85 3.85

CF2 154 0.86 4.34

CF3 104 0.8 4.32

CF4 121 0.92 4.42

CF5 75 0.84 3.91

CF Mean 105 0.85 4.17

Overall Mean 174 0.89 4.5

Repeated sets of 10000 random sequences were retrieved from each
metagenome and assembled to obtain contig spectra. Diversity modeling
based on contig spectra was performed with PHACCs, using a logarithmic
model and an average genome size of 50 kb.
doi:10.1371/journal.pone.0007370.t001
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over 5% of tBLASTx hits in both Non-CF2 and Non-CF5, and

Non-CF2 also had many similarities to Human papillomavirus

type 71. Human papillomaviruses have been been detected

previously in the respiratory tract and are commonly found in

tumors in the lungs and the oropharynx [43–45].

The majority of viral species found in Non-CF viromes were from

a core set of 20 viral genomes, which were shared by all metagenomes

(Table S5; Figure S2). These included a mammalian adenovirus

(Bovine adenovirus A), eight mammalian herpesviruses, and three

poxviruses. Adenoviruses and herpesviruses have been detected in the

airways of both CF and Non-CF individuals, and tBLASTx

similarities to non-human viruses represent related undiscovered

human variants [8]. Several other viruses, such as algal and insect

viruses, were shared among all metagenomes, but similarities to these

viruses were largely concentrated in one area of the genome. Since

metagenomics allows direct sequencing of environmental DNA,

metagenomic techniques often isolate novel viruses and microbes.

The hallmark of a novel viral genotype is a large concentration of

sequences in one discrete region of a previously sequenced genome.

Therefore, these results suggest the presence of a novel virus common

to all individuals which cannot be identified using database

similarities, analogous to viruses detected in human blood [15].

Figure 4. Distribution of normalized best tBLASTx hits to DNA and Retro-transcribing eukaryotic viruses in Non-CF(A) and CF(B)
individuals. Reticuloendotheliosis virus is indicated by the red rectangle in (B).
doi:10.1371/journal.pone.0007370.g004
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Differences in eukaryotic DNA viral communities in CF versus

Non-CF individuals were confirmed by PCA (Figure 5). Non-CF

viromes all had nearly identical values for the first and second

principal components, resulting in a tight cluster on the graph.

This was largely driven by the general absence of ssDNA and

Retro-transcribing viruses from Non-CF viromes (Figure 4A).

Principal components for CF viromes were more variable,

reflecting the tendency for CF viromes to have a small number

(between one and four) of highly abundant viral species.

Specifically, the outlying behavior of CF2 was driven by a high

positive loading of the second principal component by the

Geminivirus Sugarcane streak Egypt virus. CF4 did not cluster

with other metagenomes due to a high negative loading of the first

principal component by Reticuloendotheliosis virus.

In Non-CF individuals, eukaryotic viral communities likely

represent transient infections rapidly cleared by immune cells or

viral particles being removed from the airway via MCC. In CF

individuals, communities probably correspond to more persistent

infections. Viral replication is increased in the CF airway and

synergism between persistent bacteria and incipient eukaryotic

viruses pre-disposes CF individuals to acquiring viral infections

[8]. This is in contrast to asthma, where the sequelae of viral

infections are often severe in the lower respiratory tract, yet

individuals are no more likely to acquire such infections [3]. It is

difficult to distinguish clinical symptoms of viral infections from the

typical respiratory distress associated with CF, so it is possible that

CF individuals in this study could have had extant viral infections

[8].

Metabolic profiles of respiratory tract viruses
Non-CF individuals shared a common viral metabolic profile

which was distinctly different from that of CF individuals

(Figure 6). Functional annotations were assigned to metagenomic

sequences by tBLASTx comparison to the non-redundant SEED

database at the highest subsystem level, which consists of 25

classifications (Figure 7A). The percentage of known sequences

(i.e., sequences with significant similarity to the database) was

much higher than reported in the literature for other viral

metagenomes (Figure S3) [28].

Metabolic functions encoded by viruses are determined by the

environment, and functional genes carried by phage largely mirror

those of their hosts [28]. The CF airway has distinct regions

characterized by hypoxia and low pH, and airway secretions are

enriched in amino acids, DNA, phospholipids and other cellular

debris [4,26]. The specific adaptations required for survival in this

environment are reflected by the metabolic profiles of CF viromes.

Non-CF1Asthma and Non-CF4Spouse shared phage taxonomy

with CF viromes, but did not share metabolic profiles because they

have a Non-CF airway environment. These results are similar to

findings in the human gut, where microbiomes were determined to

share a set of core metabolic genes even when different microbial

taxa were present, and aberrant physiological states (i.e., obesity)

lead to definitive changes in the metabolic consortium [21]. As

indicated by CF5, there may be more than one disease state which

defines metabolism in CF, reflecting differences in pathology,

disease development and/or treatment regimes.

All of the CF metagenomes (including CF5) were over-

represented in functions related to the metabolism of aromatic

compounds (Figure 7A). At the second hierarchical subsystem

level, CF1-4 were over-represented in anaerobic degradation of

aromatics, while CF5 had more genes related to peripheral

catabolism pathways, most of which were aerobic (Figure 7B).

Non-CF metagenomes were enriched for metabolism of central

intermediates via aerobic mechanisms. CF sputum is derived from

hypoxic microenvironments which require persistent microbes to

acquire anaerobic adaptations [26]. Aromatic amino acids have

been implicated both as preferred carbon sources and also

regulators of quinolone signaling and biofilm formation for

Pseudomonas aeruginosa in CF sputum [26,27].

The presence of anaerobic aromatic catabolism genes in phage

may represent lateral gene transfer with well-adapted hosts [46].

Alternatively, phage may be degrading aromatics in order to

reduce biofilm formation and the exopolysaccharide layer,

allowing access to susceptible Bacterial hosts.

CF5 was dramatically over-represented in phosphorous metab-

olism and virulence pathways (Figure 7A). Over 75% of tBLASTx

similarities to the phosphorous metabolism subsystem were to the

gene encoding Guanosine-59-triphosphate,39-diphosphate pyro-

phosphatase. This enzyme catalyzes the removal of a phosphate

group from guanosine pentaphosphate (pppGpp) to generate

Figure 5. Principal components analysis based on best
tBLASTx hits to 3074 eukaryotic viruses. Non-CF viromes are
shown in blue and CF viromes are shown in red.
doi:10.1371/journal.pone.0007370.g005

Figure 6. Non-metric multidimensional (NM-MDS) scaling of
top-level SEED metabolic subsystems. All Non-CF metagenomes
are shown in blue. CF1-5 are shown in red. The inputs to NM-MDS were
the number of hits to subsystems in the highest level of the SEED
hierarchy.
doi:10.1371/journal.pone.0007370.g006
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guanosine tetraphosphate (ppGpp) [47]. Both pppGpp and ppGpp

are part of the canonical bacterial stringent response which is

enacted to slow growth rates during nutrient stress [48]. They have

also been linked to bacterial virulence, antibiotic resistance,

biofilm formation, quorum sensing, and phage induction in a

variety of bacteria including Pseudomonas aeruginosa [47,48]. For

many bacteria ppGpp is a more potent effector molecule than

pppGpp, suggesting a need for increased levels of Guanosine-59-

triphosphate,39-diphosphate pyrophosphatase [47,49].

Additional considerations and recommendations for
human microbiome studies

We used sputum samples as a proxy for the human respiratory

tract, much as fecal samples have been used as a proxy for the

human gut [18–20]. Expectorated sputum has been routinely

exploited as a rapid, inexpensive, non-invasive method to sample

the lung and lower respiratory tract, and sputum samples can

achieve sensitivity and accuracy comparable to bronchoalveolar

lavage for detection of respiratory infections [50]. T-RFLP analysis

of bacterial communities demonstrated that sputum is not

substantially contaminated by saliva and bacterial flora of the

oral cavity [34]. However, the degree to which sputum represents

the upper and lower respiratory tract is unknown, especially in

healthy individuals. Microbial communities in fecal samples have

been shown to differ significantly from those in intestinal mucosal

samples, based on 16S rDNA analysis, and similarly, sputum

samples may contain different communities than the lung or lower

respiratory tract [19].

In this study, human genomic DNA contamination was

detected bioinformatically and removed. Previously, we sequenced

control viromes from CF sputum which were not DNase I treated.

These metagenomes contained over 90% of sequences from

human genomic DNA as determined by BLASTn analysis (data

not shown). This human DNA comes from neutrophils present in

the airway, either through the active dissemination of neutrophil

extracellular traps (NETs) or by the release of cellular contents

during cell death [51]. Using the protocol described above, the

percent of human DNA detected ranged from 10% to 34%

(Table 2). This was markedly lower than in the control

metagenomes, and was comparable to the percentage of human

DNA (24% and 36%) obtained by Allander et al. [16] for viral

isolation from pooled nasal aspirate samples. As studies of the

human microbiome move away from characterization of microbes

using 16S rDNA and towards complete metagenomic analysis of

Figure 7. Distribution of similarities to metabolic subsystems in respiratory viromes. (A) Distribution of top-level subsystems in
respiratory tract viromes. (B) Second-level subsystems from the SEED hierarchy for aromatic metabolism. Non-CF viromes are shown in blue, CF
viromes 1–4 are shown in red, and CF5 is in gray. Subsystems determined by XIPE to be over-represented in a particular group are marked with a (+)
while those that are under-represented are marked with an asterisk (*).
doi:10.1371/journal.pone.0007370.g007
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both microbial and viral communities, human genomic DNA

contamination becomes unavoidable.

After all contaminating sequences were removed, there were still

at least 130,000 sequences comprising over 30 Mbp in all

metagenomes. To verify the presence of viruses in the metagen-

omes, we assembled two metagenomes and compared contigs to the

non-redudant database using BLASTn. There were 23 contigs

assembled from Non-CF2 which had BLASTn matches to

Streptococcus phage Cp-1 (E-value ,1025), with an alignment length

greater than 50 bp, and greater than 85% identity (Figure S4). The

assembly of the CF3 metagenome yielded high coverage and

significant BLASTn hits to the genome of H. influenza prophage Mu

(Figure S5).

Here, we isolated DNA viruses from sputum, including both

phage and eukaryotic viruses. The majority of respiratory

infections (.75%) have been attributed to RNA viruses such as

rhinoviruses, coronaviruses, and paramyxoviruses, so many

previous studies have focused on the characterization of RNA

viruses in the respiratory tract [38]. CF is predominantly a

microbial disease, and phage are known to exert important top-

down controls on microbial communities [52]. However, little

work has been done to describe phage communities and DNA

viruses associated with CF or with the airways in general [4,38].

Over 98% of all completely sequenced phage have DNA genomes,

therefore to assess phage diversity, taxonomy, and function, it was

necessary to isolate viral DNA [53]. Future studies of the

respiratory tract virome should be expanded to include charac-

terization of RNA viral communities.

A caveat to this study was the use of Multiple Displacement

Amplification (MDA) with phi29 polymerase to amplify viral DNA

prior to pyrosequencing. MDA generally provides an even

representation of genomes except at the ends, however, certain

genomes (small and circular or large and linear) may be preferentially

amplified [54,55]. To avoid random biases introduced by initial

reaction conditions, we performed five separate amplifications which

were then combined. All of the metagenomes used here were

collected, processed and amplified in an identical manner, so any

biases would have been introduced equally in all samples.

Conclusions
Metagenomic analysis of the human respiratory tract DNA

virome illustrated that airway viral communities in the diseased

and non-diseased states are defined by metabolism and not by

taxonomy. The non-diseased airway virome contains a set of

shared core metabolic functions, which deviate strongly in the face

of chronic disease. These deviations are driven by dramatic

environmental changes in the airways, induced by the nature of

cystic fibrosis, such as the introduction of hypoxic microenviron-

ments and novel carbon sources [26,27]. In cases where phage

taxonomy was shared between Non-CF and CF individuals,

metabolic functions still remained distinct. The converse was also

true, that is, even when Non-CF viromes differed in phage and

eukaryotic viral constituents, they maintained typical Non-CF

metabolic profiles. The presence of two alternative metabolic

states in CF reflects the heterogenous nature of disease. Though

CF is generally considered to be well-characterized, there is still

inherent individual variation. The need for alternative therapies

for CF is increasing, as microbial antibiotic resistance becomes

widespread. The results of this study suggest that CF therapeutics

might be better aimed at changing the environment of the airways

rather than targeting dominant taxa.

Methods

Ethics statement
Subject recruitment and sample collection were approved by

the San Diego State University Institutional Review Board (SDSU

IRB 2121) and Environmental Health Services (BUA 06-02-

062R). Written consent forms were obtained from all study

subjects.

Study population
The five individuals with CF who volunteered for this study

were patients at the Cystic Fibrosis Foundation accredited Adult

cystic fibrosis Clinic at the University of California San Diego

Medical Center. Patients were eligible if they could be classified as

clinically stable (i.e., in a non-exacerbated state and free from

systemic antibiotic therapy for at least thirty days), and had no

reportable cold or flu-like symptoms in the previous thirty days. All

volunteers with CF were screened for signs and symptoms of a

upper respiratory infection for the thirty days prior to the study.

All CF subjects were required to have a well documented diagnosis

with either two known mutations in the cystic fibrosis Transmem-

brane Regulator (CFTR) or an abnormally high sweat chloride

Table 2. Characteristics of the 10 human respiratory tract viral metagenomes including GC content and CG dinucleotide relative
abundance odds ratios.

Metagenome
Number of
Sequences

Percent
Human

Percent
Non-Human

Non-Human
BP

Non-Human
Av Seq Length

GC
Content

CG Odds
Ratio

NonCF1Asthma 286192 18% (52142) 82% (234050) 54465453 229 41.3 1.07

NonCF2 281687 34% (97091) 66% (184596) 41522972 215 40.1 1.01

NonCF3 240848 10% (23149) 90% (217699) 51487425 236 40.5 0.98

NonCF4Spouse 339107 32% (107911) 68% (231196) 53415637 232 40.6 0.89

NonCF5 345112 18% (62232) 82% (282880) 62464670 219 43.5 0.97

CF1 180647 19% (33451) 81% (147196) 33631380 226 41.5 1.04

CF2 225240 15% (33594) 85% (191646) 43741746 228 43.3 1.00

CF3 184410 25% (45891) 75% (138519) 34335377 246 42.8 0.87

CF4 266135 18% (28593) 82% (217270) 45559961 203 43.2 0.84

CF5 220356 18% (39909) 82% (180447) 41011286 226 43.0 1.09

All odds ratios were within normal range (0.78 to 1.23). All human sequences were removed prior to further bioinformatic analysis.
doi:10.1371/journal.pone.0007370.t002
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test. In addition, all CF patients had Pseudomonas aeruginosa present

in their sputum, as determined by culturing in the clinic’s

microbiology lab. The five CF individuals randomly selected for

the study consisted of two males and three females. The age range

was from 20 to 35 years and all patients had severe airway

obstruction as assessed by standard spirometry (FEV1,50% of

predicted).

Four Non-CF volunteers were recruited from the campus of San

Diego State University, and were subject to the same exclusion

criteria for upper respiratory infection. One of these Non-CF

individuals had mild asthma controlled by medication. A final

Non-CF volunteer was the spouse of a CF patient and was

recruited from the greater San Diego area. The five Non-CF

individuals consisted of four females and one male, with an age

range of 24 to 50 years.

Sample collection
Sputum samples of approximately 10 ml were obtained from

CF patients at the Adult cystic fibrosis Clinic by expectoration into

a sterile cup, as directed by clinic staff. Since sputum expectoration

is difficult in general for Non-CF individuals, all Non-CF subjects

were first required to do an oral rinse with water to prevent

excessive salivary contamination and then take five deep breaths to

loosen lung secretions. Subjects were then instructed to cough

deeply into a sterile cup. The deep breathing and coughing

procedures were repeated until at least 1 ml of sputum was

obtained.

Metagenomic library preparation
All sputum samples were diluted with an equal volume of

Suspension Medium (SM) buffer (1 M NaCl, 10 mM MgSO4,

50 mM Tris-HCl pH 7.4). To aid in mucus dissolution, samples

were incubated with 10 ml of 6.5 mM dithiothreitol (Acros

Organics: Morris Plains, New Jersey) for 30 minutes at 37uC.

The treated sputum was homogenized using a PowerGen 125

mechanical homogenizer (Fisher Scientific: Hampton, New

Hampshire) until it was uniform in color and there was no visible

particulate debris. Homogenized samples were filtered through a

0.8 micron black polycarbonate filter (GE Water & Process

Technologies: Trevose, Pennsylvania) followed by a 0.45 micron

MILLEXHHV filter (Millipore: Carrigtwohill, Colorado) to

remove eukaryotic and microbial cells. Viruses in the 0.45 micron

filtrate were purified and concentrated using a cesium chloride

(CsCl) gradient to remove free DNA and any remaining cellular

material [56]. After collection of viral concentrates from the CsCl

gradient, the presence of virus-like particles (VLPs) and the

absence of microbial contamination were verified by epifluores-

cence microscopy using SYBRH Gold (Invitrogen: Eugene,

Oregon) as described in [56]. Sputum samples from healthy

subjects contained approximately 107 VLPs per ml, while the

samples from CF patients contained approximately 109 VLPs per

ml. A sample epifluoresence micrograph is shown in Figure S6.

Chloroform was added to the viral concentrates to rupture the

membranes of any remaining cells. Following a one hour

incubation and centrifugation, choloroform was removed by

pipetting. To degrade any remaining free DNA prior to viral

DNA extraction, samples were treated with 2 units per ml of Dnase

I (Sigma-Aldrich: St. Louis, MO) at 37uC for 1 hour. Viral DNA

was isolated using CTAB/phenol:choloroform extractions and

amplified using multiple displacement amplification with Phi29

polymerase [56]. Viral DNA was sequenced at 454 Life Sciences

(Branford, CT) using the GSFLX pyrosequencing platform to

produce ten total viral metagenomic libraries. The ten viral

metagenomes are accessible from NCBI (www.ncbi.nlm.gov)

under the genome project ID 39545.

Initial bioinformatic processing of metagenomes
All metagenomes were compared to the Human Genome build

36.3 (http://www.ncbi.nlm.mih.gov) using BLASTn to determine

how effective the combination of cesium chloride density gradient

centrifugation and DNase I treatment was for removing human

genomic contamination from the viral preps [39]. Sequences with

80% identity over 80% of their length to human sequences were

considered contaminating human genomic DNA and were

removed prior to further bioinformatic analyses. Characteristics

of viromes and the percentage of human genomic sequences

detected are provided in Table 2.

Following removal of human sequences, dinucleotide relative

abundance analysis was used as a secondary screen to detect

human DNA contamination, which manifests as an overall

depression of CG dinucleotides [57,58]. In all of the decontam-

inated metagenomes, the relative abundance odds ratios for CG

dinucleotides were between 0.83 and 1.09, within the normal

range as defined by Karlin, indicating successful removal of

human DNA (Table 2) [57,58]. All viromes were AT rich (in

comparison to microbial metagenomes) as expected, with GC

content between 40–43%, just below the average of approximately

45% previously reported for viral metagenomes [58]. The human

genomic DNA decontaminated metagenomic libraries were

named according to the subject group they were derived from

(Non-CF or CF) and were numbered 1 through 5 in each group.

Viromes derived from the individual with asthma and the CF

spouse were designated as Non-CF1Asthma and Non-CF4Spouse.

Diversity estimation
To estimate viral diversity and community structure within

metagenomes, contig spectra were generated using the free

software Circonspect (http://sourceforge.net/projects/circonspect/).

Average contig spectra were calculated using assemblies of 10,000

randomly selected sequences with enough repetitions to achieve 26
coverage of each metagenome. The assembly parameters were 98%

minimal match and 35 base pair overlap. Sequences less than 100 base

pairs were discarded and all other sequences were trimmed to 100 base

pairs prior to assembly to obtain identical sequence size in the repeated

assemblies. Average contig spectra were used as inputs to Phage

Communities from Contig Spectra (PHACCS) tool (http:biome.sdsu.

edu/phaccs), which estimates diversity using rank-abun [36]. Diversity

estimates were based on the best-fit model, in this case the logarithmic

model.

Sequential BLAST analysis
Metagenomic libraries were compared to each other using

BLASTn to find shared sequences between all Non-CF viromes

and all CF viromes. One metagenome from each set (Non-CF or

CF) was chosen randomly and compared to a second randomly

selected metagenome. Common sequences (E-value,1025 and a

minimum of 98% similarity over at least 35 base pairs) were

identified and then used as a database for BLASTn versus a third

metagenome. This was repeated for the fourth and fifth

metagenomes. The entire process was repeated using a different

random ordering of metagenomes. Sequential BLASTn analysis

resulted in two datasets, one containing sequences common to all

Non-CF metagenomes and the other with sequences common to

CF metagenomes. The common Non-CF sequences were then

compared using BLASTn to all CF metagenomes to determine

which sequences were not present in any CF library (i.e., unique to
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Non-CF individuals). This was also performed in reverse, to find

unique CF sequences.

Comparison to phage and viral genome databases
Metagenomic libraries were compared to two boutique

databases, the first containing 510 complete phage genomes

(http://phage.sdsu.edu/phage) and the second, 3,074 complete

eukaryotic viral genomes (http://www.ncbi.nlm.nih.gov/genomes/

VIRUSES/viruses.html) using tBLASTx with an E-value cutoff of

1025 [39]. Counts of best tBLASTx similarities to each genome

were normalized for genome size by weighting the number of

significant similarities by the total number of base pairs in the

database divided by the size of the genome in base pairs. Similarity

counts were also normalized for the number of sequences per

metagenome, to allow direct comparisons between metagenomes.

Normalized best tBLASTx similarities to the phage database were

plotted against the Phage Proteomic Tree version 4 (http://phage.

sdsu.edu/,rob/PhageTree/v4) using Bio-Metamapper [53,56].

Similarities to dsDNA, ssDNA, and retro-transcribing eukaryotic

viruses were plotted according to NCBI taxonomy (http://www.

ncbi.nlm.nih.gov/genome). Similarities to RNA viruses were not

included because they were artifactual, since only DNA was

sequenced in this study. Significant similarities to RNA viruses

comprised less than 1% of all tBLASTx similarities.

Assessment of metabolic potential
The metabolic potential of each virome was assessed by

BLASTx (E-value,1025) comparison to the SEED database

using the MG-RAST service [59,60]. MG-RAST assigns sequenc-

es to three hierarchical levels of metabolic subsystems, which

consist of groups of genes that comprise a metabolic function or

pathway [61]. The non-parametric statisical program XIPE was

used to detect significant differences between metabolic profiles of

viral metagenomes at a 95% confidence level [62]. XIPE identifies

the specific subsystems driving the differences between metagen-

omes, and in which metagenome the function was are over-

represented.

Complete metagenomic assembly
Complete assembly of the Non-CF2 and CF3 metagenomes was

performed using PHRAP as a quality check to confirm sucessful

isolation of viral genomes [63]. These two metagenomes were

assembled because they had high coverage of phage genomes as

indicated by tBLASTx. There were 9,508 contigs ranging in size

from 40 to 14,982 bp for Non-CF2, and 8,163 contigs from 212 to

7,748 base pairs for CF3. Contigs were compared to the non-

redundant nucleotide database maintained at NCBI (http://www.

ncbi.nlm.nih.gov) using BLASTn to assign taxonomy.

Statistical analyses
All statistical analyses, with the exception of XIPE, were

performed using the software package R (www.r-project.org) [64].

Principal components analysis (PCA) with the R function prcomp

was used to examine overall taxonomic similarities between

metagenomes [65]. The first two principal components were used

to generate 2D scatter plots. Non-metric multidimensional scaling

(NM-MDS) with the R function isoMDS was used to determine

relationships between metagenomes based on metabolic profiles.

The analysis was performed with NM-MDS instead of PCA for

metabolic potential because all metagenomes had at least one hit

to each of the 25 subsystems (i.e., there were no zero values).

Similar to PCA, NM-MDS does not require a priori classification of

the data and plotting the MDS coordinates shows natural

grouping patterns. Clusters observed in PCA and NM-MDS

scatterplots were confirmed statistically using k-means clustering.

To determine the optimal number of clusters, within-group sums

of squares were calculated for partitions involving between 1 and 9

clusters [63,65]. Cluster membership was determined by using the

R function kmeans with the optimal number of clusters.

Supporting Information

Table S1 Taxonomic designations of metagenomic sequences

based on BLASTn (e-value,1025) comparison to the non-

redundant database at NCBI. Sequences which had no significant

similarities were assigned as ‘‘unknown’’, while those with

significant similarities were considered to be ‘‘known’’. There

were no sequences with significant similarities to Archaea, and

therefore known sequences were classified as either viral (including

phage and eukaryotic viruses), bacterial, or eukaryotic.

Found at: doi:10.1371/journal.pone.0007370.s001 (0.02 MB

DOC)

Table S2 Results of comparison of metagenomes to the database

of 510 fully sequenced phage genomes using tBLASTx (e-

value,1025). The number of unique genomes refers to how

many phage genomes had a significant BLAST similarity in only

one of the five Non-CF or CF metagenomes.

Found at: doi:10.1371/journal.pone.0007370.s002 (0.02 MB

DOC)

Table S3 Relative abundances of the 19 phage genomes which

appear in all human respiratory tract viromes based on tBLASTx

similarities (e-value,1025). Relative abundances were calculated

as the normalized number of similarities to each phage divided by

the total number of similarities to phage for each metagenome.

Found at: doi:10.1371/journal.pone.0007370.s003 (0.02 MB

DOC)

Table S4 Results of comparison of metagenomes to the database

of 3074 fully sequenced eukaryotic viral genomes using tBLASTx

(e-value,1025). The number of unique genomes refers to how

many viral genomes had a significant BLAST similarity in only

one of the five Non-CF or CF metagenomes.

Found at: doi:10.1371/journal.pone.0007370.s004 (0.02 MB

DOC)

Table S5 Relative abundances of the 20 eukaryotic DNA viral

genomes which appear in all human respiratory tract viromes

based on tBLASTx similarities (e-value,1025). Relative abun-

dances were calculated as the normalized number of similarities to

each virus divided by the total number of similarities to eukaryotic

DNA viruses for each metagenome.

Found at: doi:10.1371/journal.pone.0007370.s005 (0.02 MB

DOC)

Figure S1 Figure S1. Combined coverage of Retiucloendothe-

liosis virus across all CF metagenomes as determined by tBLASTx.

The graphic of the 8295 kb Reticuloendotheliosis genome is from

NCBI (http://www.ncbi.nlm.nih.gov).

Found at: doi:10.1371/journal.pone.0007370.s006 (0.03 MB

PNG)

Figure S2 Supplementary Figure 2. Combined coverage of Suid

herpesvirus 1 and Cercopithecine herpesvirus 2 across all Non-CF

and CF metagenomes as determined by tBLASTx. The graphics

of the two reference genomes are from NCBI (http://www.ncbi.

nlm.nih.gov).

Found at: doi:10.1371/journal.pone.0007370.s007 (0.11 MB

PNG)
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Figure S3 Supplementary Figure 3. Percentage of metagenomic

sequences with known and unknown metabolic functions as

determined by BLASTx to the SEED database. A sequence was

considered as known if it had a significant (e-value,1025) hit to a

gene in a metabolic pathway.

Found at: doi:10.1371/journal.pone.0007370.s008 (0.02 MB

PNG)

Figure S4 Supplementary Figure 4. Coverage of the Strepto-

coccus pneumonia phage Cp-1 genome in metagenome Non-CF2

by raw metagenomic sequences as determined by tBLASTx (A)

and by assembled contigs as determined by BLASTn (B). The

graphic of the 19,343 kb phage Cp-1 genome is from NCBI

(http://www.ncbi.nlm.nih.gov).

Found at: doi:10.1371/journal.pone.0007370.s009 (0.11 MB

PDF)

Figure S5 Coverage of the Haemophilus influenza prophage

Mu genome in the CF6 metagnome by raw metagenomic

sequences as determined by TBLASTX (A) and by assembled

contigs as determined by BLASTn (B). The graphic of the

43033 kb prophage Mu genome is from NCBI (http://www.ncbi.

nlm.nih.gov).

Found at: doi:10.1371/journal.pone.0007370.s010 (0.21 MB

PDF)

Figure S6 Virus-like Particles (VLPs) from the sputum sample of

a CF patient. The VLPs were visualized by capture on a 0.02 mm

Anodisc filter, SYBR Gold staining, and viewing under an

epifluorescence microscope. The viruses appear as tiny bright

pinpricks of light.

Found at: doi:10.1371/journal.pone.0007370.s011 (0.26 MB

PDF)
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