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Metagenomic analysis reveals oropharyngeal microbiota

alterations in patients with COVID-19
Shengli Ma1, Fan Zhang2, Fengxia Zhou2, Hui Li1, Wenyu Ge1, Rui Gan2, Huan Nie2, Biao Li3, Yindong Wang1, Meng Wu1, Duo Li4,

Dongmei Wang1, Zheng Wang1, Yuhong You1 and Zhiwei Huang 2

COVID-19 remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes

in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by shotgun

metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients, 29 influenza B patients, and 28

healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients, characterized by

enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium, Rothia, and

Streptococcus. Based on the relative abundance of the oropharyngeal microbiome, we built a microbial classifier to distinguish

COVID-19 patients from flu patients and healthy controls with an AUC of 0.889, in which Veillonella was identified as the most

prominent biomarker for COVID-19 group. Several members of the genus Veillonella, especially Veillonella parvula which was highly

enriched in the oropharynx of our COVID-19 patients, were also overrepresented in the BALF of COVID-19 patients, indicating that

the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients. We also found the

increased ratios of Klebsiella sp., Acinetobacter sp., and Serratia sp. were correlated with both disease severity and elevated systemic

inflammation markers (neutrophil–lymphocyte ratio, NLR), suggesting that these oropharynx microbiota alterations may impact

COVID-19 severity by influencing the inflammatory response. Moreover, the oropharyngeal microbiome of COVID-19 patients

exhibited a significant enrichment in amino acid metabolism and xenobiotic biodegradation and metabolism. In addition, all 26

drug classes of antimicrobial resistance genes were detected in the COVID-19 group, and were significantly enriched in critical

cases. In conclusion, we found that oropharyngeal microbiota alterations and functional differences were associated with COVID-19

severity.
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INTRODUCTION
The outbreak of coronavirus disease 2019 (COVID-19), caused by
severe acute respiratory coronavirus 2 (SARS-CoV-2), has become
an ongoing global pandemic.1 The disease ranges from mild to
critical, and most infected people have mild or moderate disease
and eventually recover from COVID-19. However, ~5% of patients
develop severe to critical disease. Several risk factors, such as
genetics, comorbidities, age, and gender have been reported to
influence the relative severity of COVID-19 complications.2,3 The
main complications of severe COVID-19, such as pneumonia and
acute respiratory distress syndrome, are suspected to be caused
by bacterial superinfections4; moreover, 50% of patients with
severe COVID-19 who died presented with a secondary bacterial
infection.3 Antibiotics play a clearly influential role in the
treatment outcome of COVID-19. Bacterial superinfections and
required antibiotics illustrate the potential importance of bacteria
in COVID-19 complications.
A few current studies have explored the function of the

microbiome in the development of COVID-19, suggesting possible
relationships between the gut,5 pulmonary, nasopharyngeal,6 or
oral microbiome7 and COVID-19. Several bacterial taxa in oral or

intestinal microbiomes have been found to be associated with
disease severity8 and can be used to predict the clinical outcomes
of COVID-19.9 As the major portal of entry for SARS-CoV-2, the
human upper respiratory tract contains an airway microbiome
representing its microenvironment and serving as an essential
component of the airway epithelial barrier.10 The epithelial barrier
plays an important role during viral infection. Bacteria of the airway
microbiome can directly impact influenza virus infection11–13 or act
indirectly though the host immune system.14,15 During viral
infection, the balance of the airway microbiome is disrupted to
promote the host innate immune response, and bacterial
colonization may be associated with this process.16,17 The density
and diversity of the airway microbiome vary depending on the
position within the airways; the oropharynx bears the highest
microbiota density in the upper and lower respiratory tracts, thus,
the oropharyngeal microbiome is representative of the airway
microbiome.18 Importantly, microbial immigration and elimination
between the oral cavity and the lungs are constant, making the
oral and nasal microorganisms the main sources for the pulmonary
microbiome.19 Oral health was shown to be associated with
multiple respiratory diseases.20,21 By analyzing the oropharyngeal
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microbiome of COVID-19 patients, we can obtain a broad view of
the microenvironment balance and functional gene changes. The
present study used deep sequencing and metagenomic analysis of
the oropharyngeal microbiome in 31 COVID-19 patients (mild,
moderate, severe, and critical). We included 29 flu patients and 28
healthy individuals as controls to identify unique characteristics of
COVID-19. Comparison of the microbial diversity, relative abun-
dances of the bacteria, and metagene functions of the orophar-
yngeal microbiome of patients with COVID-19 with that of normal
subjects and influenza B patients was used to examine the unique
landscape of the oropharyngeal microbiome in COVID-19 and to
evaluate the correlations between altered oropharyngeal micro-
biome, involving the bacterial genera of Veillonella, Klebsiella,
Acinetobacter, Serratia, etc., and COVID-19 severity. Interestingly,
additional metagene function analysis demonstrated that signifi-
cant changes in the degradation of amino acids and other small
molecules occurred in COVID-19 patients and 26 classes of
antimicrobial drug resistance genes were predominantly enriched
in the critical cases of COVID-19.

RESULTS
Host clinical characteristics associated with COVID-19 severity
The basic and clinical characteristics of the COVID-19 patients are
shown in Table 1 and Supplementary Table 1. The median age of
the COVID-19 patients was 50 years (range 23–86), with a male:
female sex ratio of 1.21. A notable feature of the COVID-19 cohort

was that some of the individuals with mild infections did not
develop obvious symptoms, although significant viral shedding
could be detected by RT-PCR. We further analyzed the biochem-
ical parameters of all the COVID-19 patients, thus ten main
indicators related to inflammation in blood tests were investi-
gated. In COVID-19 patients, we found that the levels of C-reactive
protein and lactose dehydrogenase were obviously higher in
critical patients than in other patients (Supplementary Fig. 1 and
Supplementary Table 1). However, the lymphocyte count in critical
cases was lowest and showed a gradual decline as the disease
progressed. A study of 99 COVID-19 patients revealed that
lymphocyte levels decreased in 35% of the patients,22 suggesting
that dysfunctional cell-mediated immunity may occur in COVID-19
patients.23 C-reactive protein is an inflammatory marker produced
by the liver, indicating that critical cases had higher levels of
inflammation. An elevated level of lactate dehydrogenase in blood
tests usually indicates tissue damage, which has multiple potential
causes, including infection, reflecting the widespread tissue
distribution of the infection. We further investigated the correla-
tions between clinical characteristics and COVID-19 severity (mild,
moderate, severe, or critical) in 31 COVID-19 patients. Several
features, such as the levels of lactose dehydrogenase and C-
reactive protein, the neutrophil–lymphocyte ratio (NLR), the
neutrophil count and age, were positively correlated with disease
severity (Spearman correlation coefficient Rho: 0.44~0.83, P <
0.05), whereas the lymphocyte count was negatively correlated
(Rho: −0.39, P < 0.05) (Supplementary Fig. 1).

Table 1. Subject characteristics

COVID-19 (n= 31) Flu (n= 29) Normal (n= 28)

Age

Median (range)-years 50 (23–86) 59 (27–83) 37 (22–87)

≤39—No. (%) 6 (19.35%) 7 (24.14%) 14 (50.00%)

40–49—No. (%) 9 (29.03%) 5 (17.24%) 5 (17.86%)

50–59—No. (%) 9 (29.03%) 3 (10.34%) 2 (7.14%)

60–69—No. (%) 4 (12.90%) 3 (10.34%) 5 (17.86%)

≥70—No. (%) 3 (9.68%) 11 (37.93%) 2 (7.14%)

Sex

Female (%) 14 (45.16%) 9 (31.03%) 16 (57.14%)

Male (%) 17 (54.84%) 20 (68.97%) 12 (42.86%)

Disease severity

Mild 2 (6.45%)

Moderate 17 (54.84%)

Severe 6 (19.35%)

Critical 6 (19.35%)

Blood result median (range)

Leukocyte count (×109/L, 4.00–10.00) 5.96 (3.09–20.43)

Lymphocyte count (×109/L, 0.80–4.00) 1.05 (0.35–2.96)

Platelet count (×109/L,100.00–300.00) 196 (86–456)

Hemoglobin (g/L, 110–150) 131 (98–164)

C-reactive protein (mg/L, 0–8.00) 12.75 (4.82–200)

Alanine aminotransferase (U/L, 0–35) 24 (7–72)

Lactose dehydrogenase (U/L, 109–245) 225 (108–1190)

D-dimer (μg/ml, 0.00–0.50) 0.49 (0.01–4.05)

Neutrophil counts (×109/L, 2.00–7.00) 4 (1.58–19.78)

AMC (absolute monocyte count, ×109/L, 0.12–1.20) 0.38 (0.11–0.98)

NLR (ratio of neutrophils to lymphocyte) 3.36 (0.82–46)

PLR (ratio of platelet to lymphocyte) 200 (59.07–500)

LMR (ratio of lymphocyte to monocyte) 2.73 (1.26–6.66)
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Oropharyngeal microbiota profile alterations in COVID-19 patients
To identify alterations in the oropharyngeal microbiome and
metagene function changes associated with COVID-19, shotgun
metagenomic sequencing data from 88 oropharyngeal swab
samples (31 COVID-19, 19 flu, and 28 healthy control samples) that
passed quality control were used for metagenomic assembly,
microbial annotation and abundance estimation, and metagene
functional annotation (Supplementary Table 2). The assembled
contigs ranged from 3356 to 842,961 bp in the samples, and the
maximum length was 857,671 bp. Finally, a total of 3832,448
nonredundant genes (1943,628 for COVID-19, 1459,770 for flu, and
1556,290 for healthy controls) were obtained (Supplementary
Table 3). More than 3000 genera were classified from the
oropharyngeal microbiota. The predominant bacterial composi-
tion in the COVID-19 group (on average >2% of the total
sequences) at the genus level included Veillonella (22.7%),
Streptococcus (20.3%), Prevotella (7.1%), Acinetobacter (5%), Mega-
sphaera (4.21%), Actinomyces (4.19%), Atopobium (3.65%), Kleb-
siella (3.25%), and Solobacterium (2.07%), comprising 75%, 53%,
and 60% of the salivary microbiota in the COVID-19 patients, flu
patients, and healthy subjects, respectively (Fig. 1a). Next, we
compared the microbial diversity of COVID-19 patients with that
of flu patients and healthy subjects using the Shannon index for
alpha diversity and Bray–Curtis dissimilarities for beta diversity.
Alpha diversity describes the species richness within a community,
and beta diversity evaluates the species diversity between two
communities. The oropharyngeal microbiota in the COVID-19

patients tended to have a lower α-diversity at the species level
than that in the flu patients (P < 0.01 by the Kruskal–Wallis (KW)
test). Among the COVID-19 patients, those who were critical
presented a significant diminution in species richness, while the
noncritical patients exhibited no significant change from the
normal group (Fig. 1b). The above results suggest that there is no
significant shift in α-diversity associated with the severity of
COVID-19 infection compared with the healthy population;
however, the diversity of oropharyngeal microbes was drastically
reduced in critical patients. To further test whether the species
diversity distinguished the COVID-19 group from the flu and
healthy control groups, principal coordinate analysis (PCoA) was
applied to compare the β-diversity of the microbial communities,
and a marked inter-individual difference was observed between
the three groups (P < 0.01 by pairwise permutational multivariate
analysis of variation) (Fig. 1c), implying that dysbiosis occurred in
the COVID-19 oropharyngeal microbiota.
We next identified the differences in taxa at the genus level by

comparing the relative abundance of the microbiota composition
of COVID-19 patients with those of flu patients and healthy
controls using the linear discriminant analysis effect size (LEfSe)
method. We found significantly higher levels of Veillonella and
Megasphaera, and lower levels of Mobiluncus, Varibaculum,
Cardiobacterium, Pseudopropionibacterium, Xylanimonas, Rothia,
Oribacterium, Actinomyces, and Streptococcus, in both the COVID-
19 and flu patients than in the healthy control group, indicating
common characteristics correlated with acute respiratory viral

Fig. 1 Predominant bacterial composition in COVID-19 patients, flu patients, and healthy controls with α-diversity and PCoA. a Fraction of
predominant salivary microbiota with a relative abundance of at least 20% at the genus level in COVID-19 patients and their relative
proportion in flu patients and healthy controls. b α-Diversity in healthy controls (green), flu patients (violet), noncritical COVID-19 patients
(mild-blue, moderate-green, severe-orange), and critical COVID-19 patients (red) by the Shannon index at the species level. Nmild= 2,
Nmoderate= 17, Nsevere= 6, and Ncritical= 6. c First two axes of PCoA of the Bray distance from the β-diversity of healthy controls, flu patients,
and COVID-19 patients. Group differences were tested by pairwise permutational multivariate analysis of variation (PERMANOVA). Mild: blue
squares; moderate: green diamonds; severe: orange triangle; critical: red inverted triangle: healthy: green circles; flu: violet circles
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infection (Fig. 2a). The relative abundance of Abiotrophia was
significantly higher, while those of Cryptobacterium, Filifactor,
Bulleidia, Actinobaculum, Propionibacterium, and ten other genera
were significantly lower, in the COVID-19 group but not in the flu
group compared with the healthy controls, indicating a unique
feature associated with COVID-19 (Fig. 2b). Interestingly, Veillonella
was the most prominent biomarker for the COVID-19 group
compared with either the flu patients or healthy controls, and
thus, the COVID-19 patients might be designated by the
Veillonella-dominant cluster.
Furthermore, differential expression analysis of bacterial species

between COVID-19 or flu patients and healthy controls was
performed by the Wilcoxon rank sum test (with adjusted P < 0.05)
and among the three groups with the KW test (with adjusted KW
P < 0.001). In total, 61 and 70 differentiating bacterial species were
identified for the COVID-19 and flu patients, respectively,
compared with the healthy subjects (Fig. 2c and Supplementary
Table 4). Finally, 44 common species that were significantly
increased or decreased in both the COVID-19 and flu patients
compared with the healthy controls were detected, and their
relative abundance is shown in the heatmap (Fig. 2d). These
species were clustered into four branches, and belonged
predominantly to the Actinobacteria and Firmicutes phyla.
Veillonella parvula itself formed a cluster, which occurred in all
the samples, and the lowest relative abundance was in the healthy
controls, followed by the flu patients, whereas the highest was in
the COVID-19 patients. The relative abundance of Veillonella
parvula in the flu or COVID-19 patients was 9 or 13 times higher
than that in the healthy controls (Fig. 2c). Eight species, including
Oribacterium sinus and Pseudopropionibacterium propionicum,
formed cluster 2, which was enriched in the healthy controls
and relatively depleted in the COVID-19 patients. Veillonella sp.
AF36-20BH, Lactobacillus vini, and nine other species formed
cluster 3. The relative abundances of the cluster 3 members were
higher in the flu or COVID-19 patients than those in healthy
controls, without consistent enrichment or deletion in one group
of patients. The remaining 25 species, belonging predominantly to
the Actinomycetales, Micrococcales, and Lactobacillales orders,
formed a large cluster. These bacteria were enriched in the
healthy controls and were reduced in the flu or COVID-19 patients.
In summary, our results revealed a distinct oropharyngeal
microbiota composition in COVID-19 patients compared to the
flu patients and healthy controls, characterized by enrichment of
opportunistic pathogens such as Veillonella and Megasphaera and
depletion of Pseudopropionibacterium, Rothia, and Streptococcus.
These results suggest that respiratory viral infections may be
associated with an altered oropharyngeal microbiome that
predisposes patients to secondary bacterial infections. A previous
study revealed that Veillonella parvula, Prevotella melaninogenica,
Capnocytophaga gingivalis, and Leptotrichia buccalis were over-
represented in the BALF of a COVID-19 patient.7,24 These oral
opportunistic pathogens were also more abundant in our COVID-
19 patient cohort with a 2.2–14-fold increase compared with that
in the healthy subjects, indicating that the oral cavity is likely to be
a natural reservoir for pathogens inducing co-infections in the
lungs of COVID-19 patients (Supplementary Table 4).

Oropharyngeal microbiota markers correlated with COVID-19
severity
Notably, COVID-19 severity was positively correlated with the NLR
(Rho= 0.59, P= 5e− 04) and age (Rho= 0.44, P= 0.012) (Fig. 3a).
This was also seen by Liu et al.,25 who deduced that the NLR could
predict the severity of a patient’s response to COVID-19 infection.
Then, we examined the association between microbiota, the
inflammation-related marker NLR, age and disease severity. In
total, 123 and 13 species were positively or negatively correlated
with COVID-19 disease severity, respectively (P value < 0.001, Rho
> 0.6 or Rho <−0.6, Supplementary Table 5), most of which were

also significantly increased (82/123= 66.67%) or decreased (8/13
= 61.54%) in the COVID-19 patients compared with the healthy
subjects (Fig. 3b). Among these species, 59 were also significantly
correlated with the NLR. Klebsiella sp. (Rho > 0.74, P < 6.2E− 07),
Acinetobacter sp. (Rho > 0.72, 3.72E− 06), and Serratia sp. (Rho >
0.72, P < 4.8E− 06) were among the species most positively
correlated with COVID-19 severity and were also correlated with
the systemic inflammatory marker NLR (Rho: 0.35–0.696, P < 0.05).
These species were found to be indicators of ventilator-associated
pneumonia (VAP) in a previous study.26 Veillonella tobetsuensis,
which has been identified as one of the top-three bacterial species
for the prediction of COVID-19 severity, was also verified in our
COVID-19 cohort (Rho <−0.6, P < 0.00034). Streptococcus sp. and
Peptoniphilus sp. were the two species most negatively associated
with COVID-19 disease severity (Rho <−0.67, P < 3E− 05). Pepto-
niphilus sp. was abundant in biofilms cultured from different oral
niches and its inverse correlation with COVID-19 severity might
suggest its protective role in the oral cavity. In summary, these
results indicate that salivary microbiota alterations in combination
with host systemic inflammatory status, age or immune response
may impact disease severity.

Identification of a microbial classifier for COVID-19
To identify characteristic species associated with COVID-19, an
unsupervised random forest classification analysis using a leave-
one-out cross-validation procedure was performed. We identified
a microbial genus or species classifier distinguishing COVID-19
patients from flu patients and healthy controls with an area under
the receiver operating characteristic curve (AUC) of 0.822 or 0.826,
and distinguishing patients (combining COVID-19 and flu patients)
from healthy controls with an AUC of 0.889 or 0.919 (Fig. 4a). The
model identified the top 20 bacterial genera and species among
COVID-19 patients, flu patients, and healthy controls (Fig. 4b). The
main taxa were the phyla Firmicutes and Actinobacteria. The
relative abundances of the top six genera and species in the three
groups are shown in Fig. 4c. Veillonella and Lactobacillus nagelii
were significantly increased in the COVID-19 group (P < 0.01, KW
test), compared with healthy controls. Decreased Mobiluncus and
Pseudopropionibacterium, Oribacterium sp. oral taxon 108 and
Pseudopropionibacterium propionicum were found in the COVID-19
patients compared with the healthy controls (P < 0.01, KW test)
(Fig. 4c).

Functional potentials of the oropharyngeal microbiome associated
with COVID-19
To gain insight into functional changes within the COVID-19
oropharyngeal microbiome, we studied the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway genes enriched in the
oropharyngeal microbiota of the patients compared to the
controls (Fig. 5a). The samples from the COVID-19 patients
displayed a higher potential for the metabolism of amino acids
(valine, leucine, isoleucine, tyrosine, and phenylalanine) and other
amino acids (beta-alanine, phosphonate, and phosphinate).
Except for valine, leucine, and isoleucine, the abovementioned
amino acid metabolism pathways were enriched only in the
COVID-19 patients compared to the flu patients and healthy
controls. These data indicate that the oropharyngeal microbiome
of COVID-19 patients preferentially metabolizes specific amino
acids.
Moreover, compared to those of the control and flu samples the

oropharyngeal microbiome of the COVID-19 patients exhibited
significant enrichment in xenobiotic biodegradation and metabo-
lism. The potential for the degradation of benzoate, fluorobenzo-
ate, aminobenzoate, xylene, and caprolactam was elevated,
whereas the potential for the degradation of naphthalene was
reduced. For the flu patients, the potential for energy metabolism
(carbon fixation pathways in prokaryotes and oxidative phosphor-
ylation) was higher than that in the COVID-19 patients, while sulfur
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Fig. 2 Differentially abundant genera or species in COVID-19 patients, flu patients, and healthy controls. a Relative abundance of significantly
different genera at the genus level commonly identified by LEfSe when comparing COVID-19 patients with healthy controls or flu patients
with healthy subjects. These differentially expressed genera are defined as “virus common.” b Relative abundance of significantly different
genera at the genus level identified only by LEfSe when comparing COVID-19 patients with healthy controls but not detected when
comparing flu patients with healthy subjects. These genera are defined as “COVID-19-specific.” c Volcano plot representing the differentially
expressed species between flu patients and healthy controls (left), or between COVID-19 patients and healthy controls (right) with the x-axis
denoting log2(fold-change) and the y-axis denoting −log10(adjusted P value). The significantly increased species in flu or COVID-19 patients
are shown in red. The significantly decreased species in flu or COVID-19 patients are shown in green. Dashed vertical and horizontal lines
reflect the filtering criteria (absolute fold-change (FC) ≥ 2.0 and FDR-adjusted P value < 0.05). d Heatmap depicting the relative abundance of
significantly varied species when comparing COVID-19 patients with healthy controls and flu patients with healthy controls. Rows (microbial
taxa at the species level) and columns (samples) are ordered by hierarchical clustering based on Euclidean distance. Colors denote log10
relative abundance of each species in each sample. The relative abundance is shown in purple (high), white (middle), green (low), and
black (zero)
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metabolism was similar to that in the COVID-19 patients.
Nucleotide metabolism (purine and pyrimidine), replication and
repair (homologous recombination and mismatch repair) and
folding, sorting and degradation (sulfur relay system and protein
export) in the oropharyngeal microbiome of the COVID-19 or flu
patients were relatively depleted; however, the other functions in
genetic information processing were neither enriched nor
depleted. This finding suggests that the oropharyngeal micro-
biome of the COVID-19 or flu patients may have a lower genetic
information processing ability. In particular, membrane transport
(ABC transporters and the phosphotransferase system) and cell
motility (bacterial chemotaxis and flagellar assembly) were

strongly depleted in the oropharyngeal microbiomes of the
COVID-19 and flu patients. These data indicate that microorgan-
isms in the throats of COVID-19 and flu patient have less potential
for membrane transport of ions, lipids, sterols, peptides, proteins,
and carbohydrates, particularly hexoses, hexitols, and disacchar-
ides, with worse cell motility.
Among the oropharynx shotgun metagenomes of the COVID-

19, flu, and normal groups, 4639, 473, and 665 antimicrobial
resistance (AMR) genes consisting of 26 drug classes (aminocou-
marin, aminoglycoside, benzalkonium chloride, carbapenem,
cephalosporin, cephamycin, fluoroquinolone, fosfomycin, glycyl-
cycline, lincosamide, macrolide, monobactam, nitrofuran,

Fig. 3 Association between clinical characteristics and microbiota in COVID-19 patients. a Violin plot showing the correlation between clinical
characteristics (neutrophil–lymphocyte ratio (NLR) and age) and the severity of COVID-19. Spearman correlation was used for correlation
analysis. b Correlation networks between three clinical characteristics (COVID-19 severity, neutrophil–lymphocyte ratio (NLR), and age) and
microbiota at the species level in COVID-19 patients. The nodes represent unique species, and the color of the nodes denotes an increase (red)
or decrease (blue) in relative abundance when comparing COVID-19 patients with healthy controls. The size of the nodes shows the log2-fold-
change values of the relative abundance in COVID-19 patients versus healthy controls. The edges denote the correlation between the species
and the clinical characteristics, the color of the edge represents a positive (red) or negative (blue) correlation, and the width denotes the
strength of the correlation
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nitroimidazole, nybomycin, oxazolidinone, penam, penem, pheni-
col, pleuromutilin, rifamycin, streptogramin, sulfonamide, sulfone,
tetracycline, and triclosan) were detected, respectively. All 26 AMR
gene drug classes were detected in the COVID-19 patients. In the
flu patients and healthy controls, only 17 and 24 AMR gene drug
classes were detected. The relative abundances of these 26 drug

classes of AMR genes are visualized in the heatmap (Fig. 5b). All
groups included common antibiotics such as lincosamide,
streptogramin, macrolide, and tetracycline. Benzalkonium and
nitroimidazole AMR genes occurred only in the COVID-19 group.
The most abundant drug class was penam (274 AMR genes),
followed by cephalosporin (261 AMR genes) and penem (256 AMR

Fig. 4 Main bacterial genera and species classified in COVID-19 patients, flu patients, and healthy controls based on random forest analysis.
a ROC curves showing the discriminative ability among the three groups (COVID-19, flu, and normal) using the relative abundance of the
oropharyngeal microbiome at the genus and species levels. b Top 20 important genera and species based on Gini importance according to
the trained random forest models. c Comparison of the relative abundance of the top 6 genera or species selected based on Gini importance
by boxplot. ***P < 0.001; **P < 0.01; *P < 0.05 using the Kruskal–Wallis (KW) test

Metagenomic analysis reveals oropharyngeal microbiota alterations in. . .

Ma et al.

7

Signal Transduction and Targeted Therapy           (2021) 6:191 



genes) only in the COVID-19 group. In the flu group, the top four
drug classes were macrolide, penam, penem, and cephalosporin.
Notably, these four AMR gene drug classes were found in a single
flu patient (M25); if we excluded the outlier, the most abundant

drug classes were lincosamide and macrolide. In the normal
group, the most abundant drug class was penam (33 AMR genes),
followed by cephalosporin (32 AMR genes) and cephalosporin (25
AMR genes) in one individual (N24). Similarly, after excluding the

Fig. 5 Differential enrichment of KEGG functions in COVID-19 and flu patients. a Differential enrichment of KEGG functions in COVID-19 and
flu patients: (a) carbohydrate metabolism. (b) Energy metabolism. (c) Lipid metabolism. (d) Nucleotide metabolism. (e) Amino acid
metabolism. (f ) Metabolism of other amino acids. (g) Glycan biosynthesis and metabolism. (h) Metabolism of cofactors and vitamins. (i)
Metabolism of terpenoids and polyketides. (j) Xenobiotic biodegradation and metabolism. (k) Translation. (l) Folding, sorting, and degradation.
(m) Replication and repair. (n) Membrane transport. (o) Cell motility. Red, case-enriched and cyan, control-enriched within each disease cohort
(NCOVID-19= 31, NFlu= 29, and NNormal= 28). Dashed lines indicate a reporter score of 1.96, corresponding to the 95% confidence of a
normal distribution. b Heatmap indicating the relative abundance of AMR genes in 26 drug classes of the three groups
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outlier, tetracycline was the top AMR gene drug class in the
healthy control group. We found that AMR genes were
significantly enriched in six COVID-19 patients. Except for patient
P21, the five other patients were critical. Patient P21 had moderate
COVID-19; however, she experienced several complications
(angina pectoris, cholecystitis, gastritis, hypertension, etc.) before
COVID-19 (Supplementary Table 1). Complications and poor
physical condition may allow more AMR bacteria to colonize the
oral cavity or airway.
Several mechanisms of antibiotic resistance were identified in

the metagenomic dataset, such as antibiotic target protection
proteins, efflux pump complexes or subunits conferring antibiotic
resistance, antibiotic target-modifying enzymes, antibiotic inacti-
vation enzymes, etc. The most common resistance mechanism
found in this study was the antibiotic inactivation enzyme, a
determinant of beta-lactam resistance mediated by Klebsiella
pneumoniae and Klebsiella oxytoca. Xenobiotic biodegradation and
metabolism and multiple drug AMR genes were enriched in the
COVID-19 patients, which was related to the medical history and
medications.

DISCUSSION
Our study is among the pioneering studies to explore the
metagenomic characteristics of the oropharyngeal microbiome
in COVID-19 patients with various severity (mild, moderate, severe,
or critical) compared with flu patients and healthy controls, since
we started to collect the samples on Jan 20th, 2020. Bioinformatics
analysis of the metagenomic sequencing data obtained in the
present study showed that SARS-CoV-2 infection altered the
composition of the oropharyngeal microbiota and caused
dysbiosis of the local microbiome, which may induce translocation
of oral pathogens into the lungs to cause pulmonary co-infections.
Similar to a dramatic decrease in the oral microbiome diversity

due to predominance of a certain microbiome in a severe
infection reported previously,27,28 we found that the diversity of
oropharyngeal was decreased in COVID-19 patients, reaching a
greater significance in critical patients (Fig. 1) and indicating the
presence of dysbiosis in the oropharyngeal microbiota of COVID-
19. Hence, we hypothesized that the genera of oral bacteria
enriched in COVID-19 such as Veillonella and Megasphaera may be
pathogenic when transferred to other organs of the body.
Convincing data indicated that the levels of eight out of ten
species overrepresented in the BALF of COVID-19 patients24 were
increased in the COVID-19 oropharyngeal microbiome in the
present study, confirming that the oral cavity may be a source of
the pathogens that infect the lung. A number of studies have
demonstrated a link between good oral care and a reduced risk of
respiratory tract infection29,30 and pneumonia-related mortality in
elderly people.31,32 Thus, the results of the present study are
clinically significant because variations in the oropharyngeal
microbiome of COVID-19 patients can be used as noninvasive
biomarkers of dysbiosis of the pulmonary microbiome or of
invasion of potential pathogens in the lung.
The Veillonella genus has been shown to be a shared indicator

of COVID-19 in multiple studies,9,33 a cause of chronic anaerobic
pneumonitis,34 and present at a high abundance in the oral cavity
of individuals with rheumatoid arthritis.27 Several members of the
Veillonella genus are periodontal pathogens and are overrepre-
sented in the BALF of COVID-19 patients.7,24 In addition, we
generated a microbial classifier to distinguish COVID-19 patients
from flu patients and healthy controls with an AUC of 0.889, and
the classifier identified Veillonella as the top predictor. Thus,
Veillonella may contribute to the severity of COVID-19, although
the exact mechanism of the effect requires further exploration.
Many risk factors have been reported to influence COVID-19

severity,3 including sex, age, and comorbidities. However, a
substantial proportion of apparently healthy infected patients

with no identified risk factors also suffer from severe complica-
tions, suggesting that other risk factors, such as oral hygiene or
microbiome dysbiosis, should be considered. This hypothesis is
supported by the data of the present study showing an
association between the clinical characteristics of the host and
COVID-19 severity. Age and several indicators linked to the
inflammatory response in blood tests, including NLR, were
significantly correlated with disease severity (Spearman correla-
tion analysis, P < 0.05 Supplementary Fig. 1), indicating that the
inflammatory response may play a critical role in the development
of severe disease forms. Both the NLR and age were correlated
with COVID-19 severity (Fig. 3a); however, the NLR was not related
to age (Rho= 0.21, P= 0.26). Therefore, the NLR and age may be
distinct factors contributing to COVID-19 severity. A higher NLR
value has been shown to indicate a higher probability of bacterial
infection and a lower probability of viral infection,35 implying that
bacterial superinfections may supersede the original viral infection
in severe cases of COVID-19. Moreover, microbiome dysbiosis can
promote an inflammatory environment favoring coronavirus
invasion and viral replication,5 thus contributing as a risk factor
for disease severity. In the present study, 136 species positively or
negatively correlated with COVID-19 severity included 53 (39%)
and 25 (18.4%) species, which were also correlated with host
inflammatory NLR status and age, respectively. These results
indicated that alterations in the oropharyngeal microbiota may
impact disease severity due to interactions with the systemic
inflammatory status of the host, age, or immune response. Several
species with the highest correlations with COVID-19 severity in the
present study, such as Klebsiella sp., Acinetobacter sp., Serratia sp.,
and Veillonella tobetsuensis, were also identified as indicators for
VAP26 or COVID-19 severity9 in other studies, further supporting
our findings. Owing to the contribution of bacterial co-infections
to mortality and heightened disease severity in COVID-19
infections, oropharyngeal bacteria are expected to be used as
robust predictors of COVID-19 severity and as intervention targets.
Moreover, the oropharyngeal microbiome of COVID-19 patients

was characterized by significant changes in the degradation of
amino acids and other small molecules. Amino acid imbalance was
reported to increase intestinal inflammation via ACE2-dependent
changes in epithelial immunity.36 Thus, imbalanced metabolites
may cause changes in the immune microenvironment and
increase the burden of COVID-19. In addition, we observed a
dramatic increase in antibiotic resistance genes in the orophar-
yngeal microbiome of COVID-19 patients, especially in the critical
patient group. Antibiotic resistance may slowly accumulate since
most critical patients have multiple complex comorbidities and
may have a history of high antibiotic intake. Antibiotic abuse may
change the microbiome and slowly increase resistance, leading to
bacterial resistance, which may be related to critical viral infection.
Dual and mutual interactions of the oropharyngeal microbiome

with inflammation and the immune system during the onset of a
disease are actively being investegated.37 Additional experiments
are required to reveal the mechanistic effects or causative roles of
the oropharyngeal microbiome and the changes in metagene
functions in the susceptibility and severity of SARS-CoV-2
infection. However, unlike influenza virus which can be investi-
gated in a germ-free mouse model, there are no appropriate
animal models to mimic severe symptoms observed in COVID-19
patients, which makes functional investigations more difficult.
Evidence provided by us and other researchers indicates certain

variations in the composition of the oropharyngeal microbiome
caused by SARS-CoV-2 infection and suggests that indicator
species within the oral ecosystem may be used as surrogate
markers of the severity of COVID-19. The oral cavity is one of the
first entry points in the body and a significant reservoir of SARS-
CoV-2; hence, we can rationally infer that dysbiosis of the local
airway microbiome induced by SARS-CoV-2 infection initially
occurs in the oral cavity and subsequently impacts distant
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microbiomes across connected body sites via the oral–lung or
oral–gut axis.38 Therefore, manipulation of the oropharyngeal
microbiome may be a potential prevention strategy.
Thus, the results of the present study provide potentially

significant clinical findings. First, the data reveal that the variation
in the oropharyngeal microbiome in COVID-19 may be used as a
noninvasive biomarker for dysbiosis of the pulmonary microbiome
or for invasion of potential pathogens in the lung; second, we
provide some evidence that major potential pathogens are
associated with lung co-infections in COVID-19 to guide antibiotic
treatment of secondary bacterial infections in COVID-19; third,
bacterial strains, such as Veillonella parvula, identified in the
present study require future studies to determine their roles in the
pathogenicity of SARS-CoV-2 and in COVID-19 development;
fourth, the data provided a compelling rationale suggesting that
effective oral hygiene measures and promotions are necessary to
reduce secondary infections, especially in patients with severe
COVID-19.

MATERIALS AND METHODS
Overview of enrollment
The basic clinical information of the cohort (31 confirmed patients
with COVID-19, 29 flu patients with influenza B, and 28 healthy
controls) is shown in Supplementary Table 1. One COVID-19
patient and all the flu patients and healthy controls were admitted
to Heilongjiang Provincial Hospital from Jan 20th to Feb 25th, 2020,
and 30 COVID-19 patients were admitted to Suihua First Hospital
and Suihua Cancer Hospital from Jan 24th to Feb 25th, 2020.
The patients were categorized into four groups based on

disease severity, i.e., mild, moderate, severe, and critical cases,
according to the Diagnosis and Treatment Protocol for Novel
Coronavirus Pneumonia (Trial Version 7). Briefly, there was no
sign of pneumonia on imaging in mild cases. Moderate cases
were defined as showing fever and respiratory symptoms with
radiological findings of pneumonia. Severe cases were defined
by meeting one of the following criteria: respiratory distress ≥30
breaths/min, oxygen saturation ≤93% at rest, arterial partial
pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2)
≤300 mmHg or chest imaging showing obvious lesion progres-
sion within 24–48 h >50%. Critical cases were defined as one of
the following: respiratory failure requiring mechanical ventila-
tion, shock, or other organ failure requiring intensive care unit
admission.

Sample collection and metagenomic sequencing
The COVID-19 and flu patients and healthy controls gargled with
clean water, and mucosal cells were collected by a doctor after
applying disposable sterile sampling cotton swabs to the posterior
pharynx, sidewalls, and crypts of the tonsil and wiping three to
five times in a rotating manner. Then, the cotton swab was placed
into an oral swab preservation tube (purchased from Kangwei
Century Biotechnology Co., Ltd.).
Microbial nucleic acids were extracted from 88 oropharynx

swab samples by a TIANamp Micro DNA Kit (DP316, TIANGEN
BIOTECH) according to the manufacturer’s recommendations after
the host cells were removed with a self-developed host-removal
kit. Then, DNA libraries were constructed with DNA fragmentation,
end repair, adapter ligation, and PCR amplification. An Agilent
2100 was used for quality control of the DNA libraries. Quality-
controlled libraries were sequenced with a MGISEQ-2000 platform.

Bioinformatics analysis
The original sequencing data were processed as follows to obtain
clean data. Reads containing 10% uncertain bases (N bases) were
removed; reads containing sequencing adapter sequences (15
bases or longer regions mapped to the adaptor sequence) were

removed; reads containing more than 50% low-quality bases
(bases with Q < 20) were eliminated; and SOAP239 alignment was
used to remove reads that mapped to the human genome with
more than 90% similarity.
The taxonomic classification of clean reads and calculation of

taxonomic abundance were performed using Kraken2 v2.0.940

with the provided prebuilt Maxikraken2 databases (last updated in
March 2019). Differentiating taxa by pairwise comparisons or the
comparison of three groups was performed with the Wilcoxon
rank sum test41 and kw test,42 respectively. Correlations between
taxa and clinical characteristics were tested using Spearman
correlation analysis, and visualization of the network was
performed by Cytoscape. To further analyze species that
contribute to the discrimination of different group samples, a
random forest analysis, as implemented in QIIME 2, was used. The
ROC curves were plotted for the classification performance of the
trained random forest models with sklearn at the genus and
species levels. Spearman correlation analysis between different
genera was performed with the R package “Hmisc.” All plots and
statistical analyses were conducted with R v4.0.0, and the vegan
package in R was utilized to obtain the diversity indexes, including
the Shannon index for alpha diversity and Bray–Curtis dissim-
ilarities for beta diversity.
MEGAHIT43 was used to perform the de novo assembly of each

sample, and contigs larger than 150 bp were retained for gene
prediction by MetaGeneMark344 and CD-Hit4.45 Briefly, MetaGene-
Mark3 (version 2.10, default parameters) was used to predict the
open reading frame, and then CD-Hit4 was applied for gene
clustering and merging each sample. Finally, redundant
sequences with sequence similarity above 95% and alignment
lengths >90% of the sequence length were removed.
Resistance Gene Identifier46 (version number: 3.2.1) was used

to identify AMR genes. Differentially enriched KEGG ortholog
(KO) pathways were identified based on their reporter score
from the Z-scores of individual KOs (KEGG database release
89.1). The reporter score was calculated as follows: the P value of
the KO was obtained by the rank sum test, and the Z value
corresponding to the P value was obtained using an inverse
normal distribution.47

DATA AVAILABILITY
The metagenomics sequencing dataset was deposited in the China National

GeneBank Nucleotide Sequence Archive BioProject accession number CNP0001259.

ACKNOWLEDGEMENTS
The authors thank the Heilongjiang Province Oral Microecological Technology

Innovation Center for providing technical support, and the funding of Heilongjiang

Province Applied Technology Research and Development Program (GA20C003,

GA20C006), the Medical Science Research Fund of Beijing Medical and Health

Foundation (YWJKJJHKYJJ-B20284EN), the Program for Innovation Research of

Heilongjiang Provincial Hospital and the National Natural Science Foundation of

China (31825008 and 31422014 to Z.H. and 61872117 to F. Zha).

AUTHOR CONTRIBUTIONS
S.M. and H.L. performed the experiments; F. Zha. R.G. and F. Zho. performed the

bioinformatics analyses. W.G., R.G., H.N., B.L., Y.W., M.W., D.L., D.W., Z.W. and Y.Y.

performed the experiments and analyzed the data. S.M., F. Zha., F. Zho., H.L. and Z.H.

wrote the manuscript. S.M. and Z.H. designed the study and supervised the project.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41392-021-00614-3.

Competing interests: The authors declare no competing interests.

Metagenomic analysis reveals oropharyngeal microbiota alterations in. . .

Ma et al.

10

Signal Transduction and Targeted Therapy           (2021) 6:191 

https://doi.org/10.1038/s41392-021-00614-3


REFERENCES

1. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track

COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

2. Abu Hammad, O. et al. Factors influencing global variations in COVID-19 cases

and fatalities; a review. Healthcare 8, 216 (2020).

3. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with

COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062

(2020).

4. Sampson, V., Kamona, N. & Sampson, A. Could there be a link between oral

hygiene and the severity of SARS-CoV-2 infections? Br. Dent. J. 228, 971–975

(2020).

5. Antunes, A. E. C., Vinderola, G., Xavier-Santos, D. & Sivieri, K. Potential contribution

of beneficial microbes to face the COVID-19 pandemic. Food Res. Int. 136, 109577

(2020).

6. De Maio, F. et al. Nasopharyngeal microbiota profiling of SARS-CoV-2 infected

patients. Biol. Proced. Online 22, 18 (2020).

7. Bao, L. et al. Oral microbiome and SARS-CoV-2: beware of lung co-infection. Front.

Microbiol. 11, 1840 (2020).

8. Zuo, T. et al. Alterations in gut microbiota of patients with COVID-19 during time

of hospitalization. Gastroenterology 159, 944–955.e8 (2020).

9. Ward, D. V. et al. The intestinal and oral microbiomes are robust predictors of

COVID-19 severity the main predictor of COVID-19-related fatality. medRxiv

https://doi.org/10.1101/2021.01.05.20249061 (2021).

10. Man, W. H., Piters, W. A. S. & Bogaert, D. The microbiota of the respiratory tract:

gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270 (2017).

11. Tashiro, M. et al. Role of Staphylococcus protease in the development of influenza

pneumonia. Nature 325, 536–537 (1987).

12. Tsang, T. K. et al. Association between the respiratory microbiome and sus-

ceptibility to influenza virus infection. Clin. Infect. Dis. 71, 1195–1203 (2020).

13. Lee, K. H. et al. The respiratory microbiome and susceptibility to influenza virus

infection. PLoS ONE 14, e0207898 (2019).

14. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract

influenza A virus infection. Proc. Natl Acad. Sci. USA. 108, 5354–5359 (2011).

15. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune

system. Nat. Immunol. 16, 343–353 (2015).

16. Pittet, L. A., Hall-Stoodley, L., Rutkowski, M. R. & Harmsen, A. G. Influenza virus

infection decreases tracheal mucociliary velocity and clearance of Streptococcus

pneumoniae. Am. J. Respir. Cell Mol. Biol. 42, 450–460 (2010).

17. Siegel, S. J., Roche, A. M. & Weiser, J. N. Influenza promotes pneumococcal growth

during coinfection by providing host sialylated substrates as a nutrient source.

Cell Host Microbe 16, 55–67 (2014).

18. Prussin, A. J. 2nd & Marr, L. C. Sources of airborne microorganisms in the built

environment. Microbiome 3, 78 (2015).

19. Mathieu, E. et al. Paradigms of lung microbiota functions in health and disease,

particularly, in asthma. Front. Physiol. 9, 1168 (2018).

20. Manger, D. et al. Evidence summary: the relationship between oral health and

pulmonary disease. Brit. Dent. J. 222, 527–533 (2017).

21. Azarpazhooh, A. & Leake, J. L. Systematic review of the association between

respiratory diseases and oral health. J. Periodontol. 77, 1465–1482 (2006).

22. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019

novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395,

507–513 (2020).

23. Zhu, L. et al. Single-cell sequencing of peripheral mononuclear cells reveals

distinct immune response landscapes of COVID-19 and influenza patients.

Immunity 53, 685–696.e3 (2020).

24. Wu, F. et al. A new coronavirus associated with human respiratory disease in

China. Nature 579, 265–269 (2020).

25. Liu, J. et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with

2019 coronavirus disease in the early stage. J. Transl. Med. 18, 206 (2020).

26. Lu, W. et al. Increased constituent ratios of Klebsiella sp., Acinetobacter sp., and

Streptococcus sp. and a decrease in microflora diversity may be indicators of

ventilator-associated pneumonia: a prospective study in the respiratory tracts of

neonates. PLoS ONE 9, e87504 (2014).

27. Willis, J. R. & Gabaldon, T. The human oral microbiome in health and disease:

from sequences to ecosystems. Microorganisms 8, 308 (2020).

28. Gross, E. L. et al. Bacterial 16S sequence analysis of severe caries in young per-

manent teeth. J. Clin. Microbiol. 48, 4121–4128 (2010).

29. Abe, S. et al. Professional oral care reduces influenza infection in elderly. Arch.

Gerontol. Geriatr. 43, 157–164 (2006).

30. Quagliarello, V. et al. Modifiable risk factors for nursing home-acquired pneu-

monia. Clin. Infect. Dis. 40, 1–6 (2005).

31. Sjogren, P. et al. A systematic review of the preventive effect of oral hygiene on

pneumonia and respiratory tract infection in elderly people in hospitals and

nursing homes: effect estimates and methodological quality of randomized

controlled trials. J. Am. Geriatr. Soc. 56, 2124–2130 (2008).

32. Mori, H. et al. Oral care reduces incidence of ventilator-associated pneumonia in

ICU populations. Intensive Care Med. 32, 230–236 (2006).

33. Iebba, V. et al. Profiling of oral microbiota and cytokines in COVID-19 patients.

bioRxiv https://doi.org/10.1101/2020.12.13.422589 (2020).

34. Shah, A. et al. Veillonella as a cause of chronic anaerobic pneumonitis. Int J. Infect.

Dis. 12, e115–117 (2008).

35. Naess, A. et al. Role of neutrophil to lymphocyte and monocyte to lymphocyte

ratios in the diagnosis of bacterial infection in patients with fever. Infection 45,

299–307 (2017).

36. Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and

intestinal inflammation. Nature 487, 477–481 (2012).

37. Kleinstein, S. E., Nelson, K. E. & Freire, M. Inflammatory networks linking oral

microbiome with systemic health and disease. J. Dent. Res. 99, 1131–1139 (2020).

38. Xu, J. et al. Salivary glands: potential reservoirs for COVID-19 asymptomatic

infection. J. Dent. Res. 99, 989 (2020).

39. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioin-

formatics 25, 1966–1967 (2009).

40. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2.

Genome Biol. 20, 257 (2019).

41. Datta, S. & Satten, G. A. Rank-sum tests for clustered data. J. Am. Stat. Assoc. 100,

908–915 (2005).

42. Selwyn, L. The Corsini encyclopedia of psychology, 4th edition. Libr. J. 135, 99–99

(2010).

43. Li, D. H. et al. MEGAHIT: an ultra-fast single-node solution for large and complex

metagenomics assembly via succinct de bruijn graph. Bioinformatics 31,

1674–1676 (2015).

44. Zhu, W. H., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in

metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).

45. Fu, L. M. et al. CD-HIT: accelerated for clustering the next-generation sequencing

data. Bioinformatics 28, 3150–3152 (2012).

46. Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the com-

prehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525

(2020).

47. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat.

Commun. 8, 845 (2017).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2021

Metagenomic analysis reveals oropharyngeal microbiota alterations in. . .

Ma et al.

11

Signal Transduction and Targeted Therapy           (2021) 6:191 

https://doi.org/10.1101/2021.01.05.20249061
https://doi.org/10.1101/2020.12.13.422589
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19
	Introduction
	Results
	Host clinical characteristics associated with COVID-19 severity
	Oropharyngeal microbiota profile alterations in COVID-19 patients
	Oropharyngeal microbiota markers correlated with COVID-19 severity
	Identification of a microbial classifier for COVID-19
	Functional potentials of the oropharyngeal microbiome associated with COVID-19

	Discussion
	Materials and methods
	Overview of enrollment
	Sample collection and metagenomic sequencing
	Bioinformatics analysis

	Supplementary information
	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References


