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Metagenomic and metabolomic 
analyses unveil dysbiosis of gut 
microbiota in chronic heart failure 
patients
Xiao Cui1, Lei Ye2, Jing Li3, Ling Jin1, Wenjie Wang1, Shuangyue Li1, Minghui Bao3, Shouling 

Wu4, Lifeng Li2, Bin Geng1, Xin Zhou  5, Jian Zhang1 & Jun Cai1

Previous studies suggested a possible gut microbiota dysbiosis in chronic heart failure (CHF). However, 

direct evidence was lacking. In this study, we investigated the composition and metabolic patterns 

of gut microbiota in CHF patients to provide direct evidence and comprehensive understanding 

of gut microbiota dysbiosis in CHF. We enrolled 53 CHF patients and 41 controls. Metagenomic 
analyses of faecal samples and metabolomic analyses of faecal and plasma samples were then 

performed. We found that the composition of gut microbiota in CHF was significantly different from 
controls. Faecalibacterium prausnitzii decrease and Ruminococcus gnavus increase were the essential 

characteristics in CHF patients’ gut microbiota. We also observed an imbalance of gut microbes 

involved in the metabolism of protective metabolites such as butyrate and harmful metabolites such 

as trimethylamine N-oxide in CHF patients. Metabolic features of both faecal and plasma samples from 

CHF patients also significantly changed. Moreover, alterations in faecal and plasma metabolic patterns 
correlated with gut microbiota dysbiosis in CHF. Taken together, we found that CHF was associated with 

distinct gut microbiota dysbiosis and pinpointed the specific core bacteria imbalance in CHF, along with 
correlations between changes in certain metabolites and gut microbes.

Chronic heart failure (CHF) is an end-stage syndrome of many cardiovascular diseases, associated with structural 
and/or functional abnormalities of heart, leading to insu�cient blood perfusion to meet the body’s requirements1. 
About 23 million people su�er from heart failure worldwide, giving rise to heavy global health and economic 
burdens2,3. �e causation of CHF varies, including ischaemic and non-ischaemic ones, without agreed single 
classi�cation based on the etiology. Previous studies have suggested important impacts of in�ammation and 
immune dysfunction on the pathogenesis of heart failure4. Gut’s roles in CHF have also been discussed for years, 
especially the involvement in chronic in�ammation and malnutrition in CHF5. Besides of the classic recognition 
of the intestinal hypoperfusion, barrier dysfunction and bacteria translocation, whether there existed a dysbiosis 
of gut microbiota in CHF was unclear6,7.

According to the updated estimation, the number of microbes that inhabiting in and on our human body was 
similar to that of human cells, among which gut microbes account for a large proportion8. Recently, emerging 
evidences have suggested gut microbiota disequilibrium could greatly in�uence hosts’ pathophysiologic states 
through various mechanisms such as immune and metabolic alterations9,10. Our previous study highlighted that 
gut microbiota dysbiosis contributed to the development of hypertension11. A recent study showed that die-
tary intervention could prevent the development hypertension and heart failure in hypertensive mice through 
changing their gut microbiota12. Whether gut microbiota dysbiosis could contribute to CHF through triggering 
systematic in�ammation as well as producing trimethylamine N-oxide (TMAO) and some other uremic toxins 
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has naturally drawn researchers’ attention13. Studies have shown that levels of TMAO, a gut microbes-dependent 
metabolite, elevated and showed predictive value for poor prognosis in studies on both chronic and acute heart 
failure patients14. Using culturing method, researchers found more pathogenic bacteria from CHF patients’ faecal 
samples and associated with chronic in�ammation in CHF15. Consistently, a nationwide analysis in the United 
States showed higher rates of Clostridium di�cile infection in heart failure patients and associated with markedly 
higher in-hospital mortality16. However, changes in microbial metabolites could only be indirect evidence for gut 
microbiota dysbiosis. Meanwhile, about 80% of gut microbes could not be cultured yet17. In view of this, direct 
evidence for gut microbiota dysbiosis in CHF patients was still lacking.

In the present study, we performed metagenomic analyses of faecal samples from CHF patients, in combina-
tion with faecal and plasma metabolomic analyses, to provide direct evidence and comprehensive understanding 
of gut microbiota dysbiosis in CHF.

Results
Clinical characteristics of subjects. We consecutively recruited 53 CHF (ischaemic cardiomyopathy, 
ICM, n = 29; dilated cardiomyopathy, DCM, n = 24) patients and 41 individuals as controls. Clinical character-
istics of all subjects were shown in Table 1. �e majority of CHF patients were with poor cardiac function that 
51% of them were in the New York Heart Association functional classi�cation (NYHA) III; 43% in NYHA IV, 
6% in NYHA II and none in NYHA I. �ere was no signi�cant di�erence between CHF patients and controls in 
body mass index, blood pressure, history of smoking and history of alcohol drinking. None of the subjects had 
in�ammatory bowel diseases, irritable bowel syndrome, autoimmune diseases, liver diseases, renal diseases or 
cancer, but more CHF patients were comorbid with hypertension, hyperlipidaemia and diabetes compared with 
controls. Serum levels of white blood cells, C-reactive protein and creatinine were higher in CHF patients. None 
of the subjects used antibiotics or probiotics in the last 1 month, but CHF patients were taking more medications 
including angiotensin converting enzyme inhibitor or angiotensin receptor blocker, β receptor blocker, digoxin, 
diuretics, statins, aspirin and proton pump inhibitors (PPIs) compared with controls.

Compositional alteration of gut microbiota in CHF. According to beta-diversity analysis based on 
Bray Curtis distances of 86 genera di�erentially enriched across groups, the structures of gut microbiota in CHF 
were signi�cantly di�erent from controls (F = 5.66, p = 0.003, R2 = 0.0580), but quite similar between DCM- 
and ICM-induced CHF (F = 2.01, p = 0.101, R2 = 0.0380, Fig. 1a). Principal component analysis (PCA) based 
on abundances of the microbes showed consistent results (Supplementary Fig. S1). �e levels of C-reactive pro-
tein and creatinine were positively correlated with CHF-enriched gut microbes, while high density lipoprotein 
positively correlated with control-enriched gut microbes (Supplementary Fig. S2). �e top ten gut bacteria dif-
ferentially enriched between CHF patients and controls at genus level were displayed in Fig. 1b and c. Some 
genera such as Ruminococcus, Acinetobacter and Veillonella increased (Fig. 1b), whereas some (such as Alistipes, 
Faecalibacterium and Oscillibacter) decreased in CHF (Fig. 1c). 86 genera were di�erentially enriched between 
CHF patients and controls. Among them, there were 54 genera di�erentially enriched between DCM-induced 
CHF and controls, and 61 genera between ICM-induced CHF and controls. However, there were only eight gen-
era di�erentially enriched between DCM- and ICM-induced CHF, which were all of relatively low abundances 
(Supplementary Fig. S3). Gut bacteria di�erentially enriched across DCM-induced CHF, ICM-induced CHF and 
controls at genus level were shown in Fig. 2. �ese results suggested that CHF exhibited similar changes in the gut 
microbiota composition, no matter whether the causation was DCM or ICM. Considering the concern about the 
possible e�ects of PPIs and statins usage on the gut microbiota, we further analysed the possible in�uences of PPIs 
and statins on the gut microbiota by performing PERMANOVA on the beta diversity of gut microbiota across 
controls, CHF patients with PPIs and CHF patients without PPIs, and that across controls, CHF patients with stat-
ins and CHF patients without statins18,19. �e results showed that the di�erence in the beta diversity based on Bray 
Curtis distances of gut microbiota remained signi�cant between CHF and controls, no matter whether the CHF 
subjects used or did not use PPIs or statins, while no signi�cant di�erent between CHF subjects with and without 
PPIs or statins (CHF with PPI vs. control: F = 2.46, p = 0.047, R2 = 0.0387; CHF without PPI vs. control, F = 5.91, 
p = 0.001, R2 = 0.0779; CHF with PPIs vs. CHF without PPIs, F = 0.64, p = 0.648, R2 = 0.0124; CHF with statins 
vs. control, F = 4.62, p = 0.005, R2 = 0.0595; CHF without statins vs. control, F = 3.77, p = 0.012, R2 = 0.0611; CHF 
with statins vs. CHF without statins, F = 0.49, p = 0.765, R2 = 0.0095, Supplementary Fig. S4).

Here, we identi�ed 481,946 di�erent genes in relative abundance among groups. According to their abun-
dance variations, we clustered these genes and obtained 439 distinct co-abundance groups (CAGs). In consistence 
with the di�erences in genera composition, there were 312 CAGs di�erentially enriched between DCM-induced 
CHF and controls, and 320 CAGs between ICM-induced CHF and controls, while only 64 CAGs between DCM- 
and ICM-induced CHF.

Core gut bacterium species in CHF. Based on the Spearman’s correlation, we built a co-occurrence net-
work of marker CAGs and performed taxonomic assignments of them (Fig. 3). Spearman’s correlation coe�-
cients, p values and q values as correction of p values for multiple testing were shown in Supplementary Table S1. 
�e network showed the di�erential enrichments of bacteria such as Ruminococcus gnavus, Streptococcus sp. and 
Veillonella sp in CHF patients, by contrast, Faecalibacterium prausnitzii, Oscillibacter sp. and Sutterella wadsworth-
ensis in controls. �e core node of the network in CHF was R. gnavus. �e abundances of bacteria enriched in 
controls were inversely correlated with that of R. gnavus. However, in controls, F. prausnitzii was the core bac-
terium, whose abundance inversely correlated with CHF-enriched gut bacteria. �is CAG enrichment network 
analysis suggested that F. prausnitzii decrease and R. gnavus increase were the essential characteristics in the gut 
microbiota of CHF patients.
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CHF Control p value

Age (year) 58.08 ± 13.30 53.73 ± 5.94 0.06

Gender (%) 0.73

  Male 83 78

  Female 17 22

BMI (kg/m2) 24.42 ± 4.53 25.24 ± 3.32 0.34

Blood pressure (mmHg)

Systolic blood pressure 114 (98, 130) 117 (110, 120) 0.93

Diastolic blood pressure 76 (69, 84) 75 (70, 80) 0.52

Heart rate (bpm) 77 (68, 87) 70 (63, 77) 0.01

NYHA (%)

I 0 — —

II 6 — —

III 51 — —

IV 43 — —

LVEF % 29.79 ± 6.54 — —

Comorbidities (%)

In�ammatory bowel diseases 0 0 —

Irritable bowel syndrome 0 0 —

Autoimmune diseases 0 0 —

Liver diseases 0 0 —

Renal diseases 0 0 —

Cancer 0 0 —

Hypertension 57 0 <0.01

Hyperlipidaemia 51 7 <0.01

Diabetes 28 4 <0.01

Smoking (%) 57 54 0.24

Alcohol drinking (%) 42 29 0.20

Medication (%)

ACEI/ARB 60 0 <0.01

β receptor blocker 81 0 <0.01

digoxin 66 0 <0.01

diuretics 91 0 <0.01

statins 64 0 <0.01

aspirin 57 4 <0.01

PPIs 42 0 <0.01

WBC*109 7.02 (6.12, 8.65) 5.78 (5.15, 7.10) <0.01

PLT*109 196.08 ± 65.92 242.68 ± 57.32 <0.01

CRP (mg/L) 3.36 (2.30, 8.49) 2.00 (1.00, 3.00) <0.01

CREA (mmol/L) 93.04 (77.41, 108.92) 71.00 (64.25, 90.50) <0.01

BUN 7.92 (6.24, 10.15) 5.50 (4.80, 6.60) <0.01

ALT (U/L) 20 (15, 33) 19 (12, 26) 0.15

Na+ (mmol/L) 139.60 (137.57, 141.05) 140.00 (139.00, 142.98) 0.06

K+ (mmol/L) 4.13 ± 0.38 4.21 ± 0.38 0.36

FBG (mmol/L) 5.59 (4.90, 7.26) 5.20 (4.81, 5.58) 0.04

TG (mmol/L) 1.18 (0.83, 1.67) 1.05 (0.89, 1.72) 0.91

CHOL (mmol/L) 3.68 (3.10, 4.19) 5.32 (4.67, 6.19) <0.01

HDL (mmol/L) 0.93 ± 0.31 1.25 ± 0.25 <0.01

LDL (mmol/L) 2.26 (1.68, 2.87) 2.72 (2.30, 2.96) 0.02

Table 1. Demographic and clinical characteristics of all subjects. Values are expressed as mean ± standard 
deviation, median (�rst quartile, third quartile), or %. CHF = chronic heart failure; BMI = body mass index; 
NYHA = the New York Heart Association functional classi�cation; LVEF = le� ventricular ejection fraction; 
ACEI = angiotensin converting enzyme inhibitor; ARB = angiotensin receptor blocker; PPIs = proton pump 
inhibitors; WBC = white blood cell; PLT = platelet; CRP = C-reactive protein; CREA = serum creatinine; 
BUN = blood urea nitrogen; ALT = alanine aminotransferase; FBG = fasting blood glucose; TG = triglycerides; 
CHOL = cholesterol; HDL = high density lipoprotein; LDL = low density lipoprotein.
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Functional alteration of gut microbiota in CHF. To characterize the distinct functions of the gut micro-
biota, we performed functional annotations of the metagenome to KEGG modules. As Fig. 4 shown, microbial 
genes for phosphotransferase systems increased in CHF patients’ gut microbiota. In contrast, those for synthesiz-
ing and transporting amino acids signi�cantly reduced in the disordered microbiota of CHF patients. Genes for 
nucleotide sugar biosynthesis and iron transport system also reduced in CHF patients compared with controls 
(Fig. 4).

More interestingly, we observed an elevation in microbial genes for lipopolysaccharide biosynthesis, tryp-
tophan, lipid metabolism, especially TMAO generation in CHF patients’ gut microbiota (Fig. 5a,b). Microbial 
genes for choline TMA-lyase, the key enzyme for the generation of TMAO which is a cardiac harmful metabolite, 
signi�cantly upregulated in CHF patients (Fig. 5c). Meanwhile, microbial genes for butyrate-acetoacetate CoA 
transferase, the key enzyme for the generation of butyrate which is a protective metabolic fatty acid, signi�cantly 
reduced in CHF patients’ gut microbiota(Fig. 5d). To attain a more comprehensive view of the CAG enrichment 
network described above, we further performed functional annotations of those CAGs. Intriguingly, bacteria 
involved in short chain fatty acid metabolism such as formate, propionate and butyrate producing were reduced 
in CHF compared with controls (Fig. 3). �ese functional shi�s of microbial metagenome indicated a correlation 
between CHF and an imbalance of gut microbes involved in the metabolism of protective metabolites such as 
butyrate and harmful metabolites such as TMAO.

Faecal and plasma metabolomics in CHF. Considering the distinct metabolic functions between CHF 
and controls based on functional annotations of microbial metagenome, we further performed metabolic pro�l-
ing of faecal and plasma samples from subjects by using high-throughput liquid chromatography-mass spectrom-
etry (LC/MS). �e faecal and plasma samples were respectively subjected to LC/MS analysis in both positive ion 

Figure 1. Compositional and structural shi�s of gut microbiota in CHF patients. (a) Principal coordinates 
analysis of beta-diversity analysis based on Bray Curtis distances of 86 genera di�erentially enriched across 
controls, DCM- and ICM-induced CHF patients. �e  represents control. �e  represents DCM-induced 
CHF. �e  represents ICM-induced CHF. (b,c) Boxplot of top ten genera di�erentially enriched in CHF 
patients (b) and controls (b). Black, controls; blue, DCM-induced CHF patients; red, ICM- induced CHF 
patients.
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mode (ES+) and negative ion mode (ES−). A�er eliminating the impurity peaks and duplicate identi�cations, 
we identi�ed a total of 10184 chromatographic peaks for faecal samples and a total of 4103 chromatographic 
peaks for plasma samples for further analyses. �e standard deviations of peak area of faecal and plasma metab-
olites in CHF, controls and quality controls in both ES+ and ES− were shown in Supplementary Tables S2–S5, 
respectively. �e combination of variable importance in the projection (VIP) value from orthogonal partial 
least-squares discriminant analysis (OPLS-DA) model >1 and p value < 0.05 based on the peak areas were used 
to identify di�erentially enriched compounds. �e m/z value of these compounds was then used to identify the 

Figure 2. Gut bacteria di�erentially enriched across DCM-induced CHF, ICM-induced CHF and controls at 
genus level. Heatmap of genera di�erentially enriched across controls, DCM- and ICM-induced CHF patients. 
�e abundance pro�les were transformed into Z scores. Black, enriched in controls; blue, enriched in DCM-
induced CHF patients; red, enriched in ICM- induced CHF patients.
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metabolites corresponding to the featured peak in Metlin database. �e identi�cation con�dence of the data to 
certain levels in both ES+ and ES− were also shown in Supplementary Tables S2–S5, respectively20.

PCA of faecal metabolites showed significant difference between CHF and controls (Fig. 6a,b). To dis-
criminate the metabolic profiles between groups, we performed partial least-squares discriminant analysis 
(PLS-DA) of the data (Supplementary Fig. S5). �e validation of this model showed no over�tting phenomenon, 
which represented that this model could well describe the samples and could be applied in further data anal-
ysis (Supplementary Fig. S5). We further performed OPLS-DA (Fig. 6c,d). We identi�ed that 25 di�erentially 
enriched metabolites in ES+ and 192 di�erentially enriched metabolites in ES− from faecal samples between 
CHF and controls, among which 9 metabolites were identi�ed in both the ES+ and ES−. Among them, 2 metab-
olites including para-Tolyl octanoate signi�cantly increased in CHF patients, while other 206 metabolites such as 
niacin, cinnamic acid and orotic acid signi�cantly decreased in CHF compared with controls.

Figure 3. CAGs di�erentially enriched between CHF patients and controls. �e direction of enrichment was 
determined by Wilcoxon rank sum test (p < 0.05). Sizes of the nodes were in proportion with each CAGs’ gene 
numbers. CAGs within the same family were in the same colour. Edges between nodes represented Spearman’s 
correlation >0.9 (green), between 0.8 and 0.9 (blue) or <−0.55 (red). �e  represented the presence of the 
genes encoding choline TMA-lyase, choline TMA-lyase-activating enzyme, betaine reductase or tryptophanase. 
�e  represented the presence of the genes encoding butyrate-acetoacetate CoA transferase, propionate CoA-
transferase or formate-tetrahydrofolate ligase.



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS |  (2018) 8:635  | DOI:10.1038/s41598-017-18756-2

Plasma metabolites were also signi�cantly di�erent between CHF and controls according to PCA (Fig. 6e,f). 
�en, we also performed PLS-DA to discriminate the metabolic pro�les between groups (Supplementary 
Fig. S5). �e validation of this model showed no over�tting phenomenon, representing that this model could 
well describe the samples and could be applied in further data analysis (Supplementary Fig. S5). OPLS-DA 
was then performed (Fig. 6g,h). Finally, we identi�ed 45 di�erentially enriched metabolites in ES+ and 69 
di�erentially enriched metabolites in ES− from plasma samples between CHF and controls, among which 6 

Figure 4. Overview of functional shi�s of the gut microbiota in CHF patients. Heatmap and hierarchical 
clustering of KO modules enriched across controls, DCM- and ICM- induced CHF patients. Modules 
di�erentially enriched across groups were identi�ed on the basis of the reporter score derived from each KO’s 
Z-score. Blue, enriched in controls; red, enriched in CHF patients.
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metabolites were identi�ed in both the ES+ and ES−. Among them, 49 metabolites such as sphingosine 1−
phosphate signi�cantly increased, while other 59 metabolites such as ricinoleic acid signi�cantly decreased in 
CHF compared with controls.

Metabolites changes correlated with microbial genera. Next, we analysed possible correlations 
between altered faecal and plasma metabolites and microbial genera based on Spearman’s correlation. Spearman’s 
correlation coe�cients, p values and q values as the correction of p values for multiple testing were shown in 
Supplementary Tables S6 and S7, respectively. Faecal decreased metabolites such as niacin, cinnamic acid and 
orotic acid were negatively correlated with CHF-enriched bacteria Veillonella, but positively correlated with 
controls-enriched bacteria such as Faecalibacterium, Butyricicoccus and Oscillibacter (Supplementary Fig. S6). 
Moreover, high plasma sphingosine 1-phosphate was positively correlated with several CHF-enriched bacteria 
such as Veillonella, Coprobacillus and Streptococcus, while plasma reduced metabolites such as ricinoleic acid were 
positively correlated with bacteria enriched in controls such as Butyricicoccus (Fig. 7).

Discussion
In this study, we provided the evidence for gut microbiota dysbiosis in CHF patients. �e composition of gut 
microbiota in CHF was signi�cantly di�erent from controls, while quite similar between CHF subgroups of dif-
ferent causations. Meaningfully, we found that F. prausnitzii decrease and R. gnavus increase were the essential 
characteristics in CHF patients’ gut microbiota. By functional analyses of microbial metagenome, we observed 
an imbalance of gut microbes involved in the metabolism of protective metabolites such as butyrate and harmful 

Figure 5. Important functional shi�s of the gut microbiota in CHF patients. (a,b) Modules in 
lipopolysaccharide biosynthesis (a), TMA, tryptophan and lipid metabolism (b). Black, enriched in controls; 
blue, enriched in DCM-induced CHF patients; red, enriched in ICM- induced CHF patients. (c,d) Group level 
abundance shi�s of choline TMA-lyase (c), butyrate-acetoacetate CoA transferase (d) between CHF patients 
and controls by Wilcoxon rank test. Black, enriched in controls; blue, enriched in CHF patients.
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metabolites such as TMAO in CHF patients, which might contribute to the pathogenesis of CHF. Metabolic fea-
tures of both faecal and plasma samples from CHF patients also signi�cantly changed. Moreover, alterations in 
faecal and plasma metabolic patterns correlated with gut microbiota dysbiosis in CHF. �ese �ndings suggested 
an aberrant gut microbiota in CHF patients.

Figure 6. Metabolomic analyses of faecal and plasma samples of CHF patients and controls. (a,b) �e PCA 
scores plot based on faecal metabolic pro�les in ES+ (a) and ES− (b). (c,d) �e OPLS-DA scores plot based on 
faecal metabolic pro�les in ES+ (c) and ES− (d). (e,f) �e PCA scores plot based on plasma metabolic pro�les 
in ES+ (e) and ES− (f). (g,h) �e OPLS-DA scores plot based on plasma metabolic pro�les in ES+ (g) and ES− 
(h). �e  represents metabolic pro�les of CHF patients. �e  represents metabolic pro�les of controls. 
ES+ = positive ion mode; ES− = negative ion mode.
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Our �ndings extended the current knowledge of gut’s roles in CHF. A previous metabolomic research involv-
ing 720 patients with stable heart failure observed higher TMAO levels in heart failure patients and higher plasma 
TMAO levels were associated with a 3.4-fold increased mortality risk14. In consistence with that, through func-
tional annotations of metagenome, we found that microbial genes for choline TMA-lyase, the key enzyme for the 
generation of TMAO, signi�cantly upregulated in CHF patients. �at TMAO could directly lead to progressive 
renal tubulointerstitial �brosis and dysfunction might be one of the underlying mechanisms in aggravating CHF 
progression21. Endotoxemia-induced systematic in�ammation is known to be involved in the pathophysiology of 

Figure 7. Correlations between plasma metabolic patterns and genera. Spearman’s correlation coe�cients 
between the abundance of top 35 di�erentially enriched genera and the level of plasmatic metabolic patterns 
were calculated. �ose with low correlation (|r| < 0.6) were not shown. Red, negative correlation; blue, positive 
correlation, +q < 0.05, *q < 0.01. �e enriched type of each genera and metabolic patterns was coloured 
according to its direction of enrichment. Black, enriched in controls; blue, enriched in CHF patients.
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heart failure13. In consistence with that, we observed an enrichment of gut microbial genes involved in lipopol-
ysaccharide biosynthesis in CHF patients. A previous study showed that more pathogenic bacteria such as 
Campylobacter, Shigella and Salmonella could be cultured from the faeces of CHF patients15. Considering that one 
important function of healthy gut microbiota is to protect intestine against the colonization of pathogenic bacte-
ria, this could be reasonably explained by gut microbiota dysbiosis increasing the risks of pathogenic infection22.

More importantly, we found that F. prausnitzii decrease and R. gnavus increase were the essential character-
istics in the gut microbiota of CHF patients. F. prausnitzii, one of the most abundant butyrate-producing species, 
has been identi�ed as an important anti-in�ammatory commensal bacterium23,24. Loss or lack of F. prausnitzii 
and its signi�cant functions in anti-in�ammation might aggravate the chronic in�ammation. Previous studies 
showed that elderly population had lower levels of F. prausnitzii than young adults25,26. A recent published study 
found that F. prausnitzii was less abundant in older heart failure patients than in younger patients27. �is could 
correlate with further aggravating in�ammatory status and poor prognosis in elderly CHF patients considering 
that in�ammation is independently accompanied with adverse outcome in elderly CHF patients28. Moreover, 
through functional annotations of microbial metagenome, we observed decreases of other butyrate-producing 
bacteria and butyryl-CoA: acetate CoA-transferase genes in CHF compared with controls. A reduction of 
butyrate-producing bacteria could be regarded as a biomarker for injured gut microbiota and supplement of them 
as probiotics showed therapeutic bene�ts in several diseases29–32. Butyryl-CoA: acetate CoA-transferase is crucial 
in the synthesis of butyrate23. Butyrate is of great importance in anti-in�ammation and maintaining intestinal bar-
rier integrity. It could modulate intestinal macrophages’ function, downregulating lipopolysaccharide-induced 
pro-in�ammatory mediators, such as nitric oxide, IL-6 and IL-1233. It could also induce the di�erentiation of 
regulatory T cells, which suppress both in�ammatory responses and heart failure progression34,35. Furthermore, 
butyrate can stabilize hypoxia-inducible factor, which plays a fundamental role in maintaining barrier integrity36. 
Considering these, the reduction in butyrate production might participate to the chronic in�ammation aggrava-
tion in CHF. At the same time, we found that R. gnavus signi�cantly increased in CHF patients. Previous studies 
on in�ammatory bowel diseases have indicated a pro-in�ammatory property of R. gnavus37–39. Implantation of R. 
gnavus to gnotobiotic mice increased the levels of IFN-γ, IL-17 and IL-2238. R. gnavus lysates can preferentially 
stimulate bacterial antigen-speci�c �1 and �17 cell-mediated immune responses40. Based on the above, we pro-
vide not only the direct evidence of dysbiosis of gut microbiota in CHF, but also a comprehensive understanding 
of the associations between gut microbiota dysbiosis and certain function alterations.

Combining metabolomic data, we found that CHF-enriched bacteria such as Veillonella were inversely correlated 
with cardiovascular protective metabolites such as niacin, cinnamic acid and orotic acid41–45. Dietary supplement of 
orotic acid could boost both the fatty acid oxidation and the uptake of glucose, giving rise to the energy supply and 
appreciable alterations on myocardial contractile function45. Sphingosine 1-phosphate has been identi�ed as a medi-
ator in multiple pathological processes in cardiovascular system, including activating pro-in�ammatory responses 
in the cardiomyocyte and causing cardiac dysfunction and remodeling46. In consistence with this, we observed a 
signi�cant elevation of sphingosine 1-phosphate in the plasma samples of CHF patients. Furthermore, we discov-
ered a positive correlation between the high sphingosine 1-phosphate levels and several CHF-enriched bacteria 
such as Veillonella, Coprobacillus and Streptococcus. Meanwhile, plasma levels of metabolites such as ricinoleic acid, 
which owns an anti-in�ammatory property, signi�cantly reduced in CHF patients. Moreover, levels of ricinoleic acid 
inversely correlated with gut bacterium enriched in CHF patients, while positively correlated with those enriched in 
non-CHF populations47. Based on the above, we observed an increase of cardiovascular harmful metabolites such as 
sphingosine 1-phosphate and a decrease of cardiovascular protective metabolites such as orotic acid in CHF patients, 
and correlations between theses metabolites and some gut microbes.

We acknowledge some limitations of this study. First, there was representative limitation. CHF patients 
included in this study were in-hospital patients from large hospitals who were admitted to hospitals because of 
unstable illness status, that the majority of them had poor cardiac function (51% in NYHA III, 43% in NYHA IV, 
6% in NYHA II and none in NYHA I). So, we could only prudently draw conclusions on associations between 
severe CHF and gut dysbiosis. Second, there were several confounding factors. CHF are frequently accompanied by 
comorbidities, such as hypertension, hyperlipidaemia and diabetes48. Although we excluded subjects with in�am-
matory bowel diseases, irritable bowel syndrome, autoimmune diseases, liver diseases, renal diseases or cancer, we 
did not exclude CHF patients comorbid with hyperlipidaemia or diabetes, considering the pathogenesis of CHF 
as the end stage of many metabolic and cardiovascular diseases. Although we excluded subjects who used antibi-
otics or probiotics in the last 1 month, subjects who took medicine for CHF were not excluded for ethical reasons. 
Exercise and dietary information were not collected and corrected in this study, either. �ese could result in con-
founding e�ects, in view of that hyperlipidaemia, diabetes, exercise, diet and other medication usage could also 
have in�uences on gut microbiota12,18,19,49–51. Previous studies have reported associations between PPIs, statins and 
gut microbiota18,19. A previous population-based metagenomics analysis study revealed the associations between 
the microbiome and 126 factors including PPIs and statins18. However, in another study suggesting a decrease in 
the Shannon’s diversity of gut microbiota, the researchers also reported that the decrease in species richness and 
Shannon diversity was not statistically signi�cant in each cohort (Cohort 1, general population, p = 0.85; Cohort 2, 
patients with IBD, p = 0.16; Cohort 3, IBS case-control study, p = 0.53) a�er correcting confounders that related to 
certain bowel diseases and symptoms19. Considering the considerable numbers of PPIs and statins users among the 
CHF subjects in our present study, we also explored the possible in�uences of PPIs and statins on gut microbiota. 
�e results showed that the changes in the beta diversity of gut microbiota in CHF subjects remained signi�cant 
compared with controls, no matter whether the CHF subjects used or did not use PPIs or statins, while no signif-
icant di�erence between CHF subjects with and without PPIs or statins, suggesting that the signi�cant di�erence 
in the beta diversity of gut microbiota between CHF patients and controls was not due to the e�ects of PPIs and 
statins. Finally, conclusions that could be drawn from our data were associations rather than causal relationships. 
Further study to validate the causal relationship between gut microbiota and CHF are still needed.
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Taken together, we found that CHF was associated with distinct gut microbiota dysbiosis and pinpointed the 
speci�c core bacteria imbalance in CHF, along with correlations between changes in certain metabolites and gut 
microbes. �ese �ndings provided the direct evidence to validate the hypothesis of gut microbiota dysbiosis in 
CHF and a comprehensive understanding of the correlation between CHF and gut microbiota dysbiosis, which is 
fundamental for further investigations on the interaction between gut microbiota and CHF. Follow-up studies are 
needed to examine the causal relationship, to further investigate the speci�c mechanisms involved and to explore 
relevant intervention strategies.

Methods
Study cohort. 53 chronic heart failure patients (CHF; ischaemic cardiomyopathy, ICM, n = 29; dilated 
cardiomyopathy, DCM, n = 24) were consecutively enrolled from patients who were admitted to Fuwai 
Hospital (n = 37), Chaoyang Hospital (n = 9) and Pingjin Hospital (n = 7). CHF patients met all the inclu-
sion criteria, including age >18 years old, medical history of CHF either from ICM or DCM for more than 
6 months, the New York Heart Association functional classification II to IV and left ventricular ejection 
fraction ≤40%. Individuals with history of acute coronary syndrome in the last 6 months, comorbidities 
(inflammatory bowel diseases, irritable bowel syndrome, autoimmune diseases, liver diseases, renal diseases 
or cancer), or use of antibiotics or probiotics in the last 1 month were excluded. DCM was defined as ven-
tricular dilatation with left ventricular systolic dysfunction not caused by hypertension, valve disease or 
coronary artery disease52. ICM was defined as left ventricular systolic dysfunction caused by myocardial 
infarction or significant coronary stenosis (≥75% stenosis of left main or proximal left anterior descending 
artery, or ≥75% stenosis of two or more epicardial vessels)53. Demographic and clinical characteristics were 
obtained through face-to-face survey and checking hospital records or medical examination records. This 
study was conducted in North China among Han population who shared similar diet patterns. Among the 
53 CHF patients included, faecal samples were available from each subjects and used for metagenomic anal-
yses and faecal metabolomic analyses. 20 of them kindly provided their plasma samples, which were used for 
plasma metabolomic analyses. Controls were all enrolled from Kailuan cohort who received biennial medi-
cal examination in Kailuan General Hospital54. The metagenomic sequencing data of 41 faecal samples, 
faecal metabolomic data of 15 samples and plasma metabolomic data of 30 samples were available from our 
previous study and used as controls in the present study11. The investigation conforms with the principles 
outlined in the Declaration of Helsinki. The research protocol was approved by the ethics committee of 
Fuwai Hospital, Chaoyang Hospital, Pingjin Hospital and Kailuan General Hospital. Written informed con-
sents were obtained from all subjects.

Sample collection and DNA extraction. Faecal samples freshly collected from each subject were immedi-
ately frozen at −20 °C, and transported to the laboratory with ice pack. Bacterial DNA was extracted at Novogene 
Bioinformatics Technology Co., Ltd using TIANGEN kits according to the manufacturer’s recommendations.

Metagenomic sequencing and gene catalogue construction. All samples were paired-end sequenced 
on the Illumina platform (insert size 350 bp, read length 150 bp) at Novogene Bioinformatics Technology Co., Ltd. 
A�er quality control, reads that aligned to the human genome (alignment with SOAP255, Version 2.21, parame-
ters: -s 135, -l 30, -v 7, -m 200, -x 400) were also removed. �e set of high-quality reads was then used for further 
analysis.

�e assembly of reads was executed by SOAPdenovo256 (Version 2.04, parameters: -d 1 -M 3 -R -u -F). For 
each sample, we used series of k-mer values (from 49 to 87), and chose optimal one with the longest N50 value for 
the remaining sca�olds57. We aligned clean reads to sca�olds using SOAP2 (Version 2.21, parameters: -m 200 -x 
400 -s 135). Unused reads from each sample were assembled with the same parameters. Genes (minimum length 
of 100 nucleotides) were predicted on sca�igs (i.e., continuous sequences within sca�olds) longer than 500 bp 
using MetaGeneMark58 (prokaryotic GeneMark.hmm version 2.10). A non-redundant gene catalogue was then 
constructed with CD-HIT59 (version 4.5.8, parameters: -G 0 -aS 0.9 -g 1 -d 0 -c 0.95) using a sequence identity 
cut-o� of 0.95, with a minimum coverage cut-o� of 0.9 for the shorter sequences.

To assess the abundance of genes, reads were realigned to the gene catalogue with SOAP2 using parameters: 
-m 200 -x 400 -s 142. Only genes with ≥2 mapped reads were determined to be present in a sample to eliminate 
the incorrectly identi�cation60. �e abundance of a gene was calculated by counting the number of reads that 
aligned to the gene and normalized by the gene length.

Taxonomic annotation and abundance profiling. To access the taxonomic assignments of genes, genes 
were aligned to the integrated NR database using DIAMOND61 (Version 0.7.9.58, default parameter except for 
-k 50–sensitive -e 0.00001). As previously described60, for each gene, the signi�cant matches which were de�ned 
by e-values ≤ 10 * e-value of the top hit were retained to distinguish taxonomic groups. �e taxonomical level of 
each gene was determined by the lowest common ancestor-based algorithm that was implemented in MEGAN62. 
�e abundance of a taxonomic group was calculated by summing the abundance of genes annotated to a feature.

Co-abundance gene groups (CAGs). To identify marker genes that are associated with disease, genes that 
showed signi�cant di�erence in relative abundance between any of the two groups were identi�ed (Benjamin–
Hochberg q-value < 0.05, Wilcoxon rank sum test). As previously described63, marker genes were then clustered 
according to their abundance variation across all samples. Clusters with more than 50 genes were called CAGs 
and used for further analysis. CAG abundance pro�les were calculated as the average gene depth signal weighted 
by gene length.
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Taxonomic assignments of the CAGs were performed according to the taxonomy of their tracer genes, as pre-
viously described49. Brie�y, if more than 90% genes in the CAG were assigned to the species’ genome with more 
than 95% identity and 70% overlap of query, these CAGs were assigned as species. Smilarly, assigning an CAG 
to a genus requires more than 80% of its genes to align with a genome with more than 85% identity in both DNA 
and protein sequences.

Co-occurrence network of marker CAGs. �e marker CAGs were identi�ed with wilcoxon rank sum 
test(Benjamin–Hochberg q-value < 0.05) between any of the two groups. Marker CAGs were then clustered in 
all samples according to Spearman’s correlation index. �e co-occurrence network was plotted using Cytoscape 
(Version 3.2.1).

Functional Annotation. All genes in our catalogue were aligned to the KEGG database (Release 73.1, 
with genes of plants and animals excluded) by DIAMOND (Version 0.7.9.58, default parameter except for -k 50 
-sensitive -e 0.00001). Each protein was assigned to the KEGG orthology (KO) by the highest scoring annotated 
hits containing at least one HSP scoring over 60 bits64. Di�erentially enriched modules between groups were iden-
ti�ed as previously described, according to their reporter score from the Z-scores of individual KOs65.

�e protein sequences of Butyrate-acetoacetate-CoA transferase, choline TMA-lyase-activating enzyme, cho-
line TMA-lyase, betaine reductase and tryptophanase were downloaded from NCBI database. �e non-redundant 
gene catalogue was aligned to these sequences by using BLASTP (best-hit with E-value < 1E-5, identity >40% 
and coverage >50%)66,67.

Metabolomic analyses based on LC/MS. 50 mg faecal samples were transferred into Centrifuge 
Tubes(1.5 mL) by pipette. All faecal samples were extracted and precipitated protein with 800 µL of methanol, 
and 10 µL of internal standard (2.9 mg/mL, DL-o-Chlorophenylalanine) was added. �e samples were grinded 
at 65 KHz for 90 s, and centrifuged at 12000 rpm and 4 °C for 15 min. 200 µL of supernatant was transferred to 
vial for anaylsis. �e plasma metabolic pro�les were performed on LC/MS platform (�ermo, Ultimate 3000LC, 
Orbitrap Elite) using Hypergod C18 (100 × 4.6 mm 3 µm) column. For chromatographic separation conditions, 
the column temperature was 40 °C; �ow rate, 0.3 mL/min; mobile phase A, water +0.1% formic acid; mobile 
phase B, acetonitrile +0.1% formic acid; injection volume, 4 ml; automatic injector temperature, 4 °C.

�e plasma samples were thawed at room temperature, 100 µL of them was then transferred into Centrifuge 
Tubes(1.5 mL) by pipette. All samples were extracted and precipitated protein with 300 µL of methanol, and 10 µL 
of internal standard(2.9 mg/mL, DL-o-Chlorophenylalanine) was added. �e samples were vortexed for 30 s, and 
centrifuged at 12000 rpm and 4 °C for 15 min. 200 µL of supernatant was transferred to vial for analysis. �e 
plasma metabolic pro�les were performed on LC/MS platform (�ermo, Ultimate 3000LC, Orbitrap Elite) using 
Hypergod C18 (100 × 4.6 mm 3 µm) column. For chromatographic separation conditions, the column temper-
ature was 40 °C; �ow rate, 0.3 mL/min; mobile phase A, water +0.1% formic acid; mobile phase B, acetonitrile 
+0.1% formic acid; injection volume, 4 µL; automatic injector temperature, 4 °C.

For both faecal and plasma samples, heater temp of 300 °C, sheath gas �ow rate of 45arb, aux gas �ow rate of 
15arb, sweep gas �ow rate of 1arb, spray voltage of 3.0KV, capillary temp of 350 °C and S-lens RF level of 30% were 
set for positive ion mode (ES+). Heater temp of 300 °C, sheath gas �ow rate of 45arb, aux gas �ow rate of 15arb, 
sweep gas �ow rate of 1arb, spray voltage of 3.2KV, capillary temp of 350 °C and S-lens RF level of 60% were set 
for negative ion mode (ES−).

All metabolomic data was performed feature extraction and preprocessed with Compound Discoverer 2.0 
so�ware (�ermo), and then normalized and edited into two-dimensional data matrix by excel 2010 so�ware, 
including Retention time (RT), Compound Molecular Weight (compMW), Observations (samples) and peak 
areas. Multivariate Analysis (MVA) using SIMCA-P so�ware (Umetrics AB, Umea, Sweden). Compounds signif-
icantly di�erent between groups were obtained at a variable in�uence on projection (VIP) > 1, and p value < 0.05 
based on the peak areas. �e m/z value of these compounds was used to identify the metabolites corresponding to 
the featured peak in Metlin database. For metabolites detected in both ES+ and ES−, the data in the mode with 
higher VIP were retained for further analysis.

Statistical analysis. Quantitative demographic and clinical characteristics data with normal distribution 
was expressed as mean ± standard deviation; t-test was used for comparison between groups. Quantitative demo-
graphic and clinical characteristics data with non-normal distribution was expressed as median (�rst quartile, 
third quartile); Wilcoxon rank sum test was used for comparison between groups. Qualitative demographic 
and clinical characteristics data was presented as percentage; Chi-square test was used for comparison between 
groups. All statistical tests were 2-sided and p < 0.05 was regarded as signi�cant. Statistical analyses of demo-
graphic and clinical characteristics data were performed using SPSS (Version 20.0.0).

Beta-diversity analysis based on Bray Curtis distances and the visualization by using principal coordinates 
analysis were performed using the Vegan package in R so�ware (Version 2.15.3) and PERMANOVA test was 
used for testing the signi�cance of di�erence across groups. Principal component analysis was analysed using 
the FactoMineR package in R so�ware (Version 2.15.3). Canonical correspondence analysis was analysed using 
the Vegan package in R so�ware (Version 3.2.1). Di�erential abundance of gene, genera, KO and metabolites was 
tested by Wilcoxon rank sum test, and p values were corrected for multiple testing with Benjamin & Hochberg 
method. Only genera with an average relative abundance above 10−5 and existing in any �ve subjects were con-
sidered in the analyses. Spearman’s correlation coe�cients between marker CAGs were calculated in R so�-
ware (Version 3.2.1), and p values were corrected for multiple testing with Benjamin & Hochberg method. �e 
co-occurrence network was plotted using Cytoscape (Version 3.2.1). Spearman’s correlation coe�cients between 
di�erentially enriched genera and metabolites were calculated in R so�ware (Version 3.2.1) and visualized using 
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ComplexHeatmap package in R so�ware(Version 3.2.1), and p values were corrected for multiple testing with 
Benjamin & Hochberg method.

Data Availability. �e datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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