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Metagenomic and network analysis reveal wide
distribution and co-occurrence of environmental
antibiotic resistance genes

Bing Li1, Ying Yang1, Liping Ma1, Feng Ju1, Feng Guo1, James M Tiedje2 and Tong Zhang1
1Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong and 2Department of
Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA

A metagenomic approach and network analysis was used to investigate the wide-spectrum profiles of
antibiotic resistance genes (ARGs) and their co-occurrence patterns in 50 samples from 10 typical
environments. In total, 260 ARG subtypes belonging to 18 ARG types were detected with an
abundance range of 5.4 × 10−6–2.2 × 10−1 copy of ARG per copy of 16S-rRNA gene. The trend of the
total ARG abundances in environments matched well with the levels of anthropogenic impacts on
these environments. From the less impacted environments to the seriously impacted environments,
the total ARG abundances increased up to three orders of magnitude, that is, from 3.2 × 10− 3 to
3.1 × 100 copy of ARG per copy of 16S-rRNA gene. The abundant ARGs were associated with
aminoglycoside, bacitracin, β-lactam, chloramphenicol, macrolide-lincosamide-streptogramin, qui-
nolone, sulphonamide and tetracycline, in agreement with the antibiotics extensively used in human
medicine or veterinary medicine/promoters. The widespread occurrences and abundance variation
trend of vancomycin resistance genes in different environments might imply the spread of
vancomycin resistance genes because of the selective pressure resulting from vancomycin use.
The simultaneous enrichment of 12 ARG types in adult chicken faeces suggests the coselection of
multiple ARGs in this production system. Non-metric multidimensional scaling analysis revealed that
samples belonging to the same environment generally possessed similar ARG compositions. Based
on the co-occurrence pattern revealed by network analysis, tetM and aminoglycoside resistance
protein, the hubs of the ARG network, are proposed to be indicators to quantitatively estimate the
abundance of 23 other co-occurring ARG subtypes by power functions.
The ISME Journal (2015) 9, 2490–2502; doi:10.1038/ismej.2015.59; published online 28 April 2015

Introduction

Antibiotic resistance was identified as a major health
security challenge of the twenty-first century in
the 2013 G8 Science Minsters Statement (https://
www.gov.uk/government/publications/g8-science-
ministers-statement-london-12-june-2013). It is not
just a regional or national phenomenon but a global
problem, indicated by the famously typical cases of
the rapid dissemination of Klebsiella pneumoniae
carbapenemase-positive bacteria and New Delhi
metallo-β-lactamase-positive bacteria in Asia, Europe
and North America (McKenna, 2013). Soil, sediment,
surface water, sewage, sludge and animal waste have
been considered important reservoirs for antibiotic
resistance genes (ARGs) because abundant ARGs
have been frequently detected in these environments
(LaPara et al., 2011; Zhang and Zhang, 2011;

Koczura et al., 2012; Burch et al., 2013; Zhu et al.,
2013; Czekalski et al., 2014). Strikingly, recent
studies revealed that the exchange of ARGs between
bacteria from farm animals/soils and clinical
pathogens occurred via horizontal gene transfer
(Smillie et al., 2011; Forsberg et al., 2012). This
phenomenon emphasizes the clinical importance
of the environmental bacteria, that is, the transmis-
sion of ARGs from natural environments to clinic
establishes the natural resistome as a potential
direct source of pathogenic resistance genes
(Forsberg et al., 2012). Consequently, the in-depth
investigation of the diversity and abundance of
ARGs in various environments is central to estab-
lishing the overall picture that is essential for
management decision frameworks for controlling
antibiotic resistance.

Currently, the global monitoring efforts including
the European Antimicrobial Resistance Surveillance
Network (EARS-Net) (http://www.ecdc.europa.eu/
en/activities/surveillance/EARS-Net) and the US
National Antimicrobial Resistance Monitoring System
for Enteric Bacteria (http://www.cdc.gov/narms/)
mainly focus on the antibiotic consumption and
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antibiotic resistance isolates in clinical and public
health laboratories, whereas ARGs, an emerging
environmental pollutant, are not included in these
surveillance systems (Grundmann et al., 2011). One
of the dominant reasons is the lack of a rapid,
universal and accurate analysis method for the
broad-spectrum detection and quantification of
ARGs in environmental samples. Various molecular
technologies, such as PCR, quantitative PCR (qPCR)
and DNA microarray approaches have been com-
monly used to determine the occurrence/fate of
environmental ARGs and valuable insights have
been gained. However, there are several limitations
of amplification-based methods (PCR and qPCR),
including low-throughput, limited availability of
primers, amplification bias, false-negative results
due to inhibition in PCR and false-positive results
due to nonspecific amplification. High-capacity
quantitative PCR arrays have been applied to detect
ARGs in manure, compost and soil (Looft et al.,
2012; Zhu et al., 2013) to overcome the capacity
limitations; however, it cannot overcome the other
drawbacks mentioned above. DNA microarray is a
genomic analysis method that can simultaneously
detect a large number of ARGs in a single assay
(Zhang et al., 2009); the possibility for cross-talk of
different probes coupled with low-sensitivity
restricts its applications for comprehensive surveys
of ARGs in complicated environmental samples
(Yang et al., 2013).

High-throughput sequencing (HTS)-based meta-
genomic analysis is a powerful tool that could
overcome the drawbacks of the above methods
(Schmieder and Edwards, 2012) if the sequencing
depth and analysis tools are suitable. A novel
‘environmental ARG diagnostic approach’, that is, a
metagenomic analysis method using the Structured
Non-redundant Clean Antibiotic Resistance Genes
Database (SNC-ARDB) and customized scripts, has
been developed in our previous study to facilitate the
detection and quantification of a broad-spectrum
profile of ARGs (Yang et al., 2013). Combined with
network analysis tools, which have been widely used
to explore the interactions/associations among enti-
ties, such as the species in a food web (Krause et al.,
2003), proteins in metabolic pathways (Guimerà and
Amaral, 2005), coexisting patterns among microbial
taxa in soils (Barberán et al., 2012), activated sludge
(Ju et al., 2014) and human gastrointestinal tract
(Zhang et al., 2014), we could also assess the
co-occurrence patterns among ARGs in complex
environmental samples across spatial gradients.
Previous study indicated that ARG composition
correlated with microbial phylogenetic and taxo-
nomic structure both across and within soil types,
that is, bacterial community composition was the
primary determinant of soil ARG contents (Forsberg
et al., 2014); therefore, the co-occurrence patterns
between ARGs and microbial taxa in multiple
environments could help exploring the association
of the bacteria and ARGs.

The objectives of this study were (1) to conduct a
more comprehensive profiling of ARG diversity and
abundance in 50 environmental samples including
water, soils, sediments, sludge, biofilm and faeces
using the HTS-based metagenomic analysis; (2) to
evaluate the similarity/difference of ARG composi-
tions among different environmental samples using
non-metric multidimensional scaling (NMDS) analy-
sis; and (3) to identify several specific ARG subtypes
as the indicators for ARG contamination based on
the ARG co-occurrence patterns obtained using
network analysis.

Materials and methods
Sampling and data sources
Basic information on the 50 samples in this study is
summarized in Supplementary Table S1 (also
see Supplementary Information), covering various
typical environments, including 13 water samples
(sewage, swine wastewater sample, treated waste-
water, river water and drinking water), three soils,
three sediments, one wastewater biofilm, 18 sludge
samples (activated sludge and anaerobic digestion
sludge) and 12 faecal samples (human, chicken and
pig). Among these 50 samples, three soil and two
human faeces samples were downloaded from
MG-RAST. Eighteen data sets, including eight AS
samples (Yang et al., 2013), three sediments, one
ADS sample, one biofilm sample (Ma et al., 2014),
three river water samples and two tap water samples
(Chao et al., 2013), have been used in our previous
studies of ARGs in a single environment compart-
ment. The detailed sample collection procedures are
described in Supplementary Information S1.

DNA extraction and HTS
DNA extraction and concentration determination are
described in Supplementary Information S2. Beijing
Genomics Institute (BGI) provided shotgun library
construction and Illumina HTS on HiSeq2000 for 45
DNA samples (6 μg of DNA for each sample). The
base-calling pipeline (Version Illumina Pipeline-0.3)
was used to process the raw fluorescence images and
call sequences (Qin et al., 2010). The entire data set
is 187 Gb (giga base pairs), which is the largest
sequence data set reported so far on the study of
ARGs in environmental samples.

Bioinformatics analysis
Data filtration was performed to guarantee the
quality of the downstream analysis (Supplementary
Information S3). Subsequently, all the metagenomic
sequencing data were searched for ARGs against the
SNC-ARDB using BLASTX with E-value ⩽ 1×10− 5

(Yang et al., 2013). A sequence was annotated as an
ARG-like fragment if its best hit in the SNC-ARDB
had ⩾90% sequence identity and the alignment
length was ⩾25 amino acids (Kristiansson et al., 2011).
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The high accuracy for positive hits (499.5%) of the
metagenomic analysis approach using these similarity/
alignment length cutoffs has been validated in
our previous study (Yang et al., 2013). To save
sorting time and avoid human errors in ARG-like
sequence classification, we developed a package of
customized scripts that could automatically sort the
ARG-like sequences obtained from the BLAST
results into different types and subtypes of ARGs.
Additionally, the number of ARG-like sequences in
each subtype can be counted automatically. There
are 25 ‘ARG types’, 618 ‘ARG subtypes’ and 2998
non-redundant reference sequences in the SNC-
ARDB. For example, ‘aminoglycoside resistance
genes’ is one example of an ‘ARG type’, whereas
‘aadA’ is one of the aminoglycoside resistance
subtypes and there are three reference sequences
belonging to aadA. It should be pointed out that the
methodology used in the present study would only
detect ARGs that have been annotated in SNC-ARDB.
Some novel types of ARGs present in the samples
might be missed since the analysis is based on a
similarity search. Additionally, SNC-ARDB contains
a number of efflux proteins (e.g., acrA and acrB and
so on). Although they are present in both antibiotic-
susceptible and antibiotic-resistant bacteria and
cannot be good markers of resistance phenotype,
they were usually related to efflux of antibiotic and
thus were classified as ARGs (genotype) in previous
references (Mikolosko et al., 2006; Szczepanowskei
et al., 2009; Nesme et al., 2014) and another
commonly used database, The Comprehensive Anti-
biotic Resistance Database (CARD, http://arpcard.
mcmaster.ca/?q =CARD/ontology/36298). Therefore,
efflux pump-related ARGs were still included in the
SNC-ARDB to evaluate the antibiotic resistance
potential.

MetaPhlAn was applied to conduct taxonomic
classification and quantify the corresponding
relative abundance (in terms of the number of cells
rather than fraction of reads) by mapping meta-
genomic reads against a catalogue of clade-specific
marker sequences currently spanning the bacterial
and archaeal phylogenies (Segata et al., 2012).

Statistical analysis and network analysis
In our previous study (Yang et al., 2013), the portion
of types or subtypes of ARG-like sequences in the
‘total metagenome sequences’ were defined as the
‘abundance’ (‘p.p.m.’, one read in one million reads).
However, this calculation did not consider the
impact of the sequence length of the ARG reference
sequences on the final abundance results and may
have biases, especially when comparing the ARG-
like sequence abundance among different ARG
subtypes or types that have different gene lengths.
In the SNC-ARDB, the ARG reference sequences
range widely from 186 to 4728 bp (Supplementary
Table S2). To avoid the bias, normalization by the
ARG reference sequence length was conducted in

this study. Additionally, normalization by the
16S-rRNA gene sequence length was also conducted,
and ARG ‘abundance’ was expressed as ‘copy of
ARG per copy of 16S-rRNA gene’ (thereafter called
‘ratio’), which is the same as that of qPCR results
reported in most previous literature. Therefore, the
abundance obtained using the metagenomic analysis
approach could be directly compared with those
acquired via qPCR in other studies. The ‘abundance’
of the ARG type or subtype was calculated using the
following equation:

Abundance ¼
Xn

1

NARG�like sequence ´ Lreads=LARG reference sequence

N16S sequence ´ Lreads=L16S sequence

ð1Þ
where NARG-like sequence is the number of the
ARG-like sequence annotated as one specific
ARG reference sequence; LARG reference sequence is the
sequence length of the corresponding specific ARG
reference sequence; N16S sequence is the number of the
16S sequence identified from the metagenomic data;
L16S sequence is the average length of the 16S sequence
in the Greengenes database, which was used as the
reference database for the 16S sequence identifica-
tion via the local BLAST approach (Albertsen et al.,
2013), that is, 1432 bp was used in Equation (1); n is
the number of the mapped ARG reference sequence
belonging to the ARG type or subtype; Lreads is the
sequence length of the Illumina reads (100 nt) or 454
pyrosequencing reads (200 nt) that was used in the
present study.

NMDS was performed using the abundance corre-
lation matrix of the ARG subtypes. Additionally, the
Mann–Whitney test was implemented to compare
whether the medians of the ARG abundances among
various environments are significantly different (Hu
et al., 2013). All statistical analyses were performed
by PAleontological STatistics software (version 2.15).

To visualize the correlations in the network
interface, we constructed a correlation matrix by
calculating all possible pairwise Spearman’s rank
correlations between the 84 ARG subtypes that
occurred in at least 16 samples out of all environ-
mental samples in the present study (41 samples
excluding biological duplicates) (Steele et al., 2011).
This preliminary filtering step removed those poorly
represented ARG subtypes that occurred in a limited
number of samples and thus reduced the artificial
association bias. A correlation between two items
was considered statistically robust if the Spearman’s
correlation coefficient (ρ) was 40.8 and the P-value
was o0.01 (Junker and Schreiber, 2008). To reduce
the chances of obtaining false-positive results, the
P-values were adjusted with a multiple testing
correction using the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995). The robust
pairwise correlations of the ARG subtypes formed
their co-occurrence networks. Network analyses
were performed in R environment using VEGAN
(Oksanen et al., 2007), igraph (Csárdi and Nepusz,
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2006) and Hmisc (Harrell and Frank, 2008) packages.
Network visualization was conducted on the inter-
active platform of Gephi (Bastian et al., 2009).

Results and discussion

Broad-spectrum profile of ARG abundances in various
environments
The average relative standard deviation of ARG
abundance at total ARG, ARG type and subtype
levels were 8.6%, 15.6%, and 21.4%, respectively
which indicate that the HTS-based metagenomic
approach was reproducible for ARG quantification
(Supplementary Figure S1). Additionally, the
sequencing depth of these 50 data sets was sufficient
to characterize the ARG profiles at the subtype level
(Supplementary Figure S2). In total, 18 of all 25 ARG
types included in the SNC-ARDB were detected in at
least one of the 50 samples (Figure 1a). The
abundances of different ARG types in the samples
varied greatly, from a 5.4 ×10−6 ratio (acridine
resistance genes in ‘Pigfarm.STP.Influent’) to a
1.0 × 100 ratio (multidrug resistance genes in
‘Faeces-Chicken-80d-b’). In general, the resistance
genes for aminoglycoside, bacitracin, β-lactam,
chloramphenicol, macrolide-lincosamide-streptogramin
(MLS), multidrug, quinolone, sulphonamide and
tetracycline were more abundant and commonly
distributed than the other ARG types in these
samples. As expected, these abundant ARGs were
usually associated with the antibiotics used exten-
sively as human medicine or veterinary medicine
including growth promotion.

As shown in Figure 1b, the 50 samples from 10
typical environments, including river water, drink-
ing water, STP influent, STP effluent, activated
sludge and biofilm, anaerobic digestion sludge, soil,
sediment, human faeces and faeces and wastewater
from livestock farms, could be clustered into four
groups according to their total ARG abundance
levels. The Mann–Whitney test indicated that total
ARG abundances were significantly different
(P-value: o0.005; Supplementary Table S3) among
these four groups and followed the order of Group
IoGroup IIoGroup IIIoGroup IV with successive
increments of ~ 0.5–1 orders of magnitude. The ARG
abundances in faeces and wastewater from livestock
farms in Group IV (5.4 × 10− 1–3.1 ×100 ratio) were
1–3 orders of magnitude higher than those of
samples in Group I, such as sediment (4.0 × 10− 3–

3.0 × 10− 2 ratio), soil (1.6 × 10− 2–1.8 × 10− 2 ratio),
river water (1.7 × 10−2–3.1 × 10− 2 ratio) and drinking
water (1.2 × 10− 2–4.7 × 10− 2 ratio). These data further
verified the conclusion that livestock farms were
hotspots for ARGs (Zhu et al., 2013). The ARG
abundances in Group II (STP AS and BF, STP ADS
and STP effluents) and Group III (STP influents
and human faeces) were within the ratio range of
2.7 × 10− 2–2.2 ×10− 1 and 2.4 ×10− 1–4.4 × 10− 1,
respectively. With regard to a specific ARG type,

tetracycline resistance genes also exhibited a similar
abundance trend with total ARG abundance among
these four groups (P-value: o0.01). It should be
noted that these four groups were representative of
the typical environments affected by the anthropo-
genic activities and antibiotic selection pressures at
different levels, from the slightly impacted Group I to
the most seriously impacted Group IV. The ARG
abundance variations closely matched the levels of
anthropogenic impact and, presumably, antibiotic
selection pressures in the various environments. We
should keep in mind that one possible reason
resulting in the above grouping pattern might be
because of database bias of SNC-ARDB. After all, the
metagenomic analysis method using SNC-ARDB
only obtain the ‘broad-spectrum’ profile rather than
the ‘full-spectrum’ profile of ARGs. Some novel
types of ARGs present in the sample might be missed
as the analysis is based on a similarity search.
Additionally, some types of ARGs might be under-
estimated owing to the integrity of the databases
because not all known ARGs were included in
SNC-ARDB.

Supplementary Figure S3 illustrates the ARG-type
compositions in 10 different environmental types.
For soils, river water and human faeces, the top 2 or
3 dominant ARG types belonging to bacitracin,
multidrug, tetracycline, β-lactam or MLS resistance
genes could account for over 80% of the total ARG
abundances. However, for sediments, drinking
water, environments related to STP (influents,
effluents, AS and BF, ADS) and livestock farms
(faeces and wastewater), the compositions of the
ARG types mainly included the resistance genes
of tetracycline, aminoglycoside, MLS, multidrug,
β-lactam, chloramphenicol, sulphonamide, bacitracin
and quinolone.

Valuable insights have been gained by PCR-based
approaches to investigate a few groups of ARGs
(Supplementary Table S4). However, these previous
studies only covered a limited number of well-
studied ARG types among the resistance genes of
tetracycline, sulphonamide, β-lactam, vancomycin,
chloramphenicol and aminoglycoside. Tetracycline
resistance genes and sulphonamide resistance genes
were the predominant target ARG types in 90% of
previous studies (Supplementary Table S4). With
regard to the ARG subtypes, o40 subtypes were
covered in the ARGs detection list in previous
studies (Supplementary Table S4). In this aspect,
the current PCR-based approaches provided a mere
snapshot of the ARG profiles in environmental
samples. The metagenomic analysis method could
be used to investigate ARGs across a broader
spectrum without PCR bias and capture a more
complete picture of the ARG profiles because 25
ARG types, consisting of 618 ARG subtypes, could be
analysed simultaneously. Among these 618 ARG
subtypes, 260 ARG subtypes were detected in our
samples (Supplementary Figure S4), 1–2 orders of
magnitude more ARG subtypes than those detected
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in similar environments reported previously
(Supplementary Table S4). Our results indicate
that, besides tetracycline resistance genes and
sulphonamide resistance genes, the resistance
genes of aminoglycoside, MLS, multidrug, β-lactam,
chloramphenicol, bacitracin and quinolone were
also very abundant in the different sampled environ-
ments. For example, bacitracin resistance genes in
river water, multidrug/MLS/quinolone resistance
genes in STP influents, MLS/chloramphenicol in

livestock faeces, and so on would likely be missed if
only the small subset of the ARGs were assayed.

Widespread occurrence of vancomycin resistance genes
As the last line of defence against Gram-positive
bacteria such as Streptococcus pneumoniae and
Enterococcus, for which some strains are resistant
to most other antibiotics, vancomycin has been
prudently prescribed during the past several decades
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Figure 1 (a) Broad-spectrum quantitative profile of the ARG types (copy of ARG per copy of 16S-rRNA gene) in 50 environmental
samples. (b) Comparison of total ARG abundance in different environments.
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(Jovetic et al., 2010; McKenna, 2013). As shown in
Figure 1, the abundance of vancomycin resistance
genes in the environments was significantly lower
than those of other resistance genes related to the
widely used antibiotics (aminoglycoside, bacitracin,
β-lactam, chloramphenicol, MLS, quinolone, sulpho-
namide and tetracycline). In total, 19 unique sub-
types of vancomycin resistance genes were detected
in the seven environments but not river water,
drinking water and sediments (Supplementary
Figure S4). Among these seven environments, the
human faeces, STP influent and faeces and waste-
water from livestock farms possessed the most
abundant vancomycin resistance genes. Previous
studies also indicated that a number of vancomycin
resistance genes were detected in swine manure
samples (Zhu et al., 2013) and human faeces samples
(Hu et al., 2013). vanRG even ranked in the top 10
most abundant ARGs in the human faeces samples of
Chinese, Spanish and Danish populations. We wish
to emphasize that although vancomycin resistance
genes have also been found in permafrost sediments,
which were never affected by the anthropogenic
activities before (D’Costa et al., 2011), and the
average abundance of vancomycin resistance genes
in the samples of this study was relatively low
(1.6 × 10− 5–1.8 ×10− 4 ratio), the findings of their
widespread occurrences and abundance variation
trend in the present study, that is, human faeces, STP
influent and faeces and wastewater from livestock
farms possessed the most abundant vancomycin
resistance genes, whereas no detection in river
water, drinking water or sediments still deserved
more attention because they might imply the spread
of vancomycin resistance genes because of the
selective pressure resulting from vancomycin use.

The enrichment of ARG abundances in adult chicken
faeces and the decrease of ARG abundances in adult
pig faeces
ARG abundance increased significantly in the swine
microbiome after 14 days of feeding antibiotics
(Looft et al., 2012), indicating that the selective
pressure of non-therapeutic levels antibiotics greatly
enhanced the abundance of ARGs. This conclusion
was also supported by our ARG data from faeces of
commercially grown chicks (20 days old) and adult
chickens (80 days old). The abundance of ARGs
increased from a ratio of 1.62–1.53 for chick faeces to
2.74–3.11 for adult chicken faeces. The ARGs with
enrichment over 10-fold consisted of resistance
genes for acridine, bacitracin, β-lactam, bleomycin,
fosmidomycin, multidrug, polymyxin and quinolone
(Supplementary Figure S5A). Apart from these eight
ARG types, the resistance genes of aminoglycoside,
sulphonamide, ‘others’ and trimethoprim also
increased beyond from their already high back-
ground abundance ratios of 1.6 × 10− 1, 2.9 × 10− 2,
3.2 × 10− 2 and 1.1 × 10− 2 to even higher ratios of
4.7 × 10− 1, 1.2 × 10− 1, 1.8 × 10− 1 and 1.0 × 10− 1,

respectively. Although we did not analyse the types
and concentrations of antibiotics existing in the
chicken feed and faeces, judging by the practical
situation on the livestock farm, there should not be
so many types of antibiotics added into the chicken
feed/water. The significant enrichment of 12 ARG
types raises an interesting question as to why so
many AGRs have increased. Similar results were also
found in Looft’s study (2012), that is, aminoglycoside
O-phosphotransferases conferring resistance to
aminoglycosides were markedly enriched in pig
faeces even though aminoglycosides were not used.
This finding suggests an indirect mechanism of
selection (coselection) of multiple ARGs, perhaps
by co-occurrence on mobile elements conferring
resistance to the antibiotics fed (Looft et al., 2012).

In contrast to the trend of ARG profiles in chick
and adult chicken faeces, there was no enrichment of
the ARGs in adult pig (8 months old) faeces
compared with the piglet (1-month-old) faeces.
Instead, the abundances of some ARG types, such
as resistance genes of bleomycin, fosmidomycin,
polymyxin, multidrug, sulphonamide and trimetho-
prim, decreased greatly and their abundances in
adult pig faeces were less than one-tenth of
the amounts in young pig faeces (Supplementary
Figure S5B). In addition to these six ARG types,
aminoglycoside resistance genes also decreased
from their high background abundance ratio of
1.4 × 10− 1–6.0 ×10− 2. This might be due to the
practice of feeding more antibiotics to young pigs
more susceptible to disease, and reducing or elim-
inating such feed amendments to older pigs (Zhou
et al., 2013; Jensen and Hayes, 2014).

Representative ARG subtypes in different environments
At the subtype level, 260 ARG subtypes were
detected in these 50 samples at the abundance
ratio range of 5.4 × 10− 6–2.2 × 10− 1 (Supplementary
Figure S4). Among the 260 detected subtypes, the
profile of 129 major ARG subtypes (41.0 ×10− 3 ratio
in at least one sample) was shown in Figure 2. The
top 10% (referring to the ratio of ARGs subtype
numbers) most abundant ARG subtypes in each
environment, which were considered the represen-
tative ARGs, were summarized in Supplementary
Table S5. Most of the representative ARGs in the
environments of this study have not been previously
reported, indicating there are new findings from the
present study using the novel approach.

STP influents and STP effluents
In STP influents, the 20 representative ARG subtypes
with the abundance ratio range of 5.7 × 10− 3–

3.2 × 10− 2 belonged to nine types and accounted for
62.7% of the total ARG abundance in influents.
Among these subtypes, tetM, tetW, ermB and sul1
have also been frequently detected in STP influents
of US (Gao et al., 2012), China (Chen and Zhang, 2013)
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and Estonia (Nõlvak et al., 2013) using qPCR
methods, within the abundance ratio ranging from
~2.0 × 10− 5 to ~ 5.0 × 10− 2. In STP effluents, the 12
representative ARG subtypes with the abundance
ratio of 1.9 × 10− 3–3.2 × 10− 2 belonged to nine types
and contributed as much as 76.9% of the total ARG
abundance in effluents.

The target ARGs detected in STP influents and
effluents in previous studies only focused on genes
resistant to tetracycline, sulphonamide, β-lactam and
vancomycin (Supplementary Table S4). However,
considering the results in the present study, many
other ARG types not reported previously, such as
those associated with resistance to aminoglycoside,
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Figure 2 Abundance of the 129 major (41.0×10−3 ratio in at least one sample) ARG subtypes in the 50 environmental samples.
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bacitracin, chloramphenicol, MLS, quinolone and
multidrug, also occurred in influents and effluents
with high abundances. This further highlighted the
importance of broad-spectrum scanning of ARGs
using the metagenomic approach.

The representative ARG subtypes in river water,
drinking water, human faeces and faeces/wastewater
from livestock farms are discussed in Supplementary
Information S4.

Similarity analysis of ARG profiles in 50 environmental
samples
The similarity of ARG compositions in the 50
environmental samples was evaluated using NMDS
(Figure 3), which revealed that the grouping pattern
was primarily influenced by the types of the
environment with a few exceptions. Not surpris-
ingly, samples from the same type of environment
generally clustered more closely. For instance, river
water, drinking water, STP influents, STP effluents,
STP AS and BF, STP ADS, human faeces, soils and
faeces and wastewater from livestock farms formed
distinct clusters, respectively.

We hypothesized that there would be remarkable
similarities of the ARG compositions between STP
influent samples and human faeces samples, espe-
cially when the STP (like Shatin STP) mainly treats
domestic wastewater without significant contribu-
tions from animal sources (like slaughterhouses and
livestock farms). In other words, the ARG profiles in
influents might reflect the average ARG abundance
and diversity in the gastrointestinal tracts of urban
residents of the STP catchment. The Venn diagram
(Supplementary Figure S6) and the grouping pattern
demonstrated by the NMDS (Figure 3) clearly
confirmed this hypothesis. In total, 68 ARG subtypes
belonging to 11 types were shared by the STP
influents and human faeces with comparable abun-
dances. The shared ARGs accounted for as much as
67.2% and 100% of the total ARG abundance
in STP influents and human faeces, respectively
(Supplementary Table S7 and Supplementary Figure S6).
It should be noted that the STP influents were
collected from Hong Kong, whereas the human
faeces samples were collected from residents living
in the United States (Turnbaugh et al., 2009). More
closely clustered pattern could be expected if the
human faeces samples were collected from the
residents who lived within the STP catchment area.

Moreover, the ARG profiles in pig faeces (sample
codes 39–44 in Figure 3) and chicken faeces (sample
codes 47–50 in Figure 3) could be used to represent
the corresponding ARG abundance and diversity in
pig and chicken gastrointestinal tracts, respectively.
Notably, among the three types of animal faeces, the
human faeces samples clustered more closely with
the pig faeces samples, indicating a higher similarity
between the ARG profiles of human gastrointestinal
tracts and pig gastrointestinal tracts, consistent with
their known digestive similarities.

Shared ARGs among human faeces, pig faeces and
chicken faeces
Determining the shared ARGs between human and
livestock faeces made it possible to compare directly
the similarity of ARGs composition in gastrointest-
inal tracts of humans and farm animals. A total of 99
ARGs (at the reference sequences level) belonging to
10 types were shared by human and young livestock
faeces (Figure 4 and Supplementary Table S8). The
shared ARGs accounted for 30.5 ± 0.2%, 71.8 ± 4.4%
and 85.6 ± 1.2% of the total abundance of ARGs
detected in chick faeces, piglet faeces and human
faeces, respectively (Supplementary Table S9).
Among these shared ARGs, the resistance genes of
tetracycline, β-lactam, aminoglycoside and bacitra-
cin were dominant in human faeces, whereas the
resistance genes of tetracycline, MLS, aminoglyco-
side and multidrug were abundant in young live-
stock faeces (Supplementary Figure S7). Figure 4b
further exhibited the detailed information on the
types of shared ARGs and their abundance compar-
ison among human faeces, piglet faeces and chick
faeces. In Figure 4b, the percentage of one specific
ARG in each faeces is equal to its corresponding
abundance divided by the abundance sum of this
ARG in the three types of faeces. Among these shared
ARGs, the abundance of bacitracin resistance genes
was much higher in human faeces than in young
livestock faeces. However, MLS, tetracycline, multi-
drug, sulphonamide and aminoglycoside resistance
genes were more abundant in young livestock faeces.

Seventy-seven ARGs (at the reference sequences
level) belonging to 10 types were shared by humans
and adult livestock (Supplementary Figure S8 and
Supplementary Table S10). The abundance sum of
these 77 shared ARGs contributed to 32.4 ± 0.8%,
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75.2 ± 0.8% and 88.9 ± 0.6% of the total ARGs
occurring in adult chicken faeces, adult pig faeces
and human faeces, respectively (Supplementary
Table S11). Among these shared ARGs, the resis-
tance genes of tetracycline, β-lactam and aminogly-
coside were dominant in human faeces, whereas
the resistance genes of tetracycline, MLS and
aminoglycoside were abundant in adult pig faeces
(Supplementary Figure S9). Unlike the human faeces
and adult pig faeces, multidrug resistance genes,
instead of tetracycline resistance genes, were the
most abundant shared ARGs in adult chicken faeces.

Co-occurrence patterns among ARG subtypes
The co-occurrence patterns among ARG subtypes
were explored using network inference based on
strong (ρ40.8) and significant (P-value o0.01)
correlations (Junker and Schreiber, 2008). Figure 5
consists of 46 nodes (ARG subtypes) and 98 edges.
Certain topological properties widely used in

network analysis were calculated to describe the
complex pattern of the interrelationships among
the ARG subtypes (Supplementary Information S5).
The modularity index of 0.472 suggested that the
network had a modular structure (Newman, 2006).
Based on the modularity class, the entire network
could be parsed into eight major modules (i.e., clusters
of nodes that interact more among themselves than
with other nodes, compared with a random associa-
tion), with 31 of 46 total vertices occupied by the two
largest modules: Modules I and II. The most densely
connected node in each module was defined as the
‘hub’ in the following statements. The co-occurring
ARG subtypes of the module hubs were summarized
in Supplementary Table S12.

The ‘tetM’ was the hub of Module I, whereas the
‘aminoglycoside resistance protein’ was the hub for
Module II (Figure 5). One possible explanation for
the hubs and related co-occurring ARGs in each
module is that they might be harboured in some
specific microbial taxa that are shared by different
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environments. On the other hand, the hubs could act
as the ARG indicators to indicate the quantity of the
correspondingly co-occurring ARGs. In other words,
these two hubs could be used as representatives of 23
unique ARGs subtype (Supplementary Table S12).
Supplementary Figure S10 illustrates the correla-
tions between the hub abundance and the
co-occurring ARG abundance. Further investigation
indicated that the abundance of ‘hubs’ and the
correspondingly co-occurring ARGs followed a
power function with R2 values ranging from 0.86 to
0.92 (Supplementary Table S13 and Supplementary
Figure S11). Validation has been conducted to
guarantee the applicability and accuracy of the
model by comparing the model predicted value
and the detected ARG abundance of co-occurring
ARGs (Supplementary Figure S6 and Supplementary
Table S14). The validation results imply that the
abundance of co-occurring ARGs could be accurately
estimated using the hub’s abundance via this power
function. In addition, the high abundance of these two
ARGs in various environments facilitates their applic-
ability as ARG indicators (Figure 2). To indicate the
abundance of the other 23 ARGs in samples, a simple
and quick qPCR assay of ‘tetM’ and ‘aminoglycoside
resistance protein’ as the target genes could be used.
This will substantially save on the detection time and
labour for monitoring these ARGs in multiple environ-
mental samples. We suggest that this approach be more
widely tried and tested.

Co-occurrence between ARG subtypes and
microbial taxa
Comparison with microbial diversity of the 50
samples was summarized in Supplementary Table
S15. As shown in Supplementary Figure S12, there
was a significant Spearman’s rank correlation
(Spearman’s ρ=0.58~0.61, P-value o1.0E−4) between
the microbial diversity and the ARGs diversity. The
co-occurrence patterns between ARG subtypes and
microbial taxa were also investigated using network
analysis approach (Figure 6). Some topological
properties of network analysis were summarized in
section Supplementary Information S7. The detailed
co-occurrence between ARGs subtype and microbial
taxa were summarized in Supplementary Table S16.
In the present study, it was hypothesized that the non-
random co-occurrence patterns between ARGs and
microbial taxa could indicate the possible host informa-
tion of AGRs if the ARGs and the co-existed microbial
taxa possessed the significantly similar abundance
trends among the different environments (Spearman’s
ρ40.8, P-value o0.01). In other words, one of the
reasonable explanations of the corresponding similar
abundance trends was because of some specific
microbial taxa carrying some specific ARGs, which
has been verified by Forsberg’s study (2014).

As shown in Supplementary Table S16, five
bacterial genera and one archaea genus were specu-
lated as the possible AGRs host based on the
co-occurrence results. For instance, Blautia was the
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host of tetracycline resistance genes (tet32, tetM, tetQ
and tetO) and MLS resistance gene (ermB). Similar to
Blautia, Clostridium also took along tetracycline
resistance genes (tet32 and tetO) and MLS resistance
gene (ermB). Enterococcus was found to be the
host of ARG subtypes of erythromycin ribosome
methylase, whereas Bacteroides mainly carried tetQ.
Compared with the above genera, Escherichia took
along more diverse ARGs, including resistance genes
of β-lactam (cfxA3), tetracycline (tetQ), multidrug
(acrA, mdtH, mdtL and mdtO) and others (dimethy-
ladenosine transferase). Methanobrevibacter, a typical
methanogenic archaea genus (Daquiado et al., 2014),
mainly carries tet32, ermB and aminoglycoside
phosphotransferase. A few of the ARG hosts have
been verified in previous studies, which showed
very consistent results (Supplementary Table S16).
For instance, tetQ was commonly carried by
Escherichia, and Bacteroides (Zhang et al., 2009;
Shoemaker et al., 2001; Forslund et al., 2013).
Forslund et al. (2013) reported that both Blautia
and Clostridium mainly harboured tet32, tetO and
ermB, whereas Escherichia took along acrA, mdtH,
mdtL and mdtO.

The high consistency between our results and the
previous studies for the cases mentioned above
indicated that the network analysis is a reasonable
and powerful tool to provide us new insights into
the ARGs and their possible hosts in complex

environmental examples. Such co-occurrence rela-
tionships revealed by network analysis need to be
further validated using other approaches.
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