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Summary

Bacteria and fungi are of uttermost importance in

determining environmental and host functioning.

Despite close interactions between animals, plants,

their associated microbiomes, and the environment

they inhabit, the distribution and role of bacteria and

especially fungi across host and environments as

well as the cross-habitat determinants of their com-

munity compositions remain little investigated. Using

a uniquely broad global dataset of 13 483

metagenomes, we analysed the microbiome structure

and function of 25 host-associated and environmen-

tal habitats, focusing on potential interactions

between bacteria and fungi. We found that the meta-

genomic relative abundance ratio of bacteria-to-fungi

is a distinctive microbial feature of habitats. Com-

pared with fungi, the cross-habitat distribution

pattern of bacteria was more strongly driven by habi-

tat type. Fungal diversity was depleted in host-

associated communities compared with those in the

environment, particularly terrestrial habitats, whereas

this diversity pattern was less pronounced for bacte-

ria. The relative gene functional potential of bacteria

or fungi reflected their diversity patterns and

appeared to depend on a balance between substrate

availability and biotic interactions. Alongside helping

to identify hotspots and sources of microbial diver-

sity, our study provides support for differences in

assembly patterns and processes between bacterial

and fungal communities across different habitats.

Introduction

Bacteria and fungi contribute significantly to global biodi-

versity and biomass (Bar-On et al., 2018), and are funda-

mentally important for global ecosystems and host health

and functioning. Bacteria provide their hosts with vitamins

and cofactors, act as plant-growth promoting

rhizobacteria, and help digest otherwise indigestible

fibres and contribute to immunity (Schmidt et al., 2018).

While some fungi are known as important plant symbi-

onts or comprise some of the most beneficial mutualists

and detrimental pathogens (Fisher et al., 2012), the role

of fungi in non-plant hosts is less known. In environmen-

tal habitats, both bacteria and fungi drive decomposition

of organic material and nutrient cycling (Falkowski

et al., 2008; Berendsen et al., 2012). Given that hosts

exist within external environments, external host habitats

are much more complex in terms of scale, abiotic hetero-

geneity and C resources, compared with internal host

habitats. Thus, environmental microbiomes – and to a

lesser extent external host microbiomes – likely experi-

ence greater exposure to migrations of different organ-

isms/genes, leading to a greater variety of niches

suitable for the establishment of a larger variety of organ-

isms compared with internal host habitats (Pent

et al., 2017; Küngas et al., 2020). Different abiotic factors

such as pH, climate and organic matter contents shape

the environmental community compositions of bacteria

and fungi (Tedersoo et al., 2014; Louca et al., 2016;

Bahram et al., 2018; Delgado-Baquerizo et al., 2018).
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Accumulating evidence hints at the niche specialization

of bacteria and fungi, reflected in their global distribution

patterns (Frey-Klett et al., 2011; Bahram et al., 2018;

Crowther et al., 2019), suggesting that contrasting mech-

anisms underlie their community assembly processes. At

the same time, there appears to be a significant func-

tional overlap between bacteria and fungi for utilizing

resources, hinting at the importance of bacterial–fungal

interactions (de Boer, 2017). Yet, a simultaneous synthe-

sis of bacterial and fungal community patterns across a

wide array of host and environmental habitats is so far

lacking.

We have profoundly increased our understanding of

global patterns of both bacterial and fungal communities,

but most studies tend to examine either bacterial or fun-

gal communities in isolation, often without determining

their associated functions. Given that microbial genes

and taxa appear to be exchanged across different host

and environmental habitats (Sokol et al., 2017; Bahram

et al., 2018; Hannula et al., 2019), it remains an open

question whether stochastic processes (geographical

proximity, random dispersal), or deterministic processes

(similarity in environmental conditions, or biotic interac-

tions) determine microbiome structure across habitats.

Aside from other abiotic factors, the composition of micro-

bial communities appears to depend on the prevailing

and dominant available source of organic carbon (C) in a

given habitat (Hoffmann et al., 2013). In general, it is

thought that fungi tend to outcompete bacteria in utilizing

more complex and varied forms of C, whereas bacteria

tend to outcompete fungi for more labile C sources in ter-

restrial habitats (Boer et al., 2005; Žifčáková et al., 2017).

This is likely facilitated by physiological differences,

including contrasting stoichiometry, carbon use efficien-

cies, enzymatic capabilities, and stress tolerance mecha-

nisms between bacteria and fungi (Lynch and

Walsh, 2007; Frey-Klett et al., 2011; Sokol et al., 2017;

Bahram et al., 2018; Deveau et al., 2018; Naranjo-Ortiz

and Gabaldón, 2019). Yet, the role of bacteria in the

decomposition of more recalcitrant forms of C and the

role of fungi in the utilization of more labile C may be

underestimated, and both fungi and bacteria may be

equally important in overall C decomposition patterns

(Strickland and Rousk, 2010; Bugg et al., 2011; de Vries

and Caruso, 2016; Wilhelm et al., 2019). There is also

growing evidence that the microbial control of ecosystem

processes as well as host health may be mediated by

biotic interactions between bacteria and fungi (Mendes

et al., 2011). These interactions span an antagonistic–

mutualistic spectrum to direct predation and parasitism,

and range from free-living interactions to mixed biofilms,

and intrahyphal colonization by bacteria (Frey-Klett

et al., 2011). Collectively these growing insights into the

specific properties of bacteria and fungi and their

interactions suggest that habitat types may have distinct

bacterial-fungal (B/F) ratios and alterations to the B/F bal-

ance in either direction may have consequences for eco-

system and host functioning, e.g. in C decomposition,

and host health (Allison et al., 2013; Bahram

et al., 2018).

Here, by leveraging a global dataset of 13 483 meta-

genomic samples, we examined the structure and func-

tion of fungal and bacterial communities, based on the

relative abundance of taxonomic stable rRNA genes and

orthologous groups (OGs) respectively (Fig. S1;

Table S1). Metagenomics approach allows us to com-

pare fungal and bacterial compositions simultaneously,

and in relation to each other (Bahram et al., 2018). This

may offer advantages over 16S or ITS amplicon

sequencing that can only amplify bacteria and fungi,

making relative comparisons between them riddled with

biases (Handelsman, 2004; Hugenholtz and

Tyson, 2008; Grice and Segre, 2011; Tedersoo

et al., 2015; Quince et al., 2017). Our selection of publicly

available samples included 25 habitat types, spanning

internal and external host (including skin, oral and gastro-

intestinal of different animal species) and environmental

(including soil, water and built) habitats. These habitats

differ in environmental variation, scale, biotic interactions

and dispersal processes. Therefore, we hypothesized

that: (i) there is a greater diversity (Shannon diversity

index) and relative abundance of both bacterial and fun-

gal taxa and associated functions in environmental and

external host compared with internal host microbiomes,

where microbes and their functions are likely to be more

specialized, and that (ii) certain host associated microbes

are likely to be a subset of the microbiome met-

acommunity of the environment, i.e. displaying a nested

community structure. More specifically, due to greater

exposure to environmental microbes, external host habi-

tats more likely harbour a subset of microbes from the

environment, compared with internal host habitats. We

also hypothesized that: (iii) bacteria show stronger habitat

associations compared with fungi, due to the greater

effect of deterministic than stochastic processes in shap-

ing bacterial communities; and (iv) the relative abun-

dance and diversity ratios of bacteria to fungi decrease in

environments with more complex plant-derived C

resources, i.e. soils, due to the greater affinity of fungi to

plants and their associated resources.

Results and discussion

Not surprisingly, bacteria greatly exceeded fungi numeri-

cally across samples, being on average 700-fold rela-

tively more abundant across all habitats (Fig. 1;

Table S1). Both bacteria and fungi, but even more so

fungi, displayed higher diversity in terrestrial habitats,
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particularly in soils and rhizospheres than in marine habi-

tats (Figs. 1, S2–S4). Overall, and partially confirming our

first hypothesis, internal host-associated microbiomes

were less diverse than most external host-associated

and environmental microbiomes (Fig. 1C,D), corroborat-

ing the findings from a recent global bacterial

metabarcoding analysis (Thompson et al., 2017).

In addition, in line with our first hypothesis, among host

habitats, fungi showed the greatest relative abundance

as well as diversity in those with direct external exposure

such as human nose, oral and skin (Figs. 1, S2–S6).

Such habitats are possibly exposed to a greater influence

of external environmental factors and connectivity to

other habitats leading to a higher exchange of fungal

taxa. These effects are less pronounced for bacteria,

likely due to their greater dispersal potential across habi-

tats. In addition, the B/F ratio was greater in habitats with

presumably higher nutrient availability and lower C/nutri-

ent ratios, which might reflect the greater metabolic flexi-

bility, carbon-use-efficiency, and competitive ability of

bacteria compared with fungi in nutrient and soluble C

rich environments (Averill and Hawkes, 2016; Bahram

et al., 2018). For example, we found a strong association

between fungi and the herbivore lifestyle in gastrointesti-

nal tract (GI) communities: plant-fed mice GI and bovine

rumen had on average twofold greater fungal relative

abundance (mean B/F = 220) compared with omnivores

(pig and human GI, mean B/F = 383) and sixfold more

compared with carnivores (cat and dog GI, mean

B/F = 1305) (Fig. 1). Despite having several orders of

magnitude less abundance than bacteria (Fig. 1), fungi

may have a disproportionate ability to thrive in spatially

and temporally heterogeneous conditions, largely air-

borne dispersal mechanisms and the production of

hyphae (Fig. S7).

To determine whether similar habitats in terms of condi-

tions and connectivity shape microbial communities, and to

test our hypothesis as to whether bacteria have greater

habitat associations compared with fungi and to explore

the diversity patterns of different habitat groupings, we per-

formed a hierarchical clustering of habitats based on the

composition of bacterial communities. The results revealed

Fig 1. abundance and diversity of bacterial and fungal classes across diverse habitats.

A and B. Bacterial/fungal (B/F) rRNA and CAZyme gene ratios.

C and D. Bacterial and fungal rRNA gene diversity respectively.

These data show that the relative abundance and diversity of fungi is higher in terrestrial and aquatic habitats respectively, whereas bacteria
show the highest relative abundance in nutritional habitats possibly because greater available nutrition resources for growth. Blue line specifies

the median across all habitats. Diversity was calculated based on Shannon index using the genus level abundance matrix, whereas B/F ratio

was calculated based on the abundance of SSU reads assigned to bacteria and fungi. [Color figure can be viewed at wileyonlinelibrary.com]
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three major microbial community clusters (cf. habitat clus-

ters, HC; Fig. 2), that were dominated by environmental

(HC1), host associated external (HC2) and host associated

internal (HC3) habitats. HC1 included relatively more

diverse bacterial communities, and Alpha, Beta and

Deltaproteobacteria (Fig. 2). HC2 had increased

Actinobacteria and Gammaproteobacteria, whereas HC3

was dominated by Clostridia and Bacteroidetes (Fig. 2).

We found support for our second hypothesis that com-

munities of host-associated microbes are a subset of

those in environmental habitats. Notably, dominant fun-

gal, but not bacterial genera, present in the gut were a

subset of external host habitats, which were in turn a

subset of environmental habitats (Fig. S8). In addition, in

line with our third hypothesis, bacteria showed stronger

habitat associations and distinctive communities, com-

pared with fungi (Figs. 2, 3, Table S3), perhaps because

of their greater environmental associations, compara-

tively longer evolutionary history and/or greater genomic

plasticity (Frey-Klett et al., 2011; Naranjo-Ortiz and

Gabaldón, 2019). This was further supported by ana-

lysing habitat-specific genera, which revealed that

124 fungal genera representing 7.5% of all fungal genera

were significantly associated with a specific habitat, com-

pared with 36.3% in the case of 1360 bacterial genera.

However, compared with fungi, the proportion of indicator

bacterial genera was less contrasting between habitats,

yet it was greater in environmental habitats (Fig. 4).

Overall, the clustering of bacterial communities

appeared to depend more on habitat conditions, whereas

for fungi it appeared to depend on either the interplay

between habitat conditions, spatial dispersion and trans-

fer between proximal environments or none of these

(Figs. 2–4). For example, fungal communities in human

gut samples clustered with those from the built habitat,

so as those from dairy with bovine rumen and human

skin. Although this is not direct evidence of a frequent

transfer of fungi between these habitats, and we cannot

distinguish between transient and non-transient fungi in

specific habitats, our results suggest that the interaction

of habitat specificity and spatial proximity could affect fun-

gal community composition across diverse habitats, as

shown for dispersal as a main driver underlying stochas-

tic community assembly of soil fungi (Bahram

et al., 2018), possibly reflecting the reliance of many fungi

on airborne dispersal via spores (Huang and Hull, 2017).

The relatively higher abundance of fungi in terrestrial

and particularly soil habitats, in line with our fourth

hypothesis, may be related to the major diversification

events of fungi being tightly linked to those of plants. The

most diverse fungal lineages have affinities for symbiotic,

pathogenic and saprotrophic interactions with plants and

their resources (Lutzoni et al., 2018; Tedersoo

et al., 2018). We suggest that this facilitates the formation

of a stable and complex soil fungal communities,

whereas stochastic and dispersal-related processes may

Fig 2. Habitat association of fungi and bacteria. Clustering of microbial habitats based on fungal classes (left) and bacterial classes (right).

Between sample Bray–Curtis distance was averaged between samples of biomes, to create a hierachical clustering (ward.d2). Median fungal

and bacterial class abundances are shown next to environmental clustering. The three bacterial habitat clusters (HCs) roughly correspond to dif-
ferent balances of the B:F ratio. HC1 (environmental) seems to be driven by the presence and dominance of fungi and complex sources of C. In

this cluster, bacteria could rely more on fungal-derived C as well as symbioses and hence more secondary metabolites for enhanced interactions,

and these bacterial-fungal interactions drive the bacterial composition and diversity of environmental habitats. HC2 (external host and human

influenced environmental habitats) seems to represent ecotones, transitions between more isolated habitats, whereas HC3 (anaerobic isolated
habitat like guts) perhaps represents the most specialized habitat which favours bacteria due to more homeostatic conditions (pH, temperature

and moisture). Fungi show more diffuse clustering which might be due to their large reliance on passive dispersal (largely airborne), strong affinity

to plants and plant-derived C, and less habitat specificity. The top bar plot shows the out of-bag variance explained for each model with the

dependent variables on the x-axis. [Color figure can be viewed at wileyonlinelibrary.com]
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have stronger impact on fungal communities in other hab-

itats. This hypothesis is further strengthened by the

observation that most of the habitat specific fungal gen-

era were associated with soil, including multiple indicator

genera from Agaricomycetes (Fig. 4, Table S3), which is

composed mostly of litter decomposing and plant-

associated fungi that thrive in the presence of plant hosts

(Lutzoni et al., 2018). Archaeorhizomycetes, a recently

discovered fungal class (Rosling et al., 2011), was also

almost exclusively found in soil samples. Several Asco-

mycetes such as Penicillium and Mycosphaerella were

among indicator genera for soil and rhizosphere habitats,

known soil saprotrophs and plant pathogens respectively

(Crous et al., 2009; Diao et al., 2019). Thus, fungi may

possess a broad range of C-cycling enzymes in soils,

perhaps due to diverse substrates provided by plants and

plant–fungal symbioses.

Accordingly, compared with saprotrophic bacteria,

saprotrophic fungi have developed higher and wider

C/nutrient stoichiometries, greater C demands, higher

carbon-use-efficiency with higher C/N resource ratios,

and extracellular enzymatic specialization in degrading

plant-derived C under aerobic conditions (Keiblinger

et al., 2010; Tedersoo et al., 2014). This tight association

with plants may provide fungi greater access to C in soils.

In line with this, environmental habitats, especially soils,

showed the highest relative abundance of carbohydrate-

active enzyme genes (CAZymes), which are involved in

Fig 3. Bacteria show greater habitat association than fungi across diverse habitats. Heatmap showing habitat and geographic association of the
top 20 most abundant bacterial and fungal classes that most strongly correlated with habitat types. The size of circles corresponds to the variable

importance (percentage of mean decrease accuracy estimated based on out-of-bag-CV); blue and red depict negative and positive Spearman

correlations respectively. [Color figure can be viewed at wileyonlinelibrary.com]

Fig 4. Indicator fungal and bacterial genera across various host and
environmental habitats. Bars show the fraction of fungal or bacterial

genera significantly associated (FDR < 0.3) with each habitat based

on Species indicator analysis (to total number of genera, i.e. 1658

and 3750 for fungi and bacteria respectively). Only genera with more
than 10 reads were used in the analysis. [Color figure can be viewed

at wileyonlinelibrary.com]
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the construction and breakdown of complex carbohy-

drates, in fungi relative to bacteria (Fig. 1). The B/F ratio

was negatively correlated to the relative abundance and

diversity of fungal CAZymes (r = −0.449, P < 10−15,

r = −0.419, P < 10−15 respectively), and to lesser extent

to those of bacteria (r = −0.109, P < 10−15; r = −0.207,

P < 10−15 respectively). From specific CAZymes, those

related to degradation of lignin showed the strongest cor-

relation to the B/F rRNA gene ratio (Table S2). The more

ubiquitous symbiotic interaction between plants and fungi

may enhance fungal fitness in relation to bacteria in plant

dominated habitats such as soils (Bahram et al., 2020).

There are a number of other potential factors driving

interactions as well as – supporting or opposing – habitat

associations between fungi and bacteria. Filamentous

fungi are especially better suited to deal with more het-

erogeneous habitats and conditions with resource

inequality due to their ability to expand and move towards

nutrient rich patches and transfer nutrients through

hyphae (Whiteside et al., 2019). By contrast, bacteria

appear to be more sensitive to pH and nutrient availability

than fungi (Bahram et al., 2018). As reflected in the HC1

habitat cluster (Fig. 2), these are habitats in which fungi

tend to reach their greatest diversity, yet bacteria also

thrive here. The mostly hyphal forming fungi in these hab-

itats can act as dispersal vectors (Deveau et al., 2018),

provide and connect high quality nutrient resources, and

alter localized pH levels, thus providing a mechanism for

enhanced bacterial activity, which is especially important

under stressful conditions (Worrich et al., 2017). This,

together with diverse exchange of metabolites between

bacteria and fungi, may be a driver of the composition

and diversity of bacterial communities. In some circum-

stances fungi may even facilitate certain bacteria that are

normally considered slow colonizers and poor competi-

tors, enabling them to become locally abundant in symbi-

osis (Frey-Klett et al., 2011; Phelan et al., 2012; Deveau

et al., 2018). While fungi are also influenced by these

associations, both beneficially and antagonistically

through bacterial products, their associations with plants

and plant-derived C is perhaps a stronger factor in shap-

ing their community composition, which is reflected in the

relatively lower B/F ratios and higher abundance of fungal

CAZymes in environmental habitats, particularly soils

(plant dominated habitats) (Figs. 1, S9). Such habitats

have a greater exposure to complex C forms and fungal

airborne spore dispersal, that would increase the

chances of such fungi meeting their preferred substrates

(Huang and Hull, 2017).

Conclusions

Our results hint towards the strong role of environmental

filtering in structuring cross-habitat bacterial but not

fungal communities. The overall diversity and abundance

patterns of bacterial and fungal taxa and associated func-

tional genes reflect their mostly contrasting C acquisition

strategies, dispersal strategies, morphologies, alongside

their subsequent coevolution via complex biotic interac-

tions with each other and macro-organisms under highly

variable abiotic conditions. We suggest that future stud-

ies simultaneously investigate both bacterial and fungal

communities, as well as their functional properties, as

their interactions and domain-specific properties may be

a strong factor determining the response of ecosystems

to environmental change.

Experimental procedures

Raw read processing

In total, 31 287 samples classified as metagenomic from

405 projects were downloaded from the European Bioin-

formatics Institute (EMBL-EBI) as of 2018/06/19, using

customized scripts available at the fetch-data/ directory

of the Supplemental Software package of Coelho et al.

(in revision). To confirm the annotation of samples as

either metagenomics, the abundance of NOGs reads

was considered, i.e. samples with very low NOG abun-

dance relative to the total read were considered as

metabarcoding regardless of the information provided

by submitters. The basic filtering, functional and phylo-

genetic profiling are an adapted protocol of the methods

used in (Bahram et al., 2018). In brief, metagenomic

and amplicon sequencing reads obtained from public

sources were quality-filtered, if the observed accumu-

lated error exceeded 2.5 with a probability of ≥ 0.01, or

> 1 ambiguous position or a homonucleotide run

> 15 bp was present. Reads were trimmed if base qual-

ity dropped below 20 in a window of 15 bases at the 30

end, or if the accumulated error exceeded 1 using the

sdm read filtering software (Hildebrand et al., 2014).

Furthermore, all reads shorter than 70% of the maxi-

mum expected read length (per sample) were removed.

In total, 697 billion total reads were analysed of which

286 + 253 billion (read pair one and two respectively)

passed quality filtering (Table S1). After quality filtering

and exclusion of samples from underrepresented habi-

tats and with short reads, we analysed 13 483 samples

belonging to 25 habitats. The habitats human gut

(n = 7732) and human oral (n = 1586) were the most

often represented in our dataset, whereas hot springs

were poorly represented (n = 4). Most samples origi-

nated from North America (24.0%) and Asia (37.0%).

Several geographic regions were not represented in our

datasets, including Pacific Ocean, North Sea, Arctic,

Atlantic Ocean (Table S1).
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Taxonomic annotations

We used a miTag approach implemented in MATAFILER

(Hildebrand et al., 2019) to determine bacterial and fun-

gal community composition from metagenome sequence

data at the higher taxonomic level, detailed in (Bahram

et al., 2018). Briefly, SortMeRNA (Kopylova et al., 2012)

was used to extract potential rRNA genes against the

SILVA database version 128 (Quast et al., 2012). For

this, we used SSU rRNA gene for taxonomic identifica-

tion, which is a universal marker for both prokaryotes and

eukaryotes. Reads approximately matching these data-

bases with e-values < 10−4 were further filtered with cus-

tom Perl and C++ scripts, using FLASH to attempt

merging all matched read pairs. In case read pairs could

not be merged, single reads were interleaved such that

the second read pair was reverse complemented and

then sequentially added to the first read. Lambda

(Hauswedell et al., 2014) was used to fine-match candi-

date interleaved or merged reads to Silva 128 database.

The lowest common ancestor (LCA) algorithm adapted

from LotuS (Hildebrand et al., 2014) was used to deter-

mine the identity of filtered reads based on Lambda

matches. This included a filtering step, where queries

were only assigned to phyla and classes if they had at

least 88% and 91% similarity to the best database hit

respectively, thresholds adopted from literature (Yarza

et al., 2014). We normalized each taxon by dividing by

the total number of reads per sample to account for

uneven sequencing depth across samples. Functional

annotation of fungal taxa was done using FunGuild data-

base (Nguyen et al., 2016).

Functional annotations

We used a direct a Blast search approach to estimate

the functional gene composition of each sample. The

quality-filtered reads pairs were first merged using

FLASH (Magoč and Salzberg, 2011). In cases were read

pairs were not available, singleton reads were used

instead. These merged, unmerged and singleton reads

were mapped against functional reference sequence

databases using DIAMOND 0.9.4 (Buchfink et al., 2014)

in blastx mode with the ‘-k 5 -e 1e-4 – sensitive’ parame-

ters. If two unmerged query reads mapped to the same

target, the mapping scores were combined to avoid dou-

ble counting dependent reads. In such cases, the hit

scores were combined by selecting the lower of the two

e-values and the sum of the bit scores from the two hits.

Based on the highest bit score, longest alignment length

and highest percentage identity to the subject sequence

the best hit for a given query was selected. Finally, reads

with an alignment identity < 50% and matching with an e-

value >1 e-9 were excluded.

For functional annotations, we used in silico annotations

of metagenomic reads based on a curated database of the

orthologous gene family resource eggNOG 4.5 (Huerta-

Cepas et al., 2015). eggNOG taxonomic information was

used, as reads were mapped competitively against all

domains and assigned into prokaryotic and eukaryotic ori-

gin, based on the best bit score in the alignment and the

taxonomic annotation provided with the database at

domain level. In order to estimate the potential of microbes

in using C resources, we decided to use the extended

orthology represented in eggnog, combined with the pre-

cise experimentally validated and functional specific

carbohydrate-active enzyme (CAZyme) annotations

(Cantarel et al., 2009). For this, we mapped all eggNOG

4.5 amino acid sequences onto the latest CAZy (2019)

database (http://bcb.unl.edu/dbCAN2/download/) using

DIAMOND. Only high-quality hits (%id > 90, eval < 1e-20,

> 80% subject coverage) were accepted to ensure that

only valid ‘seeds’ were retrieved. From these, the eggnog

numbers corresponding to CAZymes based on homology

searches to the CAZyme database were retrieved. We

used our previously derived eggNOG abundance matrix to

obtain a CAZyme profile per sample.

All functional abundance matrices were normalized by

the total number of reads used for mapping in the statisti-

cal analysis, unless mentioned otherwise (e.g. rarefied in

the case of diversity analysis, see below). This normali-

zation was chosen as it considers differences in library

size, since unmapped (that is functionally unclassified)

reads are included. It is important to note that functional

and taxonomic abundance estimates represent relative

proportions of represented categories, because of biases

of sequencing technologies in capturing every molecule

in samples. This requires, as we have done, to choose

statistical tests that do not assume absolute measure-

ments, and centres analysis of this type on comparisons

across the set of samples.

Data analysis

Of note, 13 452 samples were categorized into 25 habitats

(after removing potential 16S amplicon sequencing runs

and studies misclassified in EBI) using the annotation

retrieved from submitters with some modifications; for

example, soil and rhizosphere samples were combined as

soil (Table S1). For analysing fungal and bacterial diversity,

the differences in sequencing depth was accounted for by

partial linear regression with diversity and sequence abun-

dance as response and predictor respectively, as used pre-

viously in (Tedersoo et al., 2014). For analysing relative

abundances of genes and taxa, the data were normalized

by total sum of metagenomics reads per sample. For ana-

lysing taxa and gene compositions, abundance data were

normalized using Hellinger transformation in vegan
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(Oksanen et al., 2007) of R (R Core Team 2015). The B/F

ratio was calculated based on the abundance of SSU

reads assigned to bacteria and fungi. Diversity (Shannon

Index) was calculated and normalized by the total rRNA

gene abundance per sample. To examine diversity, we

relied on the diversity of genera, to minimize the mis-

assignments at lower taxonomic level inherent to short

reads. Based on our previous study (Bahram et al., 2018),

we found a strong correlation based on genus and OTU

diversities in soils (r > 0.8). To test discrimination of the rel-

ative abundance of different taxa or functions across habi-

tats, permutational multivariate analysis of variance

followed by a generalized canonical discriminant analysis

was performed using the candisc package (Friendly

et al., 2017). To test the associations of taxa, we used a

sparse partial least squares analysis, as implemented in

the mixOmics package (Rohart et al., 2017).

To cluster habitats based on their fungal or bacterial

composition, miTag tables were filtered for either bacte-

rial or fungal taxa (class for fungi, families for bacteria).

These tables were normalized by sum, to obtain a rela-

tive proportion of fungi or bacteria only within each sam-

ple, filtering taxa with < 1e-5 fractional abundances on

average. To obtain scaled Hellinger matrices, we used

the sqrt transformed relative abundances and calculated

Bray–Curtis distances among samples. To calculate the

distances between single habitats, we calculated the

mean distance between the respective habitats, for all

combinations of habitat pairs. These were then hierarchi-

cally clustered using a ward.D agglomerative clustering

as implemented in hclust and visualized using the tan-

glegram function from dendextend (Galili, 2015), com-

bined with itol’s visualization of compositions (Letunic

and Bork, 2016). The ‘nestedness metric based on over-

lap and decreasing fill’ (Almeida-Neto and Ulrich, 2011)

was used to calculate nestedness among habitats as

implemented in vegan. For this, samples were pooled per

habitat and the pooled data were rarefied to the same

number of reads per habitat.

Due to heterogeneity in our dataset, we used a

machine learning technique (Random Forest) as

implemented in RandomForest package (Liaw and

Wiener, 2002) to determine whether the relative abun-

dance of a given taxon can be predicted based on the

effect of habitat and geography. In addition, indicator

genera for each habitat were identified using a two-way

indicator species analysis following multiple testing cor-

rection, as implemented in labdsv package (https://cran.

r-project.org/package=labdsv).
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Žifčáková, L., Větrovský, T., Lombard, V., Henrissat, B.,

Howe, A., and Baldrian, P. (2017) Feed in summer, rest in

winter: microbial carbon utilization in forest topsoil. Micro-

biome 5: 122.

Supporting Information

Additional Supporting Information may be found in the online

version of this article at the publisher’s web-site:

Fig. S1. Distribution of the metagenomic samples used in

this study. Colours and size of symbols correspond to habitat

types and number of samples, as indicated in the legend.

Fig. S2. Cross-habitat differences in relative abundance of

fungal classes.

Fig. S3. Cross-habitat differences in relative abundance of

fungal growth forms.

Fig. S4. Cross-habitat differences in relative abundance of

fungal functional guilds.

Fig. S5. Cross-habitat differences in relative abundance of

bacterial classes.

Fig. S6. The cross-habitat canonical discriminant analysis of

the composition of the top 20 bacterial and fungal classes

associating most strongly to habitat types.

Fig. S7. Conceptual model showing patterns of fungal and

bacterial diversity in relation to habitat type and gradients of

associated factors that are proposed to be driving overall

diversity patterns. The patterns of diversity of fungi appears

to be associated with more spatially and temporally hetero-

geneous habitats with more available niches with higher and

wider C:nutrient values and greater connectivity with other

habitats, whereas bacteria show less discernible patterns

with these factors, instead showing multiple diversity hot-

spots across a wide range of habitats, hinting that other

more specific factors such as pH as the most important fac-

tor driving bacterial diversity, which fungi are less

sensitive to.

Fig. S8. Soil as a main potential source for fungi but not bac-

teria in other habitats. The figure shows the occurrences

(shaded cells) of top 100 most abundant bacterial and fungal

genera across habitats, ordered according to the nestedness

measure based on overlap and decreasing fill (NODF).

NODF 0 and 100 indicate total randomness and perfect

nestedness respectively. To minimize the effect of heteroge-

neous sequencing depths, data were pooled per habitat and

rarefied to the same level across habitats. Text colours rep-

resent environmental, external host and internal host habi-

tats, as indicated in the right panel.

Fig. S9. Boxplots of relative abundance of CAZyme sub-

strates across three habitat clusters shown in Fig. 2. The

boxplot uses only the median value for each category for the

25 habitats, the first p-value refers to n = 25, to account for

sample size differences between single habitats (e.g. human

gut contained many more samples than Marine). The second
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p-value (in parenthesis) indicates the p-value across 13,452

samples and their distribution in three habitat clusters.

Table S1. Samples used in this study. The table presents a

list of sample names, their sequencing and mapping

statistics.

Table S2. Spearman correlations between CAZyme gene

categories and the B/F ratio. Correlations were not done by

discriminating on biomes.

Table S3. List of indicator bacterial and fungal genera asso-

ciated with different biomes.
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