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T
he gut microbiome is a complex microbial ecosystem with 
important roles in human health and development1. Although 
often overlooked, viruses are estimated to be abundant in the 

microbiome2,3 and have been associated with human disease4–6. In 
particular, bacteriophages (viruses that infect bacteria) constitute 
the majority of viral particles3,7,8 and can impact microbial ecosystem 
processes through phage predation9, lysogeny10 and horizontal gene 
transfer11. Despite their ubiquity, our knowledge of viral genomic 
diversity in the microbiome is limited, with most viral sequences 
failing to match existing genome databases8. A comprehensive data-
base of viral genomes from the microbiome is a prerequisite for 
assembly-free quantification of viruses, predicting host–virus inter-
actions12, comparative genomics and genome mining (for example, 
anti-CRISPR genes13).

Traditionally, there have been two main approaches for sequenc-
ing viral genomes from the microbiome: viral metagenomic 
sequencing and bulk metagenomic sequencing. Viral metagenom-
ics involves using size filtration to select for virus-like particles, 
followed by viral DNA extraction, (often) whole-genome amplifica-
tion, shotgun sequencing and metagenomic assembly14–17. Although 
size filtration is used to enrich extracellular viruses, it will not 
remove all cellular organisms18 and can exclude some large viruses19. 
Whole-genome amplification is often necessary due to low sample 
biomass but can skew viral abundances and over-amplify small cir-
cular single-stranded DNA (ssDNA) viruses19–21.

An alternative approach is to generate bulk metagenomes, with-
out size filtration or whole-genome amplification, followed by 
computational separation of viral and cellular sequences22,23. This 
approach captures sequences of both extracellular and intracel-
lular viruses, including integrated prophages, and is not biased by 

whole-genome amplification. However, with bulk metagenomic 
sequencing, it is more challenging to assemble low-abundance 
viruses because the majority of reads derive from cellular organ-
isms24. Additionally, DNA-extraction protocols may not be opti-
mized for viruses16 and some viral sequences may originate from 
degraded prophages in bacterial chromosomes10,25.

To date, numerous studies have used viral metagenomic sequenc-
ing to identify phage genomes from human stool samples across a 
wide variety of phenotypes4–6. To integrate these disparate data sets, 
Soto-Perez et al.26 formed the Human Virome Database (HuVirDB) 
from 1,831 public samples (including skin, stool, lung and blood) 
and Gregory et al.27 formed the Gut Virome Database (GVD) from 
2,697 public samples. In contrast to these viral metagenomic stud-
ies, Paez-Espino et al22. formed the IMG/VR database by identifying 
viruses from bulk metagenomes, including 490 stool samples from 
the Human Microbiome Project28. Since this publication, the num-
ber of publicly available bulk metagenomes has rapidly grown, as 
evidenced by recent, large-scale data mining efforts29–31.

To expand these existing resources and provide a complemen-
tary view of the gut virome, we performed large-scale identification 
of viral genomes from 11,810 bulk metagenomes from human stool 
samples derived from 61 previously published studies. We used 
these data to form the Metagenomic Gut Virus (MGV) catalogue, 
which contains 189,680 viral draft genomes estimated to be >50% 
complete and representing 54,118 candidate viral species. These 
genomes vastly expand the known diversity of DNA viruses from 
the gut microbiome and improve knowledge of host–virus con-
nections. We expect the MGV catalogue will be a useful commu-
nity resource for interrogating the role of the gut virome in human 
health and disease.
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results
A genomic catalogue of DNA viruses from the gut microbiome. 
We developed a viral detection pipeline for the current study using a 
combination of well-established methods and signatures, including 
VirFinder32, viral protein families from the Earth’s Virome Study23, 
and the propensity for viral genes to lie on the same strand33 and 
be functionally unannotated8 (Fig. 1a,b). Based on in silico bench-
marking, our pipeline was able to sensitively identify genome frag-
ments of diverse human-associated viruses and phages, including 
crAss-like phages34 and megaphages35, with high specificity and per-
formed favourably compared with existing methods (Supplementary 
Tables 1–2 and Methods). For genome fragments of 1, 10 and 100 kb 
our pipeline achieved true-positive rates (TPR) of 41%, 74% and 
96% at false-positive rates (FPR) of only 0.43%, 0.38% and 0.18%.

We then applied our pipeline to bulk metagenomes from 11,810 
distinct human gut samples that were assembled in previous stud-
ies29,31,36 to broadly capture lytic and lysogenic DNA viruses (Fig. 1a 
and Supplementary Table 3). The analysed data sets span 61 stud-
ies across 24 countries and include individuals with a wide range 
of ages, lifestyles and disease states (Supplementary Table 4). This 
revealed 3.5 million unique, single-contig viral genomes longer than 
1 kb. Based on an analysis of metagenomes found in all three stud-
ies, we found that choice of assembler (that is, MEGAHIT versus 

metaSPAdes) had little effect on the quality or identity of recovered 
viruses (Extended Data Fig. 1). Viral genomes were largely derived 
from individuals in Europe (46%), China (23%) and the USA (13%) 
reflecting the amount of metagenomic data from these sources 
(45%, 24% and 11% of total assembly length, respectively).

The completeness of metagenome-assembled viruses can vary 
widely, ranging from short fragments to complete or near-complete 
genomes. To assess genome completeness, we applied CheckV37, 
revealing 189,680 genomes that were at least 50% complete (Fig. 1c), 
including 26,030 complete genomes identified on the basis of direct 
terminal repeats (n = 19,704), host–provirus boundaries (n = 5,123) 
and inverted terminal repeats (n = 1,203). To improve genome qual-
ity, we removed flanking host regions from these sequences (Fig. 
1a); confirming that viral genomes were free of host contamination, 
we identified only one full-length 16S rRNA gene (flanking an inte-
grated prophage) among all 189,680 viruses compared with 83,050 
16S rRNA genes in the full set of metagenomic contigs used for 
viral discovery (Methods). We focused all subsequent analysis on 
the 189,680 genomes with >50% completeness to avoid limitations 
associated with small genome fragments38 and to be consistent with 
quality standards applied to microbial genomes39.

Because there was no separation of viral-like particles prior 
to sequencing, we anticipated many viruses were derived from  
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Fig. 1 | thousands of high-quality viral genomes recovered from human gut metagenomes. a, Overview of viral discovery effort and formation of the MGV 
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bacterial chromosomes. However, only 24% of viral genomes 
had evidence of host integration (Fig. 1d) and only 10% where 
the flanking host region was >5 kb. Furthermore, the major-
ity of non-integrated viruses were classified as virulent based on 
BACPHLIP40 (65% of 140,689) which is a computational tool that 
predicts bacteriophage lifestyle from conserved protein domains. 
Likewise, BACPHLIP classified 58% of the 26,030 complete 
genomes as virulent, indicating that this result is not due to incom-
plete genome assembly because integrase genes often occur at the 
ends of prophage genomes41. Together, these results demonstrate 
that it is not uncommon to recover the genome sequences of lytic 
viruses from unfiltered stool metagenomes.

Host prediction and taxonomic annotation. Predicting the cellular 
hosts of viruses is important for understanding phage predation and 
an essential first step towards utilizing host–virus interactions to 
design innovative phage therapies42. Towards this goal, we leveraged 
the Unified Human Gastrointestinal Genome (UHGG) database 
of 286,997 genomes of Bacteria and Archaea from the gut micro-
biome43, which represents 4,644 prokaryotic species (Fig. 2). First, 
we extracted 1,846,441 CRISPR spacers from the UHGG genomes, 
and looked for near-exact matches to the 189,680 viral genomes, 
resulting in host–virus connections that covered 81% of viruses 
(n = 153,892). Interestingly, just 21% of viruses were connected to 
a host when using spacers extracted from the 4,644 species-level 
representatives, indicating considerable CRISPR diversity between 

bacterial strains and active community infection. Although most 
viruses were targeted by a spacer, CRISPR arrays were found in only 
28% (n = 79,734) of UHGG genomes and in <1% of many prevalent 
species including Alistipes putredinis, Bacteroides cellulosilyticus and 
Bifidobacterium breve, confirming the limited distribution of this 
anti-viral defence system44. To expand the host–virus network, we 
performed whole-genome alignment between the 189,680 viruses 
and 286,997 hosts and identified connections based on near-exact 
genomic matches (≥96% identity over ≥1 kb), resulting in connec-
tions that covered 96% of host genomes and 90% of viral genomes. 
As expected, the majority of viruses were connected to Firmicutes 
(predominantly Clostridia) and Bacteroidia, which are the two 
dominant phyla of bacteria in the gut microbiome (Fig. 1d). These 
results show that host–virus interactions can be systematically elu-
cidated through extensive assembly of both viral and microbial 
genomes from the same environment.

Next, we assigned viruses to families from the ICTV data-
base based on alignments to genomes from NCBI GenBank and 
crAss-like viruses from recent studies34,45,46 (Fig. 1d). Only 56.6% 
of viruses could be annotated at the family level, confirming a 
large knowledge gap in the taxonomy of human gut viruses8. To 
increase sensitivity, we used taxonomically informative profile 
hidden Markov models (HMMs) from the VOG database (http://
vogdb.org), revealing most unannotated viruses to be members of 
the Caudovirales order. Among annotated sequences were 9,395 
genomes of putative crAss-like viruses (5% of total). Overall, only 
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0.51% (n = 48) of the putative crAss phages displayed clear evi-
dence of lysogeny (that is flanked by host region and contained an 
integrase), which was more than 17× lower than other viruses in 
the data set. Consistent with this, 56% of high-quality crAssphage 
genomes (n = 5,439) could be circularized compared with 24% of 
the other high-quality genomes (n = 36,872). crAss-like genomes 
contained several other unusual features, including low GC con-
tent (mean = 32%), usage of an alternative genetic code and a pre-
dominance of hypothetical proteins. For example, TAG or TGA stop 
codons were recoded to amino acids in 27% of crAss-like phages 
versus 0.5% of other viruses. Likewise, only 12% of crAssphage pro-
teins had significant hits to Pfam, KEGG or TIGRFAM versus 28% 
of proteins from other viruses. This large-scale analysis supports 
previous findings that some crAss-like viruses have an obligate lytic 
lifestyle46 and reveals several unusual features that further establish 
crAssphage as an outlier among human gut viruses47.

Vastly expanded viral genomic diversity. To quantify the diversity 
of genomes in the MGV catalogue, we first identified species-level 
viral operational taxonomic units (vOTUs) using the MIUViG rec-
ommended criteria of 95% average nucleotide identity (ANI) over 
85% of the length of the shorter sequence38. Small adjustments 
to these parameters did impact the number of identified vOTUs, 
suggesting a continuum of viral diversity beyond the species-level 
boundary (Supplementary Table 5). Overall, we identified 54,118 
vOTUs, of which 8,086 included members from at least two samples 
(Fig. 3a). The largest vOTUs were predicted to infect some of the most 
prevalent species in the gut microbiome, including Bacteroides uni-
formis, Faecalibacterium prausnitzii and Agathobacter rectalis (for-
merly Eubacterium rectale). To identify higher-ranking viral clades, 
we clustered genomes into approximately genus- and family-level 
groups on the basis of pairwise average amino acid identity (AAI) 
and gene sharing (Methods), revealing 5,800 genus-level vOTUs 
and 1,434 family-level vOTUs (Fig. 3a). Accumulation curves of 
vOTUs appeared to be approaching an asymptote at the family and 
genus ranks but not yet for species (Fig. 3b).

Other recent studies have also compiled databases of DNA 
viruses from the gut microbiome22,26,27. To identify vOTUs unique 
to the MGV catalogue, we clustered the 189,680 genomes from 
our study together with medium- and high-quality viral genomes 
from three other genome catalogues (Fig. 3a): the HuVirDB (9,626 
genomes derived from 1,543 viral metagenomes), GVD v.1.0 
(4,494 genomes derived from 471 viral metagenomes and 98 whole 
metagenomes) and IMG/VR v.2.0 (6,895 genomes derived from 490 
whole metagenomes). Note that during the review of this manu-
script, the IMG/VR and GVD were updated to new versions which 
were not analysed here. To enable comparability between all studies, 
CheckV was run on all viral data sets and genome fragments with 
<50% completeness were excluded.

Strikingly, we found that 50,048 of the 54,118 species-level 
vOTUs from the MGV catalogue (92%), comprising 100,398 of the 
189,680 genomes (53%), did not cluster with any genome from the 
other databases (Fig. 3a). In contrast, the three reference databases 
combined represented 10,391 species-level vOTUs, nearly half of 
which were also found in the MGV. The MGV and IMG/VR data-
bases, which were both derived from whole metagenomes, shared 
the greatest number of vOTUs and contained a relatively high pro-
portion of lysogenic phages from the order Caudovirales, whereas 
the HuVirDB and GVD data sets, which were largely derived from 
viral metagenomes, were enriched in small circular ssDNA viruses 
from the Microviridae, Anelloviridae and CRESS families.

Next, we compared the four genome catalogues based on their 
ability to recruit sequencing reads from a geographically diverse set 
of whole metagenomes and viral metagenomes (Fig. 3c). To prevent 
self matches we discarded alignments between sequencing reads 
and viral genomes derived from the same original study. Overall, 

MGV genomes recruited 8.6% of whole-metagenome reads, which 
was 4.0-fold higher than any other database, and 40.1% of virome 
reads, which was comparable with the HuVirDB at 42.3%. We also 
compared the recruitment of CRISPR spacers to each viral database 
as a way of quantifying host–virus connections (Fig. 3c). Overall, 
37.5% of the 1.8 M spacers from UHGG genomes matched a genome 
from the MGV catalogue, which was 3.25-fold higher than any 
other database. The number of matched spacers and metagenomic 
reads did not change considerably when using a viral database of 
only species-level representatives (Fig. 3c). Together, these results 
show that the MGV catalogue has substantially increased known 
viral diversity, improved detection of viral reads in whole metage-
nomes and expanded coverage of host–virus connections.

Phylogenomics of intestinal Caudovirales. Caudovirales comprise 
an expansive order of tailed double-stranded DNA (dsDNA) phages 
found in numerous environments48 and were highly represented in 
the stool metagenomes we analysed. To explore the evolution of this 
group in the gut microbiome, we constructed a species-level phylo-
genetic tree based on a concatenated alignment of 77 protein-coding 
marker genes (Fig. 4a)49. After removing genomes with insufficient 
data (fewer than three markers or <5% representation in align-
ment), the final tree contained 25,528 species-level viral genomes 
derived from the four databases of uncultivated gut viruses (MGV, 
IMG/VR, HuVirDB and GVD).

Based on cumulative branch length, the MGV catalogue cov-
ered 95.7% of the total phylogenetic diversity (PD) and contained 
genomes representing all major lineages across the tree (Fig. 
4b). Compared with the three other databases combined, MGV 
genomes resulted in a 287% increase in PD that was evenly distrib-
uted across viral and host taxonomic groups. Clostridia phages were 
by far the most diverse group (41.8% of PD) because of the large 
number and broad phylogenetic distribution of these vOTUs. In 
contrast, Bacteroidota phages represented only 11.1% of PD with 
most vOTUs falling into four primary clusters (Fig. 4a) including 
one dominated by crAss-like phages (2.17% of PD). Overall, there 
was poor correspondence between the classical viral families based 
on tail morphology and genome-based phylogeny (for example, 
nearly all lineages contained Siphoviridae annotated genomes) 
which further highlights the need for a phylogeny driven taxonomy 
of Caudovirales49 and other viral groups, analogous to the GTDB 
taxonomy developed for Bacteria and Archaea50.

Notably, several lineages contained jumbo phages with genomes 
exceeding 200 kb (518 genomes from 245 species-level vOTUs). As 
with other analyses, we carefully removed flanking host regions 
as well as assembly artefacts resulting in the same genome being 
repeated multiple times (Methods). The largest genome was a 
553,716-bp near-complete linear genome closely related to a 
Prevotella phage Lak-A1 (ref. 35; 94.5% AAI over 87.1% of genes). 
As with crAss-like phages, jumbo phages were rarely integrated 
into a host (n = 13) although they sometimes contained integrases 
(n = 121). To characterize the diversity of these viruses in greater 
detail, we constructed a separate tree based on the large terminase 
subunit (TerL). Compared with a recently published collection of 
jumbo phages from diverse environments51, MGVs resulted in a 
large expansion of phylogenetic diversity and coverage of most lin-
eages (Extended Data Fig. 2).

Interestingly, jumbo phages and other Caudovirales appeared 
to have little to no preference in biogeographic distribution, as 
most clades were found in all continents. We hypothesized that 
region-specific phylotypes might be apparent over shorter evolu-
tionary timescales, as observed for human gut bacteria52. Towards 
this goal, we used single-nucleotide variants to construct strain-level 
phylogenies for 146 prevalent vOTUs with more than 100 members 
(Methods). Strikingly, we observed discrete subspecies that were 
highly enriched in specific geographic regions for many vOTUs 
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(Extended Data Fig. 3). For example, one crAss-like subspecies pre-
dicted to infect Parabacteroides was prevalent among samples from 
Asia, but rare or absent from Europe and North America. More 
work is needed to understand the evolutionary drivers and genomic 
adaptations underlying these phylogenetic patterns.

Functional capacity of the gut virome. Although the functional 
potential of human gut bacteria and archaea has been extensively 
studied43,53,54, that of intestinal phages is less well understood. To 
explore this, we identified 11,837,198 protein-coding genes with 
at least 20 amino acids (98.4% with start and stop codons) across 
the 189,680 viral genomes from our study and compared these with 
HMM databases, including KEGG55, TIGRFAM56, Pfam57, VOGDB 
(http://vogdb.org/) and the Earth’s Virome database23. Overall, 45% 
of viral genes did not have significant matches to any database and 
75% were not assigned any biological function (Fig. 5a,b), indicat-
ing that remarkably little is known about the functional potential of 
human gut viruses.

To identify the most common functions among intesti-
nal phages, we clustered the 11.8 million viral genes at 30% AAI 
using MMseqs2 (ref. 58) into 459,375 de novo viral protein clusters  

(Fig. 5c) including 61% with at least two members (Fig. 5d). An 
accumulation curve displayed no plateau, indicating that gut phages 
have a large reservoir of functional diversity that is not fully cap-
tured by this study (Fig. 5e). Clostridia phages contained the most 
functional diversity with 173,187 protein clusters, reflecting the 
large phylogenetic diversity of these phages. Several of the largest 
protein clusters had no predicted function, including the fourth 
largest with 8,319 genes, and are therefore good candidates for 
experimental characterization in the future (Fig. 5f). Other large 
clusters were annotated with typical viral functions, including cap-
sid formation, packaging, lysis, lysogeny, replication and transcrip-
tional regulation (Fig. 5f).

Although it is outside the scope of this article to enumerate all 
viral functions and auxiliary metabolic genes, we explored two par-
ticularly unusual findings. Based on HMM searches against Pfam, 
we uncovered 11,496 putative viral beta-lactamases (PF12706), 
including the majority of sequences in a single protein clus-
ter with 5,832 members (Fig. 5f). Beta-lactamases are enzymes 
that enable resistance to beta-lactam antibiotics such as penicil-
lins, cephalosporins and cephamycins, and pose a major global 
health problem59. To validate this result, we performed homology 
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searches against curated databases of antimicrobial resistance genes 
using Resfams60, the NCBI AMRFinder61 and the Resistance Gene 
Identifier (RGI)62. These tools revealed a combined total of only 
88 resistance genes (63 using Resfams, 56 using AMRFinder and 
30 using RGI), indicating low similarity between the 11,496 puta-
tive viral beta-lactamases and validated resistance genes (Extended 
Data Fig. 4). Although functional metagenomic assays may uncover 
bona fide viral beta-lactamases in the gut microbiome, these results 
appear to support the conclusion that phages rarely encode antibi-
otic resistance genes63.

Another interesting finding was a large number of phage reverse 
transcriptases (RTs) (Fig. 5f and Supplementary Table 6). Overall, 
the RT domain (PF00078) was the third most common functional 
annotation, next to only the helix–turn–helix DNA-binding domain 
(PF01381) and phage integrase family (PF00589). RTs are known 
to occur in retroviruses64, RNA-targeting CRISPR–Cas systems65 
and diversity-generating retroelements (DGRs)66. DGRs utilize 
error-prone reverse transcription to generate random mutations 
in the transcript of a template region (TR), which is then inserted 
back into the genome at a variable region (VR), thereby generat-
ing population-level hyper-variability in a specific gene. Since the 
DGR system was first characterized in a Bordetella bacteriophage66, 

it has been found in human microbiomes67 and in several human 
gut phages68,69.

To determine whether the viral RTs were part of the DGR sys-
tem, we used the tool DGRscan67 to identify TR–VR pairs across 
79,250 high-quality viral genomes with >90% estimated complete-
ness. Confirming our hypothesis, the great majority of genomes 
with an RT also contained a TR–VR (85.7% of 25,620) compared 
with a small minority of those without an RT (6.5% of 53,630) 
(Fig. 5g). DGRs were remarkably common in certain Caudovirales 
families (for example, 84% of 6,616 Myoviridae) and among lysog-
enized viruses (50.1% of 18,187), whereas they were rare or com-
pletely absent from other Caudovirales families, ssDNA viruses 
and eukaryotic viruses (Fig. 5h). Although the vast majority of 
DGR gene targets were not functionally annotated, we observed 
highly significant enrichment within several Pfam domains 
(Supplementary Table 7) including an immunoglobulin-like 
domain that was 5.9-fold more common among DGR-targeted 
genes and is believed to play a role in phage interactions with car-
bohydrates on the cell surface of bacteria70. Together, these results 
reveal DGRs to be more common in intestinal phages than pre-
viously thought and may point towards viral proteins involved in 
molecular phage–host interactions.
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Discussion
In this study, we performed large-scale data mining of publicly 
available metagenomes to identify 189,680 draft-quality viral 
genomes representing an estimated 54,118 species-, 5,800 genus- 
and 1,434 family-level vOTUs. This large resource contains exten-
sive viral genomic diversity not found in other databases, improves 
detection of viral reads in microbiomes and represents numerous 
diverse and previously uncharacterized viral groups. Through a 
combination of approaches, we were able to predict host–virus link-
ages that cover the majority of viral and prokaryotic diversity in 
the gut microbiome. These host–virus linkages may be important 
in the future for understanding disease processes, designing phage 
therapies or understanding host–virus co-evolutionary dynamics. 
Despite large-scale annotation efforts, we were only able to assign  

preliminary biological functions to 25% of viral genes, indicating 
that more work and new methods are needed to predict protein 
function in viral genomes, such as deep learning71 and functional 
metagenomic assays72. Although the current study focused exclu-
sively on DNA viruses, future studies could use metatranscrip-
tomics data to study RNA viruses or gene expression patterns.

While this manuscript was in review, Camarillo-Guerrero 
et al.73 published the Gut Phage Database (GPD), a collection of 
∼142,000 non-redundant viral genomes (>10 kb) identified from 
28,060 human gut metagenomes and 2,898 gut bacterial genomes. 
After applying CheckV, we found the GPD represents 79,889 viral 
contigs with >50% completeness that form 46,480 species-level 
vOTUs, which is 14% less than the 54,118 vOTUs from the MGV 
(Extended Data Fig. 5). Differences between viral catalogues are 
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due to several factors, including data sets used for metagenome 
mining, methods for viral identification and criteria for sequence 
inclusion. For example, the MGV had greatly improved coverage of 
Microviridae which were excluded from the GPD due to their short 
length (mean = 4.9 kb). Combined, the MGV and GPD represented 
75,187 species-level vOTUs, indicating that the two catalogues con-
tain complementary viral diversity. In the future, these and other 
large-scale viral genome catalogues could be integrated to create 
a unified and standardized community resource, as recently per-
formed for human gut microbial genome catalogues43.

Methods
Development of viral detection pipeline. We used a combination of four viral 
signatures to identify viral metagenomic contigs: (1) the presence of viral protein 
families, (2) the absence of microbial protein families, (3) the presence of viral 
nucleotide signatures, and (4) multiple adjacent genes on the same strand. For 
the presence of viral protein families, we used HMMs for 23,841 viral protein 
families from the IMG/VR database23 (downloaded 1 June 2019) a�er excluding 
1,440 commonly found in microbial genomes or plasmids. For the absence of 
microbial protein families, we used HMMs for 16,260 protein families from the 
Pfam-A database57 (release 31) a�er excluding 452 commonly found in viruses. 
Proteins from metagenomic contigs were searched against HMMs from IMG/VR 
and Pfam-A using hmmsearch within the HMMER package v.3.1b2 (options: −Z 
1, e-value: <1 × 10−10)75 and were classi�ed as either viral or microbial based on 
the database containing the top hit. For the presence of viral nucleotide signatures, 
we applied the tool VirFinder v.1.1 (ref. 32) to metagenomic contigs, which scores 
sequences using a combination of k-mer frequencies and machine learning. For 
multiple adjacent genes on the same strand, we quanti�ed the strand switch rate by 
dividing the number of strand switches by the number of genes on each contig.

Benchmarking viral detection pipeline. We evaluated our viral detection 
pipeline on mock data sets we created that contained genome fragments from 
human-associated viruses and bacteria. Each mock data set contained genome 
fragments from six diverse categories of viruses: (1) crAss-like phages from 
the human gut45, (2) Lak-phages from human and mammalian microbiomes35, 
(3) bacteriophages assembled from human gut viromes76, (4) phages with 
CRISPR-spacer matches to gut isolated microbial genomes, (5) isolate dsDNA 
human viruses and (6) isolate ssDNA human viruses. Non-viral genome fragments 
were derived from: (1) gut isolated microbial genomes and (2) plasmids genomes. 
We generated 2,000 genomic fragments from randomly sampled genomes within 
each of the eight categories at each of seven different fragments lengths (1, 2, 5, 
10, 20, 50 and 100 kb). The TPR (percentage of viral contigs classified as viral) 
and FPR (percentage of non-viral contigs classified as viral) were calculated 
for over 77,000 combinations of cut-off values for the four viral signatures. We 
selected up to five different combinations of cut-offs that resulted in the highest 
classification score for each fragment length, where the classification score was 
based on a weighted combination of the TPR and FPR (score = TPR − 50 × FPR; 
Supplementary Table 3). We assigned a very high negative weight to the FPR to 
avoid many false positives in the metagenomes which are expected to contain 
mostly non-viral sequences. We compared the performance of our method with 
VirSorter v.1.0.5 (ref. 33) and to VirFinder v.1.1 (ref. 32) using the same benchmark 
data set (Supplementary Table 2). VirFinder was run using default options and 
we applied p-value thresholds of 0.05, 0.01 and 0.001 for classifying genome 
fragments as viral. VirSorter was run with and without the ‘-virome’ option, and 
we used VirSorter categories 1 and 2 to classify a fragment as viral (excluding low 
confidence predictions and integrated prophages). We also evaluated VirSorter 
when including predicted prophages (categories 4 and 5).

Application of pipeline to identify human gut viruses from whole 
metagenomes. To perform a comprehensive search for human gut viruses, we 
downloaded 18,271 publicly available metagenomic assemblies from human 
stool samples totalling 2.25 ×1012 bases and corresponding to 11,810 unique 
biological samples (Supplementary Table 1). Assemblies were obtained from two 
recent studies29,31 and the MGnify database (accessed on 16 April 2019)36. We 
excluded assemblies from environments other than human gut and those that 
could not be assigned to an accession number from the NCBI SRA database. 
Metadata were obtained from previous studies and the NCBI BioSample database77 
(Supplementary Table 2). We applied our viral detection pipeline method to 
identify 4,436,008 contigs longer than 1 kb across the 18,271 metagenomic 
assemblies (Supplementary Table 1), which were de-replicated to 3,481,684 
sequences at 100% ANI over 100% the length of the shorter sequence.

Gene calling and identifying viruses with alternative genetic codes. Prodigal v.2.6.3 
(ref. 78) was used to identify protein-coding genes in the 3,481,684 viral genomes 
using the flag ‘-p meta’ optimized for metagenomes. Additionally, we ran a custom 
pipeline to identify viruses using an alternative genetic code. Specifically, Prodigal was 
run using the standard code (11), and three alternative genetic codes: TGA recoded 

(code 4 or 25), TAG recoded (code 15) and TAA recoded (code 90), as previously 
described by Ivanova et al.79. To reduce false positives this procedure was only run on 
viral contigs longer than 10 kb with GC content <50%. For each viral contig, Prodigal 
outputs a GFF file that includes a coding potential score for every predicted gene. 
To evaluate the genetic codes, we took the sum of coding potential scores per contig. 
An alternative genetic code was predicted if it’s total coding potential score was the 
greatest and at least 10% greater than the standard genetic code.

Viral reference genomes used for comparison. Viral genomes from the MGV 
were compared against four reference databases: IMG/VR v.2.0 (ref. 22), GVD v.1.0 
(ref. 27), HuVirDB v.1.0 (ref. 26) and NCBI GenBank. For IMG/VR, we extracted 
28,697 viral contigs which were identified from 490 whole metagenomes from 
human stool samples using the Earth’s Virome Pipeline23. For GVD, we used 
all 13,203 viral contigs, which were identified from 471 viral metagenomes and 
98 whole metagenomes using a combination of tools including VirSorter and 
VirFinder and previously clustered into viral populations. An updated version of 
the GVD was released while the paper was under review but was not analysed here. 
For the HuVirDB, we extracted 929,886 contigs longer than 1 kb from 1,543 viral 
metagenomes from human stool samples. Because no viral prediction was previously 
applied, we ran the viral prediction pipeline developed for the current manuscript. 
For NCBI GenBank (downloaded 1 June 2019), we extracted 28,996 complete viral 
genomes after removing those labelled as incomplete, contaminated, or chimeric.

Quality control of viral genomes. We applied CheckV v.0.7.0 (database v.0.6)37 
to all viral sequences to identify closed genomes, estimate genome completeness 
and remove flanking host regions on assembled proviruses. Putative complete 
genomes were predicted based on direct terminal repeats (minimum 20 bp), 
inverted terminal repeats (minimum 20 bp) or provirus integration sites (host 
region predicted on both ends of viral contig), and were additionally required to 
display >90% estimated completeness based on comparison with CheckV reference 
genomes. A small number of sequences were removed that contained large repeats 
spanning >30% of the contig length. We selected all genomes with >50% estimated 
completeness for further analysis, resulting in 189,680 viral contigs from the MGV 
catalogue, 6,895 contigs from IMG/VR, 4,494 from GVD, 9,626 from HuVirDB 
and 28,996 from GenBank. We estimated the amount of non-viral DNA from 
cellular organisms among MGV sequences by searching for 16S and 18S rRNA 
genes using Barrnap v.0.9-dev (https://github.com/tseemann/barrnap) with models 
for Bacteria, Archaea and Eukaryotes. Alignments were required to cover ≥70% of 
the 16S or 18S rRNA gene and display an e-value <1 × 10−5. This same procedure 
was applied to the 18,271 metagenomic assemblies used for viral discovery to 
estimate the background levels of 16S and 18S rRNA genes.

Taxonomic annotation. Viral genomes were annotated based on amino acid 
alignments to a database of proteins derived from complete NCBI GenBank 
genomes and crAss-like genomes. Annotations were performed using the 
Baltimore classification (DNA, dsDNA, ssDNA, ssDNA-RT, dsRNA, RNA, ssRNA, 
ssRNA-RT) as well the ICTV taxonomy at the order, family and genus ranks. 
DIAMOND v.0.9.32 (options: –query-cover 50–subject-cover 50–e-value 1e-5–
max-target-seqs 1000)80 was used to align viral proteins to the reference database. 
The taxonomy of the top database hit was then transferred to each protein at each 
taxonomic rank (Baltimore, order, family, genus). In cases where the taxonomy 
of the top hit was missing, we used the next hit if its bit-score was within 25% 
of the top hit. For each viral genome, we aggregated annotations across proteins 
after weighting by bit-scores. Each viral genome was then annotated at the lowest 
taxonomic rank having >70% agreement across annotated proteins. At the family 
rank, we required genomes to have a minimum of two annotated proteins with 
>30% AAI to the database. At the genus rank, we required genomes to have a 
minimum of three annotated proteins with >40% average AAI to the database. 
As validation, we applied our pipeline to taxonomically annotated genomes from 
NCBI GenBank after removing closely related genes from the database. Our 
pipeline achieved average TPRs of 90.0%, 98.7%, 92.2% and 73.5% at precision 
values of 95.6%, 99.9%, 99.3% and 96.5% for taxonomic ranks of Baltimore, order, 
family and genus, respectively.

Host prediction. We used a combination of CRISPR-spacer matches and ≥1 kb 
genome sequence matches to associate viral genomes to Bacterial and Archaeal 
genomes from the UHGG collection43. The UHGG contains 286,997 genomes, 
representing 4,644 species of Bacteria and Archaea from the human gut that are 
taxonomically annotated using GTDB-tk v.0.3.1 (GTDB release 89)81. Many of 
the UHGG genomes are metagenome-assembled genomes, which sometimes 
contain erroneously binned sequences, including those from viruses. To address 
this, we conservatively identified and removed 2,043,531 contigs from UHGG 
genomes where the host region comprised <50% of the contig length. We then 
compared the remaining UHGG contigs with viral genomes and identified ≥1 kb 
genome sequence matches with ≥96% DNA identity using blastn from the blast+ 
package v.2.9.0 (ref. 82). Next, we identified 1,846,441 spacers from 145,053 
CRISPR arrays from 79,735 UHGG genomes using a combination of CRT83 and 
PILER-CR84 with default parameters. Redundant CRISPR arrays predicted by both 
tools were merged based on genomic coordinates. Spacers were searched against 
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viral genomes using blastn from the blast+ package v.2.9.0 (options: -dust = no 
-word-size = 18), allowing a maximum of one mismatch or gap over ≥95% of 
the spacer length. For each viral genome, we then aggregated connections to 
UHGG genomes and identified the lowest host taxonomic rank resulting in >70% 
agreement across connections.

Clustering viral genomes into vOTUs. All viral genomes with >50% completeness 
were clustered into species-level vOTUs on the basis of 95% ANI and 85% 
alignment fraction (AF) of the shorter sequence, as recommended by Roux et al.38. 
ANI and AF were estimated between all genome pairs using a custom script from 
the CheckV repository. The script performs all-versus-all local alignments using 
blastn from the blast+ package v.2.9.0 (options: perc_identity = 90 max_target_
seqs = 10000). ANI is computed as the length-weighted average DNA identity 
across local alignments between each genome pair. AF is computed by merging 
alignment coordinates between each genome pair and dividing by the length of 
each genome. This approach gave consistent results compared to MUMMer4  
(ref. 85), while running in a small fraction of the time. Clustering was performed 
using a greedy, centroid-based algorithm in which: (1) genomes were sorted by 
length, (2) the longest genome was designated as the centroid of a new cluster,  
(3) all genomes within 95% ANI and 85% AF were assigned to that cluster, and 
steps 2 and 3 were repeated until all genomes had been assigned to a cluster.

To identify genus- and family-level vOTUs, we clustered viral genomes using 
a combination of gene sharing and AAI. For computational efficiency, only the 
longest genome per species-level vOTU was included. Blastp from the DIAMOND 
package v.0.9.25.126 was used with options ‘-e-value 1 × 10−5–max-target-seqs 
10,000’ to align all viral proteins. For each pair of genomes, we identified shared 
genes (e-value <1 × 10−5), computed their AAI, and computed the percentage of 
genes shared. Edges between genomes were filtered based on their minimum AAI 
and gene sharing. Clustering was performed with MCL v.14-137 using different 
values for the inflation factor parameter. We then selected the filtering thresholds 
and MCL inflation factor that resulted in the highest agreement with genus- and 
family-level annotations from NCBI RefSeq, respectively. At the family level, we 
filtered connections between genomes with <20% AAI or <10% genes shared and 
used an inflation factor of 1.2. At the genus level, we filtered connections between 
genomes with <50% AAI or <20% gene sharing and used an inflation factor of 
2.0. We benchmarked our approach on taxonomically annotated genomes from 
NCBI, showing that viral clusters displayed high taxonomic homogeneity (that is 
the percentage of genomes from each cluster assigned to the same taxon; genus 
rank = 95.1%, family rank = 93.7%), though sometimes split known taxa into 
multiple clusters (that is percentage of genomes from each taxon assigned to the 
same cluster: genus rank = 92.6%, family rank = 74.5%).

Metagenomic read recruitment. Read mapping was performed to viral genomes 
databases to assess their coverage of viruses in microbiomes. First, we downloaded 
short reads from human gut viromes analysed by the HuVirDB plus short reads 
from three recent gut virome studies14,86,87. Short reads from whole metagenomes 
were downloaded for 1,257 stool samples from various countries (representing 
up to 50 samples per country). To ensure that viromes were mostly free of 
cellular contamination, we ran the viromeQC tool88 and retained viromes with 
an enrichment score >10, as recommended by the authors. For computational 
efficiency, we only analysed the first 1,000,000 sequencing reads from each data 
set. For quality control, we discarded reads that were either too short (<70 bp), 
contained ambiguous base calls, had low base quality scores (mean quality score 
<30) or mapped to the human genome (build hg19).

Next, we used Bowtie v.2.3.2 (ref. 89) to construct genome indexes for read 
mapping. Five indexes were created using all genomes from each of the four gut 
human virus databases (MGV, IMG/VR, HuVirDB, GVD), plus NCBI GenBank. 
Five additional indexes were created using only a single genome per species-level 
vOTU. Next, we used Bowtie 2 (options ‘–very-sensitive -k 20’) to align sequencing 
reads to each of the 10 genome indexes. Alignments between sequencing reads 
and viral genomes derived from the same SRA study were discarded to prevent 
overestimation of mapping rates. Additionally, alignments with mapping identity 
<95% (for example, edit distance >5 for 100-bp read) were discarded. After these 
filtering steps we quantified the percentage of high-quality, non-human reads that 
mapped to each database.

Phylogenetic analyses. We constructed a phylogeny of Caudovirales genomes 
using the method described by Low et al.49. First, we identified the set of 77 
Caudovirales markers in the representative genomes of 60,439 species-level vOTUs. 
HMMs for the 77 markers were searched against the protein sequences and the top 
hits individually aligned to the profile HMMs using HMMER v.3.1b2. Individual 
marker alignments were then trimmed to retain positions with less than 50% gaps 
using trimAl v.1.4 (ref. 90) and concatenated, filling in gaps for missing markers 
where necessary. Only genomes containing at least three markers and having data 
at >5% of alignment columns were retained. This resulted in a multiple sequence 
alignment of 28,780 genomes with 22,711 alignment columns. We then inferred 
a concatenated protein phylogeny from the multiple sequence alignment using 
FastTree v.2.1.9 (ref. 91) under the WAG + G model with the additional flags ‘-mlacc 
2’ and ‘-slownni’. The tree was then midpoint-rooted and visualized using iToL74.

In addition, we constructed core-genome single-nucleotide polymorphism 
(SNP) phylogenies of individual species-level vOTUs with at least 100 genomes. 
SNPs were identified by aligning all genomes to the longest genome in the cluster 
using nucmer from the MUMmer4 package v.4.0.0beta2 (ref. 85) with default 
options. SNPs were identified at genomic positions covered by ≥50% of genomes 
and we retained all genomes with data at ≥50% of positions. FastTree v.2.1.9 was 
used to construct phylogenetic trees using default options.

Functional annotation and protein clustering. Some 11,837,198 protein-coding 
genes were identified from the 189,680 MGVs using Prodigal and genes were 
annotated based on HMM searches against protein family databases: KEGG55, 
TIGRFAM56, Pfam-A57, VOGDB (http://vogdb.org) and the Earth’s Virome viral 
protein families database23. All searches were performed using the hmmsearch 
utility in the HMMER package v.3.1b2 (ref. 75) with default parameters. Each gene 
was annotated by each database according to its top scoring alignment with a 
bit-score ≥50, except for Pfam and TIGRFAM where trusted cut-offs were used. 
Antibiotic resistance genes were identified using three tools: (1) the Resistance 
Gene Identifier v.5.1.0 (ref. 62) using option ‘–low_quality’ with gene-specific 
bit-score thresholds, (2) the NCBI AMRFinder tool v.3.8.4 (ref. 61) using default 
options and (3) the Resfams database60 using hmmsearch with HMM-specific 
bit-score thresholds. DGRs were identified using the tool DGRscan67 with default 
options. All proteins were clustered at 30% AAI and 70% alignment coverage using 
MMseqs2 v.10.6d92c58.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Access to the full catalogue of viral genomes, protein clusters, diversity-generating 
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Extended Data Fig. 1 | Impact of assembly methods on viral recovery from gut metagenomes. The MGV catalogue was formed using metagenomic viral 

contigs identified from three studies that performed large-scale assembly of human stool metagenomes. The CIBIO and MGnify studies used MetaSPAdes 

for metagenomic assembly while the JGI study used MEGAHIT. To explore the effect of assembler on virus identification, we compared viral contigs 

identified from a common set of 752 stool samples which were assembled by all three studies and were each represented by a single SRA run accession. a, 

The number of vOTUs represented by viral contigs (>50% completeness) from each of the three studies. A similar number of vOTUs were identified from 

metagenomic contigs assembled by each study. b, The number of viral contigs at different quality levels identified from each of the three studies. A greater 

number of complete and high-quality viral genomes are recovered from the MEGAHIT assemblies.
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Extended Data Fig. 2 | Diversity of jumbo phages identified in the MgV dataset. The tree includes MGV sequences alongside a reference set of 

metagenome-assembled jumbo phages published by Al-Shayeb et al.51. Branches leading to MGV sequences, or clades composed exclusively of MGV 

sequences, are highlighted in red. Nodes with support < 50% were collapsed, and nodes with support ≥ 80% are indicated with a grey circle on the 

corresponding branch. Outer rings indicate the genome quality and continent of origin for MGV sequences. When sequences from different continents 

were 100% identical and only 1 sequence was included in the tree, the different continents of origin are indicated with stacked coloured squares. For box 

plots, the middle line denotes the median, the box denotes the interquartile range (IQR), and the whiskers denote 1.5× the IQR.
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Extended Data Fig. 3 | Strain level phylogeography of prevalent human gut phages. Core-genome SNP phylogenies were constructed for individual 

species-level vOTUs with at least 100 genomes. The figure shows three distinct vOTUs displaying a strong signature of phylogeography. For each tree, viral 

genomes are displayed as tips with colours indicating the geographic origin of the metagenomic sample.
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Extended Data Fig. 4 | Antibiotic resistance genes identified from 11.8 million viral proteins. a-b, Viral genes with putative beta-lactamase domains 

identified based on hits to the Pfam and KEGG databases, respectively. c-e, Resistance genes (including beta-lactamases) identified using Resfinder, 

AMRfinder, or the Resistance Gene Identifier (RGI), respectively. f, Overlap of resistance genes identified by Resfinder, AMRfinder, and RGI. Most viral 

proteins identified with putative beta-lactamase domains are not confirmed as antibiotic resistance genes.
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Extended Data Fig. 5 | Comparison of viral contigs from the MgV and gPD catalogues. a, The number of viral contigs with at least 50% completeness 

from the MGV and GPD catalogues. The GPD catalogue contains 142,809 viral contigs when including those with <50% completeness. Contigs from 

each catalogue where clustered at 95% ANI over 85% the length of the shorter sequence to form species-level vOTUs. b, MGV and GPD catalogues 

were clustered together using the longest contig from each vOTU. c, The histograms show the similarity between contigs from the MGV (n = 54,118) and 

GPD (n = 46,480) catalogues. d, Similarity to the GPD catalogue for MGV contigs from different viral families: Siphoviridae (n = 22,513), Podoviridae 

(n = 5,075), Myoviridae (n = 2,560), crAss-like (n = 948), Caudovirales other (n = 19,633), Microviridae (n = 2,133), CRESS DNA (n = 115), other (n = 1,141).
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Prodigal v2.6.3, HMMER v3.1b2, VirFinder v1.1, DIAMOND v0.9.25.126, Barrnap v0.9-dev, blast+ v.2.9.0, Bowtie v2.3.2, MCL v14-137, 

FAMSA v1.2.5, trimAL v1.4, FastTree v2.1.9, iTOL, MUMmer4 v4.0.0beta2, CRT, PILER-CR,  AMRFinder v3.8.4, Resistance Gene Identifier 

v.5.1.0, MMseqs2 v10.6d92c, PSI-BLAST, CheckV v0.7.0, viromeQC,  DGRscan

Data analysis See software listed above

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Access to the full dataset of viral genomes, protein clusters, diversity generating retroelements, and CRISPR spacers is provided without restrictions at https://

portal.nersc.gov/MGV. Any requests for further data should be directed to the corresponding authors.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used 18,271 assembled human gut metagenomes for 11,810 samples. These represent all available datasets from the gut microbiome 

with SRA accession codes at the time we started our project.

Data exclusions We excluded datasets that were not from a human stool sample or where SRA accession codes could not be determined.

Replication Not applicable to our study. All the datasets analyzed were publicly available, and therefore we did not generate any additional data for 

replication. 

Randomization Not applicable to our study. Any conditions of the samples (e.g. geographic location or disease state) were already determined before our 

study began since the datasets were publicly available.

Blinding Not applicable to our study for the same reason given above.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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