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ORIGINAL ARTICLE

Metagenomic covariation along densely sampled
environmental gradients in the Red Sea

Luke R Thompson1,2, Gareth J Williams3,4, Mohamed F Haroon1, Ahmed Shibl1,
Peter Larsen5, Joshua Shorenstein2, Rob Knight2,6 and Ulrich Stingl1
1Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal,
Saudi Arabia; 2Department of Pediatrics, University of California, San Diego, CA, USA; 3Center for Marine
Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA, USA; 4School of Ocean
Sciences, Bangor University, Anglesey, UK; 5Argonne National Laboratory, Argonne, IL, USA and 6Department
of Computer Science, University of California, San Diego, CA, USA

Oceanic microbial diversity covaries with physicochemical parameters. Temperature, for example,
explains approximately half of global variation in surface taxonomic abundance. It is unknown,
however, whether covariation patterns hold over narrower parameter gradients and spatial scales,
and extending to mesopelagic depths. We collected and sequenced 45 epipelagic and mesopelagic
microbial metagenomes on a meridional transect through the eastern Red Sea. We asked which
environmental parameters explain the most variation in relative abundances of taxonomic groups,
gene ortholog groups, and pathways—at a spatial scale of o2000 km, along narrow but well-defined
latitudinal and depth-dependent gradients. We also asked how microbes are adapted to gradients and
extremes in irradiance, temperature, salinity, and nutrients, examining the responses of individual
gene ortholog groups to these parameters. Functional and taxonomic metrics were equally well
explained (75–79%) by environmental parameters. However, only functional and not taxonomic
covariation patterns were conserved when comparing with an intruding water mass with different
physicochemical properties. Temperature explained the most variation in each metric, followed by
nitrate, chlorophyll, phosphate, and salinity. That nitrate explained more variation than phosphate
suggested nitrogen limitation, consistent with low surface N:P ratios. Covariation of gene ortholog
groups with environmental parameters revealed patterns of functional adaptation to the challenging
Red Sea environment: high irradiance, temperature, salinity, and low nutrients. Nutrient-acquisition
gene ortholog groups were anti-correlated with concentrations of their respective nutrient species,
recapturing trends previously observed across much larger distances and environmental gradients.
This dataset of metagenomic covariation along densely sampled environmental gradients includes
online data exploration supplements, serving as a community resource for marine microbial ecology.
The ISME Journal (2017) 11, 138–151; doi:10.1038/ismej.2016.99; published online 15 July 2016

Introduction

Microbial communities have a central role in energy
flow and carbon and nutrient cycling in the oceans.
Shotgun sequencing and analysis of microbial com-
munity DNA (metagenomics) is now an established
method for understanding the microbial genomic
diversity underlying these processes (DeLong et al.,
2006; Dinsdale et al., 2008). Distribution of microbial
diversity and biogeochemistry is structured in large
part by environmental gradients in light, tempera-
ture, oxygen, salinity and nutrients. Oceanographic

surveys spanning such environmental gradients,
combining metagenomic sequencing and measure-
ment of continuous environmental variables,
are enabling quantitative understanding of microbial
communities (Gianoulis et al., 2009; Raes et al., 2011).
Global oceanographic surveys have sequenced hun-
dreds of surface and moderately deep (epipelagic and
mesopelagic) ocean microbial communities (Rusch
et al., 2007; Sunagawa et al., 2015), cataloging the vast
genomic diversity of ocean microbes; further analyses
of these data have identified correlations between
environmental parameters and genetic community
traits (gene ortholog groups and pathways) with
predictive power (Gianoulis et al., 2009; Raes et al.,
2011; Barberán et al., 2012). Local studies at individual
ocean sites, meanwhile, have shown how microbial
taxa and gene ortholog groups are partitioned at greater
detail along the water column and between discrete
ocean environments (DeLong et al., 2006; Coleman
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and Chisholm, 2010; Ghai et al., 2010; Thompson
et al., 2013). Depth is a critical factor behind commu-
nity structure in the open ocean (DeLong et al., 2006),
and dense sampling is capable of capturing subtle
changes in environmental parameters with sufficient
replication for statistical power.

The Red Sea is an ideal oceanic site for dense
sampling of metagenomes to study environment–
microbe covariation. The Red Sea is a deep
(42000m) incipient ocean with strong latitudinal
and depth-dependent gradients in temperature,
salinity, oxygen and nutrients (Edwards, 1987). Like
the open-ocean gyres of the Atlantic and Pacific
Oceans, the Red Sea is oligotrophic with surface
waters dominated by the picoplankton Prochloro-
coccus and Pelagibacter (Ngugi and Stingl, 2012).
More so than these open-ocean gyres, however, the
Red Sea lies at pelagic extremes of irradiance,
temperature and salinity. The Red Sea experiences
a late-summer southern influx of water called the
Gulf of Aden Intermediate Water (GAIW), a foreign
water mass that is cooler, fresher and more nutrient-
rich than the native Red Sea water mass. The Red
Sea is compact enough to sample across these
gradients and water masses on a single month-long
expedition, sampling more densely along transects
and deeper through the water column than possible
on a global survey.

We undertook a high-resolution metagenomic
survey of the Red Sea, conducting a multivariate
community analysis of covariation between environ-
mental parameters and metagenome-derived taxo-
nomic and functional metrics. We followed three
main lines of questioning. First, how well can both
taxonomic and functional microbial diversity be
explained by environmental parameters, and which
environmental parameters explain the most varia-
tion? Sunagawa et al. (2015) showed in a recent
global ocean survey that temperature could explain
more variation in taxonomic abundance than any
other parameter. At smaller spatial scales and
narrower temperature ranges, does temperature still
have the most explanatory power? Which parameters
can best explain residual variation? Second, are
patterns of environmental covariation conserved
across co-occurring water masses? Sampling the
GAIW allowed us to determine whether this co-
occurring water mass follows the same organiza-
tional principles (covariation with environmental
parameters) as the native Red Sea water mass, across
different taxonomic and functional metrics. Third,
how are microbes functionally adapted along envir-
onmental gradients of irradiance, temperature, sali-
nity and nutrients, including extremes in these
parameters? Do marine communities exhibit fine-
scale genomic adapation to environmental para-
meters as has been observed between separate
oceans? Our dataset has allowed us to address these
questions, and supporting online resources will
make the processed data available to the wider
community for further investigations.

Materials and methods

Oceanographic sampling
Samples were collected aboard the R/V Aegaeo on
Leg 1 of the 2011 KAUST Red Sea Expedition, 15
September–11 October 2011. At eight stations, 20 l
seawater was collected from each of depths 10, 25,
50, 100, 200 and 500m; in two cases (Stations 12 and
34) where the seafloor was shallower than 500m, the
deepest sample was taken at the seafloor. Water was
collected in 10 l Niskin bottles (that is, two Niskin
bottles per depth), attached to a CTD rosette. Back on
deck, the seawater was filtered through a series of
three 293mm mixed cellulose esters filters (Milli-
pore, Billerica, MA, USA) of pore sizes 5.0 μm,
1.2 μm and 0.1 μm. Filters were placed in sealed
plastic bags and frozen at –20 °C. Station properties
(location, depth of mixed layer, chlorophyll max-
imum and oxygen minimum) are described in
Supplementary Table S1. Physical oceanographic
measurements (pressure, temperature, conductivity,
chlorophyll a, turbidity and dissolved oxygen) were
collected on a modified SeaBird 9/11+ rosette/CTD
system, described in Supplementary Methods. Nutri-
ent measurements (nitrate+nitrite, nitrite, ammo-
nium, phosphate and silicate) on the final 0.1 μm
filtrate were carried out at the UCSB Marine Science
Institute and the Woods Hole Oceanographic Institu-
tion (Supplementary Methods). Sample water prop-
erties are described in Supplementary Table S2.

DNA extraction and whole-genome shotgun sequencing
of community metagenomes
Community DNA was extracted from the 0.1 μm
filters (0.1–1.2 μm size fraction) using phenol–
chloroform extraction, similar to Rusch et al. (2007)
and Ngugi et al. (2012); the full protocol is described
in Supplementary Methods. Yields of genomic DNA
ranged from 200–1500 ng per sample. Whole-
genome shotgun libraries were made using the
Nextera DNA Library Prep Kit (Illumina, San Diego,
CA, USA). Median insert size by sample ranged from
183 bp to 366 bp (Supplementary Table S3). Libraries
were sequenced using Illumina HiSeq 2000 paired-
end (2 × 100 bp) sequencing, filling a total of three
lanes (15 samples per lane). Sequence length after
adapter removal was 93 bp, and 10 million reads (for
each of reads 1 and 2) per sample were generated
(Supplementary Table S3). Reads were quality
filtered and trimmed using PRINSEQ (Schmieder
and Edwards, 2011) with parameters given in
Supplementary Table S4, and final read counts and
metagenome sizes are given in Supplementary Table
S3. Although exact duplicates and reverse-
complement exact duplicates were removed, we
tested the effect of leaving in these duplicates, and
it increased the number of reads retained by only
0.1–0.2%. Raw fastq files have been submitted to
the NCBI BioSample database with accession num-
bers PRJNA289734 (BioProject) and SRR2102994–
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SRR2103038 (SRA). All analyses presented here
were carried out on the quality filtered and trimmed
reads. Both reads 1 and 2 were analyzed initially;
however, unless otherwise indicated, only the
results of read 1 are presented here because of a
high degree of redundancy between results of reads 1
and 2. Genomic assemblies were built from each
sample; these assemblies were used to calculate
insert sizes of metagenomic libraries (Supplementary
Table S3) but provided limited value for quantitation
of taxa and gene ortholog groups. The assemblies
did, however, yield contigs belonging to uncharac-
terized clades, which are the subject of a separate
study (Haroon et al., 2016).

Calculation of metagenomic ‘response variables’ from
metagenomic reads
Data tables of merged environmental metadata and
response variables are provided in Supplementary
Information. Scripts used in the preparation of this
manuscript are available at https://github.com/cuttle
fishh/papers in the directory red-sea-spatial-series.

Taxonomic composition. The 45 metagenomes
were analyzed at the read level for the relative
abundance of taxonomic groups using CLARK.
CLARK (full mode) (Ounit et al., 2015) and
CLARK-S (spaced mode) (Ounit and Lonardi, 2015)
were used to classify paired metagenomic reads at
species and genus level, respectively, based on a
k-mer approach against the NCBI RefSeq database
(Release 74). CLARK was run using default para-
meters but with the high-confidence option, which
reports only results with high confidence (assign-
ments with confidence score ⩾ 0.75 and gamma
value ⩾ 0.03), as suggested by the developers. For
both species-level and genus-level CLARK results,
the column Proportion_All(%) (relative normalized
abundance such that each sample sums to 100%)
was exported and merged with sample metadata
(environmental parameters) using the Python pack-
age Pandas. Hierarchically-clustered heatmaps were
generated using MetaPhlAn2 utilities (Truong et al.,
2015).

In order to specifically capture the diversity within
the Pelagibacter and Prochlorococcus groups in the
Red Sea, we used GraftM (https://github.com/
geronimp/graftM), which classifies reads based on
HMM profiles in concert with a reference phylogeny.
HMM profiles of Pelagibacter 16S rRNA gene and
Prochlorococcus rpoC1 were generated from forward
reads using HMMer v3.1b1 (Eddy, 2011). Reference
phylogenies were constructed using MEGA6
(Tamura et al., 2013) from ClustalW alignments
(Larkin et al., 2007) of publicly available Pelagibac-
ter 16S rRNA gene sequences (Luo et al., 2015) and
Prochlorococcus rpoC1 (DNA-directed RNA poly-
merase subunit gamma) genes (Shibl et al., 2016).
Phylogenies were estimated by maximum-likelihood
using the GTR+I+G model of nucleotide evolution,

chosen with the Perl script ProteinModelSelection.pl
that comes with RAxML (Stamatakis, 2014). GraftM
was run with default parameters based on the the
built GraftM packages, which are available here:
https://github.com/fauziharoon/graftm-packages.
Counts were fourth-root transformed.

Gene ortholog group and pathway relative abundance.
The 45 metagenomes were analyzed for the relative
abundance of gene ortholog groups (KEGG orthologs
or KOs) and biochemical pathways (KEGG pathways)
using HUMAnN v0.99 (Abubucker et al., 2012) with
KEGG release 66.0. First, because the focus of this
study was prokaryote genomes, and to increase
search speed, reads were recruited to only the
prokaryotic fraction of the KEGG genome database,
containing all (as of the KEGG release) 1377
prokaryotic genomes (proteomes translated from
open reading frames) using a translated search with
USEARCH v7.0.1001 (Edgar, 2010) with options –

ublast, –accel 0.8 and –evalue 1e–5. The fraction of
reads mapped to the KEGG genome database
averaged 26.2% (range: 16.2–42.5%) across 45
samples (Supplementary Table S6). Using these
results, HUMAnN was run in both standard mode
(all taxa merged) and in ‘per-organism’mode (option:
c_fOrg =True). KO counts and the KEGG pathway
counts were normalized to counts per million
counts, that is, the number of reads mapped to the
KO (or pathway) divided by the sum of all reads
mapped in that sample times 1e6, such that all
values for a given sample sum to 1 million. Note that
KO counts were not normalized to gene size (for
example, average length of each KO in KEGG)
because this was unnecessary: comparisons of KO
relative abundances were to environmental para-
meters and not to each other, and the multivariate
community models used are insensitive to absolute
magnitudes.

Statistical analyses
We utilized multivariate statistical techniques to
relate an array of environmental parameters to
metagenomic response variables: taxon relative
abundance, KO relative abundance and pathway
relative abundance. All analyses were completed
using R v3.1.1 (www.r-project.org) and PERMA-
NOVA+ (Anderson et al., 2008).

Exploratory analyses. Pearson correlations
between pairwise combinations of environmental
parameters were calculated and displayed as a
heatmap. Similarity profile analysis (SIMPROF)
was used to identify significant groupings within
the KO relative abundance response matrix using the
clustsig package (http://cran.r-project.org/web/
packages/clustsig/index.html). Partitioning around
medoids was used to partition the KOs by relative
abundance using the cluster package v1.15.2
(Kaufman and Rousseeuw, 2005) with Kullback–

Red Sea metagenomic spatial series
LR Thompson et al

140

The ISME Journal

https://github.com/cuttlefishh/papers
https://github.com/cuttlefishh/papers
https://github.com/geronimp/graftM
https://github.com/geronimp/graftM
https://github.com/fauziharoon/graftm-packages
www.r-project.org
http://cran.r-project.org/web/packages/clustsig/index.html
http://cran.r-project.org/web/packages/clustsig/index.html


Leibler distances (Kullback and Leibler, 1951); 12
clusters were chosen based on minimization of the
gap statistic.

Explaining variability using environmental para-
meters. To quantify the spatial variation (both
horizontally and vertically) in the response variable
matrices explained by the co-occurring gradients in
our environmental parameters, we used a multi-
variate distance-based linear model (DistLM)
(McArdle and Anderson, 2001). Eight environmental
parameters were considered: temperature, salinity,
dissolved oxygen, chlorophyll, turbidity, nitrate,
phosphate and silicate. These parameters were
normalized and fitted in a conditional manner to
each response variable matrix using step-wise selec-
tion and 9999 permutations of the residuals under a
reduced model. Model selection was based on
Akaike’s information criterion with a second-order
bias correction applied (AICc) (Hurvich and Tsai,
1989). The best-fit model (the one that balanced
performance with parsimony) was then visualized
using distance-based redundancy analysis (McArdle
and Anderson, 2001) in order to identify the
directionality of the correlations between the
response variable matrix and the environmental
parameters. Variation explained by all parameters
combined was calculated by forcing all parameters to
be included in the final model.

Visualization of metagenome–environment relation-
ships. Pairwise relationships between environmen-
tal parameters and KO relative abundance plus other
metagenomic response variables were visualized
using scatter plots, available using the Bokeh-based
HTML files in Supplementary Information. Environ-
mental parameters and metagenomic response
variables were visualized in the 3D volume of the
Red Sea using the �ili Toolbox, also available in
Supplementary Information. KOs having strong
correlations with environmental parameters were
visualized with canonical correspondence analysis
(CCA) using the vegan 2.3-1 package, implemented
according to Legendre and Legendre (2012). For
clarity, only KOs with abundance in the top half and
variance in the top tenth of all KOs were visualized
by CCA (Supplementary Methods).

Results and discussion

Overview of Red Sea metagenomic dataset and analysis
To measure covariation of microbial diversity
with oceanic gradients, we sampled a north–south
transect of the Red Sea at eight stations
(Supplementary Table S1), sampling six depths from
the surface to 500m (Figure 1a), totaling 45 samples.
Concurrent with microbial sampling we measured
temperature, salinity, dissolved oxygen, chlorophyll
a, turbidity, nitrate, phosphate and silicate (values in
Supplementary Table S2, covariance matrix in

Figure 2). The microbial size fraction (0.1–1.2 μm)
was sequenced at 10M reads per sample with 93-bp
paired reads (Supplementary Table S3). From the
metagenomic reads, we calculated five metagenomic
response variables: genus-level taxon relative abun-
dance, species-level taxon relative abundance, gene
ortholog group (KEGG Orthology or KO) relative
abundance, the KEGG pathway coverage and the
KEGG pathway relative abundance. Of the 1738 taxa,
5775 KOs and 162 pathways detected in the
metagenomes, many exhibited ecologically mean-
ingful correlations with environmental parameters.
As an example, the inverse relationship between
phosphate concentration and relative abundance of
phosphate-acquisition gene pstS (K02040) is shown
in Figure 1. Samples generally grouped by depth, as
indicated by hierarchical clustering of samples based
on all taxa (Figure 3) and KOs (Supplementary
Figure S1), and by abundance patterns of individual
taxa and KOs (Figures 1b and 4; Supplementary
Information).

The acquired set of metagenomic response vari-
ables and environmental parameters allowed us to
assess the predictive power of environmental para-
meters at multiple levels of microbial genotype. We
tested how much variation in genus-level taxonomy,
KO relative abundance and pathway relative abun-
dance could be explained using a small number of
environmental parameters. Distance-based multi-
variate linear models (DistLM) and redundancy
analysis were used, balancing parsimony and per-
formance (using AICc) to derive an optimal model
for explaining variation in each response variable
Figure 5). We acknowledge that the analyses pre-
sented here, by necessity, are constrained by the
databases available for assigning taxonomy and KOs
and the available mappings of KOs to pathways.

Variation in metagenomic diversity metrics explained
by environmental parameters
We first asked which environmental parameters
explained the most variation in both taxonomic
and functional diversity metrics, and we looked for
differences in total variation explained. Environ-
mental parameters explained similar amounts of
variation in the various metrics used (Figure 5a).
Total variation explained using all available envir-
onmental parameters was only marginally higher for
KO relative abundance (79.0%) than for pathway
relative abundance (77.0%) and genus-level taxon
relative abundance (75.1%). Variation explained was
similar even at greater phylogenetic resolution
within two important marine microbial groups, the
autotroph Prochlorococcus and the heterotroph
Pelagibacter (SAR11 clade), which are the two most
abundant genera across our dataset (Figure 3).
At ecotype-level taxonomy (Prochlorococcus ‘eco-
types’ and Pelagibacter ‘subclades’) and genus-level
KO abundance, the percent variation explained was
similar to the community as a whole (Figure 5b).
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Overall, environmental parameters explained
more variation in our dataset than in other microbial
ecosystems where this has been tested. For example,
in a similarly sized dataset on reef-associated
microbes, the best parameter explained only 15%
of taxonomic variation and 18% of metabolic

variation (Kelly et al., 2014). Variations in water
column microbial communities appear easier to
predict. In an English Channel time-series, day
length explained over 65% of variance in taxonomic
diversity (Gilbert et al., 2011). The better perfor-
mance of water column data could be because the
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open ocean is not patchy but well mixed and stably
stratified by depth into layers, especially in the Red
Sea in late summer. Relative to open-water samples,
the increased complexity of the response matrix in
reef-associated samples resulting from micro-
habitats and higher diversity likely reduces model
performance.

Temperature explained the most variation in each
of the response variables; this was followed in each
case by nitrate (second) and then chlorophyll (third)
for the functional response variables and salinity
(third) for genus-level taxonomy (Figure 5a;
Supplementary Figure S2). Although nitrate and
phosphate (r=0.97) and silicate (r=0.95 with nitrate
and phosphate) were very highly correlated
(Figure 2), nitrate was consistently ranked higher
(explaining more variation) than phosphate in the
optimal model, and silicate was not implicated
(Figure 5a). Across the whole dataset, temperature
explained more variation than oxygen in every
response variable. Although temperatue and oxygen
were correlated (r=0.79), oxygen was never part of
the optimal model. Temperature has been identified
as a key predictor of microbial diversity in the ocean
by other studies (Johnson et al., 2006; Sunagawa
et al., 2015). Specifically, Sunagawa et al. (2015)
showed that temperature is a better predictor of
taxonomic composition than is oxygen. Here we
show that the same is true for gene functional
composition (KOs): the absence of oxygen in any
optimal model suggests that temperature is a stronger
predictor (and possibly also driver) of microbial
diversity than oxygen.

Nitrate (measured as nitrate+nitrite) and phos-
phate both formed part of the optimal model for each
functional response variable, with nitrate always

explaining slightly more variation than phosphate.
This finding hints at the relative selective pressures
these two key nutrients exert. The idea that limita-
tion of a given nutrient leads to the gain of genes for
uptake and assimilation of that nutrient is supported
by numerous studies (Coleman and Chisholm, 2010;
Kelly et al., 2013; Thompson et al., 2013). Here, we
extend that idea to the quantitative explanatory
power of the nutrient’s concentration for predicting
KO relative abundance. The predictive power of
nitrate relative to phosphate in our genetic results
may indicate that nitrogen (N) is relatively more
limiting than phosphorus (P) in the Red Sea. Limited
data exist on this topic, but N:P ratios of 0.3–5 (well
below the Redfield ratio of 16, the atomic ratio of N
to P in phytoplankton (Redfield, 1958)) in the Gulf of
Aqaba (Lindell et al., 2005) and a high frequency of
N-acquisition genes in a Red Sea surface metagen-
ome relative to the Atlantic ocean (Thompson et al.,
2013) suggest N limitation; however, in the northern
Gulf of Aqaba, a P-stress response and lack
of N-stress ntcA response in Red Sea cyanobacteria
supports the opposite conclusion (Post, 2005).
Nevertheless, our own nutrient measurements from
this cruise show that the N:P ratio (calculated here
as the ratio of nitrate+nitrite to phosphate) in surface
waters was 2, whereas a prototypical ratio of 16 was
observed in deeper waters (Supplementary
Figure S3), possibly due to remineralization of
N from phytoplankton at depth. Regarding nitrate,
it is interesting that for Pelagibacter KO relative
abundance, nitrate (59.1%) not temperature
explained the most variation. N limitation has strong
effects on the transcriptional response of Pelagibac-
ter in culture, with genes for assimilation of organic
sources of N up-regulated under N stress (Smith
et al., 2013). However, none of the differentially
expressed genes identified by Smith et al. (2013)
covaried strongly with nitrate in our dataset (reads
from corresponding KOs assigned to Pelagibacter).
Thus, the nature of a potential selective force of this
putative N limitation on Pelagibacter gene content
remains a mystery.

Chlorophyll has a non-monotonic relationship
with depth, unlike the other environmental para-
meters analyzed here, which are either low at the
surface and high at depth (salinity, phosphate,
nitrate, silicate) or high at the surface and low at
depth (temperature, oxygen, turbidity). Chloro-
phyll peaks below the surface mixed layer at the
deep chlorophyll maximum (100 m in the Red Sea,
Supplementary Table S1), due to a confluence of
sunlight from above, nutrients from below, and
the tendency of deeper phytoplankton to possess
higher chlorophyll per cell. Because chlorophyll is
effectively orthogonal to other environmental para-
meters, it should not be unexpected that it has
significant explanatory power, and that chlorophyll
and temperature (a key depth-dependent para-
meter) together could explain much of the genetic
variation.

0.00

0.10

0.30

-0.50

-0.80

Figure 2 Pearson correlations between environmental para-
meters shown as a colored covariance matrix. A Pearson’s r value
of 1 (red) indicates a total positive correlation, a value of −1 (blue)
indicates a total negative correlation, and a value of 0 (white)
indicates no correlation.
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Comparison with a foreign water mass
We next asked whether the ability to predict
metagenomic response variation from environmental
parameters was sufficiently robust to extend to
alternate water masses. Fortuitously, the Red Sea
experiences a water influx each summer from the
Indian Ocean, called the GAIW, which was captured

in three of our samples. The GAIW brings cooler, less
saline, oxygen-rich, nutrient-rich water from the Gulf
of Aden (Churchill et al., 2014). The three GAIW
samples were clearly distinct from their neighboring
samples in the temperature–salinity (T–S) profile
(Supplementary Figure S4A) and Red Sea water
column (Supplementary Figure S4B). The properties
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Figure 3 Relative abundance of genera across metagenomes displayed as a hierarchically-clustered heatmap, with clustering of samples
by Bray–Curtis distance (top dendrogram) and clustering of taxa by correlation between samples (left dendrogram), with branch colors
indicating major clusters. GAIW sample labels are colored red. The top 50 most abundant genera are shown. Relative abundances of all
683 genera detected for each sample sum to 100. Genus-level taxonomy was calculated based on k-mer frequency in comparison with the
NCBI RefSeq database (see Materials and methods section).
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of GAIW samples resembled those of deeper samples
in the native Red Sea water mass; the GAIW samples,
which were from 50m to 100m depth, had markedly
different environmental parameters from non-GAIW
samples from 50m to 100m. We were curious if our
multivariate community models would be able to
highlight any differences between response variables
in model performance across different water masses.

Considering the distance-based redundancy ana-
lysis (Figure 5a; Supplementary Figure S2), all of the
functional metrics placed the GAIW samples amidst
the native Red Sea samples, though clustering with
deeper samples, owing to the lower temperature and
higher nutrients of the GAIW samples. The

taxonomic metrics, however, placed the GAIW
samples either far apart from the other samples
(genus level) or with much deeper samples than
expected even based on physicochemical properties
(species-level), driven by the high nitrate and low
temperature and salinity of the GAIW samples
relative to the non-GAIW samples (Figure 5a). These
results suggest that environmental covariation pat-
terns of taxonomy are less conserved across water
masses (that is, different combinations of environ-
mental parameters) than are environmental covaria-
tion patterns of functional metrics.

Supporting the idea that functional covariation
with environmental parameters is conserved across

Figure 4 Covariation of select KOs with environmental parameters. KO relative abundance is given in units of counts per million of total
KO counts in each sample (that is, all KOs sum to 1 million in each sample).
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different water masses, we note anecdotally that for
most of the individual environment–KO relation-
ships examined below (Figure 4), GAIW samples
followed a similar pattern to the non-GAIW majority.
One notable exception was salinity, with the salinity
of GAIWmuch lower than anything in the native Red
Sea water mass and the covariation of KOs with
salinity very different for GAIW samples compared
to non-GAIW samples.

Environmental covariation patterns of individual KOs
We finally turned our attention to the covariation
patterns of individual KOs, which partition along the
three-dimensional water column in ecologically
meaningful ways. Which KOs have the strongest
covariation with environmental parameters? Can
previously observed patterns between oceans also
be observed along gradients within a single sea?
Which KOs are implicated in the adaptive response
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of microbes to the low nutrients and high irradiance,
temperature and salinity of the Red Sea?

We used CCA to identify and visualize correla-
tions between KOs and environmental parameters,
with KOs organized by the metabolic pathway
(Figure 6; Supplementary Table S9). We note that
all KOs were included in the distance-based linear
model above, whereas a subset of the most differen-
tially represented and abundant KOs are shown in
the CCA (methods); most of the KOs discussed below
are visualized in Figure 6. In addition, KOs were
ranked by total abundance across all samples
(Supplementary Table S7), and KO abundance
patterns were clustered using partitioning around
medoids into 12 clusters (Supplementary Table S8).

Nutrient acquisition and energy metabolism con-
tributed most of the functional covariation with
environmental parameters (Figure 6). The patterns
documented here were not exclusively depth-
dependent but also captured subtle covariation with
gradients along isobaths. The full set of environ-
mental parameters and metagenomic response vari-
ables can be visualized interactively in the 3D
volume of the Red Sea using web-based tools with
files in Supplementary Information. Visualization
examples showing the temperature–salinity profile,

and temperature in the 3D volume of the Red Sea, are
provided in Supplementary Figure S4.

Depth is a spatial parameter that is not ‘felt’ by
microorganisms, except as it relates to pressure, but
nevertheless structures virtually all environmental
parameters in the water column. Light attenuates
with depth, and thus photosynthesis is mostly
confined to the upper 200m of the water column.
As expected, KOs for photosynthesis were most
abundant in shallow waters and gradually less
abundant in deeper waters. This was true for both
oxygenic (psbA/K02703) and anoxygenic (pufL/
K08928) photosynthesis, photosynthetic electron
transport (petH/K02641, ndhD/K05575) and pigment
biosynthesis (por/K00218) (Figure 4). Some hetero-
trophic bacteria accumulate carbon-rich polymers
called polyhydroxyalkanoates when organic carbon
is readily available but growth is limited by nutrients
(Stubbe et al., 2005). We observed that polyhydrox-
yalkanoate synthase (phbC/K03821) was more abun-
dant in mesopelagic samples than epipelagic
samples, consistent with relatively more heterotro-
phy than phototrophy at depth.

Temperature covaries with depth (warmer at sur-
face, colder at depth), but in the Red Sea southern
surface waters are warmer than northern surface
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waters, and the GAIW is cooler than surrounding
depths in the native Red Sea water mass. We
observed that KOs for chaperonins, including heat-
shock proteins GroEL/ES (K04077, K04078) and
proteases, including Clp protease (clpP/K01358),
had greater relative abundance in warm (24–32 °C)
samples than in cooler (21–23 °C) samples (Figure 4).
Both GroEL/ES (Zeilstra-Ryalls et al., 1991) and Clp
protease (Zybailov et al., 2009) have important roles
in protein folding, which is sensitive to high
temperature. The increase in groEL relative abun-
dance leveled off above 23 °C, whereas the increase
in clpP relative abundance increased along the full
temperature range from 21 °C to 32 °C. In an opposite
trend, glycolysis was relatively more abundant in
colder samples than warmer samples, as exemplified
by phosphofructokinase (pfk/K00850). This is likely
related to the relative increase in heterotrophy at
depth, as deeper waters tend to be cooler. The most
cold, eutrophic samples from the GAIW have the
highest relative abundance of pfk by far, indicating
relatively more heterotrophy in this foreign
water mass.

Salinity in the Red Sea is higher at depth and in
northern surface waters and lower in southern
surface waters and the GAIW. Saline-rich waters of
the the Mediterranean and Red Seas were previously
shown to have high relative abundance of genes for
degradation of osmolytes, in particular recruiting to
Pelagibacter (Thompson et al., 2013). We put forth a
hypothesis that high salinity leads to high produc-
tion of osmolytes by algae and other organisms, a
valuable organic carbon and nutrient source for
Pelagibacter (Sun et al., 2011), and therefore there
is selective pressure to encode osmolyte-degrading
enzymes (Thompson et al., 2013). Across the 45 Red
Sea metagenomes, KOs for glycine betaine (GBT)
transport and degradation (Sun et al., 2011—glycine
betaine/proline transporter (proV/K02000), betaine-
homocysteine S-methyltransferase (bhmT/K00544),
dimethylglycine dehydrogenase (DMGDH/K00315)
and sarcosine oxidase (soxB/K00303)—were corre-
lated with high chlorophyll and with high or
moderate salinity (Figure 6). The shape of covaria-
tion of these four KOs was not as clearly dependent
on salinity as we expected (Figure 4). As suggested
by the CCA plot (Figure 6), both salinity and
chlorophyll help explain the relative abundance of
GBT transport and degradation KOs. The legend at
top-right of Figure 4 indicates chlorophyll a fluores-
cence of the samples as a function of depth. Among
the GBT-utilization KOs, samples with either high
chlorophyll (green and yellow-black) or high salinity
(blue and purple) tended to have the highest
abundance. Thus this multifaceted trend is comple-
tely consistent with the hypothesis of phototroph
(chlorophyll) production of osmolytes in high-
salinity waters as a source of reduced carbon and
nutrients for heterotrophic bacteria. Regarding the
phototrophs responsible for producing GBT, we note
that although Prochlorococcus are thought to use

glucosylglycerate and sucrose as their main osmo-
lytes, some low-light Prochlorococcus strains and
Synechococcus strains are thought to accumulate
GBT as well (Scanlan et al., 2009), and these low-
light strains are more abundant in the high-
chlorophyll samples. Interestingly, the KO patterns
with reads assigned to Pelagibacter specifically (for
example, proV/K02000)—one- to two-thirds of the
recruited reads for these salinity-related KOs—were
similar to the overall KO patterns but more depen-
dent on salinity than chlorophyll (Figure 4).

Phosphate and nitrate are both low in Red Sea
surface waters but higher at depth and in the GAIW
(for example, phosphate shown in Figure 1a). Several
studies have shown that genes for nutrient acquisi-
tion are enriched in waters limited for those
nutrients, for example, phosphate acquisition in the
low-phosphate Mediterranean and Sargasso Seas
(Coleman and Chisholm, 2010; Kelly et al., 2013;
Thompson et al., 2013). Across the gradients of the
Red Sea, numerous KOs for nutrient transport and
assimilation were differentially distributed between
nutrient-poor (surface and non-GAIW) and nutrient-
rich (deep and GAIW) samples. Although depth was
a major factor underlying the covariation observed
here, we also detected more subtle differences along
gradients within isobaths, as well as more striking
differences between GAIW and non-GAIW samples
at the same depth. This is to our knowledge the first
demonstration of differential abundance patterns of
nutrient-acquisition genes on such a small scale, not
between disparate oceans but across environmental
gradients within a single sea.

Phosphate-acquisition and phosphate-response
KOs were enriched in low-phosphate samples
(Figure 4), including phosphate ABC transporter
(pstS/K02040), phosphate two-component system
PhoBR (K07657, K07636), alkaline phosphatase
(phoA/K01077) and phosphate stress-response pro-
tein PhoH (K06217). Trends were observed even
within isothermal samples binned in two-degree
increments, both for cooler isotherms with a wide
range of phosphate concentrations, and for warmer
isotherms with a narrow and low range of phosphate
concentrations, for example, phoB/K07657
(Figure S5). Phosphonate-acquisition genes, in an
opposite pattern, were enriched in high-phosphate
(and low-chlorophyll) samples, as exemplified by
the phosphonate ABC transporter (phnD/K02044).
Phosphonate utilization genes (phn) are abundant in
proteobacteria such as Pelagibacter (Villarreal-Chiu
et al., 2012), and are enriched in deeper waters of the
Sargasso Sea (Martinez et al., 2010) and generally in
low-P waters (Coleman and Chisholm, 2010;
Feingersch et al., 2010). Although phosphonate-
acquisition genes are found in some Prochlorococcus
in the environment (Feingersch et al., 2012), gen-
omes and transcriptional responses of cultured
strains (Martiny et al., 2006) suggest that inorganic
phosphate is the major P source for Prochlorococcus.
Therefore, in addition to ecotype-level genome
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variability tuned to ambient concentrations of phos-
phate and phosphonate (Martiny et al., 2006),
different distributions of phosphate- and
phosphonate-acquisition genes along the water col-
umn are likely also due to genus-level differences in
taxonomic composition (and therefore gene content)
along the water column, for example, phosphate-
utilizing Prochlorococcus in the epipelagic and
phosphonate-utilizing Pelagibacter in the mesopela-
gic. Indeed, many of the low nutrient-associated KOs
such as phosphate and urea transporters had very
similar abundance patterns to KOs typical of a
phototrophic bacterium like Prochlorococcus: photo-
systems and photosynthetic electron transport,
chlorophyll binding proteins, the Calvin cycle, and
transport and chelation of metal cofactors essential
for photosynthesis (partitioning around medoids
cluster 8, Supplementary Table S8).

Nitrogen-acquisition KOs were differentially dis-
tributed with respect to nitrate concentration and,
like with phosphorus, also followed one of two
opposite patterns (Figure 4), which were also
observed within isotherms (Supplementary
Figure S5). KOs for urea transport (urtA/K11959)
and assimilatory ferredoxin-nitrate reductase (narB/
K00367) were enriched in low-nitrate relative to
high-nitrate samples. Conversely, KOs for ammo-
nium transport (amt/K03320), nitrite reductase
(nirK/K00368) and nitrate reductase-like protein
(narX/K00369) were enriched in high-nitrate relative
to low-nitrate samples, with the shift to high
abundance occurring at 5 μM for amt and 15 μM for
nirK and narX. Opposite of narB, narX was most
abundant in the mesopelagic, where oxygen was low
(1ml/l at 500m); this is consistent with a putative
nitrate reductase fusion gene (narX) being up-
regulated under anaerobic conditions in Mycobacter-
ium (Hutter and Dick, 1999). Our measurements of N
species besides nitrate were either below detection
(nitrite) or unreliable (ammonium), but using global
averages, nitrite and ammonium peak around the
chlorophyll maximum and nitracline (where nitrate
increases most rapidly) and then decrease through
the deep epipelagic and mesopelagic (Gruber, 2008);
urea is generally low and patchy through the water
column (Remsen, 1971). Abundance patterns of
several N-acquisition KOs thus appear to follow the
‘low nutrient–high KO’ paradigm: nitrate reductase
was abundant where nitrate was low (surface), and
ammonium transport and nitrite reductase were
abundant where ammonium and nitrite were low
(mesopelagic). Urea transport, if it follows the same
paradigm, indicates that urea in the surface of the
Red Sea is very low relative to in deeper waters.

Conclusions

We have analyzed a 3D array of marine metagen-
omes across environmental gradients in the Red Sea,
showing that three-quarters of taxonomic and

functional variation could be explained by tempera-
ture, nitrate and chlorophyll. Covariation patterns
with environmental parameters were largely con-
served across water masses, notably more so for gene
orthologs and pathways than for taxonomic groups.
Individual patterns of KO covariation with environ-
mental parameters revealed protein folding func-
tions highly correlated with temperature, osmolyte
degradation functions correlated with salinity and
chlorophyll, and acquisition functions of nitrogen
and phosphorus species anti-correlated with con-
centrations of their respective species. Subtle trends
shown here across isobathic and isothermal gradi-
ents have hitherto been observed only between
distant and disparate oceans. It is expected that this
high-resolution marine metagenomic map of the Red
Sea, accessible using interactive visualization tools,
will serve as an important resource for marine
microbiology and modeling.
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