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Abstract
The gut microbiome is a major determinant of host health, yet it is only in the last 2 decades that the advent of next-generation 
sequencing has enabled it to be studied at a genomic level. Shotgun sequencing is beginning to provide insight into the 
prokaryotic as well as eukaryotic and viral components of the gut community, revealing not just their taxonomy, but also 
the functions encoded by their collective metagenome. This revolution in understanding is being driven by continued devel-
opment of sequencing technologies and in consequence necessitates reciprocal development of computational approaches 
that can adapt to the evolving nature of sequence datasets. In this review, we provide an overview of current bioinformatic 
strategies for handling metagenomic sequence data and discuss their strengths and limitations. We then go on to discuss 
key technological developments that have the potential to once again revolutionise the way we are able to view and hence 
understand the microbiome.

Introduction

The holobiont

The ability to sequence, assemble, and analyse whole 
genomes has sparked a genomic revolution that began with 
the completion of the human genome and continues today 
(Choudhury et  al. 2020; Lander et  al. 2001; Weinstock 
2007). However, it is increasingly apparent that the human 
genome does not operate in isolation, rather it is part of a 
holobiont; a co-existing and co-evolving collection of host 
and microbial genomes that encompasses not just all three 
domains of life, but also viruses (Zilber-Rosenberg and 
Rosenberg 2008).

Applying the same high-throughput sequencing technolo-
gies that revolutionised human genomics to the microorgan-
isms “that literally share our body space” (Lederberg and 
McCray 2001) has resulted in a genomic revolution of its 
own. While characterising bacteria on the basis of single 
genes, such as the 16S ribosomal RNA gene, is a long-
established technique (Fox et al. 1977) that has been suc-
cessfully carried over into the modern genomic era, more 

recent shotgun sequencing approaches have proved revolu-
tionary because they enable the capture of entire microbial 
genomes. In the context of this review, the collective term 
for these genomes is the metagenome (Handelsman et al. 
1998), which may be thought of as the microbial genomic 
contribution to the mammalian holobiont (Bordenstein and 
Theis 2015).

Technology is the gatekeeper of the microbiome

As genomes encode functional potential at the cellular, 
organismal, and holobiont level, accessing the metagenome 
through metagenomic whole genome shotgun sequencing 
(mWGS) holds the key to understanding the multifaceted 
roles that microorganisms play in determining host health.

Of course, taking a purely sequence-based perspective 
on the mammalian microbiome belies the generations of 
dedicated microbiological research that are the foundation 
of this field. However, culture-based approaches that are the 
cornerstone of microbiology have historically been a bot-
tleneck in holobiont studies, due to the challenges associ-
ated with isolating, culturing, and subsequently studying the 
sheer number and diversity of microorganisms present in 
the human microbiome (Lloyd-Price et al. 2016). Sequence-
based approaches indicate that between 150 and 200 unique 
bacterial species reside in a healthy human gut (Qin et al. 
2010; Yang et al. 2020), many of which have, until recently, 
been considered unculturable (Walker et al. 2014). The 
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number and diversity of other key members of the micro-
biome, such as viruses and fungi are more difficult to pre-
dict (Hallen-Adams and Suhr 2017; Sutton and Hill 2019). 
In consequence, while culturing remains an essential and 
evolving part of microbiome research (Browne et al. 2016; 
Rajilić-Stojanović and de Vos 2014; Walker et al. 2014), it 
is advanced in sequencing technologies that have resulted in 
a paradigm shift, leading to new language (Lederberg and 
McCray 2001), as well as new perspectives on human health 
(Inkpen 2019).

For microbiome studies, the next-generation sequencing 
(NGS) technology that has done most to bring about this 
paradigm shift is the massively parallel sequencing ena-
bled by second-generation sequencing platforms. This has 
allowed massively parallel detection, quantification and, in 
the case of metagenomics, characterisation of thousands of 
microbial taxa within a single sample. While early sequenc-
ers, such as the Roche GS-FLX, were capable of producing 
4–6 million bases of sequence per run, current state-of-the-
art platforms such as the Illumina NovaSeq are able to pro-
duce up to six terabases. Such advancement has decreased 
the cost per base of sequencing (reviewed in Levy and Myers 
2016) to a point where it is widely accessible and, in doing 
so, it has provided the lens through which the metagenome 
can be assessed.

Subsequent arrival of third-generation technologies, such 
as nanopore sequencing (Oxford Nanopore Technologies) 
and single-molecule real-time sequencing (Pacific Bio-
sciences), has coupled massively parallel sequencing with 
the ability to produce long reads (typically tens of thousands 
of bases per read). For microbiome research, long reads have 
meant a greater ability to identify the taxonomic origin of 
reads and hence better understand the composition of micro-
bial communities. They have also improved the ability to 
assemble and annotate individual genes and genomes, lead-
ing to improved functional characterisation.

Although advances in sequencing technologies are fun-
damental to metagenomics, they are not the only enabling 
technology that should be credited with the recent micro-
biome revolution. As with other genomic research fields, 
concurrent advancement in computational capacity, lead-
ing to continuous reduction in computing and storage costs 
has also been critical in order to keep pace with the ever-
increasing amounts of microbiome sequence data produced.

This close association between genomic sequencing and 
computational capacity has been recognised since the early 
days of the human genome project. However, we feel there 
is also a third revolution that deserves acknowledgement for 
enabling recent advances in metagenomics. This is the open-
source model for software development. There is the widely 
acknowledged benefit of open collaboration for overcoming 
computational challenges associated with the ever-grow-
ing scale and progressively changing nature of NGS data. 

Furthermore, there is the continued effort of computer sci-
entists to put bioinformatic tools into the hands of biologists 
who would not otherwise be able to develop them. While 
bioinformatic analysis of metagenomic sequence data argu-
ably still remains a bottleneck (Scholz et al. 2012), efforts to 
make rapidly evolving software freely available and acces-
sible to the users best positioned to interpret their output 
have been instrumental in expanding our understanding of 
the metagenome and host–microbiome interaction.

The fact that bioinformatics has moved beyond the pre-
serve of specialists, towards being a ubiquitous presence 
within most research groups is testament to the success of 
this movement. The purpose of this review is to give genome 
biologists unfamiliar with the microbiome an introduction to 
current computational approaches for handling mWGS data, 
with a specific focus on exemplary methods, the challenges 
they overcome, and the insights they can yield.

The essential challenges of mWGS data: ‘what’s 
there?’ and ‘what does it do?’

Assuming the ultimate goal of most human and mouse 
microbiome studies is to understand the mechanisms by 
which microbes influence host health, there are, broadly 
speaking, two approaches that can be taken with mWGS 
data. The first is to ask ‘what’s there?’. Establishing the 
taxonomy of microbes present in a sample and quantify-
ing their relative abundance enables correlative association 
between taxa (or community-level characteristics such as 
diversity) and host traits of interest. The second approach is 
to ask ‘what does it do?’. Detecting and quantifying genes 
present in the metagenome and inferring their function ena-
bles insight into higher-order biological processes encoded 
by the metagenome.

One important caveat to the second approach is that the 
presence of a gene within a metagenome does not necessar-
ily mean that it is expressed. Metatranscriptomics is an alter-
native, and sometimes complementary approach to mWGS 
that has the potential to directly quantify gene expression 
within metagenomic samples (reviewed by Zhang et al. 
2021). However, applying RNA-sequencing to the microbi-
ome presents its own unique challenges and remains a com-
paratively underutilised approach that is beyond the scope 
of this review.

While mWGS data have the potential to provide infor-
mation on both taxonomy and function, what is useful 
depends on the context of a particular study. For example, 
rapid detection of pathogens relies primarily on being able 
to resolve microbial taxa. A recent study by Gu et al. (2021) 
used mWGS of cell-free DNA to detect multiple known 
bacterial and fungal pathogens in human body fluids such 
as bronchoalveolar lavage, pleural fluid, and cerebrospinal 
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fluid. In several cases, sequence-based detection was suf-
ficient to identify causative microbes that were missed by 
more conventional techniques.

On the other hand, taxonomic profiling may not always 
be informative in metagenome studies where specific func-
tions within the holobiont may be performed by multiple 
different taxa (i.e. functional redundancy), whose occurrence 
may vary between individuals, populations, or geographic 
regions. Early metagenomic characterisations of the human 
gut microbiome observed that while taxonomic composition 
varied between individuals, encoded functional potential 
tended to be much more conserved (Huttenhower et al. 2012; 
Turnbaugh et al. 2009). Furthermore, it is also possible for 
genomic content to vary substantially between strains of the 
same species (e.g. acquired antibiotic resistance through 
horizontal gene transfer), meaning that in some cases tax-
onomy also may underrepresent functional diversity.

The requirement to identify taxonomic abundance and/
or functional potential means that many bioinformatic 
approaches have been developed to address these specific 
challenges using sequence data. While this review does not 
attempt an exhaustive comparison of all available software, 
we nonetheless argue that functional redundancy in bioinfor-
matic approaches is as important as functional redundancy 
in the gut microbiome itself. It engenders both resilience 
and the ability to adapt to changes in the technology-enabled 
sequencing landscape.

Two challenges, however, are fundamental to both taxo-
nomic and functional characterisation of the gut metagen-
ome. The first, as discussed, is the continued increase in the 
size of sequence datasets. The second is what is increasingly 
referred to as the ‘dark matter’ of the metagenome. In spite 
of massive efforts to sequence and analyse the human and 
mouse metagenomes, both remain incompletely characterised, 
largely due to their sheer size and complexity. The human 
microbiome has been estimated to contain in excess of 30 
million microbial genes (Lloyd-Price et al. 2016) across all 
body sites, and recent meta-analyses have identified 22 mil-
lion and 4.6 million unique genes in human and mouse guts, 
respectively (Lesker et al. 2020; Tierney et al. 2019). In the 
case of humans, inter-individual variability is also a key char-
acteristic, with a meta-analysis of 2182 gut metagenomes by 
Tierney et al. (2019) indicating that up to half of detected 
microbial genes were unique to a single individual.

Metagenomic approaches for taxonomic 
characterisation of the gut microbiome

Reference databases for taxonomic classification

The growth in volume and diversity of published sequence 
data is reflected in the number of reference databases that 

exist to curate these data and make them publicly available 
(see for example www. oxfor djour nals. org/ our_ journ als/ nar/ 
datab ase/ cap/), with new compendiums appearing yearly to 
meet evolving biological interests (Rigden and Fernández 
2021). Many of the databases that underpin metagenomic 
analysis are not specific for the purpose. They tend to be 
joint genome curation projects involving multiple major 
funding bodies in order to sustain the hands-on maintenance 
required to keep information current.

Metagenome databases suitable for taxonomic classifica-
tion primarily revolve around archiving, mining, and anno-
tation of individually sequenced bacterial genomes. The 
National Center for Biotechnology Information (NCBI), 
European Nucleotide Archive, and DNA Data Bank of 
Japan, together make up the International Nucleotide 
Sequence Database Collaboration (INSDC www. insdc. org), 
which serves as the primary global repository of genome 
sequences from all domains of life, as well as viruses. The 
US Department of Energy Joint Genome Institute (JGI) also 
hosts several bioinformatic resources to centralise access to 
genomic and metagenomic data. JGI’s Genome Online Data-
base (GOLD, Mukherjee et al. 2021) and Integrated Micro-
bial Genomes and Microbiomes (IMG/M, Chen et al. 2019) 
are complementary tools that facilitate the classification of 
metagenomic data. The former is a registry for genome and 
metagenome projects and ensures complete documentation 
of metadata associated with each project. The latter special-
ises in access, annotation, and analysis of microbial genome 
and metagenomes. IMG/M connects external taxonomic and 
functional annotation databases via several bioinformatics 
pipelines for comparative analyses.

Such integration is a key feature of metagenomic ref-
erence databases, as extensive interrelation and sharing 
of genomes allows for varying degrees of curation within 
different resources. For example, GenBank (Sayers et al. 
2020) is the INSDC-supported database from which the 
NCBI RefSeq database (Haft et al. 2018; O’Leary et al. 
2015) is curated to provide a non-redundant set of high-
quality genomes with established taxonomy and compre-
hensive annotations. The Genome Taxonomy Database 
Base (GTDB, Parks et al. 2020, 2018) and proGenomes 
(Mende et al. 2017) are examples of two subsequent data-
bases built upon these NCBI resources, which further seek to 
standardise taxonomic annotation of bacterial and archaeal 
genomes. Both GTDB and proGenomes assign genomes to 
species clusters and curate non-redundant sets of genomes 
for different taxa. Curating standardised databases stream-
lines database query results based on taxonomy, which pro-
vides marginal advantages due to the size and scale of these 
metagenome databases. For example, GTDB and proGe-
nomes have ~ 150 000 and ~ 84 000, bacterial and genomes, 
respectively, which span tens of thousands of species clus-
ters. Efficient data mining, effective database management 

http://www.oxfordjournals.org/our_journals/nar/database/cap/
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and integration, and scalable comparative genomic analyses 
are major priorities in metagenome reference databases.

Non‑bacterial reference databases

While there has been an historical emphasis on bacterial 
members of microbiome, there are a growing number of 
reference databases that specifically support study of non-
bacterial taxa. This includes fungi (mycobiome, Lai et al. 
2018), viruses (virome, Carding et  al. 2017), archaea 
(archaeome, Moissl-Eichinger et  al. 2018), nematodes 
(Harris et al. 2019), and eukaryotic parasites (Dheilly et al. 
2017). Metagenome resources for more targeted questions, 
such as pathogen genomics, are also available. For example, 
the Virus Pathogen Resource (ViPR, Pickett et al. 2012), and 
Eukaryotic Pathogen, Vector and Host Informatics Resource 
(VEuPathDB, Aurrecoechea et al. 2010). Given their more 
clinical focus such databases frequently also incorporate 
sample or clinical metadata relevant to each submission, 
either internally, or linked in related database resources such 
as Clinical Epidemiology Database Resources (ClinEpiDB, 
Ruhamyankaka et al. 2020).

Current limitations of reference databases

In spite of huge efforts to curate high-quality references and 
maximise their accessibility, a fundamental limitation of 
existing databases is that they are missing the ‘dark mat-
ter’ of the global metagenome. While gauging the extent of 
this problem is not trivial, it has been attempted. For exam-
ple, Zhang et al. (2020) matched all unique taxa identified 
by the Earth Microbiome Project (EMP) using 16S gene 
sequencing to all available reference genomes in the Ref-
Seq database. A median of 62% of EMP taxa present in 
host-associated microbiomes could be matched to an exist-
ing RefSeq genome at a threshold of 97% similarity. This 
enables the crude estimate that up to ~ 40% of mammalian 
holobiont bacterial species may be missing from reference 
genome databases. It is less clear what proportion of eukary-
otic, viral or archaeal data may be missing. However, similar 
issues are likely to exist, particularly, as databases special-
ised in non-bacterial organisms tend to be comparatively 
small. For example, eukaryotic databases such as WormBase 
and VEuPathDB have in the range of 1–200 unique species 
for each family.

A second, related issue is that microbial reference data-
bases tend to show distinct taxonomic bias. The histori-
cal need for microbial reference genomes to have come 
from organisms successfully isolated from environmental 
samples means this bias is weighted towards those taxa 
that can be successfully cultured (Browne et al. 2016). It 
also reflects uneven distribution of research effort towards 

organisms of particular interest, such as model organisms 
or important pathogens, as well as a bias towards microbes 
associated with human populations that have been dispro-
portionately studied (Pasolli et al. 2019).

An unfortunate consequence of both these limitations is 
that potentially important biological associations may be 
lost in the proportion of mWGS reads that are returned as 
‘unclassified’ in metagenomic studies. This risk is greater 
when considering microbial clades that are comparatively 
understudied, or human populations that are historically 
not well represented. While these limitations do not pre-
clude use of reference databases as an essential means of 
taxonomic classification, they need to be accounted for 
when interpreting metagenomic analyses and represent a 
challenge that needs to be overcome if we are to improve 
our understanding of the microbiome contribution to host 
health.

Matching sequences to reference databases

Sequence Pre‑processing

Quality control is a fundamental upstream process in all 
sequenced-based analysis, involving steps such as the 
removal of likely PCR duplicates, removal of sequenc-
ing adapters, trimming of low-quality bases from reads, 
and the masking or removal of low complexity regions. 
One fundamental pre-processing step is the removal of 
sequences originating from contaminant-DNA (i.e. DNA 
that is not the focus of the study). While this is an impor-
tant consideration in single genome studies (Goig et al. 
2020), it represents a particular challenge in mWGS, 
where host DNA likely to be highly prevalent in samples 
and hence constitute a significant fraction of the sequenced 
reads.

Removal of host reads is a vital precursor for both taxo-
nomic and functional characterisation of the gut microbi-
ome. Failure to do so may confound taxonomic estimates 
through misassignment of host reads to microbial taxa. 
This may be of particular importance for virome analy-
sis due to the presence of endogenous retroviruses, which 
are estimated to make up approximately 8–10% of the 
human and mouse genomes (Lander et al. 2001). Failure to 
remove host reads may also result in chimeric assemblies, 
which can in turn lead to annotation of spurious proteins 
that can confound both taxonomic and functional analysis 
(Breitwieser et al. 2019).

Removal of host reads is fundamentally a case of 
matching sequences to a reference database (albeit one 
containing only the host reference genome), as such the 
approaches reviewed below (local alignment, alignment-
free sequence classification) are applicable to this problem.
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Local alignment

The earliest published attempts to shotgun sequence the 
human gut metagenome employed de novo sequence 
assembly, before matching reassembled genes and genomic 
fragments to in-house protein reference databases using 
BLASTP (Gill et al. 2006; Kurokawa et al. 2007). Since 
these landmark studies, local alignment of query sequences 
to reference databases with previously ascribed taxonomy 
has remained a cornerstone of metagenomic characterisation.

The recent massive growth in the size of both query and 
reference datasets has meant that early alignment tools such 
as BLAST are no longer computationally efficient for the 
analysis of metagenomic sequence data. Fast and accurate 
characterisation of microbial sequences remains a research 
priority, particularly, in large-scale disease studies where 
microbiome datasets may extend to thousands of samples, 
each with tens of millions of reads (e.g. Lloyd-Price et al. 
2019), or in clinical studies, where speed and accuracy of 
diagnosis are likely to be critical (Chiu and Miller 2019).

As with other genomics fields, metagenomics has ben-
efited from the fact that the continuous advancement of 
technologies has inspired reciprocal development of many 
alignment tools optimised to cope with both the scale and 
features of sequence data produced on NGS platforms (Fon-
seca et al. 2012). A key element that sets apart tools suited 
for metagenomic analysis is their ability to efficiently index 
reference genomes so that they can be accessed and searched 
with great speed. Indexing is a particular challenge for 
metagenomic analysis, where reference sequence databases 
may be an order of magnitude larger than the databases 
required to represent single mammalian genomes.

For second-generation mWGS data, two of the most 
widely adopted tools for metagenomic sequence alignment 
are Bowtie (Langmead and Salzberg 2012; Langmead et al. 
2009) and BWA (Li and Durbin 2009). Both use the FM-
index in conjunction with the Burrows–Wheeler Transform 
(reviewed in Canzar and Salzberg 2017) to efficiently index 
and compress reference sequences for rapid searching. 
While both approaches achieve significant improvements in 
alignment speed, they also still rely on heuristic ‘seed-and-
extend’ approaches (reviewed in Ahmed et al. 2016), and 
are hence not guaranteed to find optimal alignments for all 
query sequences. Such heuristic assumptions are likely to 
have little practical impact in situations where the resulting 
alignment accuracy is sufficient to correctly assign reads to 
divergent taxa (Al-Ghalith and Knights 2020). However, as 
microbiome studies move towards an increasing emphasis on 
the ability to accurately discriminate between closely related 
strains, recently developed rapid, heuristic-free short-read 
aligners such as BURST (Al-Ghalith and Knights 2020) 
are likely to become increasingly important in microbiome 
studies.

Current state-of-the art short-read alignment approaches, 
such as BWA, have also been adapted for alignment of the 
longer reads typically produced by third-generation sequenc-
ing platforms (Li 2013). However, aligners such as BLASR 
(Chaisson and Tesler 2012) and Minimap2 (Li 2018) have 
also come to the fore, having been specifically designed to 
overcome the sequencing errors encountered on these plat-
forms. More recently, for ONT, these approaches have been 
further improved by the ability to predict and model the 
structure of errors inherent to nanopore sequencing (Joshi 
et al. 2020).

Alignment‑free sequence classification

The speed at which reads can be aligned using state-of-the-
art short and long-read aligners means such approaches 
remain viable for searching increasingly large numbers 
of query reads against ever-growing references databases. 
However, when the exact location of a specific read within 
a reference genome is not important, as is the case when the 
primary goal is to estimate taxonomic origin, precise align-
ment represents an unnecessary computational cost.

The relative computational efficiency of matching exact 
kmers, rather than long, potentially ambiguous reads, means 
matching query sequences to reference databases based on 
the overall similarity their respective kmer compositions is 
an extremely rapid way to achieve alignment-free classifica-
tion of metagenomic sequences (Ren et al. 2018). For exam-
ple, Kraken—one of the most widely used metagenomic 
taxonomic profiling tools—divides reference genomes (by 
default, derived from RefSeq) into kmers, then assigns each 
unique kmer to the lowest taxonomic rank that represents 
all the genomes in which it can be found (a so-called low-
est common ancestor (LCA) approach). Kmers from query 
sequences can then be matched to this taxonomy. The taxo-
nomic origin of a complete read can then be inferred from 
the distribution of its constituent kmers within the underly-
ing taxonomic tree.

Resolving ambiguous classification

Not only it is possible to use the LCA to infer the taxon-
omy of a read based on the classification of its constituent 
kmers, it is also possible to use this approach to classify 
aligned reads that ambiguously align to multiple refer-
ences. For example, MEGAN (Huson et al. 2007) provided 
an early implementation of this method to assign taxonomy 
to locally aligned microbial sequences, which has recently 
been adapted to work with third-generation sequence data 
(Huson et al. 2018).

While LCA strategies offer a robust approach to taxo-
nomic classification, a recent study has suggested that trends 
in the growth of underlying reference databases potentially 
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limit their ability to classify sequences at species level, or 
strain level (Nasko et al. 2018). Specifically, the authors 
noted the that recent massive expansion in the number of 
bacterial genomes in RefSeq has resulted in rapid increase 
in the number of species accessions to databases, but little 
expansion in the number of genera represented. The increas-
ing species-to-genera ratio (and hence increasing number 
of genomes displaying a high degree of sequence homol-
ogy at species level), leads to a reduced ability for LCA 
approaches accurately assign taxonomy at species level. This 
observation has led to a call for continued development of 
such methods to maximise taxonomic resolution while mini-
mising the risk of false-positives.

One potential solution to this problem is to probabilis-
tically reassign ambiguously classified reads to their most 
likely taxon of origin. Such an approach has been imple-
mented for aligned reads in the PathoID module within 
the PathoScope pipeline (Hong et al. 2014). An analogous 
approach has also been developed for Kraken (Lu et al. 
2017), which, rather than reassigning individuals reads, pro-
vides species-level abundance estimates based on LCA read 
assignments. Such approaches are likely to become increas-
ingly relevant due to both the growing interest in under-
standing the microbiome at high taxonomic resolution, as 
well as the increasing levels of sequence homology within 
taxonomic reference databases.

Refining reference databases to reduce search space

Increasing the speed with which query sequences can be 
matched to sequences in reference database with known 
taxonomy is one way to overcome challenges inherent in 
taxonomic profiling of metagenomic sequence data. A sec-
ond is to curate reference databases to remove redundant 
information that either does not discriminate between taxa, 
unnecessarily lengthens search times, or both.

As with read alignment and profiling, multiple approaches 
have been developed that exploit different characteristics of 
the metagenome in order to design computationally efficient 
references. One such approach is to leverage the pan-genome 
concept, which encompasses the fact that bacterial strains 
of the same species consist of a core genome (present in 
all strains) and a dispensable genome (consisting of those 
genomic regions that may be present in some, but not all 
strains, Medini et al. 2005). The pan-genome is therefore 
the combination of the core and dispensable genomes for 
a species. This concept becomes increasingly relevant as 
microbial reference databases move from having one rep-
resentative genome for each species, towards multiple and 
sometimes thousands of different strains. Zhou et al. (2018) 
exploited this concept by creating a reference database 
consisting solely of species pan-genomes. Resulting refer-
ences were 2–20 times smaller in size (bp) than the total 

size of contributing strain genomes. Furthermore, this pan-
genome database resulted in improved rates of read classifi-
cation over databases including only a single representative 
genome for each species.

A second approach to minimising the size of a reference 
database, while retaining its ability to taxonomically clas-
sify query sequences is to retain only discriminatory genes 
that are unique to a single species (Segata et al. 2012). Met-
aphlan is based on this concept and uses local alignment 
with Bowtie2 to match query mWGS reads to gene families 
that are selected to be both present in a species core genome, 
and unique to that species (Beghini et al. 2020). Taking 
this approach Metaphlan3 is able to efficiently represent 
over 13,000 microbial species with a reference database of 
approximately 1.1 million marker genes. Such minimal ref-
erence databases, actually result in very few reads in being 
successfully aligned from query metagenomic datasets, but 
they are nonetheless sufficient to provide accurate taxonomic 
profiling of complex microbial communities. Furthermore, 
the lightweight design of such discriminatory gene data-
bases means that they are likely to scale efficiently with the 
increasingly large amounts of data processed in single stud-
ies, when compared to approaches that depend on de novo 
assembly of metagenomes (Segata 2018).

The concept of restricting databases to discriminatory 
markers is not limited to microbial gene sets. Tu et al. (2014) 
introduced a method for identifying and selecting unique, 
discriminatory regions from reference genomes (termed 
genome specific markers—GSMs). They subsequently 
matched query reads to these GSMs using BLAST-like 
approaches. More recently, CLARK (Ounit and Lonardi 
2016; Ounit et al. 2015) is a kmer-based classifier, com-
parable to Kraken, that not only seeks to exploit the speed 
of kmer-based searching, but also to reduce the size of the 
reference database by storing and searching only discrimi-
natory kmers. This has the advantage of minimising the 
amount of information that needs to be stored to quickly 
and accurately discriminate reads. However, it also means 
that the taxonomic level at which reads are to be classified 
(i.e. at which a single kmer is unique to a clade) needs to 
be specified prior to building a reference index and hence 
that an LCA approach to read classification cannot be taken.

Beyond reference databases: the dark matter 
of the metagenome

As discussed, a fundamental problem of assigning taxon-
omy to metagenomic sequences by matching them to refer-
ence databases is that these databases are almost certainly 
incomplete. While LCA approaches, such as Kraken, may 
be able to classify reads originating from unknown microbes 
at higher taxonomic levels, detecting and quantifying and 
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characterising these microbes at low taxonomic resolution 
remains a major challenge.

Reference‑extended approaches

Discriminatory marker gene databases, such as those curated 
by MetaPhlan, allow users to quantify the unclassified pro-
portion of reads in an mWGS dataset. However, they pro-
vide no additional insight into reads originating from taxa 
missing from the reference genome databases from which 
they are derived. Other approaches based on sets of univer-
sal marker genes offer a potential solution to this problem. 
In mOTU (Milanese et al. 2019; Sunagawa et al. 2013), 
the authors curate a database of single-copy marker genes 
identified as present in all sequenced microbial genomes. 
They then use a hidden Markov model (HMM)-based 
approach to generate a profile for each marker gene, based 
on its sequence properties across known reference genomes 
(reviewed in Eddy 1996). Such profiles can be used to search 
for all homologs of each marker gene within de novo assem-
blies of metagenomic samples. All detected copies of each 
marker gene are clustered in a step analogous to the genera-
tion of operational taxonomic units (OTUs) from 16S gene 
sequence data. The relative abundance of each ‘meta-OTU’ 
(mOTU) is then determined, and mOTUs originating from 
the same genome are identified based on correlation in their 
relative abundance across samples. While this innovative 
approach relies on the computationally challenging step of 
de novo metagenome assembly, the use of HMM profiles 
enables detection of marker gene homologs that may be 
absent from existing genome reference databases, thereby 
enabling what the authors refer to as a reference-extended 
community profiling. In a recent study, the authors con-
cluded that more than half the mOTU species detected in 
1693 human gut samples were absent from the proGenomes 
reference database (Milanese et al. 2019).

Sequence‑based community profiling

While reference-extended approaches offer the ability to 
define and quantify previously uncharacterised taxa, it is also 
possible to compare metagenomes entirely on the basis of 
sequence composition, without the need to define taxonomic 
units. The utility of such an approach reflects the fact that 
changes in the composition of the gut metagenome, such as 
dysbiosis, are often characteristic of disease states. Tracking 
such changes is therefore informative, in spite of the fact it 
contributes little to our understanding the mechanisms by 
which microbes impact host health (Olesen and Alm 2016). 
With this goal in mind Kmer-based approaches once again 
represent a computationally efficient method by which to 
compare the composition of metagenomic samples. MASH 
(Ondov et al. 2016) is an implementation of the MinHASH 

algorithm (reviewed in Rowe 2019), which provides an 
extremely fast method for approximating the proportion of 
kmers shared between two metagenomes. The utility of this 
type of approach has since been extended to account for the 
relative abundance of kmers when assessing samples, and to 
enable signatures to be searched as well as compared (Pierce 
et al. 2019).

Genome‑Resolved Metagenomes

The ability to re-assemble complete, high-quality microbial 
genomes from shotgun sequence data is arguably the apothe-
osis of computational metagenomic analysis as it obviates 
the need to isolate and culture in order to understand the 
genomic potential of individual organisms. Genomes that 
may never be cultured can be retrieved, their phylogeny can 
be established and taxonomy inferred (Almeida et al. 2019; 
Almeida et al. 2020), and their functions predicted through 
genome annotation. Ultimately, these genomes can be added 
to public databases (Almeida et al. 2020; Mukherjee et al. 
2021), leading to the improved performance of other, refer-
ence-dependent analysis tools (Milanese et al. 2019).

Full or partially assembled genomes derived from mWGS 
data are now commonly referred to as metagenome-assem-
bled genomes (MAGs). They were first generated from 
shotgun sequencing of biofilms by Tyson et al. (2004), who 
assembled 103,462 Sanger reads (76.2 Mb), then binned the 
resulting contigs into genomes based on a combination of 
their coverage and GC content. In another landmark study, 
Nielsen et al. (2014) analysed 396 human stool samples 
(23.2 billion reads, 4.5 Gb) as part of the MetaHIT consor-
tium. They used a canopy clustering approach to enable the 
rapid binning of assembled microbial genes based on their 
co-abundance across samples. This resulted in detection of 
784 metagenomic species (defined as bins with > 700 genes) 
and also demonstrated the potential for MAG approaches 
to identify bacteriophage. More recently, massive efforts 
have been made to reconstruct genomes from publicly avail-
able metagenomic sequence datasets Nayfach et al. (2019), 
Pasolli et al. (2019), and Almeida et al. (2019) analysed 
3810, 9428, and 11,850 metagenome samples, respectively, 
which have collectively contributed to a novel reference 
catalogue of 204,938 MAGs (Almeida et al. 2020).

Fundamental steps for generating MAGs are the pro-
duction of high-quality de novo assemblies from mWGS 
reads (through use of tools such as metaSPAdes, Nurk 
et al. 2017, and MEGAHIT, Li et al. 2015, reviewed in 
Ayling et al. 2020) followed by the accurate binning of 
contigs originating from the same genome. The latter 
step is frequently performed by comparing the coverage 
of contigs, as well as genome-level sequence properties 
such as CG content or tetranucleotide frequency (reviewed 
in Kang et al. 2016). A widely used exemplar approach 
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for binning is MetaBAT (Kang et al. 2015, 2019), which 
employs pairwise comparisons of contigs based on abun-
dance and TNF frequencies, followed by a graph-based 
clustering approach (Kang et al. 2019) to identify MAGs 
from one or more samples.

The potential for MAGs to extend knowledge of the 
metagenome beyond reference databases is well illustrated 
by recent large-scale studies. For example, Pasolli et al. 
(2019) used MASH to establish pairwise genetic distances 
between 154,723 MAGS from different human body sites 
and 80,990 bacterial genomes from reference databases. 
Clustering these genomes at a 5% threshold resulted in an 
estimated 4,930 species, with 3,796 (77%) of these spe-
cies clusters containing no previously known reference 
genome. Notably, novel MAGs are found at much greater 
frequency in non-westernised gut microbiomes (Nayfach 
et al. 2019; Pasolli et al. 2019), supporting the observation 
that genomic biases exist as much for the microbial propor-
tion of the holobiont as they do for the host (Almeida et al. 
2019; Choudhury et al. 2020). Further efforts to improve 
metagenomic discovery of microbial species are therefore 
likely to particularly benefit understanding the microbiome 
contribution to host health in these populations.

Another area in which the ability to fully resolve 
genomes from metagenomes offers great potential is the 
detection and characterisation of the non-bacterial com-
ponent of the gut microbiome. This is well illustrated 
by recent studies of crAssphage, where mining publicly 
available metagenome assemblies for circular metagen-
ome-assembled genomes (cMAGs) led to the discovery 
of 596 crAssphage genomes, which could be clustered 
into approximately 221 viral ‘species’ (Yutin et al. 2021). 
These viruses have subsequently been shown to be glob-
ally present in the human gut, where they dominate the 
gut virome and to have close biological links with the 
genus Bacteroides (Edwards et al. 2019; Yutin et al. 2021), 
which is itself a keystone species within the gut ecosys-
tem. Recent success in the detection and characterisation 
of crAssphage is undoubtedly aided by their high relative 
abundance compared to other viral clades. Nonetheless, 
comparable metagenomic discovery of other microbes, 
from viruses to eukaryotes, remains a prospect for future 
studies.

While the potential for genome-resolved metagenom-
ics is great, recent reviews have highlighted the challenges 
in this field, and in particular, the difficulties of producing 
high-quality assemblies of complex microbial communities 
where strain-level divergence may be important (Chen et al. 
2020). The appearance of incompletely resolved, composite 
MAGs in public databases has already been reported (Shai-
ber and Eren 2019), and ensuring accurate and high-quality 
genome discovery remains a key bioinformatic challenge for 
this emerging field (Bowers et al. 2017).

Metagenomics for functional 
characterisation of the gut microbiome

Reference databases for assigning function to genes

The ability to map genes to functions and ultimately to 
higher-level biological processes that reflect mecha-
nisms of host–microbiome interaction is a crucial step in 
metagenomic analysis. While a similar challenge exists 
for all genome-level research, it is arguably greater for 
metagenomics, where the proportion of uncultured and 
undescribed microbial genomes reflects a comparable pro-
portion of novel microbial genes whose function is also 
unknown (Tierney et al. 2019).

One of the largest resources for metagenome annotation 
and functional interpretation is the Kyoto Encyclopaedia 
of Genes and Genomes (KEGG), which curates functional 
information at both a genomic and systems level (Kanehisa 
et al. 2017). At the genomic level, genes in the KEGG 
GENES database are principally obtained from the NCBI 
RefSeq and GenBank databases (inclusive of eukaryotes, 
prokaryotes, and viruses). Genes are subsequently clus-
tered based on sequence similarity to form Kegg Orthol-
ogy groups (KOs), which are functionally annotated. As of 
September 2020, the Kegg Orthology Database contained 
approximately 24,000 KOs, of which 82% were linked to 
experimentally characterised sequences (Kanehisa et al. 
2021).

At a systems level, KEGG curates pathways repre-
sentative of biological process and use of individual KOs 
as nodes within pathways enables the effective mapping 
of genes to systems. In metagenomic analysis, query 
sequences may be matched to KEGG genes, and thereby 
KOs. The explicit linking of KOs to pathways ultimately 
enables variations in microbial gene abundance to be 
related to variation in the genomic potential for specific 
biological processes.

MetaCyc is a database of almost 3000 literature-derived 
metabolic pathways, predominantly originating from 
prokaryotes (Caspi et al. 2020). Where available, protein 
sequence information for enzymes in pathways is sourced 
from the UniProt database. Meaning that, similar to KEGG, 
it is possible to match query metagenomic sequences to this 
database, typically via local alignment, to obtain estimates 
of the relative abundance of genes encoding specific path-
ways. Comparisons of the content of KEGG vs MetaCyc 
have found them to cover a comparable number of reactions 
(Altman et al. 2013), but evaluations are complicated by a 
lack of consistent terminologies and different pathway rep-
resentations between the two resources.

KEGG, and to a lesser extent MetaCyc, are notable for 
their efforts to curate information at both the genomic 
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and system level. However, other databases specifically 
dedicated to curating sequence-level information are also 
a valuable resource for functional annotation. The Uni-
Prot Knowledge Base (UniProtKB, Bateman et al. 2021) 
seeks to provide a complete database of all known protein 
sequences (the majority of which are derived from refer-
ence genomes), and link them to either experimentally ver-
ified or computationally predicted functions. Derived from 
UniProtKB, UniRef databases cluster protein sequences 
at 100, 90, or 50% identity to maintain non-redundant 
sequence catalogues (analogous to KOs), where each clus-
ter is represented by a single seed sequence (Suzek et al. 
2014). Annotations are largely consistent between clusters 
(Suzek et al. 2014), meaning alignment to UniRef seeds 
can be used as an effective method for assigning function 
to metagenome samples.

While some UniProt annotations may include formal 
pathway descriptions, the value of the database is further 
increased as a consequence of extensive efforts to match 
accessions to equivalent sequences, or higher-order infor-
mation, in approximately 180 other databases (Huang et al. 
2011). This includes both KEGG and MetaCyc, thereby 
allowing UniProt annotations to be indirectly mapped to 
curated pathways.

Another exemplary database that provides a sequence-
level resource for functional annotation of metagenome 
samples is eggNOG (evolutionary genealogy of genes: 
Non-supervised Orthologous Groups, Huerta-Cepas et al. 
2019). Protein sequences are again derived from selected 
representative eukaryote, prokaryote, and viral genomes. 
However, in this instance, they are grouped in a manner that 
distinguishes true orthologs (homologous sequences that 
have diverged due to speciation) from paralogs (homolo-
gous sequences diverged due to duplication) on the basis 
that the latter do not necessarily retain the same function. 
eggNOG does not manually curate functional annotations, 
but inherits broad functional categories from other ortholog 
databases (Galperin et al. 2015) and, like UniProt, provides 
extensive mapping to other functional annotation databases 
(http:// eggno g5. embl. de/#/ app/ metho ds).

Matching sequences to reference databases 
and biological functions

Metagenomic assembly and gene prediction

As first steps towards functional characterisation of mWGS 
samples, it is common to perform de novo metagenome 
assembly (a topic not covered here, but comprehensively 
reviewed in Ayling et al. 2020) followed by gene anno-
tation. Metagenomic assemblies typically result in vast 
numbers of genomic fragments (contigs) rather than fully 
resolved genomes. While they are often far from complete, 

the assembly of short reads into such contigs enables full 
or partial gene sequences to be computationally predicted, 
extracted, and matched to reference databases containing 
genes of known function.

Gene prediction from metagenomic assemblies presents 
additional challenges when compared to gene prediction in 
individual genomes. Highly fragmented assemblies increase 
the likelihood of partial annotations. Additionally, common 
features that may unite (and hence help distinguish) genes 
within a single genome may not be shared across a metage-
nome. Well-established metagenome annotation tools such 
as MetaGeneMark (Zhu et al. 2010) and Prodigal (Hyatt 
et al. 2010) account for this, but potentially at the cost of 
their ability to make accurate novel gene predictions within 
the dark matter of the metagenome. In consequence, more 
recent tools seek to take advantage of the recent massive 
expansion in the number of annotated prokaryote genomes 
in order to improve the specificity of novel gene annotations 
from metagenome assemblies (Sommer and Salzberg 2021).

Functional annotation

As functional reference databases tend to curate homolo-
gous groups of genes, which are assumed to share a common 
function (for example, KEGG KOs or EggNOG ortholo-
gous groups), functional annotation can be performed by 
matching query sequences to groups, as well as alignment 
to individual reference sequences. HMM profiles are a pow-
erful way to formally represent the sequence properties of 
a group (Eddy 1996). As such, they have the potential to 
improve metagenome functional annotation by matching of 
query sequences that bear strong similarity to the properties 
of a group, but limited similarity to each of its constituent 
members.

The curators of KEGG provide a dedicated server 
(KofamKOALA) that employs an HMM-based approach 
and can be used to generate KO classifications for translated 
metagenome annotations (Aramaki et al. 2020). Alterna-
tively, they also support approaches that begin with BLAST-
like alignment to the KEGG GENES database, before using 
the results to assign query sequences to a KO group (Kane-
hisa et al. 2016). The curators of eggNOG have similarly 
released a dedicated tool, eggNOG-mapper (Huerta-Cepas 
et al. 2017), which matches query sequences to eggNOG 
orthologous groups using pre-computed HMMs. How-
ever, for very large query datasets, classification speed may 
become an issue. This approach therefore also supports the 
use of DIAMOND (Buchfink et al. 2015); an extremely rapid 
translated aligner that can match queries against indexed 
seed sequences for each eggNOG orthologous group.

The annotation approaches discussed so far are primarily 
intended for the classification of complete or partial gene 
sequences. One alternative that allows direct quantification 

http://eggnog5.embl.de/#/app/methods
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of function from unassembled reads is HUMAnN (HMP 
Unified Metabolic Analysis Network). The latest release 
version (HUMAnN3, Beghini et al. 2020) curates a custom 
database, combining protein sequences and functional anno-
tations from UniProtKB with associated genome sequence 
and taxonomy information from GenBank. It subsequently 
performs a tiered search involving both nucleotide and trans-
lated alignment in order to maximise chances of successful 
read classification. One valuable consequence of this map-
ping approach is that, by retaining details of the original 
genomes to which reads map, HUMAnN is able to quantify 
the extent to which different taxa contribute to higher-order 
functions in databases such as MetaCyc and KEGG.

From genes to pathways

While the relative abundance of functionally annotated 
genes or orthologous groups within a metagenome may 
in some cases be informative, often higher-level biologi-
cal processes are better represented by groups of genes 
(henceforth pathways) reflecting microbiome functions of 
interest (e.g. all genes contributing to the biosynthesis of 
secondary bile acids). Unfortunately, the quantification of 
such pathways in metagenomic samples is not trivial: indi-
vidual genes may contribute to more than one pathway and 
the genes comprising a particular pathway may vary across 
taxa. In consequence, the number of tools that attempt to 
estimate a single measure of microbial pathway abundance 
from metagenomic data is limited. HUMAnN3 once again 
offers this utility through careful mapping of gene annota-
tions to MetaCyc reactions and subsequently to higher-order 
pathways (Franzosa et al. 2018).

A common alternative to estimating a single measure of 
abundance for individual pathways is to treat the relative 
abundance of all genes (or orthologous groups if, for exam-
ple, quantifying KEGG Orthologs) contributing to a path-
way as a set, and subsequently to perform gene set analysis 
(GSA). GSA approaches in metagenomics are analogous to 
those used in other genomics fields (Huang et al. 2008). 
For example, it is possible to search for overrepresentation 
of a set within all genes identified as significantly differen-
tially abundant between conditions, or alternatively search 
for enrichment of a set within a pre-defined ranking of all 
genes based on the extent and direction of their differential 
abundance between conditions.

GSA and pathway abundance measures offer invaluable 
insight into important biological processes encoded by 
mWGS data. However, the inherent difficulty in represent-
ing the millions of functionally and taxonomically diverse 
microbial genes as discrete pathways leads us to advise 
researchers to consider carefully the specific genes driving 
trends observed at higher functional levels.

Challenges facing functional annotation

Extensive interrelation of sequence information across anno-
tation databases is invaluable as a means of linking differ-
ent complementary data sources. However, different routes 
to achieve the same information open up the potential for 
unappreciated biases due to differences in underlying bioin-
formatic algorithms. For example, HUManN3 aligned reads 
converted to estimates of KO relative abundance may not 
necessarily return the same results as quantifying the same 
KOs using the KEGG GhostKOALA server. Achieving the 
same ends via different means is not a problem per se, but 
the onus is on researchers to have a clear understanding of 
how they have derived the quantitative estimates of gene and 
pathway abundance they are working with.

Another issue facing functional annotation of metagen-
omic datasets is the dependency on manual curation for 
many of the higher-order biological pathways represented 
in databases. UniProtKB, KEGG, and MetaCyc are all to 
varying extents dependent on manual curation. Within Uni-
ProtKB the number of sequences with computationally pre-
dicted functions is growing at a greater rate than those with 
functions that have been manually annotated and reviewed. 
The contribution of MAG gene predictions to this database 
(UniProt Consortium 2019) is only likely to exacerbate this 
disparity. Again, the appearance of MAGs in databases used 
for functional annotation is not in itself problematic, but it 
rests on the assumption they are the result of high-quality 
assembly and highly stringent quality controls in order to 
maintain database integrity (Shaiber and Eren 2019). In 
databases such as KEGG and MetaCyc, the curation of path-
ways is heavily dependent on manual curation and pathway 
assignment is already restricted to a proportion of known 
genes: approximately 52% of KEGG genes are linked to a 
KO (Kanehisa et al. 2021), and approximately 50% of KOs 
are linked to pathways (Kanehisa and Sato 2019). In conclu-
sion, ensuring functional annotation, in particular, curation 
of pathway-level information keeps pace with the growing 
number of newly discovered genes represents a major chal-
lenge for microbial informatics.

Future perspectives: new technologies, new 
challenges

Current second and third-generation sequencing technolo-
gies have revolutionised our ability to dissect the composi-
tion and function of the gut microbiome. It is likely that 
future technological advancements will continue to provide 
similar step-changes in understanding and in doing so, pre-
sent new bioinformatic challenges. One particular short-
coming of current metagenomic sequencing strategies is 
that the process of extracting and sequencing metagenomic 
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material results in data that may not be easily mapped back 
to its original microenvironment. We end this review by 
briefly discussing exciting new technologies are emerging to 
address this limitation by preserving some of the contextual 
information of the metagenome.

IgA‑Seq

IgA is the primary antibody produced at gut mucosal sur-
faces, where it has been shown to bind different members 
of the gut microbiome with varying affinity. Identifying the 
IgA bound fraction of the microbiota can reveal taxa that 
are critical effectors of immune–microbiome interaction and 
likely to induce intestinal inflammation. This approach was 
first introduced by Palm et al. (2014) who used fluorescence-
activated sorting (FACS) or magnetic-activated cell sorting 
(MACS) to determine IgA-binding, and subsequently 16S 
rRNA gene sequencing to determine taxonomy. It has since 
been successfully applied to examining host–microbiome 
interaction in IBD (Palm et al. 2014; Shapiro et al. 2021). 
For example, Shapiro et al. correlated IgA-coating with 
factors such as relative abundance, IBD treatment, and dis-
ease progression to describe the immunostimulatory effect 
of various taxa in different conditions. This study revealed 
that low IgA-coating in the genus Oscillospira was associ-
ated with worse disease progression. While early studies 
such as these coupled cell sorting with 16S sequencing, 
more recently it has been used in conjunction with shotgun 
sequencing (James et al. 2020).

Spatially resolved microbiomes

The spatial environment surrounding microbiota imparts 
biologically important context for understanding metagen-
omic snapshots of the microbiome. This is particularly true 
in the gut where the microbiome composition has been 
shown to vary at fine scale between the gut lumen and the 
intestinal mucosal barrier (Duncan et al. 2020).

One recent approach for spatial resolution of microbial 
taxa is High Phylogenetic Resolution Fluorescent in situ 
Hybridization (HiPR-FISH, Shi et al. 2020). This method 
achieves taxon-specific tagging by using a probe that tar-
gets the 16S rRNA molecule and a secondary probe that is 
fluorescently labelled. The targeting probe is composed of 
an encoding sequence flanked by two non-identical read-
out sequences, which complement the fluorescent secondary 
probe. A single taxon can be targeted with multiple probe 
tags to create a spectral barcode that is unique to that taxon. 
Pairs of fluorophores can be used to create a spectral barcode 
by concatenating the fluorescence emission spectra meas-
ured with five excitation lasers. This system can generate 
1023 unique fluorophore pairs from 10 fluorophores. As 
such, probe sets can be designed to target multiple taxa in 

one assay, allowing for study of microbe–microbe interac-
tions in multi-taxonomic bacterial communities. Imaging 
with single-cell resolution, the spectra emitted by each cell 
can be decoded with a machine-learning-based classifier to 
identify tagged cells and record their spatial coordinates.

Such quantitative spatial mapping creates opportunities 
to study microbe interactions with their surroundings. For 
example, the authors applied HiPR-FISH to spatially map 
microbiota in mouse colonic tissue and quantify spatial 
associations of bacterial taxa. The authors found that spatial 
association between pairs of bacteria, such as Oscillibac-
ter-Veillonella, were disrupted with antibiotic treatment. In 
doing so, they demonstrated the potential for complex micro-
bial communities to be studied at the single-cell resolution 
while addressing spatial orientation of microbiota.

Single‑cell metagenomics

Single-cell sequencing has revolutionised host genomics by 
providing the ability to describe discrete cell populations 
that would be lost to bulk transcriptomic approaches. The 
application of analogous approaches to the microbiome 
involves physically separating microbes into groups of either 
individual cells, or a few hundred cells—sometimes termed 
mini-metagenome. Several different technologies have been 
applied for this purpose, including flow-sorting cells, gel 
microdroplet cultivation (Fitzsimons et al. 2013), single 
droplet multiple displacement (Hosokawa et al. 2017), and 
microfluidic hydrogels (Chijiiwa et al. 2020). Chijiwa et al. 
(2020) used gel microfluidic hydrogels to compartmentalise 
individual cells. Cell DNA was then enzymatically lysed 
so that genomes could be amplified within each hydrogel, 
resulting in what they referred to as a Single-Amplified 
Genome (SAG). While SAGs had limited genome com-
pleteness, the authors were able to produce enough quality 
draft genomes to produce complete or composite genomes 
of SAG strains.

One notable advantage of this approach is that genomes 
of rare taxa can be assembled without having to dramatically 
increase sequencing depth. Additionally, SAGs only require 
tens of thousands of reads, allowing genomes to be multi-
plexed and mini-metagenomic sequencing to be performed 
on relatively modest platforms such as the Illumina MiSeq.

Conclusions

Progress in gut microbiome research over the last two dec-
ades has been saltatory. In particular, the availability of 
affordable, second-generation sequencing technologies, 
coupled with easily accessible, open-source bioinformatic 
software has enabled researchers in many different disci-
plines to study the metagenome in order to understand the 
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impact of the microbiome within their respective fields. This 
recent interest has led to an explosion in the amount of pub-
licly available mWGS data.

While current bioinformatic approaches are able to keep 
pace with the demands of analysing increasingly large data-
sets, there is growing appreciation of the limitations of exist-
ing resources for the taxonomic classification and functional 
annotation of metagenomes. Bioinformatic approaches 
that enable the reconstruction of complete genomes from 
metagenomes offer a partial solution to this problem, ena-
bling detailed characterisation of hitherto unknown micro-
bial taxa. However, while such de novo approaches are able 
to effectively resolve microbial genes and genomes, the reli-
ance on manual curation to collate and describe higher-order 
biological functions means there is still likely to be a signifi-
cant bottleneck when it comes to extrapolating genome-level 
information to infer molecular the mechanisms that underpin 
host–microbiome interactions.

Continued advancement of novel and existing sequence-
based technologies may contribute to solving these and 
other problems, enabling ever greater understanding of the 
microbe–microbe and host–microbe interactions that are 
relevant to host health.
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