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Metagenomics analysis revealed the
distinctive ruminal microbiome and
resistive profiles in dairy buffaloes
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Abstract

Background: Antimicrobial resistance poses super challenges in both human health and livestock production.
Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in
different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy
buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16
dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics.

Results: Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG
pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows.
Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs
discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes
were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence
and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen
(R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with
tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on
co-occurrence analysis and tcmA-containing contigs taxonomic alignment.

Conclusions: The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to
dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the
unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.
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Background
Antimicrobial resistance (AMR) is one of the biggest

threats to human health and causes several to ten mil-

lion death annually in the world [1]. The wide spread of

antimicrobial resistance genes (ARGs), especially for

those that confer resistance to clinical relevance or “last

defense line” antibiotics, requires urgent tasks to reveal

the harbor sources and transmission routes of diverse

ARGs [2]. The microbiome of livestock gastrointestinal

tracts serves as important reservoirs for ARGs [3–6],

which is largely attributed to the long-term use of anti-

biotic in veterinary medicine or sub-therapeutic doses of

antibiotic supplied in the feed acting as growth promoter

[7]. The microbial ARGs are mainly structured by the

bacterial phylogeny [8]. The ruminal bacterial compos-

ition and diversity are much higher than fecal micro-

biome in dairy cows [9], suggesting that rumen

microbiome is a larger reservoir of ARGs.

The ARGs harbored in direct-fed microbials or silage

inoculants that isolated from rumen microbiome (e.g.

lactic acid bacteria or fibrolytic bacteria) [10] could be

directly or indirectly transmitted and accumulated in
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human and other food animals. In addition, the bacterial

ARGs in the rumen will easily spread to the environment,

such as soil and water, through rumination and saliva,

which will lead to drug-selective pressure on environmen-

tal and human life related bacterial communities [11]. The

high-throughput metagenomics technology has been grad-

ually applied into functional annotation and ARGs identi-

fication of large amounts of uncultured bacteria in gut

microbiome of different species [12]. Nevertheless, the ru-

minal resistome information is still limited [13], especially

for more diverse ruminant species.

As an important ruminant species, buffaloes are esti-

mated to be more than 200 million worldwide and made

great contribution to the nutrition and health of human-

kind [14]. Compared with dairy cows, dairy buffaloes have

some unique physiological patterns, such as higher nutri-

tious milk for cheese and cream production [15], better

adaptability to low-quality and less-digestible roughage,

hot and humid climate [16], advantages in resistance and

susceptibility to common bovine disease [17]. Compara-

tive analysis of rumen microbiome nowadays attracts in-

creasing interest to understand the above distinct

physiological patterns in dairy buffaloes [18].

Dairy buffaloes are generally raised in a low-density

system with waterlogged conditions [19], which exhibit

close interactions with the environment. Therefore, it is

hypothesized that more diverse and distinctive micro-

biome and resistome existed in the rumen of dairy buffa-

loes compared with dairy cows. Here, we collected

rumen samples from 16 dairy cows and 15 dairy buffa-

loes to perform compositional and functional compara-

tive analysis using metagenomics. Since the average

culling time for dairy buffaloes worldwide is generally

longer than that of dairy cows (> 10 vs. 5 ~ 6 years old),

dairy buffaloes with different ages (from 1 to 10 years

old) were selected to reveal the comprehensive rumen

microbial profiles. The current study provides compre-

hensive understanding on microbiome and resistome

profiles of dairy buffaloes, and uncovers potential risks

to clinical treatment and human health caused by

spreading ruminal ARGs from dairy buffaloes.

Methods
Experimental design, animals and sample collection

All experimental procedures were approved by the Ani-

mal Care Committee of Zhejiang University (Hangzhou,

China). A total of 16 dairy cows and 15 dairy buffaloes

were used in this study. Sixteen Holstein dairy cows (3–

5 year-old) were selected from a commercial farm in

Hangzhou (China). Fifteen Murrah dairy buffaloes with

different ages (Y: 12 month-old, n = 5; M: 3–5 year-old,

n = 4; E: 6–8 year-old, n = 3; O: > 9-year-old, n = 3) were

selected from buffalo farm of Buffalo Research Institute,

Chinese Academy of Agricultural Sciences (Nanning,

China). The animals were healthy and received no thera-

peutic or prophylactic antimicrobial treatment during

the current lactation cycle or in the past year. All the se-

lected animals were healthy and received no therapeutic

or prophylactic antimicrobial treatment based on the

veterinary records. The diet of dairy cows and dairy buf-

faloes were supplemented (Table S1). Fifteen mL of

rumen fluid were collected from each animal before

morning feeding using an oral stomach tube as de-

scribed previously [20]. The first 50–100 mL of rumen

fluids in each samping were discarded to remove the po-

tential saliva contamination. The rumen content samples

were immediately frozen in liquid nitrogen and stored at

− 80 °C until further analysis.

DNA extraction, library construction, sequencing and data

processing

Total DNA of rumen contents (3 mL) was extracted

using the repeat bead-beating plus column method [21].

The concentration and quality of DNA were evaluated

using a NanoDrop 2000 spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA) and 1% agarose

gel. The Covaris M220 (Covaris lnc., Woburn, MA,

USA) was used to generate 300 bp DNA fragments. The

TrueSeq DNA PCR-Free Library Prep Kits (Illumina,

San Diego, CA, USA) were applied to perform metagen-

ome libraries construction according to the manufac-

turer’s protocol. Metagenomic sequencing (PE150) was

performed on an Illumina HiSeq 3000 platform (Illu-

mina, San Diego, CA, USA). Totally, 189.5 Gb clean data

(from 194.5 Gb raw data) with an average of 61.11 mil-

lion clean reads in each sample were generated.

The “N” records, 3′- and 5′-ends reads, short reads (<

50p) and low-quality bases (Phred score < 20) were fil-

tered using fastp software [22]. Host genomic and

adaptor contaminations were removed by mapping to

the Bos taurus and Bubalus bubalis genomes using

Burrows-Wheeler alignment (BWA) software [23]. After

trimming, a set of high-quality and free of host genomic

contaminants reads were obtained for further analysis.

The clean reads were de novo assembled for each sam-

ple using Megahit software based on succinct de Bruijn

graph method [24]. The assembled contigs with the

length greater than 300 bp were predicted to open read-

ing frames using MetaGene software [25]. A total of 23,

963,622 contigs with the length from 300 to 415,681 bp

were obtained. Assembled contigs were pooled and then

used to construct non-redundant (NR) gene catalog

using CD-HIT with 90% identity and 90% coverage [26].

Gene abundances were calculated as gene reads/gene

length using SOAPaligner software based on 95% iden-

tity [27]. And when comparing the taxa difference be-

tween two groups, the gene abundance was normalized

as relative abundance: reads abundance of taxon A in
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sample 1/total reads abundances of all taxa in sample

1 × 100, to remove the bias of sequencing depth among

different samples.

Taxonomic classification and functional annotation

Taxonomic classification was performed using DIA-

MOND software [28] to map the sequence of NR gene

catalog against the NR database (ftp://ftp.ncbi.nlm.nih.

gov/blast/db/). Taxonomic abundance profiles were gen-

erated at domain, kingdom, phylum, class, order, family,

genus and species levels. The relative abundance of each

taxon was calculated and normalized using the proportion

of each taxa identified in the same sample. Only the taxa

with a relative abundance > 0.1 in more than 50% of ani-

mals within each group were selected for downstream

analysis. Stacked histogram was used to display the abun-

dance difference of phylum and family levels bacteria.

The sequence of NR gene catalog was mapped to

Kyoto Encyclopedia of Genes and Genomes database

(KEGG, http://www.genome.jp/kegg/) using Diamond

with BLASTP (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

type and an e value of 1E-5. Pathway annotation was

then conducted using KOBAS 2.0 according the blast re-

sults [29]. Carbohydrate-active enzymes were identified

based on HMMscan tools against the Carbohydrate-

Active enZYmes Database (CAZy) with hmmer type and

e-value ≤1E-5 [30]. Abundances of KEGG pathway and

CAZymes were normalized into counts per million reads

(CPM) for further comparison analysis with the cutoff of

CPM > 5 in greater than 50% of animals in at least one

group.

ARGs identification and resistome analysis

The sequence of NR gene catalog was mapped to the

Comprehensive Antimicrobial Resistance Database

(CARD) using Diamond software with BLASTP type and

an e-value ≤1E-5 to identify the ARGs [28]. The corre-

sponding AMR mechanisms and target antibiotics of

ARGs were also provided in the CARD database [28].

The read counts of ARGs in each sample were normal-

ized into CPM and only the ARGs with CPM value > 1

in more than 50% of animals in at least one group were

used for down-stream analysis. Unique ARGs were de-

fined as the genes absent in one group but with CPM

values > 1 in all samples in the other group.

Supervised partial least-squares discrimination analysis

(PLS-DA) was performed using ropls package [31] in R

software to reveal discriminate patterns of ARGs be-

tween dairy cow and dairy buffalo groups. Pheatmap

package in R was used to analyze the classification of

ARGs and samples based on ARGs expression abun-

dance. The co-expressed ARGs modules and their com-

plex correlations with unique ARGs in dairy buffaloes

were characterized using weighted gene co-expression

network analysis (WGCNA) package in R [32]. To

achieve a signed R2 value of scale-free topology model

greater than 0.9 [33], the soft-thresholding power value

was set as 9. The minimum count of genes assigned in

each module was selected at 10. The cut-off of signifi-

cantly correlated gene modules was defined as module-

unique ARGs relationship |R| > 0.7 & P < 0.01. The asso-

ciation between membership and gene significance in

the most correlated module was further explored. The

correlation between the tcmA and bacterial species in

the rumen of dairy buffaloes were calculated by Hmisc

package in R. The co-occurence network was visualized

by Cytoscape software [34].

Statistical analysis

The Bray-Curtis dissimilarity matrices based principal-

coordinate analysis (PCoA) and P values calculation at

genus and species level were performed using adae4 (ver-

sion 1.7.13) [35] and vegan (version 2.5.4) [36] packages in

R software. The significantly different features (SDFs) at

each taxa level between dairy cows and dairy buffaloes

were analyzed using least discriminant analysis (LDA) Ef-

fect Size (LEfSe) [37], in which both statistical significance

and biological relevance were considered. The SDFs was

defined at the thresholds of P < 0.01 & LDA > 3.5. The

KEGG pathways and CAZymes between dairy cow and

dairy buffalo groups were compared using the Wilcoxon

rank-sum test and displayed in the volcano plot using R.

The functional memberships with a false discovery rate

(FDR) < 0.01 & |fold change (FC)| > 2 were considered as

significantly different. The extremely higher CAZymes

were defined as FDR < 0.01 & FC > 25. The difference of

unique ARGs abundance among Y, M, E and O groups in

dairy buffaloes were analyzed using ANOVA test with a

P < 0.05 considered as statistical significance.

Results
Different rumen bacterial taxonomic compositions

between dairy cows and dairy buffaloes

Bacteria was most predominant in all animals (Table S2)

and showed significantly higher relative abundance in

dairy buffaloes than in dairy cows (96.56% vs. 94.25%,

P < 0.001). At phylum and family levels, dairy buffaloes

had similar bacterial composition with dairy cows

(Fig. 1A and B). Totally, 15 different bacterial phyla were

identified (relative abundance > 0.1% in more than 50%

animals), with Bacteroidetes, Firmicutes, Proteobacteria,

Actinobacteria and Spirochaetes being the top 5 most

abundant (accounting for > 89% of totally bacterial com-

munity) phyla in both dairy cows and dairy buffaloes

(Fig. 1A). At family level, 45 different bacterial taxa were

identified, with Prevotellaceae, Lachnospiraceae, Bacter-

oidaceae, Ruminococcaceae and Clostridiaceae being the

top 5 most abundant (accounting for > 60% of totally
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bacterial community) families in both dairy cows and

dairy buffaloes (Fig. 1B). At genus and species levels, the

bacterial community displayed significantly different

profiles between dairy cows and dairy buffaloes in PCoA

plot (P = 0.001, Fig. 1C and D). Among the 44 SDFs

under the cutoff of LDA > 3.5 and P < 0.01, 24 bacterial

taxa were significantly higher, while 20 bacterial taxa

were significantly lower in dairy buffaloes than dairy

cows (Fig. 1E). The key species significantly enriched in

the rumen of dairy buffaloes including Bacterium F082,

Prevotella ruminicola, Faecalibacterium sp. CAG:74,

Lactobacillus amylovorus, Prevotella sp. P6B4, Acetobac-

ter pasteurianus, and Bacterium F083 (Fig. 1E).

Functional difference of rumen microbiome between

dairy cows and dairy buffaloes

By aligning the NR gene catalog to the KEGG and CAZy

database, metabolic pathways and carbohydrate-active

Fig. 1 Rumen bacterial compositional profiles of dairy cows and dairy buffaloes. A Relative abundance of major bacteria phyla (relative
abundance > 0.1% in more than 50% animals) for all individuals. B Relative abundance of major bacteria families (relative abundance > 0.1% in
more than 50% animals) for all individuals. C Principal coordinate analysis (PCoA) of bacteria genera based on Bray-Curtis distance. D PCoA of
bacteria species based on Bray-Curtis distance. E Cladogram of significantly different taxa identified in the rumen microbiome data sets of dairy
cows and dairy buffaloes based on the cut-off of LDA > 3.5 and P < 0.01. Clades significantly enriched in each cohort are highlighted by the
colors shown in the legend. DB: dairy buffalo; SDF: significantly different feature; LDA: linear discriminant analysis
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enzymes were analyzed and compared between dairy

cows and dairy buffaloes. Among the 21 significantly dif-

ferent third-level pathways between two groups (FDR <

0.01 & |FC| > 2), 17 pathways were enriched in the dairy

buffaloes and 4 pathway were enriched in the dairy cows

(Fig. 2A).

For the CAZymes profiles, a total of 413 genes encod-

ing family-level CAZymes were identified in the rumen

microbiome of dairy cows and dairy buffaloes (Table

S3). As shown in Fig. 2B, 59 of CAZymes encoded genes

were up-regulated and 36 were down-regulated in dairy

buffaloes than in dairy cows (FDR < 0.01 & |FC| > 2).

Among the CAZymes encoded genes significantly higher

expressed in the dairy buffaloes (Fig. 2C), 56% of them

belonged to glycoside hydrolases (GHs), 17% to

glycosyltransferase (GTs), 17% to carbohydrate-binding

modules (CBMs), 5% to polysaccharide lyases (PLs), and

5% to auxiliary activities (AAs). The extremely higher

CAZymes encoded genes in dairy buffaloes were GH71

(FDR = 6.70E-9, FC = 38.72), GH70 (FDR = 3.49E-4, FC =

54.86), GH68 (FDR = 0.0015, FC = 167.7), GT48 (FDR =

0.003, FC = 90.53), AA1 (FDR = 4.89E-05, FC = 26.77)

(Fig. 2D).

Resistome profiles of the rumen microbiome and distinct

ARGs patterns between dairy cows and dairy buffaloes

Dairy buffaloes showed distinct resistome profiles from

dairy cows (Fig. 3). Totally, 505 ARGs were detected in

rumen microbiome of dairy cows and dairy buffaloes;

and 435 of them were expressed in at least one group

Fig. 2 Functional difference of ruminal microbiome between dairy cows and dairy buffaloes. A The volcano plot of significantly different 3rd level
KEGG pathways between dairy cows and dairy buffaloes. B The volcano plot of significantly different CAZymes between dairy cows and dairy
buffaloes. C The distribution of significantly different CAZymes families between dairy cows and dairy buffaloes. D The relative abundance of
extremely higher CAZymes encoded genes in the dairy buffaloes. FC: fold change (dairy buffaloes/dairy cows); GHs: glycoside hydrolases; PLs:
polysaccharide lyases; CBMs: carbohydrate-binding modules; GTs: glycosyltransferase; AAs: auxiliary activities; DB: dairy buffalo; DC: dairy cow; CPM:
counts per million
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(CPM > 1 in more than 50% animals). In the PLS-DA

plot, the resistome profiles displayed clearly discrimin-

ation between dairy cows and dairy buffaloes, in which

the PC1 explained 39.4% of total variations (Fig. 3A).

The heatmap revealed that 16 dairy cows and 15 dairy

buffaloes were assigned into two separated groups

(Fig. 3B). More than 60% of ARGs showed higher ex-

pression level in dairy buffaloes than in dairy cows in

the heatmap overview (Fig. 3B). The relative abundance

of top 10 most abundant ARGs accounted for about

32.10 and 33.13% of total reads in dairy cows and dairy

buffaloes, respectively (Table S4). Staphylococcus aureus

rpoC conferring resistance to daptomycin was the most

abundant ARG in both groups. In terms of AMR pheno-

types of ruminal resistome in dairy buffaloes, 33.13% of

the sequence reads corresponded to fluoroquinolone

(11.87%), lipopeptide antibiotic (7.46%), and aminocou-

marin (6.20%) AMR (Table S5).

Unique ruminal ARGs in dairy buffaloes and their

resistance mechanisms

Eighteen ARGs were uniquely detected in the rumen

microbiome of dairy buffaloes (CPM > 1 in all samples of

dairy buffaloes and CPM = 0 in all samples of dairy

cows) (Fig. 4). These ARGs included tcmA (CPM =

399.92), tet43 (CPM = 208.52), tet41 (CPM = 39.44),

tet34 (CPM = 70.76), ARO:3003379 (CPM = 75.58), otrC

(CPM = 38.84), otrB (CPM = 174.49), opcM (CPM =

232.42), ARO:3003392 (CPM = 216.70), mexV (CPM =

37.12), mexH (CPM = 39.07), mexC (CPM = 64.17),

mdtD (CPM = 363.64), sul3 (CPM = 61.65), dfrC (CPM =

9.93), iri (CPM = 158.81), APH (3′)-IIc (CPM = 126.53),

and adeA (CPM = 55.19) (Table S6). Unique ruminal

ARGs showed large individual variance within dairy buf-

faloes (Fig. 4). The relative abundance of tcmA (P =

0.002), otrB (P = 0.021), sul3 (P = 0.043), iri (P = 0.021)

presented significant difference among different age

groups of dairy buffaloes (Fig. 4).

Most of the unique ARGs (tcmA, tet43, tet41, ARO:

3003379, otrC, otrB, opcM, mexV, mexH, mexC, mdtD,

adeA) conferred resistance through the mechanism of

“efflux pump conferring antibiotic resistance” (Fig. 4).

The resistance mechanisms of tet34, ARO:3003392, sul3

and dfrC, iri and APH (3′)-IIc were “gene conferring

antibiotic resistance via molecular bypass”, “ARGs vari-

ant or mutant”, “antibiotic target replacement protein”,

and “antibiotic inactivation enzyme”, respectively (Fig. 4).

These ARGs conferred resistance to tetracenomycin C,

tetracycline, glycylcycline, aminoglycoside, rifamycin,

diaminopyrimidine, sulfonamide, aminocoumarin,

Fig. 3 Rumen resistome profiles in dairy cows and dairy buffaloes. A The principal component analysis of ARGs identified in the rumen of dairy
cows and dairy buffaloes. B The heatmap of the relative abundance of all the ARGs in all the individuals
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phenicol, fluoroquinolone, penam, macrolide, cephalo-

sporin, acridine dye, isoniazid, and triclosan (Fig. 4).

The relationship between unique ARGs and bacterial

species in the rumen of dairy buffaloes

To investigate the roles of unique ARGs in the ruminal

resistome of dairy buffaloes, the relationship between

co-expressed ARGs modules and unique ARGs was ana-

lyzed using WGCNA. Fourteen co-expressed gene mod-

ules that contained different number of ARGs (12–93)

were identified (Fig. 5A). Totally, 16 significantly corre-

lated relationships between 7 gene modules and 18

unique ARGs were observed (|R| > 0.7 & P < 0.01).

Among them, MEturquoise module was positively asso-

ciated with 6 ARGs, including tcmA (R = 0.98 & P = 5E-

11), otrB (R = 0.92 & P = 9E-07), iri (R = 0.90 & P = 4E-

06), tet34 (R = 0.74 & P = 0.002), tet43 (R = 0.74 & P =

0.002), and mdtD (R = 0.72 & P = 0.003) (Fig. 5A). The

co-expressed membership in MEturquoise module and

gene significance for tcmA displayed highest relationship

(R = 0.99, P = 3.3E-79) (Fig. 5B).

The co-occurrence patterns between bacterial species

in the rumen of dairy buffaloes and tcmA gene were fur-

ther explored using network analysis (Fig. 5C). Totally,

65 bacterial species were highly positively correlated

(R > 0.95, P < 0.01) with tcmA, with 44 belonging to

Lactobacillus genus (Fig. 5C). L. amylovorus (R = 0.993,

R = 2.77 E-13) and L. acidophilus (R = 0.992, R = 4.94 E-

13) showed strongest positive association with tcmA

(Fig. 5C). It is notable that L. amylovorus (FC = 269.9,

Padjust < 0.001) and L. acidophilus (FC = 11.84, Padjust <

0.001) were highly enriched in the rumen of dairy buffa-

loes than in dairy cows.

Discussion
To our knowledge, this study should be one of the first

study to compare rumen microbiome between dairy

cows and buffaloes using metagenomics. Many factors

can affect and shape the rumen microbiome, such as

diet, breed, age, etc. It is reported that age plays import-

ant roles in rumen microbiome dynamics [38]. Dairy

buffaloes with different ages (from 1 to 10 year old) was

selected in this study to reveal the comprehensive pro-

files of rumen microbiome as well as to explore the age

effects on resistome. Using q-PCR and 16S rRNA gene

sequencing, it has been reported that Bacteroidetes (ac-

counting for 42–72% of total bacteria) and Prevotella

(accounting for 22–58% of total bacteria) were the most

abundant phylum and genus bacteria in dairy buffaloes

[39], which were consistent with our results (accounting

Fig. 4 The unique ruminal ARGs detected in the dairy buffaloes. The relative abundance, target antibiotics and resistant mechanisms of 18
unique ARGs identified in each sub-group (Y/M/E/O). ARGs: antibiotic resistance genes

Sun et al. Animal Microbiome            (2021) 3:44 Page 7 of 13



for 37–60% and 22–44% of total bacteria). We also

found that the top abundant bacterial phyla and families

were consistent in dairy cows and dairy buffaloes. Even

though dairy buffaloes showed distinct microbial com-

munity composition and higher Shannon diversity from

dairy cows under the similar diet [18], the major rumen

microbial profiles especially at phylum level show strong

similarities between cattle and buffaloes [40, 41]. Lin

et al. reported that no correlation between rumen micro-

biota and diet [39] while significant association between

rumen microbiota composition and milking performance

were observed [42] in dairy buffalo. It is indicated that

dairy cows and dairy buffaloes shared some core rumen

microbiota regardless of diet and geographical location,

but the differed microbiota at higher taxonomic levels

may reflect the breed or functional difference. We found

Fig. 5 The relationship between unique ARGs and bacterial species in the rumen of dairy buffaloes. A The relationship between 18 unique ARGs
and co-expressed ARGs in the rumen of dairy buffaloes. B The relationship between members in significantly correlated gene module and gene
significance for tcmA. C The co-occurrence network of tcmA and its highly associated bacteria species in the rumen of dairy buffaloes
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the diet-induced SDFs were likely to be included in the

comparisons between dairy cows and dairy buffaloes

with relative lower strict thresholds, therefore, the SDFs

revealed under the cutoff of LDA > 3.5 and Padjust < 0.01

were further investigated.

Prevotella ruminicola was the most abundant bacterial

species in our dataset in both dairy cows and buffaloes,

consistent with previous reports [43, 44]. Prevotella

ruminicola can efficiently utilize ammonia nitrogen and

peptides for microbial protein synthesis [45]. The opti-

mal adaptative mechanism of Prevotella ruminicola in

the rumen environment makes it maximize nitrogen as-

similation [46]. It is reported that the Prevotella rumini-

cola population increased with the increasing dietary

crude protein (CP) levels [47, 48]. However, the dietary

CP in dairy buffalo was lower than that in dairy cow

(13.8% vs. 16.1%). The opposite results (the Prevotella

ruminicola was significantly enriched in dairy buffaloes)

suggest that Prevotella ruminicola abundance in the

rumen was not only driven by dietary CP but may also

be influenced by microbial-microbial interaction and

host effect between dairy cows and buffaloes. Another

significantly enriched prevotella species (Prevotella sp.

P6B4) in dairy buffaloes was also abundant bacteria de-

tected in rumen across the globe [49]. The two species

were predicted to have 27 and 26 polysaccharide

utilization locus [50], indicating that the rumen bacteria

in dairy buffaloes have higher breakdown capacity of

complex glycans than that in dairy cows. The higher

abundance of Acetobacter pasteurianus and Lactobacil-

lus amylovorus in the rumen contributed to the greater

degradation ability of cellulose in dairy buffaloes. The

function of Faecalibacterium sp. CAG:74, Bacterium

F082 and Bacterium F083 species has not been well

characterized, nevertheless, the high metabolic activity of

these bacteria was approved [51]. The potential higher

levels of metabolic function and carbohydrate degrad-

ation in the rumen microbiome of dairy buffaloes were

supported by functional analysis.

More than 62% of significantly different metabolic

pathways and CAZymes between two groups were

enriched in dairy buffaloes, which provides further evi-

dence that dairy buffaloes were enhanced in metabolism,

especially for carbohydrates degradation. The enrich-

ment of genes encoding CAZymes involved in different

types of enzymes revealed the higher capability of de-

grading diverse and complex substrates in the rumen of

dairy buffaloes. The GHs are common enzymes in

rumen that catalyze the hydrolysis of glycosidic bond in

complex carbohydrates, which are involved in decon-

structing plant biomass such as cellulose, hemicellulose,

and starch [52]. The large amount of significantly

enriched GHs identified in the rumen microbiome of

dairy buffaloes suggests the strong fiber degradation

roles in the rumen of dairy buffaloes. The extremely

more abundant GHs families (GH68, GH70, GH71)

with over 50-fold enrichment revealed higher ability

of acting on sucrose, maltodextrins/starch, and energy

production in dairy buffaloes [53, 54]. It has been

suggested that utilizing microbial enzymes belonging

to AA family could help degrade the non-

carbohydrate structural components (e.g. lignin) since

the AAs contain a group of ligninolytic enzymes or

multi-copper oxidases [55]. The AA1 family plays im-

portant roles in lignin degradation by acting as lac-

case [56]. The AA1 family-encoded genes only

identified in the rumen of dairy buffaloes with a rela-

tive high abundance (CPM = 185) indicates that dairy

buffaloes might be more capable or more efficient in

degrading the recalcitrant lignin, which contribute to

the better adaptability to less-digestible forage.

Liu et al. investigated the fecal resistome of dairy cattle

and identified 329 ARGs that putatively conferred resist-

ance to 17 classes of antimicrobials [5]. Recent studies

reported that the rumen microbiome carries abundant

ARGs, which may be transmitted to humans via environ-

ment (i.e. soil and water) through saliva or the flow of

rumen microbial biomass to the gut [11]. In this study,

more than 50% of ARGs and resistant antimicrobials

classes were detected in the rumen of dairy cows and

buffaloes, suggesting the necessity to pay attention to

the ruminal resistome, especially for those that confer

resistance to clinically important antibiotics. Mcr-1 is a

plasmid-mediated colistin resistance gene that was firstly

discovered in the pork, chicken and human in China,

and then identified globally [57], which compromise

last-line treatment options for human health especially

for the multidrug-resistant Gram-negative pathogen in-

fections [58]. It is suggested that the spread of mcr-1 is

from livestock sector to human beings [2]. The high

mcr-1 positive detection rate in the rumen of dairy cows

(81%) and dairy buffaloes (100%) indicates the mcr-1

widespread in dairy cows and buffaloes in the south of

China, thus the use of colistin in dairy industry should

be reconsidered. Linezolid is one of the last antimicro-

bial treatment options in human clinical medicine and

has not been approved for applying in livestock industry

[6]. However, several linezolid resistant genes (cfrA,

cipA, clbA, clbB, clbC) with high relative abundance

(average CPM > 600 for each gene) were identified in the

rumen samples of dairy cows and dairy buffaloes, and

they also confirmed in other studies [59, 60]. The high

prevalence of ARGs that conferred resistance to clinical-

important antibiotics in the rumen microbiota should be

taken into account to address potential concerns for

public health. The microbial genomes contain functional

integrative conjugative elements that determine the pos-

sibility of transferring ARGs into human pathogens or
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zoonotic pathogens [13]. Further work is needed to in-

vestigate these aspects.

It has been reported that diets [5], ages [61], and living

environment [12] play important roles in shaping gut

resistome in animals. The distinct resistome between dairy

cows and buffaloes indentified in this study may be attrib-

uted to the combined effects of distinct diets, ages, envir-

onmental conditions and host genetics. Among them, the

diet of dairy buffaloes hade lower nutritional level (e.g.,

CP) and less abundant ingredient types. It’s noted that

60% corn silage was utilized in the dairy buffaloes’ diet

while only 16.7% used in the dairy cows’ diet (Table S1),

which may contribute the more diverse resistome in the

rumen of dairy buffaloes. The improved adaptability to

less-digestible roughage in dairy buffaloes [16] may harbor

varied microbiota with diverse ARGs. In addition, the

close interactions between dairy buffaloes and waterlogged

conditions [19] increase the ARGs horizontal transfer

chances, leading to a more abundant resistome. Interest-

ingly, the 18 unique ARGs were detected in each ruminal

sample of dairy buffaloes, but they were absent in any ru-

minal sample from dairy cows. This is also confirmed in

another metagenomic dataset (unpublished) of dairy cows.

This may be attributed to the distinct rumen microbiome

between two host species since microbial resistome are

mainly structured by the bacterial phylogeny [8]. These 18

unique ARGs have not been detected in the ruminal resis-

tome of different beef cattle species with varied diets in a

previous study [11]. In another study, Cao et al. collected

gut samples from 10 different migratory bird species (total

number = 99) and characterized their microbiome and

resistome using metagenomics [62]. Four dairy buffalo

unique ARGs (adeA, sul3, mexC, tet41) were identified in

this dataset, but the detection rate was only 1–14% and

none of them was distributed in every sample of one cer-

tain species. When compared with the study on the swine

farm related samples (human feces, pig feces, soil, sewage,

and ventilation dust) [63], three (tet34, sul3, iri) buffalo

unique ARGs were also identified. Based on the above

comparison with more diverse gut microbiome, most of

unique ARGs in dairy buffaloes were conserved, indicating

the uniqueness of ruminal resistome and ARGs profiles.

Among the unique ARGs, tcmA was highlighted since

it showed greatest positive correlation with a gene mod-

ule consisting of 93 co-expressed ARGs. The tcmA is

predicted to confer resistance to tetracenomycin C via

an active efflux system [64]. Tetracenomycin C is a nar-

row spectrum anthracycline antibiotic, which is active

against Gram-positive bacteria and also shows antitumor

effect [65]. In this study, we identified more than 40 bac-

teria under Lactobacillus genus that were highly related

to tcmA, suggesting that tcmA might be widely harbored

and/or more likely horizontally transferred in Lactobacil-

lus bacteria. Among them, L. amylovorus and L.

acidophilus showed strongest association with tcmA,

which is supported by the taxonomic alignment using

ARGs-containing contigs. The lactic bacteria Lactobacil-

lus amylovorus was firstly isolated from waste-corn fer-

mentations in cattle, and can secret starch-hydrolyzing

enzyme (a-amylase) and rapidly digest cornstarch [66]. It

has been found that L. amylovorus and L. acidophilus

exert beneficial effects on gastrointestinal immunomo-

dulation and health as candidate bacterial therapeutics,

such as mitigating the bovine respiratory pathogens in

dairy calves [67]. The probiotic properties of L. amylo-

vorus and L. acidophilus have been well studied [68, 69],

suggesting the promising cholesterol-lowering properties

[70], anti-pathogens effect [71], and prevention of dis-

ease in human and dairy calves [72]. The significantly

higher relative abundance of these two species especially

for L. amylovorus (2% in young dairy buffaloes) in the

rumen of dairy buffaloes may provide probiotic resource

for fermented feed. The detected tcmA will provide fun-

damental knowledge and potential strategies to reduce

ARG transmission risk when isolated Lactobacillus pro-

biotic from the rumen of dairy buffaloes.

Conclusions
Ruminal bacterial composition varied significantly between

dairy cows and dairy buffaloes. The majority of differed

KEGG pathways and CAZymes were enriched in the dairy

buffaloes with GH68, GH70, GH71, GT48 and AA1were ex-

tremely significantly higher than dairy cows. Dairy buffaloes

showed distinct resistome profiles and clusters from dairy

cows. A total of 18 ARGs conferring resistance to 16 anti-

biotic classes were uniquely detected in the dairy buffaloes.

tcmA plays a central role in the ruminal resistome and is

highly associated with L. amylovorus and L. acidophilus. Our

results provide novel insights into the microbiome and resis-

tome of dairy buffaloes, the identified unique ARGs and as-

sociated bacteria will help develop strategies to prevent the

transmission of ARGs.
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