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ABSTRACT

Metagenomics and total RNA sequencing (total
RNA-Seq) have the potential to improve the taxo-
nomic identification of diverse microbial communi-
ties, which could allow for the incorporation of mi-
crobes into routine ecological assessments. How-
ever, these target-PCR-free techniques require more
testing and optimization. In this study, we pro-
cessed metagenomics and total RNA-Seq data from
a commercially available microbial mock commu-
nity using 672 data-processing workflows, identi-
fied the most accurate data-processing tools, and
compared their microbial identification accuracy at
equal and increasing sequencing depths. The ac-
curacy of data-processing tools substantially varied
among replicates. Total RNA-Seq was more accu-
rate than metagenomics at equal sequencing depths
and even at sequencing depths almost one order of
magnitude lower than those of metagenomics. We
show that while data-processing tools require fur-
ther exploration, total RNA-Seq might be a favor-
able alternative to metagenomics for target-PCR-free
taxonomic identifications of microbial communities
and might enable a substantial reduction in sequenc-
ing costs while maintaining accuracy. This could be
particularly an advantage for routine ecological as-
sessments, which require cost-effective yet accurate
methods, and might allow for the incorporation of
microbes into ecological assessments.

INTRODUCTION

Ecosystems are globally deteriorating at an unprecedented
speed, causing a rapid biodiversity decline (1–3), which neg-
atively affects ecosystem services. Under certain future land
use and management scenarios, the future value of global
ecosystem services is estimated to decline by up to 51 tril-
lion US$/year until 2050 (4). Consequently, ecosystem pro-
tection is gaining increased attention, even on the political
scale (1). Clearly, there is an urgent need to protect, preserve,
and restore ecosystems, but to do so, we first need to deter-
mine their natural status. This is usually achieved by using
ecological assessments, which include the assembly of biodi-
versity inventories. Such inventories can be screened for the
presence and abundance of taxa that represent specific envi-
ronmental conditions, so-called bioindicators (5). With the
exception of a few selected groups, microbes (prokaryotes
and unicellular eukaryotes) are rarely utilized as bioindica-
tors; however, recently it has been suggested to include mi-
crobes into ecological assessments because they play a cru-
cial role for ecosystem health, are extremely abundant in the
environment, are very sensitive to environmental change,
and can be analyzed through environmental sampling (6–
11).

Biodiversity inventories have been traditionally assem-
bled by assessing the morphology of organisms. However,
morphological identification can be biased (12,13) or is of-
ten not feasible due to a lack of diagnostic traits (14,15). A
solution to these issues was the development of amplicon
sequencing, a DNA-based approach to identify organisms
by using target primers that amplify standardized genetic
markers (amplicons) through target PCR, which can be ap-
plied to assemble community inventories (16–20). Ampli-
con sequencing is a valuable and comparably cheap method
to analyze community compositions and, therefore, widely
used to date. However, the method comes with its own set of

*To whom correspondence should be addressed. Tel: +1 519 824 4120; Fax: +1 519 824 5703; Email: hempelc@uoguelph.ca

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/16/9279/6671113 by guest on 23 Septem

ber 2023

https://orcid.org/0000-0002-2324-3115
https://orcid.org/0000-0002-8992-575X


9280 Nucleic Acids Research, 2022, Vol. 50, No. 16

biases, mostly due to varying primer-binding affinities (21–
24).

In contrast to amplicon sequencing, target-PCR-free
methods, such as metagenomics and metatranscriptomics,
are typically applied to analyze the presence and expres-
sion of functional genes within communities and involve
shotgun sequencing, i.e. the random fragmentation and se-
quencing of all DNA or RNA in a sample (25–28). How-
ever, both methods also generate valuable taxonomic data
and can be utilized for the taxonomic identification of com-
munities to remove the need for morphology or amplicon
sequencing with all their associated biases. Metagenomics
and metatranscriptomics involve higher costs than ampli-
con sequencing, but they can deliver target-PCR-free func-
tional and taxonomical information simultaneously. Due to
these advantages and the growing interest in holistic and
target-PCR-free ecological assessments (8,29–31), we fo-
cused on the application of metagenomics and metatran-
scriptomics for taxonomic identification in this study.

Metatranscriptomics usually involves a messenger RNA
(mRNA) enrichment step to analyze gene expression pat-
terns; however, it is possible to skip the mRNA enrichment
step to sequence the total RNA. This approach has been
referred to as double-RNA approach (32), metatranscrip-
tomics analysis of total ribosomal RNA (rRNA) (33), to-
tal RNA sequencing (total RNA-Seq) (34–36), total RNA-
based metatranscriptomics, or total RNA-seq-based meta-
transcriptomics (36). To distinguish this approach from reg-
ular metatranscriptomics, we will use the term total RNA-
Seq in the balance of this paper.

It has been discussed that for taxonomic identification,
total RNA-Seq might have an advantage over metage-
nomics, especially when it comes to the active part of a
community, as total RNA-Seq utilizes active transcripts
(35,37,38). Metagenomics, on the other hand, targets all
DNA in a sample, and this also includes the DNA of dead
and inactive cells and extracellular DNA, which can make
up 40–90% of the total DNA pool (39,40). Consequently,
total RNA-Seq might generate more relevant information
for ecological assessments given that it targets the portion
of the community that is actively interacting with the envi-
ronment rather than the entire available genetic material of
a community.

Another advantage of total RNA-Seq is that it enriches
sequencing data for widely used standard genetic markers
because 80–98% of RNA consists of rRNA (41,42), includ-
ing both the small subunit (SSU) and the large subunit
(LSU) rRNA markers for prokaryotes (16S and 23S rRNA)
and unicellular eukaryotes (18S and 28S rRNA). These can,
therefore, make up 37–71% of total RNA-Seq reads (43,44).
In contrast, metagenomics targets all DNA, including non-
functional genes, repetitive regions, and genes that are func-
tionally important but contain little taxonomic informa-
tion. Consequently, metagenomics has a broad genetic cov-
erage, which is important for functional analyses of commu-
nities, but also a limited taxonomic coverage, because SSU
and LSU rRNA markers can make up as little as 0.05–1.4%
of metagenomics reads (45,46). Since reference databases to
date do not contain the full genomes of most microbial taxa
but instead only SSU and LSU rRNA sequences, the sub-

stantially higher portion of SSU and LSU rRNA markers
in total RNA-Seq reads should give total RNA-Seq an ad-
vantage over metagenomics in recovering taxonomically in-
formative sequences at comparable sequencing depths.

To date, several studies compared the taxonomic com-
position of environmental microbial communities obtained
through total RNA-Seq and metabarcoding (47,48) or
metagenomics (29,48–50). However, a controlled, mock
community-based comparison of total RNA-Seq and
metagenomics for taxonomic identification of microbial
communities is lacking. This also includes the comparison
and establishment of data-processing workflows, as results
based on HTS are heavily influenced by the tools used to
process the data (27,28,51–54). Such a mock community-
based comparison is important because it can reveal impli-
cations for the assembly of biodiversity inventories.

For this study, we applied metagenomics and total RNA-
Seq to a commercially available microbial mock commu-
nity consisting of eight bacterial and two eukaryotic species
with log-distributed abundances. We tested the central idea
that total RNA-Seq recovers more taxonomically informa-
tive sequences than metagenomics. Therefore, we evaluated
the impact of 672 data-processing workflows on taxonomic
identification accuracy at species and genus level and based
on abundance and presence–absence (P–A) data for each se-
quencing method. Then, we determined the most accurate
workflow for each sequencing method and evaluation level
and compared the accuracy of both sequencing methods
at equal sequencing depth to determine the more accurate
sequencing method. Furthermore, we investigated the rela-
tionship between sequencing depth and accuracy for both
sequencing methods. Our aim was to answer the following
questions: (i) Which is the most accurate data-processing
workflow for total RNA-Seq, and does it coincide with
the most accurate data-processing workflow for metage-
nomics? (ii) Does total RNA-Seq provide more accurate
taxonomic identifications than metagenomics at equal se-
quencing depth? (iii) Does the accuracy of total RNA-Seq
increase faster than that of metagenomics with increasing
sequencing depth?

MATERIALS AND METHODS

The overall study design is shown in Figure 1, and further
details are given in the following.

Microbial mock community

We used a commercially available microbial mock com-
munity (ZymoBIOMICS Microbial Community Standard
II (Log Distribution); Zymo Research; Irvine; CA USA),
consisting of eight bacterial species (three gram-negative
and five gram-positive) and two yeast species with log-
distributed species abundances determined by genomic
DNA quantity (Table 1). The mock community was pre-
served in DNA/RNA Shield (Zymo Research; Irvine; CA,
USA) to inactivate cells while preserving DNA and RNA.
We generated three simulated water sample replicates by
adding 130 �l of the mock community containing ∼381 ng
of total DNA to 50 ml ultrapure water respectively.
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MiSeq

Shotgun sequencing

Data processing
(see Fig. 2)
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Parallel DNA/RNA
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Commercial microbial mock community
(8 bacterial and 2 eukaryotic species)
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Accuracy evaluation

Water sample containing microbial
mock community (3 replicates)

Figure 1. Summary of the study design. Three mock community replicates
were obtained by mixing a commercially available microbial mock com-
munity with ultrapure water. Samples were filtered through 0.2 �m filters.
DNA and total RNA were extracted in parallel and shotgun-sequenced,
representing two sequencing methods (metagenomics and total RNA-
Seq). The sequencing data were processed using 768 combinations of com-
mon data-processing tools, i.e. data-processing workflows. The accuracy of
each workflow was statistically evaluated by calculating the Euclidean dis-
tance between accuracy metrics determined for each workflow and refer-
ence accuracy metrics based on the known mock community composition.

Laboratory processing

We processed water samples in a separate
clean laboratory (for details on handling see
dx.doi.org/10.17504/protocols.io.eq2lyn6zrvx9/v1).
All samples were filtered through sterile 0.2 �m Nalgene
Analytical Test Filter Funnels (Thermo Fisher Scientific;
Burlington; ON Canada) using an 80 mbar Welch WOB-
L® Dry Vacuum Pump (VWR International, Mississauga,
ON, Canada). We filtered the three 50 ml microbial mock
community mixtures and added a negative filtration control
by additionally filtering 50 ml of the ultrapure water that
was used to set up the mixtures. After each filtration, we
handled the filters with ethanol-, bleach- and heat-sterilized
equipment, immediately cut filters into small pieces, and
transferred them into ZR BashingBead Lysis Tubes (0.1
and 0.5 mm) (Zymo Research, Irvine, CA, USA), which
were prepared with 1 ml of DNA/RNA Shield under a
clean hood in a low DNA-concentration laboratory before
filtration.

BashingBead tubes were shaken following the man-
ufacturer’s instructions for optimal cell breakup of the
purchased mock community by using a Vortex-Genie 2
(Scientific Industries Inc., Burlington, NY, USA) with
a Horizontal-(24) Microtube holder (Scientific Industries
Inc., Burlington, NY, USA) for 40 min at maximum rpm
to break up cells.

For parallel DNA and total RNA extraction from
samples, we used a modified version of the Quick-
DNA/RNA Microprep Plus Kit (Zymo Research,
Irvine, CA, USA). We added a purification step us-
ing Zymo-Spin II-�HRC Filters (Zymo Research,
Irvine, CA, USA) and modified the protocol to pro-
cess more lysate volume (for the modified protocol, see
dx.doi.org/10.17504/protocols.io.14egn79bpv5d/v1). We
extracted the samples and negative filtration control under
a clean hood in a low DNA-concentration laboratory and
added a negative extraction control by processing only the
extraction buffer along with the other samples. Sample
DNA and total RNA concentrations were assessed directly
after extraction using a Qubit with the Qubit dsDNA HS
Assay Kit and the Qubit RNA HS Assay Kit, respectively
(Thermo Fisher Scientific, Burlington, ON, Canada) and
ranged from 6.11–8.18 ng/�l (DNA) and 2–2.58 ng/�l
(RNA) in 20 �l eluates, while filtration and extraction con-
trols did not contain any DNA or RNA (Supplementary
Table S1).

The extracted nucleic acids and negative filtration and ex-
traction controls were sent to Génome Québec (Montreal,
QC, Canada) for library preparation and shotgun sequenc-
ing on an Illumina MiSeq platform. Processing steps and
quality control of DNA and RNA samples are described in
Supplementary Material 1. DNA and total RNA concen-
trations of samples were re-assessed by the sequencing facil-
ity and ranged from 2.36 to 3.05 ng/�l (DNA, assessed via
Fluorescence Assay Quantification) and 1.87–3.32 ng/�l
(RNA, assessed via Nanodrop Quantification) in 50 �l elu-
ates, while filtration and extraction controls did not contain
any DNA but low amounts of RNA (Supplementary Tables
S2 and S3). RNA integrity numbers (RINs) of samples were
all N/A (Supplementary Table S4); however, because the
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Table 1. Microbial composition of the mock community (modified from the ZymoBIOMICS Microbial Community Standard II (Log Distribution)
manual, for detailed information, see manual)

Defined composition (%)

Species
Genomic

DNA
16S SSU

onlya
16S & 18S

SSUa
Genome

copyb
Cell

numberc

Listeria monocytogenes 89.1 95.9 91.9 94.8 94.9
Pseudomonas aeruginosa 8.9 2.8 2.7 4.2 4.2
Bacillus subtilis 0.89 1.2 1.1 0.7 0.7
Saccharomyces cerevisiae 0.89 NA 4.1 0.23 0.12
Escherichia coli 0.089 0.069 0.066 0.058 0.058
Salmonella enterica 0.089 0.07 0.067 0.059 0.059
Limosilactobacillus fermentum 0.0089 0.012 0.012 0.015 0.015
Enterococcus faecalis 0.00089 0.00067 0.00064 0.001 0.001
Cryptococcus neoformans 0.00089 NA 0.0014 0.00015 0.00007
Staphylococcus aureus 0.000089 0.0001 0.0001 0.0001 0.0001

a The theoretical composition in terms of 16S (or 16S & 18S) SSU rRNA gene abundance was calculated from theoretical genomic DNA composition with
the following formula: 16S/18S copy number = total genomic DNA (g) × unit conversion constant (bp/g)/genome size (bp) × 16S/18S copy number per
genome.
b The theoretical composition in terms of genome copy number was calculated from theoretical genomic DNA composition with the following formula:
genome copy number = total genomic DNA (g) × unit conversion constant (bp/g)/genome size (bp).
c The theoretical composition in terms of cell number was calculated from theoretical genomic DNA composition with the following formula: cell num-
ber = total genomic DNA (g) × unit conversion constant (bp/g)/genome size (bp)/ploidy.

samples contained both prokaryotic and eukaryotic RNA,
RINs were not applicable and N/As were ignored. During
library preparation, normalization was performed by pro-
cessing equal volumes of samples instead of equal concen-
trations of samples. We chose this alternative normalization
method because it allowed for an equal relative sequenc-
ing depth per sample as opposed to an equal total sequenc-
ing depth. That way, the relative number of reads per sam-
ple mirrored the relative amount of DNA/RNA, avoiding
an over- or underrepresentation of samples with higher or
lower DNA/RNA amounts.

Bioinformatic processing

Sequence processing was divided into five steps: trimming
and quality filtering, rRNA sorting, assembly, mapping,
and taxonomic annotation (Figure 2). We generated a
command-line-based script to run all 768 data-processing
workflows, including the processing of each result into a ta-
ble containing assembled scaffolds, their taxonomic anno-
tations, and their mean depth of coverage. The full code,
including scripts to translate SILVA taxonomy into Gen-
bank taxonomy, to create the SILVA kraken2 and BLAST
databases, and to filter BLAST results based on CREST
and BASTA, is available on GitHub (https://github.com/
hempelc/metagenomics-vs-totalRNASeq). All 768 work-
flows were applied to both metagenomics and total RNA-
Seq data and run in parallel using the high-performance
computing clusters of Compute Canada. We were unable to
run Trinity successfully and excluded it from further analy-
sis (for more details see ‘Step three (assembly)’), so the total
number of successfully run workflows was 672.

Step one (trimming and quality filtering). Recommended
PHRED score cut-offs for trimming and quality filtering
of HTS data vary across the literature. While strict qual-
ity trimming, i.e. trimming at high PHRED score cut-offs
of 20–30 is common (55,56), gentle quality trimming at
PHRED score cut-offs of 2–5 can result in better transcript

discovery (56). To explore the effect of different PHRED
score cut-offs on both metagenomics- and total RNA-
Seq-based taxonomic identification, we used Trimmomatic
v0.39 (57) at four different PHRED score cut-offs (PHRED
≤ 5, ≤10, ≤15 and ≤ 20). We trimmed the leading and
trailing low-quality nucleotides of each read and ran a slid-
ing window of size 4 over each read, cutting if the aver-
age quality of nucleotides in the sliding window was be-
low the respective PHRED score cut-offs. After trimming,
we excluded reads shorter than 25 nucleotides and error-
corrected reads using the error-correction module of the as-
sembler SPAdes v3.14.1 (58) by running SPAdes on forward
and reverse reads with the parameter only-error-correction.
That way, error correction between all assemblers was stan-
dardized.

Step two (rRNA sorting). We used three approaches to
sort reads into rRNA and non-rRNA reads:

1) alignment-based with SortMeRNA v4.0.0 (59), which
sorts reads by aligning them to built-in reference rRNA
databases. Trimmed forward and reverse reads were
aligned against all built-in reference rRNA databases
using the parameters fastx to generate output files in
fasta format, num alignments 1 to only filter the reads,
paired in to keep both forward and reverse reads if only
one matched, out2 to save forward and reverse reads in
separate files, and all other parameters set to default.

2) Hidden Markov model-based (HMM-based) with bar-
rnap v0.9 (Seemann, unpublished, https://github.com/
tseemann/barrnap, accessed on 18 Jun 2021), which pre-
dicts the location of rRNA genes in genomes using pre-
trained HMMs. However, since barrnap only keeps reads
that contain rRNA genes, we used it in this study to only
identify rRNA reads. Both trimmed forward and reverse
reads were separately run against HMMs for all three do-
mains of life, setting all parameters to default values ex-
cept the parameters lencutoff and reject, which were set
to 0.000001 to keep all partial matches. To keep paired
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None

Step 2:
rRNA sorting

SPAdes

metaSPAdes

IDBA-UD
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rnaSPAdes

IDBA-trans
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Trans-ABySS

= metatranscriptomics-optimized

= metagenomics-optimized

Step 3:
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Bowtie2

Step 4:
Mapping
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Taxonomic
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Origin:
Sequencing
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*
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Figure 2. Summary of the 768 workflows applied to metagenomics and total RNA-Seq data, including the steps and tools used to process the data. Note
that in step 3, some assemblers are metagenomics- and some metatranscriptomics-optimized, yet we tested all on both metagenomics and total RNA-Seq
data. We were unable to run Trinity successfully and excluded it from further analysis (for more details see the methods section ‘Step three (assembly)’),
therefore, the total number of successfully run workflows was 672.

reads, the read names of both filtered forward and reverse
reads were concatenated and extracted from the original
trimmed forward and reverse reads using Seqtk v1.3-r106
(Li, unpublished, https://github.com/lh3/seqtk, accessed
via the Linux package manager).

3) kmer-based with rRNAFilter v1.1 (60). rRNAFilter con-
siders the much higher abundance of rRNA reads com-
pared to non-rRNA reads and filters them based on their
k-mer frequencies. Both trimmed forward and reverse
reads were separately filtered with default parameters in-
cluding a k-mer length of 20. To keep paired reads, the
read names of both filtered forward and reverse reads
were concatenated and extracted from both the original
trimmed forward and reverse reads using Seqtk.

For each of the three approaches, non-rRNA reads were
subsequently excluded. Additionally, we performed an un-
sorted approach using all reads, leading to four rRNA sort-
ing methods in total.

Step three (assembly). We tested eight assemblers for
both metagenomics and total RNA-Seq reads: SPAdes,
metaSPAdes v3.14.1 (61), MEGAHIT v1.2.9 (62), IDBA-
UD v1.1.1 (63), Trinity v2.10.0 (64), rnaSPAdes v3.14.1
(65), IDBA-tran v1.1.1 (66) and Trans-ABySS v2.0.1
(67). Although four of the assemblers are commonly
used for metagenome assemblies (SPAdes, metaSPAdes,
MEGAHIT, and IDBA-UD) and four for metatran-
scriptome assemblies (Trinity, rnaSPAdes, IDBA-tran and
Trans-ABySS), we tested them all for both data sets be-
cause the read composition of total RNA-Seq data is differ-
ent from traditional metatranscriptomics, and we wanted to
test how both assembler types deal with such an uncommon
read composition. All assemblers were run with default pa-
rameters except MEGAHIT, for which the parameter pre-
sets meta-large was used to adjust the k-mer sizes to better

assemble large and complex metagenomes. All assemblers
but Trans-ABySS run multiple k-mer lengths by default,
whereas Trans-ABySS runs with only one k-mer length of
32 by default. Trans-ABySS can be run across a range of
k-mer lengths, and assemblies can be combined to resem-
ble multiple k-mer assemblies; however, we abstained from
that approach as it would have required sample-specific ad-
justments, which were not feasible within the scope of our
study. Running Trinity with default parameters failed for
some samples and workflows, and error messages indicated
inappropriate default RAM settings. Despite thorough ef-
forts to run Trinity with adjusted RAM settings as recom-
mended by the developers (https://trinityrnaseq.github.io/
performance/mem.html), we ultimately failed to automa-
tize Trinity to run consistently across all samples and work-
flows. Manual adjustments for each sample and workflow
might have resulted in successful Trinity assemblies; how-
ever, these were also not feasible within the scope of our
study. Therefore, we excluded Trinity from the analysis.

Step four (mapping). We employed two programs to map
reads to assembled scaffolds to determine the read abun-
dance of each scaffold: BWA v0.7.17 (68) and Bowtie2
v2.3.3.1 (69) using default parameters. We processed
mapped reads using the coverage function of samtools v1.10
(70) to obtain the mean per-base coverage of each scaffold.

Step five (taxonomic annotation). We used the
SILVA132 NR99 SSU and LSU reference databases
for taxonomic annotations (71), downloaded on 28 August
2020. NCBI’s Genbank database is also often used for
taxonomic annotations of metagenomics data; however,
initial tests showed that results were substantially skewed
towards metagenomics-based workflows because entire
genomes of the mock community taxa are available on
Genbank. In the context of environmental sampling, at
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this point, it is unlikely that reference databases contain
the full genomes of all sampled taxa. Therefore, to allow
for a more realistic comparison of metagenomics and total
RNA-Seq in an applied context, we only used the SILVA
database.

While there are many categories of taxonomic annota-
tion tools, we limited our benchmarking to tools based
on sequence similarity methods, which require reference
databases, and explored two common tools: kraken2 v2.1.1
(72), based on k-mer matching, and BLAST v2.10.0 (73),
based on local alignments. We applied BLAST in two dif-
ferent ways, therefore using three approaches in total to
classify each scaffold taxonomically: (i) k-mer-based using
kraken2 with default parameters; (ii) alignment-based using
BLAST without further filtering of taxonomy hits and (iii)
alignment-based using BLAST with further filtering of tax-
onomy hits. BLAST was run with an E-value cut-off of e-05
and otherwise default parameters. When running BLAST
without further filtering of taxonomy hits, we kept the tax-
onomy hit with the highest bitscore per sequence unless
there were multiple taxonomy hits with an identical highest
bitscore, in which case we kept the lowest common ancestor
(LCA). To filter BLAST taxonomy hits, we followed steps
applied by the programs CREST (74) and BASTA (75): fil-
tering out taxonomy hits below a bitscore of 155 and an
alignment length of 100, only keeping taxonomy hits within
2% of the best bitscore of each sequence, applying a cut-
off for taxonomic ranks based on BLAST percent identity
values (species: 99%, genus: 97%, family: 95%, order: 90%,
class: 85%, phylum: 80%), and identifying the LCA. The
setup of BLAST and kraken2 databases for SILVA required
manual adaptations, which are described in Supplementary
Material 2.

Statistical analysis

Preprocessing. For the statistical analysis, all workflow
results were further processed in Python v3.7.9 (76).
The full Python code is available on GitHub (https://
github.com/hempelc/metagenomics-vs-totalRNASeq) and
uses the modules Pandas v1.3.5 (77,78) and NumPy v1.19.1
(79). The evaluation was carried out at genus and species
rank, respectively, to evaluate the accuracy and significance
of workflows and tools on different taxonomic resolutions.
Higher ranks were excluded from the evaluation since mul-
tiple species in the mock community were from the same
family and therefore not distinguishable at higher ranks. We
determined the per-base coverage of each detected taxon
for each workflow as follows: we selected all scaffolds as-
signed to each taxon respectively, multiplied their mean per-
base coverage by their length to determine their total num-
ber of covered bases, summarized the length and the total
number of covered bases across all scaffolds, respectively,
and divided the summarized total number of covered bases
by the summarized length. That way, the per-base cover-
age of taxa reflected their cumulative scaffold length. To
account for cross-contamination during filtration and ex-
traction, we ran all workflows on the negative controls that
were co-filtered and co-extracted with the mock commu-
nity and subtracted the resulting taxa per base coverages
of both controls from the same workflows utilized for the

mock community. We then converted per base coverages
into relative abundances by normalizing them so that they
added up to 1.

Accuracy determination of workflows. Accuracy was de-
termined independently for the three replicates. To deter-
mine the accuracy of each workflow within each replicate,
we first generated accuracy metrics for each workflow. We
considered the relative abundance of each expected taxon,
i.e. each taxon in the mock community, as well as the relative
abundance of each false-positive taxon introduced across all
workflows and classifications as NA, i.e. no possible classifi-
cation. Furthermore, we converted relative abundances into
P–A data to determine the accuracy based on both data
types and generated separate accuracy metrics for relative
abundances and P–A data.

We generated abundance-based accuracy metrics as fol-
lows: we used the observed relative abundance of each
expected taxon as an individual accuracy metric and the
summed observed relative abundance of all false-positive
taxa as an additional metric. We defined P–A data-based ac-
curacy metrics as follows: true positive (TP), number of taxa
that were expected and observed, and false positive (FP),
number of taxa that were not expected but observed. The
latter included classifications as NA, i.e. no possible classi-
fication. We did not define true negative and false negative
metrics since in our specific case they only provided redun-
dant information for accuracy determination based on Eu-
clidean distances, as described below.

Then, we converted the expected abundances and ex-
pected P–A of the mock community taxa and false-positive
taxa, including classifications as NA, into accuracy metrics
to resemble an unbiased workflow, which served as a refer-
ence to determine the accuracy of each workflow. For the
mock community taxa, we used relative abundances based
on genome copy number as given by the manufacturer for
expected relative abundances (Table 1). The average relative
abundance deviation of mock community taxa was <30%
according to the manufacturer. For false-positive taxa and
NA, we set the expected relative abundances to zero before
generating the expected metric.

Given that the abundance-based metrics were composi-
tional, we followed appropriate steps for analyzing compo-
sitional data as pointed out by Gloor et al. (80). There-
fore, we applied simple multiplicative replacement to re-
place zeros among abundance-based metrics across all
workflows, including the reference, using the multiplica-
tive replacement function of the python module scikit-bio
v0.5.6 (81). The function replaces zeros with a small posi-
tive value �, which is based on the number of components,
i.e. metrics while ensuring that compositions still add up to
1. Since the default � was higher than the lowest expected
abundance and therefore inappropriate, we manually de-
fined � as three orders of magnitude below the lowest ex-
pected abundance. Then, we applied a centred log-ratio (clr)
transformation using the clr function of scikit-bio, which
captures the relationships between features, i.e. metrics and
makes the data symmetric and linearly related.

The accuracy of each workflow was determined by cal-
culating the Euclidean distance between the metrics of each
workflow and the expected reference metrics. The smaller
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the distance was, the more similar was the workflow to the
reference, and the higher was the accuracy. The Euclidean
distance of clr-transformed data is defined as the Aitchison
distance (82).

Determining the most accurate data-processing tools for total
RNA-Seq and metagenomics. We determined the most ac-
curate tools for both total RNA-Seq and metagenomics by
selecting the tool with the smallest minimum distance to the
reference, representing the highest similarity to the mock
community, for each workflow and each sequence process-
ing step (Figure 2)

To further evaluate the most similar workflows to the ref-
erence, we clustered workflows based on their distance to
the reference. Since we clustered based on only one feature,
distance, we applied a gaussian kernel density estimation us-
ing the KernelDensity function of scikit-learn to identify lo-
cal minima of the distance distribution and split workflows
into intervals, i.e. clusters based on local minima. We used
a grid search to identify the most appropriate value for the
bandwidth parameter using the GridSearchCV function of
scikit-learn. We identified the closest cluster to the reference
and determined the relative frequency of each tool among
all workflows in the closest cluster for each processing step.

Lastly, to identify if tools overall had a significant impact
on accuracy, we evaluated if they were significantly related
to the distance to the reference. We converted tools into
binary dummy variables and tested for significant correla-
tions between each tool and the distance to the reference by
calculating the point-biserial correlation coefficient, which
measures the strength of the association between continu-
ous and binary variables, using the pointbiserialr function
of the python module SciPy v1.7.1 (83).

Comparing the accuracy of metagenomics and total RNA-
Seq at equal sequencing depth. To test whether total RNA-
Seq provided more accurate taxonomic identification of mi-
crobial communities than metagenomics at equal sequenc-
ing depths, we compared the accuracy metrics and Eu-
clidean distance between the most accurate workflows of
the three replicates. Since metagenomics replicates showed a
much higher read depth than total RNA-Seq replicates, we
subsampled metagenomics replicates to equal sequencing
depths. DNA and RNA were co-extracted from the water
samples, so we subsampled each metagenomics replicate to
the read depth of the corresponding total RNA-Seq repli-
cate. Random subsampling was performed ten times, and
the most accurate workflow for each metagenomics repli-
cate identified in our previous accuracy analysis was re-run
for each subsample. When multiple workflows generated
identical results, we re-ran the workflow with the lowest run-
time. We generated accuracy metrics as described above and
determined the mean average of each metric among the ten
subsamples for each replicate. For P–A data, we rounded
the averaged metrics to integers to avoid fractional num-
bers among the TP and FP metrics. Then, we calculated the
Euclidean distance of the averaged accuracy metrics to the
reference metrics as described above. We compared the ac-
curacy metrics and Euclidean distance of the three subsam-
pled metagenomics replicates to those of the most accurate
workflows of the total RNA-Seq replicates. Lastly, we tested

for significant differences between metagenomics- and to-
tal RNA-Seq-based Euclidean distances. Since DNA and
RNA were co-extracted from the same samples and there-
fore not independent, we applied a two-sided paired t-test
between the Euclidean distances of the three metagenomics
and total RNA-Seq replicates using the ttest rel function of
SciPy.

Evaluating the relationship between sequencing depth and
accuracy. To test if at increasing sequencing depths, the
accuracy of total RNA-Seq increased faster than that of
metagenomics, we evaluated the relationship between se-
quencing depth and accuracy by subsampling replicates at
read depths of 1000, 2500, 5000, 10 000, 20 000, 40 000, 60
000, 78 149, 94 633, 120 144, 200 000, 300 000, 400 000, 500
000, 600 000, 644 634, 669 382 and 817 619 reads and run-
ning the most accurate workflow for each replicate based
on the highest similarity to the mock community. The max-
imum observed number of reads among all replicates ex-
ceeded the available number of reads for some replicates,
and therefore, subsampling was only done up to the total
number of reads in each replicate. We calculated the Eu-
clidean distance to the reference for each replicate at each
subsampled read depth and calculated the mean Euclidean
distance across the subsamples. Euclidean distances were
comparable between metagenomics and total RNA-Seq up
to a read depth of 94 633, 78 149 and 120 144 reads for the
first, second, and third replicate, respectively, and we gen-
erated ordinary least squares regression lines for each repli-
cate of both approaches based on the mean Euclidean dis-
tances of the comparable data using the OLS function of
the python module statsmodels v0.12.1 (84). Results based
on abundance data gave impractical results for the genera-
tion of regression lines <40 000 reads. At such low sequenc-
ing depths, often no single taxon was found, and even if
some were found, the random subsampling was objected to
high amounts of variance, which strongly skewed mean Eu-
clidean distances based on abundance data, causing them to
initially go up rather than down in some replicates. There-
fore, we excluded these small subsamples when generating
regression lines for abundance-based evaluations. For visu-
alization purposes, we further generated the overall mean
Euclidean distance and standard deviation (SD) across the
subsamples of all metagenomics and total RNA-Seq repli-
cates, respectively, and generated ordinary least squares re-
gression lines based on the overall mean Euclidean distance.
To test if the accuracy of total RNA-Seq increased signif-
icantly faster than that of metagenomics at increasing se-
quencing depths, we applied a two-sided paired t-test be-
tween the regression curve coefficients of the three metage-
nomics and total RNA-Seq replicates using the ttest rel
function of SciPy. To test if total RNA-Seq overall signif-
icantly improved the accuracy in comparison to metage-
nomics, we generated two linear models, one nested inside
the other. One model involved the read depth as an indepen-
dent variable to predict the Euclidean distance as the depen-
dent variable (Equation 1), and the other model addition-
ally involved the sequencing method (metagenomics/total
RNA-Seq) as a binary independent variable (Equation 2):

̂EucD = β0 + β1 × Reads (1)
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and

̂EucD = β0 + β1 × Reads + β2 × Seq Met (2)

where EucD is the Euclidean distance, Reads is the read
depth, and SeqMet is the sequencing method. By applying
a partial F-test, we tested if the addition of the sequenc-
ing method as a binary independent variable significantly
improved the Euclidean distance prediction, which indi-
cated if one sequencing method was significantly more ac-
curate than the other. We manually generated the models
using the ols function of statsmodel and generated the F-
statistic by performing an ANOVA for linear models using
the anova lm function of statsmodel.

RESULTS

Sequencing results

We obtained 2,428,038 paired-end reads for the mock
community samples and controls (Bioproject number:
PRJNA819997, SRA accession number: SRR18488964–
SRR18488973). Since we normalized DNA and RNA sam-
ples based on volume during library preparation, which
included samples from a different project with higher
DNA/RNA concentrations, the number of reads that sam-
ples among DNA and RNA libraries received was depen-
dent on the concentrations of the other normalized sam-
ples. The ratio between mock community samples and other
samples seemed to substantially vary between DNA and
RNA samples, and DNA samples received many more reads
than RNA samples (710 545 reads on average for DNA
samples versus 97 642 reads on average for RNA samples
(Supplementary Figure S1)). Therefore, DNA samples were
randomly subsampled to allow comparisons at comparable
read depths, as explained in the Methods section ‘Subsam-
pling’. Notably, most of the RNA reads consisted of du-
plicates, potentially due to identical ribosomal sequences,
whereas duplicates made up only a small portion of DNA
reads. All negative controls contained a few reads (Supple-
mentary Figure S1) and were processed in the same way as
the samples. Negative control reads were subtracted from
the samples to remove cross-contamination, although this
did not impact the presented results.

Most accurate data-processing tools for total RNA-Seq and
metagenomics

Results differed substantially between replicates and eval-
uation levels, i.e. the taxonomic rank (species/genus) and
data type (abundance/P–A) used for the evaluation (Figure
3). Each column in Figure 3 represents one evaluation level
utilized for one of three replicates and shows the relative
proportions of data-processing tools within the cluster of
workflows with the highest mean accuracy, the significance
of correlations between tools and accuracy, and the most ac-
curate tools. The frequency of tools and the most accurate
tool were determined for each processing step separately.

The relative frequency of tools within the most accurate
clusters denoted dominance of specific tools in the clusters,
indicated by a high frequency of a single tool. The rela-
tive frequencies of utilized PHRED scores and mapping
tools were overall evenly distributed, indicating that the

most accurate workflows were independent of the utilized
PHRED score and mapping tools, except for some small
clusters. For all other processing steps, clusters were domi-
nated by one or two tools in most cases. However, the dom-
inating tools varied substantially among replicates, with a
few exceptions, notably Kraken2 dominating the most accu-
rate cluster of metagenomics-based workflows for species-
abundance evaluations, Barrnap dominating the most ac-
curate cluster of metagenomics-based workflows for genus-
abundance and species-P–A evaluations, and BLAST (first
hit) dominating the most accurate cluster of total RNA-
Seq-based workflows for genus-abundance and species-P–A
evaluations. No preferable tools across all evaluation levels
could be identified for the assembly step, and there was no
relationship between metagenomics-based workflows and
metagenomics-optimized assemblers or total RNA-Seq-
based workflows and or total RNA-Seq-optimized assem-
blers. BLAST (filtered) performed poorly across all evalua-
tion levels except for a few replicates.

Significance indicates whether tools correlate with con-
sistently higher accuracy across all utilized workflows and,
therefore, consistently perform better. Non-significant cor-
relations (P > 0.05) did not indicate poor performance
but rather that the performance was also dependent on
the other tools used within workflows. Utilized PHRED
scores and mapping tools showed no significant correla-
tion to accuracy, with only a few exceptions. Notable pat-
terns were that Kraken2 overall significantly correlated with
higher accuracies in metagenomics-based workflows and
that BLAST (first hit) overall significantly correlated with
higher accuracy in total RNA-Seq-based workflows.

The single most accurate tool varied among replicates
and evaluation levels but was often the tool that dominated
the cluster. Notably, for P–A-based evaluations, often multi-
ple tools within a step performed identically. This was most
notable for utilized PHRED scores and mapping tools, fur-
ther confirming that accuracy was independent of the uti-
lized tools within these two steps. Kraken2 was among the
tools with the highest accuracy in almost all metagenomics-
based workflows, and the same was true for BLAST (first
hit) for total RNA-Seq-based workflows.

Overall, the most accurate tools and workflows depended
on evaluation levels and strongly varied within evaluation
levels, and performances differed among replicates, indicat-
ing that the accuracy and significance of tools can vary from
sample to sample, even across replicates of a highly con-
trolled mock community. Kraken2 and BLAST (first hit)
were mostly preferable for taxonomic classification within
metagenomics and total RNA-Seq workflows, respectively.
Utilized PHRED scores and mapping tools were inter-
changeable in terms of accuracy. Assemblers and rRNA
sorting tools were extremely evaluation level- and replicate-
dependent, however, no sorting or Barrnap were overall
preferable over rRNAFilter and SortMeRNA for rRNA
sorting.

Comparing the accuracy of metagenomics and total RNA-
Seq at equal sequencing depths

All replicates showed variations across all evaluation lev-
els (Figure 4). However, based on Euclidean distances to
the reference, total RNA-Seq-based workflows were signif-
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Figure 3. Relative frequency of data-processing tools within clusters of most accurate workflows (circle size), significance of correlations between tools and
accuracy (circle colour), and most accurate tools based on different evaluation levels (dot in circle centre). Evaluation levels consisted of combinations of
sequencing type (metagenomics/total RNA-Seq), data type (abundance/P–A), and taxonomic rank (genus/species). Each column represents one evalua-
tion level utilized for one of three replicates. The relative frequency of tools and the tool with the highest accuracy were determined for each data-processing
step separately. Performances differed substantially among replicates and evaluation levels.

icantly more similar to the reference than metagenomics-
based workflows for all evaluation levels (genus-abundance:
P = 0.011, genus-P–A: P = 0.014, species-abundance:
P = 0.019, species-P–A: P = 0.003), indicating that total
RNA-Seq-based workflows outperformed metagenomics-
based workflows in terms of accuracy if appropriate data-
processing tools were used.

For P–A-based evaluations, absolute differences among
metrics and replicates were small (Figure 4, left). Replicate
Total RNA-Seq 1 was most accurate, detecting 5 and 7 out
of 10 expected genera/species (TP = 5 and 7) and detecting
only two false positive genera and species, respectively (FP
= 2).

When comparing individual metrics within abundance-
based evaluations, all metagenomics-based replicates in-
troduced a substantial abundance of false-positive genera,
while this was only the case for one in three total RNA-
Seq-based replicates (Figure 4, bottom right). In contrast,
all metagenomics- and total RNA-Seq-based replicates in-
troduced a substantial abundance of false-positive species
(Figure 4, top right). Further analysis of the abundance
and composition of false-positive species revealed that they
were mostly made up of NA, i.e. no classification (on aver-
age 23.7% and 22.7% of all metagenomics and total RNA-
Seq reads, respectively), while the contribution of individ-
ual false-positive species was comparably small (on aver-
age 0.13–1.6% and 0.01–7.9% of all metagenomics and total
RNA-Seq reads, respectively). However, given the extremely

low expected abundance of most expected taxa, these results
showed that the abundance of false-positive species was still
considerably higher than that of most expected taxa.

Abundance-based metrics spanned five orders of magni-
tude based on genome copy number as given by the manu-
facturer (Table 1), and all metagenomics- and total RNA-
Seq-based replicates failed to detect the 4–6 taxa with the
lowest abundance. Notably, total RNA-Seq detected 2 gen-
era more than metagenomics, of which one had an abun-
dance one order of magnitude lower than that of a non-
detected genus. This indicated that abundance was not the
only factor for detection and that other mechanisms af-
fected if a genus was detected.

The most accurate workflow for replicate Total RNA-
Seq 1 based on species-abundance metrics only detected
the most abundant species, Listeria monocytogenes, and no
other taxon, indicating that the accuracy of all other work-
flows utilized for this replicate was lower and, therefore, that
not detecting 9/10 species was more accurate in terms of
Euclidean distance to the reference than detecting multiple
expected taxa with biased abundances, as was the case for
the other workflows with lower accuracy.

Relationship between sequencing depth and accuracy

The relationship between sequencing depth and accuracy
varied among evaluation levels and sequencing types (Fig-
ure 5). Notably, for abundance-based evaluations, the mean

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/16/9279/6671113 by guest on 23 Septem

ber 2023



9288 Nucleic Acids Research, 2022, Vol. 50, No. 16

0

1

2

3

4

5

6

7Genus

Distance

         to reference

TP FP

3

2

1

3

2

1

0

2

4

6

8

10
p=0.014

Reference

Meta-
genomics

Total
RNA-Seq

3 1

4 2

4 2

10 0

7 2

7 2

6 0

7.07

6.32

6.32

0

3.61

3.61

4

2 1

1 1

1 1

10 0

5 2

4 1

5 3

8.06

9.06

9.06

0

5.39

6.08

5.83

P-A

Species

TP FP

3

2

1

3

2

1

Distance

         to reference

0

2

4

6

8

10

0

3

6

9

p=0.003

Reference

Meta-
genomics

Total
RNA-Seq

12.08 7.13 -6.06 3.89 -1.31 -6.06 -6.06 -6.06 -6.06 -6.06 14.56

13.29 8.03 -2.38 1.03 -5.78 -5.78 -5.78 -5.78 -5.78 -5.78 14.67

8.63 4.11 -2.73 7.89 -1.1 -6.21 -6.21 -6.21 -6.21 -6.21 14.23

8.8 5.69 3.89 2.78 1.42 1.4 0.05 -2.66 -4.55 -4.96 -11.87

16.74 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 15.89

10.74 4.26 6 9.38 5.33 -9.25 -9.25 -9.25 -9.25 -9.25 10.53

10.05 7.53 9.01 8.62 4.61 -9.86 -9.86 -9.86 -9.86 -9.86 9.49

38.82

38.92

37.91

0

32.95

29.23

29.34

Listeria monocytogenes

Pseudomonas aeruginosa

Bacillus subtilis

Saccharomyces cerevisiae

Salmonella enterica

Escherichia coli

Limosilactobacillus fermentum

Enterococcus faecalis

Cryptococcus neoformans

Staphylococcus aureus

Sum of false positive species

Distance to reference

3

2

1

Reference

3

2

1

Abundance

−10

−5

0

5

10

15

0

5

10

15

20

25

30

35

p=0.019

Meta-
genomics

Total
RNA-Seq

13.9 10.86 -1.32 4.05 -6.59 -6.59 -6.59 -6.59 -6.59 -6.59 12.02

14.02 11.42 0.74 0.72 -6.46 -6.46 -6.46 -6.46 -6.46 -6.46 11.87

12.32 9.49 3.89 9.64 -6.29 -8.02 -8.02 -8.02 -8.02 -8.02 11.06

8.8 5.69 3.89 2.78 1.42 1.4 0.05 -2.66 -4.55 -4.96 -11.87

10.11 8.47 2.46 8.49 4.74 -10.27 2.58 -10.27 -10.27 -10.27 4.23

12.45 10.84 -7.91 10.98 7.22 -7.91 5.96 -7.91 -7.91 -7.91 -7.91

10.66 9.63 8 9.42 5.58 -9.52 4.32 -9.52 -9.52 -9.52 -9.52

Listeria
Pseudomonas

Bacillus
Saccharomyces

Salmonella

Escherichia

Limosilactobacillus

Enterococcus

Cryptococcus

Staphylococcus

Sum of false positive genera

Distance to reference

3

2

1

3

2

1

−10

−5

0

5

10

0

10

20

30

40
Reference

Meta-
genomics

Total
RNA-Seq

40.54

40.2

41.74

0

24

21.56

18.25

p=0.011

Figure 4. Comparison of the most accurate metagenomics- and total RNA-Seq-based workflow of each replicate for multiple evaluation levels based on the
Euclidean distance to the reference. Evaluation levels consisted of combinations of data type (abundance/P–A), and taxonomic rank (genus/species). Since
individual metrics were on a different scale than Euclidean distance to the reference, two different colour scales were applied. The reference in the middle
row of the heatmaps represents expected metrics, and the closer metagenomics or total RNA-Seq metrics were to the reference, the more accurate they were.
Abundance-based metrics underwent multiplicative replacement followed by clr-transformation. p-values are based on two-sided paired t-tests between
metagenomics- and total RNA-Seq-based Euclidean distances to the reference. All replicates showed variations across all evaluation levels; however, total
RNA-Seq-based workflows were significantly more similar to the reference than metagenomics-based workflows (P < 0.05) for all evaluation levels. For
P–A-based evaluations, absolute differences among metrics and replicates were small (left). Metagenomics- and total RNA-Seq-based replicates failed to
detect the 5 or 6 taxa with the lowest abundance (right).

Euclidean distance to the reference increased for subsam-
ples up to 20 000 reads. This observation was due to more
expected taxa being found at increasing sequencing depth,
but initially at abundances that were more biased than when
expected taxa were not found at all, which initially de-
creased the accuracy. This made subsamples up to 20 000
reads impractical for the regression curve-based compari-
son of total RNA-Seq and metagenomics, and hence we ex-
cluded them, but the respective curves are shown in Supple-
mentary Figure S2.

For all evaluation levels but genus-P–A, the mean accu-
racy of total RNA-Seq increased faster than that of metage-
nomics. However, when testing for significantly faster in-
creases in accuracy of total RNA-Seq replicates in compar-
ison to metagenomics replicates, i.e. significant differences

in the coefficients of the regression curves, no significant
differences were found (genus-abundance: Pcoef = 0.202,
genus-P–A: Pcoef = 0.573, species-abundance: Pcoef = 0.457,
species-P–A: Pcoef = 0.226). This might be explained by
the high variations among replicates (Figure 5, grey lines).
While no statistically significant differences could be con-
firmed, the observed trend of the regression curves indicates
that with more replicates, statistically significant differences
might become apparent.

Nevertheless, the mean accuracy of total RNA-Seq was
consistently higher than that of metagenomics for all eval-
uation levels but species-abundance, even at sequencing
depths approximately one order of magnitude lower than
that of metagenomics. For the evaluation level species-
abundance, the mean accuracy of total RNA-Seq was ini-
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Figure 5. Relationship between sequencing depth and accuracy for multiple evaluation levels. Evaluation levels consisted of combinations of data type
(abundance/P–A), and taxonomic rank (genus/species). Blue and red lines indicate the mean Euclidean distance of all metagenomics and total RNA-Seq
replicates, which have each been subsampled ten times, and the area around the lines indicates the standard deviation (SD). Lower Euclidean distances are
a proxy for higher accuracy. The y-axis is inverted, and its scale varies among graphs. The SD equals zero at the highest number of reads since all available
reads were used and, therefore, no subsamples could be generated. Individual replicates are shown as grey lines. Regression curves are shown as dashed
black lines for the portion of the data that was comparable between metagenomics and total RNA-Seq. pseq-values are based on partial F-tests between
linear models including or excluding the sequencing method (metagenomics/total RNA-Seq) as a binary independent variable. pcoef-values are based on
two-sided paired t-tests between the coefficients of regression curves of individual metagenomics and total RNA-Seq replicates based on the comparable
portion of the data.

tially lower than that of metagenomics but increased rapidly
until they were approximately equal. Partial F-tests be-
tween linear models including or excluding the sequenc-
ing method (metagenomics/total RNA-Seq) as a binary in-
dependent variable confirmed that for all evaluation lev-
els but species-abundance, the addition of the sequenc-
ing method into the models significantly improved Eu-
clidean distance prediction (genus-abundance: Pseq < 0.001,
genus-P–A: Pseq < 0.001, species-abundance: Pseq = 0.213,
species-P–A: pseq < 0.001). These results confirmed that to-
tal RNA-Seq was significantly more accurate than metage-
nomics.

DISCUSSION

Our first aim was to test which data-processing workflow
was the most accurate for total RNA-Seq and if it co-
incided with the most accurate data-processing workflow
for metagenomics. We tested 736 different workflows since
many studies highlight that HTS-based results are heavily
influenced by the tools used to process the data (27,28,51–
54), and we assumed that different tools would perform
most accurately for metagenomics and total RNA-Seq data,
respectively, since both sequencing methods result in differ-
ent read compositions.

Our results showed that for the steps quality filtering and
trimming, rRNA sorting, and mapping, the most accurate
tools were similar for metagenomics and total RNA-Seq,
and the choice of quality filtering, trimming, and mapping
tools had overall no impact on the accuracy for both se-
quencing methods. Only for the classification step, the most
accurate tools differed, with Kraken2 being overall the most

accurate for metagenomics and BLAST (first hit) for to-
tal RNA-Seq. However, differences among evaluation lev-
els and replicates were apparent, especially for assemblers,
indicating that the most accurate tools were dependent on
evaluation level and replicate rather than sequencing type.
These results show that certain processing steps need more
attention than others - in the context of our study, this
would refer to the utilized rRNA sorting tools, assemblers,
and classifiers, while choices for trimming, quality filter-
ing, and mapping might require less attention. It should be
noted, though, that the quality of our sequences was almost
exclusively over PHRED 30 according to mean and per se-
quence quality scores (Supplementary Figure S3), so trim-
ming and quality filtering might not have had a big effect
in our study but could still have significant effects in stud-
ies yielding lower-quality data. Furthermore, the fact that
the most accurate tools were highly dependent on the repli-
cates indicated that the communities varied among repli-
cates. The microbial mock community used in our study
has an average relative abundance deviation of maximal
30% according to the manufacturer, meaning that devia-
tions from the theoretical composition are possible. Given
that the majority of the mock community taxa had an ex-
tremely low abundance, and that additional bias was likely
introduced when splitting the mock community into three
replicates as well as during filtration, extraction, and se-
quencing, it is not surprising that results differed somewhat
among replicates. Further mock community-based tests in-
volving different taxa, more replicates, and ideally, less vari-
ability among replicates are required to compare the most
appropriate data-processing tools for metagenomics and to-
tal RNA-Seq.
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To our knowledge, the scale of our benchmarking ap-
proach is unique in the scope of tested combinations of di-
verse data-processing tools. However, while it allowed us
to analyze the impact of individual data-processing steps
and tools on microbial identification accuracy, it did not
include tests on multiple datasets with different taxonomic
compositions. Furthermore, since we only tested a selection
of best-supported and most commonly applied tools from
prior studies, the number of tools included for each step was
low in comparison to benchmark studies that focus on in-
dividual processing steps (53,54,85–87). This also permits
testing parameter modifications of specific tools; e.g. Hleap
et al. (86) applied a grid search approach to test multiple
parameters of each tool and selected the most appropriate
parameters, while Vollmers et al. (54) tested multiple as-
semblers with two different k-mer lengths. Such fine-tuning
was not feasible within the scope of our study but might in-
crease the performance of specific tools. Nevertheless, for
the identification of the impact of specific processing steps
and to compare the most accurate data-processing tools
for metagenomics and total RNA-Seq, our benchmarking
study provides important information on a broader scale.

We detected no difference in accuracy for metagenomics-
optimized assemblers using metagenomics data or for
metatranscriptomics-optimized assemblers using total
RNA-Seq data. Metatranscriptomics-optimized assem-
blers were developed to overcome the issue of uneven
expression levels among RNA-Seq data, which hampers
the assembly of lowly expressed transcriptomes. Although
many of these assemblers have been developed and tested
on RNA-Seq data, only once were they reciprocally
tested using metagenomics data. Bushmanova (65) tested
their metagenomics-optimized SPAdes assembler with
RNA-Seq data, with similar performance but a tendency
to generate longer contigs incorrectly and an inability to
detect isoforms of mRNAs. Based on this and our own
findings, we suggest using established assemblers that have
been validated in metagenomics-specific benchmarking
studies, such as metaSPAdes and MEGAHIT (52,88,89).

Based on our central idea that total RNA-Seq recov-
ers more taxonomically informative sequences than metage-
nomics, our second aim was to test if total RNA-Seq pro-
vides more accurate taxonomic identifications than metage-
nomics at equal sequencing depth. This was corroborated
by our results, raising the potential to increase the accuracy
of taxonomic identifications of diverse microbial commu-
nities when applying target-PCR-free shotgun sequencing.
This, in turn, could increase the effectiveness of ecologi-
cal assessments, since microbes respond faster to environ-
mental changes and, therefore, might better represent en-
vironmental conditions than other taxa, as suggested for
prokaryotes (6,90), unicellular eukaryotes (7,91–93) or both
(9,94).

Our third aim was to test if the accuracy of total RNA-
Seq increased faster than that of metagenomics with in-
creasing sequencing depth due to greater taxonomic signal
in the recovered total RNA-Seq reads. While this was not
supported by our results, the accuracy of total RNA-Seq
was comparable to or even outperformed that of metage-
nomics at sequencing depths almost one order of magni-

tude lower. Furthermore, our results indicate that if we had
increased the number of replicates, our assumption might
have been confirmed. Leese et al. (31) noted that cost-
effectiveness needs to be considered when proposing new
methods for ecological assessment and that target-PCR-
free techniques lack sufficient validation and proper refer-
ence data for routine applications despite their huge po-
tential. Our study shows that total RNA-Seq might rep-
resent the sought-after, cost-efficient, and target-PCR-free
method worthy of further exploration as it can be effective
at substantially lower sequencing depth and, therefore, sub-
stantially reduce costs. Traditional metatranscriptomics is
also gaining increasing attention for ecological assessments.
It has been suggested that microbial function might be a
better proxy for environmental change than taxon identity
because functional shifts can occur before taxonomic shifts
(8,94). This growing interest in metatranscriptomics might
also increase the applicability of total RNA-Seq as both
approaches could be performed complementarily using the
same RNA extracts. This would have the added benefit of
being able to study taxon-function relationships. However,
there have also been concerns regarding the applicability of
incorporating RNA into routine ecological assessments due
to the instability of RNA and higher costs of RNA sample
collections (8). But recent studies of environmental RNA
(eRNA) suggest that it is much more stable in the environ-
ment than previously assumed, making it indeed suitable
for routine ecological assessments and opening possibilities
for an entirely new field of environmental research, called
environmental transcriptomics (95,96).

CONCLUSION

Our study demonstrates that the impact of data-processing
tools on metagenomics and total RNA-Seq data sub-
stantially varies among replicates and evaluation levels.
Furthermore, metagenomics-optimized assemblers do not
uniformly improve metagenomics data and neither do
metatranscriptomics-optimized assemblers for total RNA-
Seq data. Further studies with a higher resolution of specific
data-processing steps are required to finetune the most ap-
propriate choices for a given context.

Total RNA-Seq provided more accurate taxonomic iden-
tifications for our microbial mock community than metage-
nomics at equal sequencing depths and even at sequenc-
ing depths one order of magnitude lower. These results in-
dicate that total RNA-Seq represents a good alternative
to metagenomics when it comes to target-PCR-free taxo-
nomic identifications of microbial communities and that a
substantial reduction in sequencing costs might be possible
while maintaining accuracy. This could benefit routine eco-
logical assessments, which require cost-effective methods,
and allows for the incorporation of microbes into ecological
assessments. In the context of current eRNA and environ-
mental transcriptomics research, total RNA-Seq could be a
complementary approach to metatranscriptomics, allowing
the establishment of taxon-function relationships. Further
research on environmental samples is required to confirm
the advantages of total RNA-Seq over metagenomics in ap-
plied settings.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/16/9279/6671113 by guest on 23 Septem

ber 2023



Nucleic Acids Research, 2022, Vol. 50, No. 16 9291

DATA AVAILABILITY

The sequencing data is available under Bioproject
number PRJNA819997 and SRA accession numbers
SRR18488964–SRR18488973.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We would like to thank Karl Cottenie, Anders Lanzen, Flo-
rian Leese and Nicole Ricker for helpful advice and stimu-
lating discussions.

FUNDING

Canada First Research Excellence Fund (CFREF)–Food
from Thought project at the University of Guelph. Funding
for open access charge: Canada First Research Excellence
Fund (CFREF)–Food from Thought.
Conflict of interest statement. None declared.

REFERENCES
1. IPBES (2019) In: Services Dı́az,S., Settele,J., Brondı́zio,E.S.,
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Bohan,D.A., Bouchez,A., Chariton,A., Creer,S., Frühe,L., Keck,F.
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