
Citation: Stoean, C.; Zivkovic, M.;

Bozovic, A.; Bacanin, N.; Strulak-

Wójcikiewicz, R.; Antonijevic, M.;

Stoean, R. Metaheuristic-Based

Hyperparameter Tuning for

Recurrent Deep Learning:

Application to the Prediction of Solar

Energy Generation. Axioms 2023, 12,

266. https://doi.org/10.3390/

axioms12030266

Academic Editors: Freddy A. Lucay

and Wenceslao Palma

Received: 3 February 2023

Revised: 25 February 2023

Accepted: 2 March 2023

Published: 4 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Metaheuristic-Based Hyperparameter Tuning for Recurrent Deep
Learning: Application to the Prediction of Solar Energy Generation
Catalin Stoean 1 , Miodrag Zivkovic 2 , Aleksandra Bozovic 3 , Nebojsa Bacanin 2,* ,
Roma Strulak-Wójcikiewicz 4 , Milos Antonijevic 2 and Ruxandra Stoean 1

1 Department of Computer Science, University of Craiova, A.I.Cuza, 13, 200585 Craiova, Romania
2 Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia
3 Academy of Applied Technical Studies, Katarine Ambrozic 3, 11000 Belgrade, Serbia
4 Faculty of Economics and Transport Engineering, Maritime University of Szczecin, Wały Chrobrego 1/2,

70-500 Szczecin, Poland
* Correspondence: nbacanin@singidunum.ac.rs; Tel.: +381-60-7490326

Abstract: As solar energy generation has become more and more important for the economies of
numerous countries in the last couple of decades, it is highly important to build accurate models for
forecasting the amount of green energy that will be produced. Numerous recurrent deep learning
approaches, mainly based on long short-term memory (LSTM), are proposed for dealing with such
problems, but the most accurate models may differ from one test case to another with respect to
architecture and hyperparameters. In the current study, the use of an LSTM and a bidirectional
LSTM (BiLSTM) is proposed for dealing with a data collection that, besides the time series values
denoting the solar energy generation, also comprises corresponding information about the weather.
The proposed research additionally endows the models with hyperparameter tuning by means of
an enhanced version of a recently proposed metaheuristic, the reptile search algorithm (RSA). The
output of the proposed tuned recurrent neural network models is compared to the ones of several
other state-of-the-art metaheuristic optimization approaches that are applied for the same task, using
the same experimental setup, and the obtained results indicate the proposed approach as the better
alternative. Moreover, the best recurrent model achieved the best results with R2 of 0.604, and
a normalized MSE value of 0.014, which yields an improvement of around 13% over traditional
machine learning models.

Keywords: metaheuristic optimizers; deep learning; long short-term memory networks; solar energy
generation; time series

MSC: 68T07

1. Introduction

Energy consumption worldwide has risen by 40% in the last three decades and this
is expected to increase [1]. Governments are taking measures to reduce it, and the recent
crisis in Ukraine has led to the exploration of alternative sources of energy. Green energy
has seen significant growth worldwide in recent years, as the world shifts towards a more
sustainable future. Governments, organizations, and individuals alike are recognizing
the importance of reducing reliance on traditional non-renewable energy sources and
transitioning to clean, renewable energy sources such as solar, wind, and hydropower. This
growth in green energy has not only helped mitigate the effects of climate change but has
also created new job opportunities and stimulated local economies [2]. As awareness and
technology continue to improve, the green energy sector is in for continued growth in the
coming years [3].

The rising concerns about environmental and climate changes and the escalating
growth in renewable sources have made the accurate forecasting of its generation a key

Axioms 2023, 12, 266. https://doi.org/10.3390/axioms12030266 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030266
https://doi.org/10.3390/axioms12030266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5917-1857
https://orcid.org/0000-0002-4351-068X
https://orcid.org/0000-0001-9292-6318
https://orcid.org/0000-0002-2062-924X
https://orcid.org/0000-0002-9702-7554
https://orcid.org/0000-0002-5511-2531
https://orcid.org/0000-0002-9849-5712
https://doi.org/10.3390/axioms12030266
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030266?type=check_update&version=3

Axioms 2023, 12, 266 2 of 31

point in the shift toward sustainable energy worldwide. Considering the topic of the
current paper, i.e., solar energy production, various techniques have been suggested in
the last decade for the prediction of its trend and it is widely acknowledged that varying
forecasting time frames necessitate different methodologies to reduce the effects of solar
variability. Since environmental factors significantly impact renewable energy systems,
using methods and models to anticipate these changes is crucial. This is why having the
means to comprehend the correlation between various exogenous parameters and utilizing
this information effectively is vital [4].

The prediction of generated power can be achieved through statistical methods, ma-
chine learning (ML), or deep learning (DL) techniques, with the foremost sector in these
studies being the solar energy [5]. The DL application shows an abundance of recurrent
architectures, especially Long Short-Term Memory (LSTM) networks. However, there is still
much room for improvement in the application of DL recurrent models for multi-variate
forecasting of energy production in power systems. Better architectures would result not
only from the neural network mechanisms but also from a proper establishment of their
hyperparameters [6]. In [6], it is demonstrated that the fine-tuning for the hyperparameters
of a basic LSTM via metaheuristics leads to clearly better results than when performing
a grid search for finding adequate values for them. A data set concerning energy load
forecasting is used. Therefore, the current paper attempts to fill a part of this gap by
studying the enhancement brought by a novel nature-inspired metaheuristic, i.e., the reptile
search algorithm (RSA), that is also adapted through hybridization with mechanisms of
other recent metaheuristics towards the optimization of the hyperparameters of two LSTM
models for short-term forecasting of solar energy production in Spain. Accordingly, the
current work not only deals with a different data set than [6], but also employs more
complex DL models and proposes a new hybridized metaheuristic specifically developed
for the current task.

The article is structured as follows. Section 2 reviews the current state of the art
on solar energy forecasting and outlines the basic concepts related to the LSTM and the
metaheuristic search strategy. Section 3 introduces the metaheuristic approach that will
be employed for LSTM hyperparameter tuning, its improved hybridized version and the
use for the hyperparameter tuning task. Experiments on the real-world data set with
the versions of the two LSTM architectures tuned by the proposed metaheuristic and
comparative alternatives are done in Section 4. Conclusions on the potential of the given
approach are drawn in Section 5.

2. Background

The recent entries in the literature regarding the forecasting of solar energy generation
by means of ML are reviewed in the following subsection. An overview of LSTM architec-
tures is subsequently given, along with a brief introduction to metaheuristic optimization.

2.1. Literature Survey

The number of articles on the application of ML algorithms in the field has increased
significantly in recent years, indicating their importance, high use and significant ability
to analyze issues related to energy systems [4]. There are numerous approaches for pho-
tovoltaic (PV) output power prediction. Several studies have previously summarized PV
output power forecasting from different angles.

Accurately predicting solar power generation requires site-specific analysis and con-
sideration of factors such as model type, forecast time horizon, local climate, and many
other data and model characteristics, which makes it difficult to generalize results. To
overcome this, models must be tested across various conditions and locations to average
out their impact. To truly understand a model’s performance, it should be tested in multiple
locations while preserving the relevant scenario [7].

Anuradha et al. [8] highlight that weather and physical elements affect the electrical
power output of a solar PV panel. Solar irradiance, cloud cover, humidity, and ambient

Axioms 2023, 12, 266 3 of 31

temperature are the main meteorological factors that influence solar power generation.
Predicted weather parameters can be used as model inputs, while solar power forecasts
can be used as the model output. Voyant et al. [9] recognize that in relation to photovoltaic
systems and solar power plants, it is necessary to predict the intensity and direction of solar
radiation in a given area in order to estimate production capacity.

Ahmed et al. [5] also highlight that incorporating PV into power grids is challenging
due to the irregular, climate and location-based nature of solar energy, leading to problems
such as surges, instability, poor scheduling, and financial losses. Predictive models can
assist, but factors such as timing, forecast range, data preparation, weather classification,
network optimization, uncertainty quantification, and performance assessments need to
be considered. The same study shows that solar irradiance has the strongest correlation
with photovoltaic output, making weather classification and cloud motion analysis crucial.
Kuo et al. [10] reach a similar conclusion, i.e., that accurate prediction of PV power genera-
tion is difficult due to the complex interactions between many environmental conditions
and uncontrollable factors. Therefore, the study of weather data is crucial for predicting
the impact of solar power generation. In [11], it is likewise stated what weather conditions
(observable, forecast, or both) and weather variables (air temperature, relative humidity,
pressure, cloud cover/sky cover, wind speed and direction) should be used, and in what
specific cases, to obtain better forecast results.

Many studies compare different ML algorithms such as linear regression, bagging,
decision trees, random forests, support vector machines and generalized additive mod-
els [9,12,13]. Voyant et al. [9] describe the use of ML algorithms in modeling and forecasting
weather and solar energy, divided into supervised learning (linear regression, generalized
linear models, nonlinear regression, support vector machines/support vector regression,
decision tree learning, nearest neighbor, Markov chain), unsupervised learning (K-means
and k-methods clustering, hierarchical clustering, Gaussian mixture models, cluster evalua-
tion) and ensemble learning (boosting, bagging, random subspace, predictors ensemble).
Carrera et al. [11] evaluate and categorize supervised learning algorithms for multiple
independent variables in the prediction of solar energy generation in the following three
sections: single regression models (linear regression, Huber, Ridge, lasso, elastic net, de-
cision tree, k-NN, SVR), bagging ensemble methods (bagging, random forest, extra trees)
and boosting ensemble methods (AdaBoost, gradient boosting, CatBoost, XGBoost). A
similar overview of the use of ML algorithms for solar energy forecasting can be found in
the review by Wu et al. [14].

Zhang et al. [15] classify ML methods from different perspectives and provide a
systematic and critical overview of their use for recent PV power output applications in
terms of temporal and spatial prediction scales. The authors state that the artificial neural
network and support vector machines are used much more often than other methods. They
discuss in detail and explore the potential advantages of optimizing the machine model to
improve prediction performance.

In the comparative study of Anuradha et al. [8], three regression models from ML
techniques such as support vector machines, random forests and the linear regression
model are considered for experimentation and the random forest regression proves to be
the most accurate.

According to Markovics and Mayer [16], one of the possible directions of the devel-
opment of ML methods for photovoltaic power forecasting is the use of more advanced
ML models, including the popular deep learning methods. The other possibility is to delve
into the hybridization of physical and ML models, as the results revealed that adding
even as simple theoretically calculated data to predictors as the angles of the sun’s po-
sition significantly increased the accuracy of power predictions. Finally, extending the
study to probabilistic PV power prediction and model testing in such a context is also a
potential topic.

Axioms 2023, 12, 266 4 of 31

Vennila et al. [17] elaborates on a study where a hybrid model that used both ML and
statistics performed better than a model that used only ML. It is further suggested that the
proposed method can increase efficiency and accuracy using several DL mechanisms.

The proposed model for stable power generation forecasting in [18] is a hybrid of a
Convolutional Neural Network (CNN) and LSTM. The CNN classifies weather conditions
and the LSTM identifies power generation patterns based on those conditions. The hybrid
model is effective in accurately forecasting power generation by considering weather
fluctuations given by CNN. Results from a qualitative evaluation show that the forecasted
power signals respond to fluctuations and closely follow the actual power signal trend.

The research conducted by Alkhayat and Mehmood [19] also underlines that ML
and DL models have a good ability to discover nonlinear relationships and superior
performance. DL specifically has a promising future because of its generalization capability,
of continuing to improve the quality of results by increasing the quantity of the data used
for training and unsupervised feature learning. This is evidenced by the number of articles
on solar energy research based on DL from recent years [4,10,20,21].

Wang et al. [22] also note that DL applications have grown rapidly due to their ability
to deal with large data sets and high-performance computing power. However, the study
points out two major challenges: (a) theoretical issues: the deep learning models are
generally nonconvex functions, and it is thus theoretically difficult for DL to train the deep
network and optimize its parameters, and (b) modeling problems - the key issue is how
to design a hierarchical model with powerful feature learning and establishing the most
appropriate DL-based prediction model for a specific forecasting data set.

Kuo et al. [10] compare the results of one-day-ahead PV power forecasting using three
models, ANN, LSTM, and gated recurrent unit (GRU) with three groups of weather data
(central weather bureau, local weather station, and hybrid data given by the combination
of the other two). The hybrid data improved measurements compared to the other two
groups, and the LSTM model was the most accurate in various weather conditions. The
combination of the LSTM model and hybrid data proved to be the most accurate with a
one-month forecasting accuracy.

A comparison of different DL models for short-term PV power forecasting is conducted
in [23]. The models are LSTM, BiLSTM, GRU, BiGRU, CNN1D, and hybrid models like
CNN1D-LSTM and CNN1D-GRU. The study also confirms the effectiveness of DL models,
like LSTM, over traditional neural networks.

Similar results are reported by Jebli et al. [24] who explored the use of DL techniques
to predict solar energy, in particular recursive neural network (RNN), LSTM, and GRUs.

Li et al. [25] propose a hybrid DL approach combining CNN and LSTM for PV power
forecasting. The CNN extracts nonlinear features and invariant structures from previous
power data for prediction, while the LSTM models temporal changes in the latest data
to predict the next step. The proposed method showed smaller prediction errors when
compared to several benchmark methods.

In the comprehensive review of the literature [19] on the subject, the most used
architectures are the hybrid models followed by RNN models such as LSTM and GRU, and,
in the third place, CNN.

As the literature review shows, various models that employ optimization algorithms
for estimating solar energy generation have received an increasing amount of attention, with
the more commonly used optimal algorithms being: particle swarm optimization (PSO),
which is also the most frequent [26], genetic algorithms (GA) [27] and whale optimization
algorithm (WOA). The major factors that affect the forecasting results were identified as
solar irradiance, wind speed, and temperature. Accordingly, they are naturally the more
prevalent used inputs. Although probabilistic forecasts with uncertainty information are
highly useful for system operations, deterministic forecasts remain the primary methods
employed; however, it is expected that the importance of the former will increase.

Panda et al. [28] emphasize that the choice of parameters for ML systems in renewable
energy forecasting can have a major impact on the predictions. The new possibility for

Axioms 2023, 12, 266 5 of 31

further research is based on the use of improved metaheuristics for ML variable selection
for renewable-energy predictions.

According to the current discussions in the literature, the present paper proposes two
LSTM architectures powered by an improved version of a nature-inspired metaheuristic to
perform the tuning of the hyperparameters of the considered DL models.

2.2. Long Short-Term Memory

Artificial neural networks (ANNs) are computer systems modeled after the structure
and function of the human brain. They use interconnected neurons to learn and process
information and can be used for tasks such as classification and prediction. Different
types of ANNs include shallow networks, deep networks, convolutional neural networks
(CNNs), and recurrent neural networks (RNNs) [29,30].

Forecasting time series data is difficult because traditional neural network models
only consider current input data, without taking into account historical information. RNNs
are able to consider previous inputs, but LSTM networks can retain historical data for even
longer periods. In this research, an LSTM type of ANN will be used to predict the direction
and magnitude of changes in solar energy generation. Unlike traditional ANNs, LSTM
networks use memory cells to retain long sequences of data, as described in [31]. An LSTM
cell includes three gates: forget, input, and output. These gates determine which data is
retained in memory and which is discarded.

Data that is input into an LSTM network goes through the forget gate, which deter-
mines if it should be forgotten by the neural cell. The function of the forget gate ft can be
represented by Equation (1).

ft = σ(W f xt + U f ht−1 + b f), (1)

The current forget gate, denoted by ft, is between 0 and 1 and is controlled by the sigmoid
function σ. The weight matrices W f and U f , the bias value b f , the input values xt and the
previous data ht−1 are all used to calculate the forget gate value.

The input gate is the next stage where data is processed. The behavior of the input
gate is represented by Equations (2) and (3). The result of the sigmoid function, denoted
by it, determines which data should be stored in the memory cell. The weight matrices Wi,
Ui, and the bias value bi are the parameters that need to be adjusted for this gate.

it = σ(WiXt + Uiht−1 + bi) (2)

The input gate’s output is determined by the potential update vector C̃t, which is
calculated by Equation (3). The vector is the output of the tanh function, which ranges
between −1 and 1.

C̃t = tanh(Wcxt + Ucht−1 + bc) (3)

Lastly, to determine the final state of the output gate, Equation (4) is utilized to obtain
the potential collection of values for the vector and which information should be updated.

Ct = Ft � Ct−1 + it � C̃t (4)

The values to be removed are represented by Ct−1. The new data that need to be stored
in the memory are given by ft � C̃t, while the fresh information that is retained in the cell
is it � C̃t. The last output gate that determines the real values of the hidden layers can be
obtained by Equation (5). The gate ot denotes the sigmoid function, while the output is
the product of the sigmoid output and tanh from the previous couple of gates’ outputs,
determined by Equation (6).

ot = σ(Woxt + Uoht−1 + bo) (5)

Axioms 2023, 12, 266 6 of 31

ht = ot � tanh(Ct) (6)

The LSTM model has become popular in scientific research because of its ability to
perform well in time series prediction tasks. This can be seen in the recent successful
applications in areas such as stock price prediction [32–34], medical applications [35,36],
estimating COVID-19 cases [37,38], and petroleum production [39] to name the few.

2.3. Bidirectional Long Short-Term Memory

A BiLSTM processes the inputs from both the past and the future, requiring two
directions of the same sequence simultaneously. The BiLSTM model is comprised of a
forward and backward LSTM, designed to handle the exploding gradient problem. The
forward line handles past information opposite to the backward line, also known as the
reverse LSTM, which handles the future information for the input data. The information
going through both lines is fused and forwarded. As a result, the BiLSTM has a better per-
formance compared to the basic RNN and LSTM networks with respect to data processing.
The hidden and output layers are determined at time t as stated by Equations (7)–(9):

−→
h t = σ(

−→
W ixt +

−→
V i
−→
h t−1 +

−→
b) (7)

←−
h t = σ(

←−
W ixt +

←−
V iht+1 +

←−
b) (8)

yt = σ(U[
−→
h t;
←−
h t] + c) (9)

The structure of BiLSTM can be seen in Figure 1.

Figure 1. BiLSTM structure.

2.4. Metaheuristic Optimization

NP-hard problems, which are prevalent in computer science, require the use of stochas-
tic algorithms, such as metaheuristics, as deterministic approaches are infeasible. Meta-
heuristic algorithms can be grouped into different families based on the natural phenomena
they use to guide the search process, such as, for example, evolution or ant behavior [40–42].

Axioms 2023, 12, 266 7 of 31

The main families of metaheuristic algorithms are nature-inspired methods (further di-
vided into genetic algorithms and swarm intelligence), methods based on some physical
phenomena (such as storms, gravitational waves, electromagnetic field etc.), algorithms
that mimic human behavior (for example teaching and learning, or brainstorming process),
and approaches that use mathematical laws to guide the search (such as oscillations of the
fundamental trigonometrical functions).

Swarm intelligence algorithms are based on the behavior of large groups of simple
individuals, such as animals in a swarm, who display coordinated and complex behavior
during activities like hunting, feeding, mating, and migration [43,44]. Swarm intelligence
methods are known to be effective at solving a wide range of NP-hard problems in real
life. Some notable examples of algorithms in this group include ant colony optimization
(ACO) [45], particle swarm optimization (PSO) [46], artificial bee colony (ABC) [47], bat
algorithm (BA) [48,49], and firefly algorithm (FA) [50]. On the other hand, algorithms
that use mathematical functions to guide the search include the sine-cosine algorithm
(SCA) [51] and the arithmetic optimization algorithm [52]. These are known for their
efficiency and effectiveness.

The existence of a wide variety of population-based algorithms can be attributed to
the no-free-lunch theorem (NFL) [53], which states that there is no universal approach that
can find the best solution for all optimization challenges. As a result, one method may
perform well for one problem but poorly for another, and hence the reason for the diversity
of metaheuristic methods and the need to discover and adjust the appropriate algorithm
for each specific optimization task.

Population-based methods have been used to solve a wide range of real-world prob-
lems in recent years, including monitoring and forecasting COVID-19 cases [54,55], cloud
and cloud-edge computing [56–59], energy-aware and carbon-efficient cloud comput-
ing [60], IoT and sensor networks tuning [61–64], feature selection [65], image classification
and medical applications [66,67], global optimization problems [68,69], credit card fraud
detection [70,71], air pollution forecasting [72,73], network intrusion detection [74,75], and
optimization of a variety ML models [76–81].

3. Methods

The original form of the metaheuristic that will be used in the current study is out-
lined next, followed by its proposed improved variant, based on the hybridization with
complementing working mechanisms from other recent nature-inspired approaches.

3.1. Original Reptile Search Algorithm

The cooperative and highly coordinated hunting technique exhibited by the crocodiles,
which consists of surrounding the prey, followed by the attack, has been a motivation for
the recent reptile search algorithm (RSA) [82]. The initialization phase starts by generating
a matrix X of arbitrary solutions xi,j with respect to Equation (10), where i denotes the index
of the individual, j represents its current location, N marks the total count of individuals,
while n represents the dimensionality of the particular problem [82]:

X =

x1,1 · · · x1,j x1,n−1 x1,n
x2,1 · · · x2,j · · · x2,n
· · · · · · xi,j · · · · · ·

...
...

...
...

...
xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n

(10)

Axioms 2023, 12, 266 8 of 31

Equation (11) is utilized to produce arbitrary individuals. Here, rand is an arbitrary
value within the range [0, 1], and LB and UB denote the lower and upper limits of the
search domain for the particular problem [82].

xij = rand × (UB− LB) + LB, j = 1, 2, . . . , n (11)

The search phase has been split into two main procedures (encircling the target, and
hunting) accompanied by the four distinctive behaviors to emphasize both exploration and
exploitation. Exploration employs two walking methods exhibited by crocodiles: elevated
walk and stomach walk. The main goal of the crocodiles here is to widen the search
realm and provide support for the second hunting phase. The elevated walk technique
is employed when t ≤ T

4 , while the stomach walk is triggered when t > T
4 and t ≤ 2 T

4 .
Equation (12) is responsible for updating of the crocodile’s position [82]:

x(i,j)(t + 1) =

{
Bestj(t)×−η(i,j)(t)× β− R(i,j)(t)× rand, t ≤ T

4
Best j(t)× x(r1,j) × ES(t)× rand, t > T

4 and t ≤ 2 T
4

(12)

η(i,j) = Bestj(t)× P(i,j) (13)

where Bestj denotes the latest best individual at location j, t represents the ongoing iteration,
while T specifies the maximum count of iterations. The hunting operator η(i,j) has been
defined by Equation (13), where β represents the sensitive variable fixed at 0.1, governing
the exploration accuracy [82].

The search space is shrunk by applying the reduction function, defined by Equation (14),
where r1 is an arbitrary value within range [1, N], xr1,j denotes the ith’s solution arbitrary
position, while ε denotes a small value.

R(i,j) =
Bestj(t)− x(r1,j)

Bestj(t) + ε
(14)

Equation (15) calculates the probability ratio, named “Evolutionary Sense”, that arbi-
trarily alternates from −2 to 2 as rounds pass by [82]:

ES(t) = 2× r2 ×
(

1− 1
T

)
(15)

where r2 denotes an arbitrary value inside [−1, 1].
Equation (16) is used to determine the percentage difference between the positions of

the observed and best-attained individual [82]:

P(i,j) = α +
x(i,j) −M(xi)

Bestj(t)×
(

UB(j) − LB(j)

)
+ ε

(16)

where α marks the sensitive parameter, with a predefined value 0.1, controlling the fluctua-
tions among potential individuals suitable for the cooperated hunt. The respective upper
and lower limits of the jth location have been specified by UB(j) and LB(j) [82].

The average position M(xi) of the ith individual has been given by Equation (17) [82].

M(xi) =
1
n

n

∑
j=1

x(i,j) (17)

The RSA exploitation procedure is split into hunting coordination (in case t ≤ 3 T
4

and t > T
2) and cooperation (if t ≤ T and t > 3 T

4) methods, aiming to intensify the local

Axioms 2023, 12, 266 9 of 31

investigation of the search realm and closing to the best potential individual. The hunting
behavior exhibited by crocodiles can be summarized by Equation (18) [82].

x(i,j)(t + 1) =

{
Best j(t)× P(i,j)(t)× rand, t ≤ 3 T

4 and t > T
2

Best j(t)− η(i,j)(t)× ε− R(i,j)(t)× rand, t ≤ T and t > 3 T
4

(18)

The elementary RSA displays the time complexity of the O(N × (T× D + 1)), where
N represents the count of candidates, T denotes the count of rounds, while D stands for
the dimensionality of the solutions space.

3.2. Improved RSA Algorithm

The RSA is one of the most recent metaheuristics, and in its basic implementation, it
proved as a very powerful optimizer [82], although it has some observed drawbacks. The
comprehensive simulations with benchmark functions (bound-constrained and constrained
taken from the Congress on Evolutionary Computation benchmark suites) have exposed
that the algorithm does not have enough power in exploitation, especially in later rounds
of the execution, despite having satisfactory exploration capability.

More specifically, by executing extensive simulations with the original RSA, it was
observed that the algorithm’s search process in most runs manages to find a proper domain
of the search area; however, it does not have enough exploitation power to execute a
fine-tuned search around this region. As a consequence, more iterations are needed for the
basic RSA to converge. This issue can be also viewed from the perspective of diversification-
intensification trade-off (balance), which is known as one of the most common problems
with metaheuristics [79,83], and in the case of RSA it is noticed that this trade-off is biased
towards exploration.

On the contrary, the firefly algorithm (FA) is famous of its potent exploitation, as de-
scribed in [50]. Therefore, one reasonable way to improve the RSA is by hybridizing it with
the FA and hence the main idea proposed by this research is to address the RSA’s identified
flaws by creating a low-level hybrid approach between RSA and FA, as both algorithms
complement each other. However, when creating hybrid metaheuristics, researchers need
to be careful in order to establish a proper trade-off between exploitation and exploration.
At the beginning of a run, when the most important goal is to identify an optimal zone
of the search region, exploration should be more intensive, conversely, as the iterations
progress, fine-tuned search around the current best solutions is more needed, hence the
exploitation should be strengthened. In this particular case, if the FA search expression is
triggered at the start of a run, in some executions, the algorithm may not be able to find
the optimum region, therefore proposed low-level hybrid metaheuristics takes this into
account by introducing hard-coded control parameters.

The exact mechanism is defined as follows. When the algorithm begins executing, the
individuals are updated with respect to the RSA search Equation (12), but in later iterations,
when the search should be more focused on converging within the promising areas of
the search domain, the exploitation is improved by employing the FA search procedure,
defined by Equation (19), where α denotes the randomization variable, while κ is a random
number taken from the Gaussian distribution [50]. Finally, ri,j represents the distance
among individuals i and j.

Xt+1
i = Xt

i + β0 · e
−γr2

i,j(Xt
j − Xt

i) + αt(κ − 0.5) (19)

The alternation between the two search options in the later iterations during the
algorithm run is controlled by two additional parameters. The first parameter, named
varying search vs, has the role to activate the mixed search procedure, and it is triggered
when t > vs, by starting to alternate between the elementary RSA and FA search mech-
anisms. This parameter has the fixed value of maxIter/5 (in the executed simulations

Axioms 2023, 12, 266 10 of 31

it is equal to 1, as there is a maximum of five rounds), which was established through
empirical experiments.

The second introduced control parameter, named search mode sm, is used to determine
for every individual in the population if the search should be performed by utilizing the
RSA or FA mechanism. Every individual generates an arbitrary value rnd within [0, 1], and,
if rnd < sm, it will execute the RSA search, else it will proceed with the FA search. The
value of this parameter is decreased dynamically as the rounds go by, giving additional
focus to the FA search when the algorithm has converged towards the promising regions of
the search space. The starting value of this parameter is fixed to 0.8, and it is reduced as
defined by Equation (20), which was established through empirical experiments.

smt = smt−1 − (smt−1/10) (20)

An additional mechanism that has been employed was inspired by the trial parameter
in the ABC algorithm [47]. This trial parameter is initially set to 0, and if the solution is not
improved in the current round, the value of trial is increased, and when it reaches limit = 2
threshold (empirically determined for this particular problem 2 ∗ (solutions/maxIter),
which is in this case 2), it is removed from the population, and replaced with the quasi-
reflective opposite solution xqrl , that has been produced by employing the quasi-reflection-
based learning (QRL) procedure [84]. Previous research indicated that the QRL can effi-
ciently produce the solution in the opposite section of the search domain [85].

The hybridized algorithm was simply given the name hybrid RSA–HRSA, and the
pseudo-code is presented in Algorithm 1.

Algorithm 1 Pseudo-code of introduced hybrid reptile search algorithm (HRSA)
1: Initialization phase
2: Initialize RSA parameters α, β, etc.
3: Initialize vs = maxIter/5
4: Initialize trial = 0 for every individual
5: Initialize the locations of the individuals in a random fashion. X : i = 1, ..., N.
6: while (t < T) do
7: Determine the objective function for the candidate solutions (X)
8: Determine the best individual so far
9: Update the ES using Equation (15)

10: The beginning of the RSA
11: for (j=1 to N) do
12: for (j=1 to n) do
13: if t > vs then
14: Produce random value rnd
15: end if
16: if (t > vs) & !(rnd < sm) then
17: Execute FA search according to Equation (19)
18: else
19: Execute RSA search
20: Update the η, R, P and values using Equations (13), (14) and (16), respectively
21: if (t ≤ T

4) then
22: x(i,j)(t + 1) = Bestj(t)×−η(i,j)(t)× β− R(i,j)(t)× rand, . {High walking}
23: else if (t ≤ 2 T

4 and t > T
4) then

24: x(i,j)(t + 1) = Bestj(t)× x(r1,j) × ES(t)× rand, . {Belly walking}
25: else if (t ≤ 3 T

4 and t > 2 T
4) then

26: x(i,j)(t + 1) = Bestj(t)× P(i,j)(t)× rand, . {Hunting coordination}
27: else
28: x(i,j)(t + 1) = Bestj(t)− η(i,j)(t)× ε− R(i,j)(t)× rand, . {Hunting cooperation}
29: end if
30: end if
31: end for
32: if solution not improved then
33: trial = trial + 1
34: if trial = limit then
35: Replace current solution with quasi-reflective opposite solution xqrl

36: trial = 0
37: end if
38: end if
39: end for
40: t = t + 1
41: end while
42: Return the best solution (Best(X))

Axioms 2023, 12, 266 11 of 31

3.3. Multivariate Time-Series Prediction Framework Based on the HRSA and Complexity of
Introduced Approach

The suggested multivariate time-series prediction framework is based on the solutions
within the population, where every individual represents a potential LSTM or BiLSTM net-
work structure. Each of these solutions is denoted by the collection of chosen hyperparameters.

The research presented in this manuscript takes into consideration a set of 6 hyperpa-
rameters that are subjected to the tuning process, which include the count of units in the
first layer, the learning rate, the count of epochs used for training, the dropout rate, the
count of layers within the structure, and the count of units in the second layer (in case a
two-layered structure has been produced).

Moreover, the conducted research aims to examine the capabilities of computationally
light structures, focusing on the simple model architectures, consisting of a maximum
of two layers (therefore the limit for this parameter was set to 2 for every individual in
the population). Solutions utilize a flat encoding, as every individual is comprised of six
encoded parameters (one for every hyperparameter subjected to tuning). This particular
problem is a mixed NP-hard challenge, as certain hyperparameters have integer values,
while others are continuous variables.

The boundaries for every hyperparameter are detailed in Section 4. The fitness function
that is required to be minimized for every individual in the population is the overall mean
square error (MSE), as it is discussed in more detail in the next Section as well. In the end,
the best-produced model has been interpreted by utilizing the SHAP method. The entire
framework is summarized in Figure 2.

Figure 2. Flowchart of the proposed framework.

Finally, the complexity of the proposed method is worth mentioning. When comparing
the complexity of metaheuristics, execution time is not an objective criterion because it
depends on the computation platform to a large extent. Therefore, according to the well-

Axioms 2023, 12, 266 12 of 31

established practice from the modern literature [50], the complexity of metaheuristics
should be calculated based on the number of fitness function evaluations (FFEs) in the
run since it is the most computationally intensive (expensive) operation. This particularly
applies to this research because when tuning LSTM/BiLSTM, one FFE requires the deep
learning model to be generated based on the metaheuristics solution and then trained,
which is a very resource-intensive operation.

Although the introduced HRSA algorithm employs a mechanism that replaces all
solutions whose trial attribute reaches the threshold value with the generated QRL indi-
vidual, this procedure does not add overhead in terms of FFEs because the newly created
solution is not evaluated at this point of execution. Therefore, the computation complexity
in terms of FFEs of the proposed HRSA does not increase from the baseline RSA, and HRSA
complexity is given as O(N) = N + N · T.

4. Experimental Results

This section will first address the real-world problem under consideration and then
discuss the experimental setup and findings using the proposed enhanced metaheuristic in
comparison to competing alternatives for the parametrization of the two LSTM networks.

4.1. Data set Description

The study utilizes two data sets that were created from actual data sources. One data
set is related to hourly energy demand and production and it is sourced from the ENTSO-E
portal (https://transparency.entsoe.eu/dashboard/show, accessed on 19 January 2023).
The second data set used in the research pertains to weather data and it is obtained from
the OpenWeather API (https://openweathermap.org/api, accessed on 19 January 2023).
The weather data in the study include hourly meteorological measurements for Valencia,
Spain. The energy data contain hourly details about the quantity of power generated from
renewable sources in Spain. The entire collection of data sources is openly available to the
general public (https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-
generation-prices-and-weather, accessed on 19 January 2023). The data set combines both
sources of data at an hourly pace for all variables. To handle the high computational needs
of the experiments that involve comparative analysis, a smaller, representative subset of
the available data was utilized. The final data set used in the research includes data from 1
October 2018 to 28 December 2018. It can be visualized in Figure 3.

The data collection includes the most important hourly variables for the multivariate
prediction of the PV output. It is further divided into training, validation, and testing
subsets with 70%, 10%, and 20% of the data, highlighted in blue, green, and red colors in
Figure 3, respectively.

2018-10-01 2018-10-15 2018-11-01 2018-11-15 2018-12-01 2018-12-15 2019-01-01
Date

0

1000

2000

3000

4000

5000

So
la

r e
ne

rg
y

(u
ni

ts
: M

W
)

Train
Validation
Test

Figure 3. Visualization of the utilized solar energy data set.

4.2. Metrics

Aiming to evaluate the overall performance of the regarded approaches, four tra-
ditional ML measurements have been employed, including mean absolute error (MAE),

https://transparency.entsoe.eu/dashboard/show
https://openweathermap.org/api
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather

Axioms 2023, 12, 266 13 of 31

mean square error (MSE), root mean square error (RMSE), and coefficient of determination
(R2), that can be calculated with respect to Equations (21)–(24), respectively.

MAE =
1
n

n

∑
i =1
|xi − x̂i| (21)

MSE =
1
n

n

∑
i =1

(xi − x̂i)
2

xi
(22)

RMSE =

√
1
n

n

∑
i =1

(xi − x̂i)
2 (23)

R2 = 1− ∑n
i =1 (xi − x̂i)

2

∑n
i =1 (xi − x̄)2 , (24)

xi being the actual value, while x̂i corresponds to the predicted value for the i-th observation,
x̄ represents the arithmetic mean value of actual data, and finally, n denotes the number of
data points within the data set.

The prediction challenge represents an instance of a minimization task. The tun-
ing process takes the overall MSE (oMSE) as the fitness function defined according to
Equation (25).

Obj = min(oMSE) (25)

4.3. Experimental Setup

The presented research utilizes two experiments for the regarded solar power data
set. Both LSTM and BiLSTM models were independently developed, tuned, and validated
for the three-step ahead forecasting task. The lag value, i.e., the one controlling how much
historical data is taken, was set to 6.

As the executed experiments are extremely computationally intensive, simulations
were conducted with a relatively low number of iterations and individuals in the population.
Each tested metaheuristic algorithm used 5 solutions in the population (N = 5), and
5 rounds (T = 5), over 15 separate runs (R = 15). Moreover, early stopping with a
patience = epochs/3 was used to address the overfitting issue. The neural networks that
were used are relatively simple and efficient, consisting of maximum of two layers.

The simulation framework was developed in the Python programming language with
the help of a collection of supporting ML libraries such as TensorFlow 2.0, Keras, Pandas,
Sklearn, Numpy, Seaborn, Matplotlib and Shap. The utilized hardware consisted of Intel i9
11900K CPU, accompanied by 128GB RAM memory, and finally the Nvidia 1080 11G GPU.

When making predictions for the next three steps, the output layer of the network
produces three values, each corresponding to a prediction for one step in the future. The
accuracy of each individual step prediction is measured independently by utilizing the
above-mentioned metrics, and the overall accuracy of the network is obtained by evaluating
its performance on all three-step predictions. Comprehensive measurements were tagged
as oR2, oMAE, oMSE, and oRMSE, and they are not simply taken as the arithmetic mean
values obtained from the individual step calculations, due to the fact that when performing
predictions for several steps in the future, the initial data points were not present to be
compared. In the case of single-step forecasts, the overall measurements are equal to the
individual metrics.

The suggested HRSA and competitor algorithms were employed to tune the hyper-
parameters of the observed models. Aiming to retain the computational requirements
feasible, interval constraints were established for each of the tuned parameters. The set of
parameters that are tuned, accompanied by their respective numeric type, are provided
as follows:

• count of units in the first layer—limits [100, 200], integer variable,

Axioms 2023, 12, 266 14 of 31

• learning rate—boundaries [0.001, 0.01], real variable,
• count of epochs used for training—in range [300, 600], integer variable,
• dropout—range [0.05, 0.2], real variable,
• number of layers—1 or 2 layers, integer,
• count of units in the second layer—boundaries [100, 200], integer variable

This research used seven other powerful metaheuristics to compare the performance
level of the proposed HRSA method. The contending algorithms were the elementary RSA,
ABC [47], FA [50], SSA [86], Harris Hawks Optimization (HHO) [87], SCA [51] and Chimp
optimization algorithm (ChOA) [88]. Every competing algorithm was implemented inde-
pendently by the authors, by employing the suggested control parameters’ configuration
as proposed by their respective creators.

4.4. Simulation Results

This subsection brings forward the simulation results of the executed LSTM and
BiLSTM experiments. All tables containing the outcomes have the best result of each
category marked with bold text.

4.4.1. LSTM Experiments

Table 1 depicts the LSTM simulation results with respect to the fitness function (MSE),
presenting the standard metrics that include the best, worst, mean and median values,
accompanied by the standard deviation and variation determined over 15 separate runs. It
is possible to note, based on Table 1, that the suggested LSTM-HRSA approach attained
the best scores in terms of best, worst, mean, and median metrics. On the other hand,
the LSTM-RSA method established the most stable results, indicated by the best standard
deviation and variance measurements.

Table 1. Overall results of the objective function for LSTM experiments. The best result in each
column is written in bold.

Method Best Worst Mean Median Std Var

LSTM-HRSA 0.0137 0.0142 0.014 0.0139 2.23× 10−4 4.99× 10−8

LSTM-RSA 0.0142 0.0144 0.0143 0.0143 6.58 ×10−5 4.33 ×10−9

LSTM-ABC 0.014 0.0147 0.0144 0.0144 2.46× 10−4 6.06× 10−8

LSTM-FA 0.0137 0.015 0.0145 0.0146 4.97× 10−4 2.47× 10−7

LSTM-SSA 0.0142 0.015 0.0145 0.0144 3.51× 10−4 1.23× 10−7

LSTM-HHO 0.0138 0.015 0.0144 0.0147 4.69× 10−4 2.20× 10−7

LSTM-SCA 0.0138 0.0148 0.0144 0.0145 3.76× 10−4 1.41× 10−7

LSTM-ChOA 0.0143 0.0147 0.0145 0.0144 1.63× 10−4 2.67× 10−8

Tables 2 and 3 present the normalized and denormalized metrics with respect to the
one-step ahead, two-step ahead, and three-step ahead predictions, together with the overall
results, achieved by the best run of each one of the 8 argued LSTM models. LSTM-HHO
achieved the best scores for one-step and two-step ahead forecasts, while LSTM-SCA
attained the best outcomes for three-step ahead. Nevertheless, when analyzing the best
overall results, the suggested LSTM-HRSA model achieved the best scores for each regarded
metric - MSE (the fitness function), R2, MAE, and RMSE. Finally, Table 4 presents the best
set of hyperparameters determined by each metaheuristic.

Axioms 2023, 12, 266 15 of 31

Table 2. Normalized metrics for one-step, two-step, three-step ahead, and overall predictions for LSTM experiments. The best result in each column is written in bold.

Error Indicator LSTM-HRSA LSTM-RSA LSTM-ABC LSTM-FA LSTM-SSA LSTM-HHO LSTM-SCA LSTM-ChOA

One-step ahead R2 0.426279 0.379680 0.405602 0.411128 0.389334 0.462406 0.403854 0.398311
MAE 0.086843 0.092011 0.090283 0.089682 0.092903 0.084873 0.090301 0.091209
MSE 0.019809 0.021418 0.020523 0.020332 0.021084 0.018562 0.020583 0.020775
RMSE 0.140744 0.146348 0.143258 0.142590 0.145205 0.136241 0.143468 0.144134

Two-step ahead R2 0.671760 0.663221 0.671169 0.672800 0.663446 0.687558 0.665462 0.655853
MAE 0.069301 0.071177 0.073110 0.070798 0.073262 0.069035 0.072266 0.074587
MSE 0.011333 0.011628 0.011354 0.011297 0.011620 0.010788 0.011551 0.011882
RMSE 0.106457 0.107833 0.106553 0.106288 0.107797 0.103864 0.107474 0.109006

Three-step ahead R2 0.714377 0.720823 0.705576 0.723159 0.716281 0.650704 0.730167 0.703660
MAE 0.067204 0.066277 0.071115 0.064111 0.069485 0.073157 0.065808 0.067980
MSE 0.009862 0.009639 0.010166 0.009558 0.009796 0.012060 0.009317 0.010232
RMSE 0.099306 0.098179 0.100825 0.097767 0.098975 0.109819 0.096522 0.101152

Overall Results R2 0.604139 0.587908 0.594116 0.602362 0.589687 0.600223 0.599828 0.585941
MAE 0.074450 0.076488 0.078169 0.074863 0.078550 0.075688 0.076125 0.077925
MSE 0.013668 0.014228 0.014014 0.013729 0.014167 0.013803 0.013817 0.014296
RMSE 0.116910 0.119282 0.118381 0.117172 0.119025 0.117487 0.117545 0.119567

Table 3. Denormalized metrics for one-step, two-step, three-step ahead, and overall predictions for LSTM experiments. The best result in each column is written in bold.

Error Indicator LSTM-HRSA LSTM-RSA LSTM-ABC LSTM-FA LSTM-SSA LSTM-HHO LSTM-SCA LSTM-ChOA

One-step ahead R2 0.426279 0.379680 0.405602 0.411128 0.389334 0.462406 0.403854 0.398311
MAE 468.432157 496.305283 486.988569 483.743753 501.119031 457.804513 487.083637 491.982836
MSE 576,343.262267 623,155.500741 597,114.680222 591,563.458038 613,456.735227 540,051.415624 598,870.356156 604,439.245545
RMSE 759.172749 789.401989 772.731959 769.131626 783.234789 734.881906 773.867144 777.456909

Two-step ahead R2 0.671760 0.663221 0.671169 0.672800 0.663446 0.687558 0.665462 0.655853
MAE 373.809655 383.928146 394.353153 381.882793 395.174567 372.374631 389.800946 402.323210
MSE 329,740.096164 338,318.466458 330,333.731958 328,695.304008 338,092.018974 313,869.497973 336,067.378930 345,719.755906
RMSE 574.230003 581.651499 574.746668 573.319548 581.456807 560.240572 579.713187 587.979384

Three-step ahead R2 0.714377 0.720823 0.705576 0.723159 0.716281 0.650704 0.730167 0.703660
MAE 362.500937 357.500181 383.596842 345.813909 374.802066 394.607170 354.967121 366.683273
MSE 286,928.697207 280,452.719981 295,770.081252 278,106.126201 285,015.651643 350,892.734230 271,065.861908 297,694.506240
RMSE 535.657257 529.577870 543.847480 527.357683 533.868572 592.361996 520.639858 545.613880

Overall Results R2 0.604139 0.587908 0.594116 0.602362 0.589687 0.600223 0.599828 0.585941
MAE 401.580916 412.577870 421.646188 403.813485 423.698555 408.262105 410.617235 420.329773
MSE 397,670.685213 413,975.562393 407,739.497811 399,454.962749 412,188.135281 401,604.549276 402,001.198998 415,951.169230
RMSE 630.611358 643.409327 638.544828 632.024495 642.018797 633.722770 634.035645 644.942764

Axioms 2023, 12, 266 16 of 31

Table 4. Best attained collection of LSTM parameter values by each observed algorithm.

Method Units in First Layer Learning Rate Epochs Dropout Layers Units in Second Layer

LSTM-HRSA 150 0.006738 551 0.176168 2 149
LSTM-RSA 100 0.010000 588 0.060360 1 /
LSTM-ABC 134 0.007830 458 0.200000 1 /
LSTM-FA 100 0.008356 389 0.050000 2 200
LSTM-SSA 147 0.006232 600 0.148325 1 /
LSTM-HHO 171 0.008932 450 0.150124 2 143
LSTM-SCA 163 0.010000 600 0.200000 2 100
LSTM-ChOA 168 0.006622 585 0.141010 1 /

The graphical representation of the conducted LSTM simulations are given in
Figures 4 and 5, where the results of the MSE (fitness function) and R2 metrics have
been outlined through the convergence graphs of the best runs, box plot diagrams and
violin plots over 15 runs, as well as swarm plots that show the diversity of the population
during the last round of the best run of each algorithm. The swarm plots reveal that the ABC
expresses the highest diversity of solutions in the last iteration, contrary to the proposed
HRSA method, where all 5 individuals from the population ended up in the proximity
of the best region of the search space. This particular kind of behavior is anticipated, as
the ABC employs the limit control variable that assures high diversity of the population.
On the other hand, HRSA has powerful exploitation in the direction of the recent best
individual.

Figure 6 presents the Kernel Distribution Estimation (KDE) diagrams for the fitness
function and R2, visualizing the probability density function. According to these diagrams,
which show the distribution of the outcomes of the runs, the results are not coming from
the normal distribution. In the end, Figure 7 presents the best predictions of the LSTM
tuned by the proposed HRSA method, compared to the predictions of the LSTM tuned by
the elementary RSA.

0 1 2 3 4 5
Iterations

0.0136

0.0138

0.0140

0.0142

0.0144

0.0146

0.0148

0.0150

0.0152

M
SE

LSTM-HRSA
LSTM-RSA
LSTM-ABC
LSTM-FA
LSTM-SSA
LSTM-HHO
LSTM-SCA
LSTM-ChOA

LS
TM-H

RSA

LS
TM-R

SA

LS
TM-A

BC

LS
TM-FA

LS
TM-S

SA

LS
TM-H

HO

LS
TM-S

CA

LS
TM-C

hO
A

Algorithm

0.0136

0.0138

0.0140

0.0142

0.0144

0.0146

0.0148

0.0150

M
SE

LS
TM-H

RSA

LS
TM-R

SA

LS
TM-A

BC

LS
TM-FA

LS
TM-S

SA

LS
TM-H

HO

LS
TM-S

CA

LS
TM-C

hO
A

Algorithm

0.0135

0.0140

0.0145

0.0150

0.0155

M
SE

LS
TM-H

RSA

LS
TM-R

SA

LS
TM-A

BC

LS
TM-FA

LS
TM-S

SA

LS
TM-H

HO

LS
TM-S

CA

LS
TM-C

hO
A

Algorithm

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

M
SE

Figure 4. Visual LSTM simulations for each of the 8 optimization methods with respect to the
convergence, box plot, violin diagrams, and swarm diversity diagrams of the fitness function (MSE).

Axioms 2023, 12, 266 17 of 31

0 1 2 3 4 5
Iterations

0.56

0.57

0.58

0.59

0.60

R
2 LSTM-HRSA

LSTM-RSA
LSTM-ABC
LSTM-FA
LSTM-SSA
LSTM-HHO
LSTM-SCA
LSTM-ChOA

LS
TM-H

RSA

LS
TM-R

SA

LS
TM-A

BC

LS
TM-FA

LS
TM-S

SA

LS
TM-H

HO

LS
TM-S

CA

LS
TM-C

hO
A

Algorithm

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

0.605

R
2

LS
TM-H

RSA

LS
TM-R

SA

LS
TM-A

BC

LS
TM-FA

LS
TM-S

SA

LS
TM-H

HO

LS
TM-S

CA

LS
TM-C

hO
A

Algorithm

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

R
2

LS
TM-H

RSA

LS
TM-R

SA

LS
TM-A

BC

LS
TM-FA

LS
TM-S

SA

LS
TM-H

HO

LS
TM-S

CA

LS
TM-C

hO
A

Algorithm

0.52

0.54

0.56

0.58

0.60

R
2

Figure 5. Visual LSTM simulations for each of 8 optimization methods with respect to the convergence,
box plot, violin diagrams, and swarm diversity diagrams of the R2 criterion.

0.0
13

0

0.0
13

5

0.0
14

0

0.0
14

5

0.0
15

0

0.0
15

5

MSE

0

100

200

300

400

500

600

D
en

si
ty

LSTM-HRSA
LSTM-RSA
LSTM-ABC
LSTM-FA
LSTM-SSA
LSTM-HHO
LSTM-SCA
LSTM-ChOA

0.5
4

0.5
6

0.5
8

0.6
0

0.6
2

R2

0

5

10

15

20

D
en

si
ty

LSTM-HRSA
LSTM-RSA
LSTM-ABC
LSTM-FA
LSTM-SSA
LSTM-HHO
LSTM-SCA
LSTM-ChOA

Figure 6. Graphical representation of the Kernel Distribution Estimation plots of LSTM in terms of
fitness function (MSE) and R2.

Finally, to conclude the part with LSTM experiments, it is also worthwhile to provide
the data about execution time on the platform which was used for experiments (details
given in Section 4.3) in the worst-case scenario when taking into consideration the choice of
hyperparameters (details provided in Section 4.3). One LSTM objective function evaluation
for LSTM with 2 layers with 200 neurons per layer, dropout of 0.05, and learning rate of
0.0001, trained over 600 epochs with early stopping criteria, took about 195 s. However,
most of the generated models by metaheuristics were much less complex and the average
time for one objective function evaluation was around 90 s.

Axioms 2023, 12, 266 18 of 31

匀漀
氀愀
爀 攀

渀攀
爀最
礀 
⠀甀
渀椀
琀猀
㨀 䴀

圀
⤀

䐀愀琀攀

匀漀
氀愀
爀 攀

渀攀
爀最
礀 
⠀甀
渀椀
琀猀
㨀 䴀

圀
⤀

䐀愀琀攀

Figure 7. Graphical representation of the best predictions of the proposed LSTM-HRSA (top),
compared to the best predictions of the elementary LSTM-RSA method (bottom).

4.4.2. BiLSTM Experiments

Table 5 provides the BiLSTM simulation outcomes with respect to the fitness function
(MSE), yielding the standard metrics such as the best, worst, mean and median values,
together with the standard deviation and variation established again over the course of
15 separate runs. One can note, based on Table 1, that the proposed BiLSTM-HRSA method
again attained the best scores in terms of best, worst, mean, and median metrics. On the
other hand, the LSTM-ABC method established the most stable results, indicated by the
best standard deviation and variance measurements.

Tables 6 and 7 present the normalized and denormalized metrics related to the one-
step ahead, two-step ahead, and three-step ahead predictions, accompanied by the overall
results, achieved by the best run of each one of the 8 regarded LSTM models. The BiLSTM-
HRSA achieved the best scores for one-step and two-step ahead forecasts, while BiLSTM-
ChOA attained the best outcomes for three-step ahead. Moreover, when analyzing the best
overall results, the suggested BiLSTM-HRSA model achieved the best scores for MSE (the
fitness function), R2, and RMSE, while BiLSTM-HHO established the best MAE overall
result. In the end, Table 8 presents the best set of hyperparameters determined by each
metaheuristic. It is interesting to note that almost all metaheuristics (except one - HHO)
generated BiLSTM networks with just one layer.

Axioms 2023, 12, 266 19 of 31

Table 5. Overall results of the objective function for BiLSTM experiments. The best result in each
column is written in bold.

Method Best Worst Mean Median Std Var

BiLSTM-HRSA 0.01371 0.01419 0.01402 0.01412 1.77× 10−4 3.14× 10−8

BiLSTM-RSA 0.01381 0.01464 0.01434 0.01434 3.22× 10−4 1.03× 10−7

BiLSTM-ABC 0.01437 0.01465 0.0145 0.0145 1.14 ×10−4 1.29 ×10−8

BiLSTM-FA 0.01396 0.01475 0.01438 0.01447 2.95× 10−4 8.73× 10−8

BiLSTM-SSA 0.01423 0.01507 0.01454 0.01444 2.93× 10−4 8.59× 10−8

BiLSTM-HHO 0.01399 0.01499 0.01449 0.01452 3.97× 10−4 1.58× 10−7

BiLSTM-SCA 0.01407 0.01464 0.01425 0.01417 2.18× 10−4 4.77× 10−8

BiLSTM-ChOA 0.01411 0.01511 0.01463 0.01445 4.18× 10−4 1.75× 10−7

The graphical representation of the performed BiLSTM simulations are given in
Figures 8 and 9, where the same measurements have been outlined (for both the fitness
function— MSE and R2): the convergence graphs of the best runs, box plot diagrams and
violin plots over 15 runs, and swarm plots for population diversity view. The swarm plots
here reveal that in this case, the ChOA expresses the highest diversity of solutions in the
last iteration, contrary to the ABC and FA, where all 5 individuals from the population
were concentrated near each other.

Lastly, Figure 10 brings forward the KDE diagrams for the fitness function and R2,
visualizing once more the probability density function for the BiLSTM experiments. Ac-
cording to these diagrams that show the distribution of the outcomes of the runs, the results
are not coming from the normal distribution, a similar conclusion that has also been drawn
for the LSTM experiments. In the end, Figure 11 presents the best predictions of the BiLSTM
tuned by the proposed HRSA method, compared to the predictions of the BiLSTM tuned
by the elementary RSA.

0 1 2 3 4 5
Iterations

0.0140

0.0145

0.0150

0.0155

M
SE

BiLSTM-HRSA
BiLSTM-RSA
BiLSTM-ABC
BiLSTM-FA
BiLSTM-SSA
BiLSTM-HHO
BiLSTM-SCA
BiLSTM-ChOA

BiLS
TM-H

RSA

BiLS
TM-R

SA

BiLS
TM-A

BC

BiLS
TM-FA

BiLS
TM-S

SA

BiLS
TM-H

HO

BiLS
TM-S

CA

BiLS
TM-C

hO
A

Algorithm

0.0138

0.0140

0.0142

0.0144

0.0146

0.0148

0.0150

M
SE

BiLS
TM-H

RSA

BiLS
TM-R

SA

BiLS
TM-A

BC

BiLS
TM-FA

BiLS
TM-S

SA

BiLS
TM-H

HO

BiLS
TM-S

CA

BiLS
TM-C

hO
A

Algorithm

0.0135

0.0140

0.0145

0.0150

0.0155

M
SE

BiLS
TM-H

RSA

BiLS
TM-R

SA

BiLS
TM-A

BC

BiLS
TM-FA

BiLS
TM-S

SA

BiLS
TM-H

HO

BiLS
TM-S

CA

BiLS
TM-C

hO
A

Algorithm

0.014

0.015

0.016

0.017

0.018

M
SE

Figure 8. Visual BiLSTM simulations for each of 8 considered optimization methods with re-
spect to the convergence, box plot, violin diagrams, and swarm diversity diagrams of the fitness
function (MSE).

Axioms 2023, 12, 266 20 of 31

0 1 2 3 4 5
Iterations

0.54

0.55

0.56

0.57

0.58

0.59

0.60

R
2 BiLSTM-HRSA

BiLSTM-RSA
BiLSTM-ABC
BiLSTM-FA
BiLSTM-SSA
BiLSTM-HHO
BiLSTM-SCA
BiLSTM-ChOA

BiLS
TM-H

RSA

BiLS
TM-R

SA

BiLS
TM-A

BC

BiLS
TM-FA

BiLS
TM-S

SA

BiLS
TM-H

HO

BiLS
TM-S

CA

BiLS
TM-C

hO
A

Algorithm

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

R
2

BiLS
TM-H

RSA

BiLS
TM-R

SA

BiLS
TM-A

BC

BiLS
TM-FA

BiLS
TM-S

SA

BiLS
TM-H

HO

BiLS
TM-S

CA

BiLS
TM-C

hO
A

Algorithm

0.55

0.56

0.57

0.58

0.59

0.60

0.61

R
2

BiLS
TM-H

RSA

BiLS
TM-R

SA

BiLS
TM-A

BC

BiLS
TM-FA

BiLS
TM-S

SA

BiLS
TM-H

HO

BiLS
TM-S

CA

BiLS
TM-C

hO
A

Algorithm

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

R
2

Figure 9. Visual BiLSTM simulations for each of 8 considered optimization methods with respect to
the convergence, box plot, violin diagrams, and swarm diversity diagrams of the R2 criterion.

0.0
13

5

0.0
14

0

0.0
14

5

0.0
15

0

0.0
15

5

MSE

0

50

100

150

200

250

300

350

400

D
en

si
ty

BiLSTM-HRSA
BiLSTM-RSA
BiLSTM-ABC
BiLSTM-FA
BiLSTM-SSA
BiLSTM-HHO
BiLSTM-SCA
BiLSTM-ChOA

0.5
5

0.5
6

0.5
7

0.5
8

0.5
9

0.6
0

0.6
1

R2

0

2

4

6

8

10

12

14

D
en

si
ty

BiLSTM-HRSA
BiLSTM-RSA
BiLSTM-ABC
BiLSTM-FA
BiLSTM-SSA
BiLSTM-HHO
BiLSTM-SCA
BiLSTM-ChOA

Figure 10. Graphical representation of the Kernel Distribution Estimation plots of BiLSTM in terms
of fitness function (MSE) and R2.

Similarly as in the case of LSTM experiments, to finalize the section with BiLSTM
experiments, it is worthwhile pointing out the execution time in the worst-case scenario.
One BiLSTM objective function evaluation for BiLSTM structure with 2 layers and 200
neurons per layer, a dropout rate of 0.05 and learning rate of 0.0001, trained over 600 epochs
with early stopping criteria, took about 245 seconds, which is even higher in the case of
LSTM. However, most of the generated models by metaheuristics were much less complex
and the average time for one BiLSTM objective function evaluation was around 105 s.

Axioms 2023, 12, 266 21 of 31

匀漀
氀愀
爀 攀

渀攀
爀最
礀 
⠀甀
渀椀
琀猀
㨀 䴀

圀
⤀

䐀愀琀攀

匀漀
氀愀
爀 攀

渀攀
爀最
礀 
⠀甀
渀椀
琀猀
㨀 䴀

圀
⤀

䐀愀琀攀

Figure 11. Graphical representation of the best predictions of the proposed BiLSTM-HRSA (top),
compared to the best predictions of the elementary BiLSTM-RSA method (bottom).

Axioms 2023, 12, 266 22 of 31

Table 6. Normalized metrics for one-step, two-step, three-step ahead, and overall predictions for BiLSTM experiments. The best result in each column is written in bold.

Error Indicator BiLSTM-HRSA BiLSTM-RSA BiLSTM-ABC BiLSTM-FA BiLSTM-SSA BiLSTM-HHO BiLSTM-SCA BiLSTM-ChOA

One-step ahead R2 0.421099 0.415616 0.394359 0.388672 0.371305 0.407744 0.382719 0.371755
MAE 0.088153 0.087888 0.089462 0.089296 0.090744 0.086110 0.091255 0.092336
MSE 0.019988 0.020177 0.020911 0.021107 0.021707 0.020449 0.021313 0.021691
RMSE 0.141378 0.142046 0.144606 0.145283 0.147333 0.142999 0.145989 0.147280

Two-step ahead R2 0.674531 0.667477 0.659167 0.672847 0.654548 0.670620 0.669736 0.661434
MAE 0.068554 0.069248 0.070329 0.069242 0.071110 0.067229 0.068945 0.070249
MSE 0.011237 0.011481 0.011768 0.011296 0.011927 0.011373 0.011403 0.011690
RMSE 0.106007 0.107149 0.108480 0.106281 0.109213 0.106642 0.106785 0.108119

Three-step ahead R2 0.713170 0.717192 0.698024 0.725492 0.737979 0.705799 0.725345 0.741276
MAE 0.067599 0.066682 0.069706 0.067219 0.069153 0.068083 0.066007 0.064085
MSE 0.009903 0.009765 0.010426 0.009478 0.009047 0.010158 0.009483 0.008933
RMSE 0.099516 0.098815 0.102109 0.097355 0.095115 0.100786 0.097381 0.094514

Overall Results R2 0.602933 0.600095 0.583850 0.595670 0.587944 0.594721 0.592600 0.591488
MAE 0.074769 0.074606 0.076499 0.075252 0.077002 0.073807 0.075402 0.075557
MSE 0.013710 0.013808 0.014368 0.013960 0.014227 0.013993 0.014066 0.014105
RMSE 0.117088 0.117505 0.119868 0.118154 0.119277 0.118292 0.118601 0.118763

Table 7. Denormalized metrics for one-step, two-step, three-step ahead, and overall predictions for BiLSTM experiments. The best result in each column is written in bold.

Error Indicator BiLSTM-HRSA BiLSTM-RSA BiLSTM-ABC BiLSTM-FA BiLSTM-SSA BiLSTM-HHO BiLSTM-SCA BiLSTM-ChOA

One-step ahead R2 0.421099 0.415616 0.394359 0.388672 0.371305 0.407744 0.382719 0.371755
MAE 475.494774 474.069836 482.560360 481.662702 489.475820 464.476906 492.232039 498.062444
MSE 581,546.657808 587,054.952015 608,408.713021 614,121.623212 631,568.107513 594,962.847662 620,102.183796 631,116.615843
RMSE 762.592065 766.195114 780.005585 783.659124 794.712594 771.338348 787.465672 794.428484

Two-step ahead R2 0.674531 0.667477 0.659167 0.672847 0.654548 0.670620 0.669736 0.661434
MAE 369.779544 373.525155 379.353701 373.488815 383.568145 362.634358 371.889565 378.923944
MSE 326,956.104522 334,042.303713 342,390.554819 328,648.215533 347,031.006821 330,885.790177 331,773.092965 340,113.527815
RMSE 571.800756 577.963929 585.141483 573.278480 589.093377 575.226729 575.997477 583.192531

Three-step ahead R2 0.713170 0.717192 0.698024 0.725492 0.737979 0.705799 0.725345 0.741276
MAE 364.630339 359.681027 375.996556 362.581967 373.008805 367.237735 356.040109 345.675295
MSE 288,141.221075 284,100.488216 303,356.285497 275,762.724491 263,218.500005 295,545.992973 275,910.628013 259,906.610666
RMSE 536.787873 533.010777 550.777891 525.131150 513.048243 543.641419 525.271956 509.810367

Overall Results R2 0.602933 0.600095 0.583850 0.595670 0.587944 0.594721 0.592600 0.591488
MAE 403.301552 402.425339 412.636872 405.911161 415.350924 398.116333 406.720571 407.553894
MSE 398,881.327802 401,732.581314 418,051.851112 406,177.521079 413,939.204780 407,131.543604 409,261.968258 410,378.918108
RMSE 631.570525 633.823778 646.569293 637.320580 643.381073 638.068604 639.735858 640.608241

Axioms 2023, 12, 266 23 of 31

Table 8. Best attained collection of BiLSTM parameter values by each observed algorithm.

Method Units in First Layer Learning Rate Epochs Dropout Layers Units in Second Layer

BiLSTM-HRSA 104 0.008206 600 0.099072 1 /
BiLSTM-RSA 200 0.010000 600 0.200000 1 /
BiLSTM-ABC 200 0.006756 599 0.200000 1 /
BiLSTM-FA 156 0.010000 598 0.200000 1 /
BiLSTM-SSA 200 0.006827 515 0.078874 1 /
BiLSTM-HHO 139 0.008175 484 0.174655 2 120
BiLSTM-SCA 200 0.005856 600 0.200000 1 /
BiLSTM-ChOA 146 0.010000 549 0.155236 1 /

4.4.3. Comparison with Other ML/DL Models

Looking at the experimental results of the chosen models, it can be noted that the best
performance was achieved by the LSTM-HRSA approach, concluding that it was the best-
generated model throughout the simulations. To further emphasize the level of performance
attained by the LSTM-HRSA model, it was compared to the recent traditional ML and
DL methods, tested on the same data set with the same forecasting task. Additionally,
the best-performing model was compared to the baseline LSTM and baseline BiLSTM
architectures, as well.

For baseline LSTM and BiLSTM models, two networks without the dropout layer were
created, the first with one, and the second with two layers, each layer containing 300 units.
These networks were trained for 600 epochs, and the same early stopping criterion was
used as described in the simulations with metaheuristics, but models were not optimized,
and Keras default learning rate was used. These models were employed in the following
comparisons to see their behavior if they have not been tuned by metaheuristics. The
number of units in these baseline models was determined empirically, through experiments
of trial and error.

Moreover, to compare the behavior of the traditional feed-forward deep neural net-
works (FFDNNs), two models were implemented in Keras, with one and two layers, each
layer comprising 300 neurons, with the same early stopping condition, and with default val-
ues from Keras. Finally, support vector regression (SVR) and XGBoost were implemented
with the default values from the scikit learn library, without optimization, and included in
the comparison. The comparative analysis of the performances is shown in Table 9, where
the superiority of the suggested LSTM-HRSA can be acknowledged. Looking at the results
presented in Table 9, it is also possible to note that baseline LSTM and BiLSTM networks
are suitable for this particular prediction problem, and perform better than other observed
models, however, it is still possible to optimize them further to attain an even better level
of performance, as suggested by the results achieved by the LSTM-HRSA method.

Table 9. The results of the best-produced model compared to the traditional ML methods and baseline
LSTM and BiLSTM. The best result in each column is written in bold.

Method/Metric R2 MAE MSE RMSE

LSTM-HRSA 0.604139 0.074450 0.013668 0.116910
Baseline LSTM 1 layer 300n 0.532955 0.089421 0.015621 0.124983
Baseline LSTM 2 layers 300n 0.556421 0.083249 0.015267 0.123561
Baseline BiLSTM 1 layer 300n 0.534006 0.088724 0.015245 0.123470
Baseline BiLSTM 2 layers 300n 0.558395 0.081506 0.014931 0.122192
FFDNN 1 layer 300n 0.446716 0.097807 0.017917 0.133854
FFDNN 2 layers 300n 0.480219 0.092917 0.017021 0.130465
SVR 0.457883 0.096177 0.017618 0.132734
XGBoost 0.429964 0.100255 0.018365 0.135517

Axioms 2023, 12, 266 24 of 31

4.5. Statistical Analysis and Results Interpretation

A statistical consideration of the results and the interpretation of the factors the models
deemed as most decisive was conducted next.

4.5.1. Statistical Tests

Once the simulations have been concluded, it is necessary to validate the acquired
results to establish if these are statistically important. To achieve this, the best results of
each of the 15 runs, for every algorithm and both problem instances (LSTM and BiLSTM),
are taken and treated as data series. Next, it must be decided if it is possible to safely use a
parametric test, or it is necessary to proceed with a non-parametric one. To establish if the
parametric tests can be safely utilized, it is essential to check the independence, normality
and homoscedasticity requirements [89]. The independence requirement is fulfilled as each
separate run of every metaheuristic algorithm begins by producing a set of pseudo-random
individuals. However, the normality criterion is not fulfilled, as the KDE diagrams in
Figures 6 and 10 obviously show that the results are not originating from the normal
distribution. It must be noticed here that it was expected that the results will not originate
from the normal distribution, as metaheuristic stochastic algorithms typically require a
large number of executions to express their nature. The results may have come from the
normal distribution if the number of independent runs was greater than 15, however, since
the experiments are extremely demanding, unfortunately, this was not possible.

To verify this conclusion, the normality criterion has also been evaluated by applying
Shapiro–Wilk’s single problem analysis [90], where the Shapiro–Wilk’s p-values have been
determined for each regarded method separately. As every calculated p-value is lower than
the threshold value 0.05, the H0 hypothesis can be rejected at level α = 0.05. Consequently,
it is safe to conclude that the simulation outcomes are not originating from the normal
distribution. The Shapiro–Wilk outcomes are summarized within Table 10.

Table 10. Shapiro–Wilk p-values for LSTM and BiLSTM instances used to verify the normality
requirement for safe application of parametric tests.

Methods HRSA RSA ABC FA SSA HHO SCA ChOA

LSTM 0.032 0.027 0.021 0.034 0.027 0.018 0.017 0.026

BiLSTM 0.027 0.031 0.024 0.029 0.018 0.019 0.028 0.024

Since the Shapiro–Wilk test outcomes have shown that it is not safe to proceed with
parametric tests as the normality condition failed, it is necessary to apply the non-parametric
alternative. Therefore, Wilcoxon signed-rank test [91] was taken with the same set of data
series comprised of the best results for each run. The introduced HRSA was taken as the
control algorithm. The attained results are summarized in Table 11.

For LSTM experiments, determined p-values are in every case lower than the threshold
value 0.05 (p-values were namely 0.039 vs. RSA, 0.036 vs. ABC, 0.032 vs. FA, 0.024 vs. SSA,
0.033 vs. HHO, 0.034 vs. SCA, and 0.029 vs. ChOA). Therefore, it can be concluded that the
suggested HRSA method is statistically significantly superior to the other contenders for
both thresholds limits α = 0.1 and α = 0.05.

In the case of BiLSTM simulations, established p-values are lower than 0.05 for every
algorithm except SCA (p-values were namely 0.031 vs. RSA, 0.023 vs. ABC, 0.029 vs. FA,
0.022 vs. SSA, 0.026 vs. HHO, 0.057 vs. SCA, and 0.019 vs. ChOA). Consequently, it can be
noted that the proposed HRSA in this case is significantly better than the other contending
algorithms except SCA for the threshold limit α = 0.05, and significantly better than all
contenders for limit α = 0.1.

Axioms 2023, 12, 266 25 of 31

Table 11. p-values determined by the Wilcoxon signed-rank test on both problem instances.

Methods HRSA RSA ABC FA SSA HHO SCA ChOA

LSTM N/A 0.039 0.036 0.032 0.024 0.033 0.034 0.029
BiLSTM N/A 0.031 0.023 0.029 0.022 0.026 0.057 0.019

4.5.2. Best Model Interpretation

It is important to be able to understand and explain the behavior of an ML model in
order to fully comprehend the process and results. The Shapley Additive Explanations
(SHAP) method was used to explain the LSTM model that performed the best on the solar
energy prediction data set. SHAP allows for a clear and meaningful interpretation of the
LSTM predictions while avoiding the trade-off between accuracy and interpretability. It
uses Shapley values, based on game theory, to determine which features have the greatest
impact on the predictions [92].

In simple terms, Shapley values are a way to distribute payouts among players
(in this case, features) based on their contribution to the overall payout (representing
the prediction). The SHAP method uses this concept to assign an importance metric to
each feature, measuring how much that feature contributed to a particular prediction by
comparing the model’s prediction to what the prediction would be if that feature had a
baseline value.

The most successful LSTM model from experiments, LSTM-HRSA, was selected and
Shapley values were determined for it. The model structure is shown in Figure 12. To
understand the effect of each predictor on the final prediction, SHAP summary plots were
created for all features, both with and without the target variable, that has also been utilized
as a predictor. These plots are presented in Figure 13. The plots in the first row of the figure,
in the shape of bar charts, show the relative significance of each feature, as determined
by obtaining the average absolute value of the Shapley values. The plots provided in the
subsequent row illustrate the effect each observation has on the target variable.

Figure 12. The structure of the best produced model - LSTM-HRSA.

Analyzing Figure 13, it is possible to draw several conclusions. At the beginning, the
most significant feature is the solar variable for the past period, the second most significant
predictor is the temperature, followed by the humidity and clouds indicators, while the
least significant predictor is rain. From the summary plots per observations, it is possible
to see that the increase in temperature will generally imply a rise in solar-generated power,
while the increase in humidity and clouds will cause a decrease in solar power. This is in
line with the real-world observations, as the relative humidity is in inverse relation to the
air temperature, reaching the maximum values overnight (when temperatures are lower),
and decreasing over the day with the increase of the temperature [93]. On the other hand,

Axioms 2023, 12, 266 26 of 31

solar radiation power is positively related to the air temperature and in inverse relation to
the relative humidity [94,95]. Naturally, the clear skies without clouds will allow more solar
radiation, increasing the temperature and decreasing the humidity in the process [96,97].

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
mean(|SHAP value|) (average impact on model output magnitude)

rain

clouds

humidity

temp

solar

Best model - SHAP summary plot all features

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
mean(|SHAP value|) (average impact on model output magnitude)

rain

clouds

humidity

temp

Best model - SHAP summary plot without target feature

1.0 0.5 0.0 0.5 1.0 1.5
SHAP value (impact on model output)

rain

clouds

humidity

temp

solar

Best model - SHAP summary plot per observations for all features

Low

High

Fe
at

ur
e

va
lu

e
0.02 0.00 0.02 0.04 0.06
SHAP value (impact on model output)

rain

clouds

humidity

temp

Best model - SHAP summary plot per observations without target feature

Low

High

Fe
at

ur
e

va
lu

e

Figure 13. SHAP summary plots for executed tests with respect to the LSTM-HRSA optimized model.

5. Conclusions

The current paper presented the use of a modified novel metaheuristic to boost the
performance of two LSTM architectures for the multivariate prediction of solar energy
production. The reptile search algorithm resulted from the hybridization of the original
method with characteristics of other recent nature-inspired optimization metaheuristics.
Both a standard LSTM and a BiLSTM architecture were appointed to model the time series
of PV output accompanied by exogenous weather data, with six hyperparameters tuned
by the enhanced RSA. The results were compared with the outcomes of the manually
parameterized networks, as well as those when the two were tuned by seven other recent
metaheuristics.

The LSTM model tuned by the HRSA metaheuristics attained the best results with R2

of 0.604139, normalized MAE, MSE and RMSE values of 0.074450, 0.013668 and 0.116910,
respectively, that were significantly better than other models tuned by metaheuristics. The
comparisons with baseline LSTM and BiLSTM models, and other traditional ML methods
have also shown significant improvement in the results, as the best MSE value achieved
by the best-performing baseline method was 0.016 (baseline LSTM), which is around 13%
improvement, while the R2 was improved by 0.071 (from 0.533 to 0.604).

The findings of this study demonstrated again the importance of automatic parametriza-
tion of deep learning architectures, as well as the necessity to further look for new ways to
model the adaptation power that exists in the inspiring nature and to include these findings
in novel robust metaheuristics.

Future work will analyze other recurrent architectures (such as GRU) or transformer
models in their application for energy problems, while powered by metaheuristic opti-
mization algorithms. Additionally, it is targeted to develop a multi-objective approach that
will follow not only the accuracy of the results but also the complexity of the involved
DL model and provide the output in the form of a Pareto front. Moreover, time-series
forecasting tasks from other domains, such as cryptocurrency trends and stock markets
predictions, will also be addressed.

Axioms 2023, 12, 266 27 of 31

Author Contributions: Conceptualization, M.Z., N.B. and C.S.; methodology, N.B., C.S. and M.Z.;
software, N.B. and M.Z.; validation, M.Z. and N.B.; formal analysis, M.Z.; investigation, C.S., N.B.
M.Z. and R.S.; resources, N.B., M.Z., A.B. and C.S.; data curation, M.Z., A.B. and N.B.; writing—
original draft preparation, M.Z., R.S.-W., C.S. and R.S.; writing—review and editing, R.S., C.S., M.Z.,
M.A. and N.B.; visualization, N.B., M.Z. and M.A.; supervision, N.B. and C.S.; project administration,
M.Z. and N.B.; funding acquisition, N.B. and C.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially supported by a grant of the Romanian Ministry of Research and
Innovation, CCCDI – UEFISCDI, project number 178PCE/2021, PN-III-P4-ID-PCE-2020-0788, within
PNCDI III.

Data Availability Statement: Complete data sources are publicly available at https://www.kaggle.
com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather. In the current
work, the used data is from 1 January 2015 to 28 December 2018, with a total of 35,065 data points.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ANN Artificial Neural Network
BA Bat Algorithm
BiLSTM Bidirectional Long Short-Term Memory
ChOA Chimp Optimization Algorithm
CNN Convolutional Neural Networks
DL Deep Learning
FA Firefly Algorithm
GA Genetic Algorithm
GRU Gated Recurrent Unit
HHO Harris Hawks Optimization
HRSA Hybrid Reptile Search Algorithm
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Squared Error
PSO Particle Swarm Optimization
PV Photovoltaic
RMSE Root Mean Squared Error
RSA Reptile Search Algorithm
SCA Sine Cosine Algorithm

References
1. Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told

so far. Energy Rep. 2020, 6, 1973–1991. [CrossRef]
2. Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sustain.

Energy Rev. 2017, 69, 1170–1181. [CrossRef]
3. Cantarero, M.M.V. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy

transition in developing countries. Energy Res. Soc. Sci. 2020, 70, 101716. [CrossRef]
4. Forootan, M.M.; Larki, I.; Zahedi, R.; Ahmadi, A. Machine Learning and Deep Learning in Energy Systems: A Review.

Sustainability 2022, 14, 4832. [CrossRef]
5. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting:

Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]
6. Bacanin, N.; Stoean, C.; Zivkovic, M.; Rakic, M.; Strulak-Wójcikiewicz, R.; Stoean, R. On the Benefits of Using Metaheuristics in

the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting. Energies 2023, 16, 1434. [CrossRef]
7. Blaga, R.; Sabadus, A.; Stefu, N.; Dughir, C.; Paulescu, M.; Badescu, V. A current perspective on the accuracy of incoming solar

energy forecasting. Prog. Energy Combust. Sci. 2019, 70, 119–144. [CrossRef]
8. Anuradha, K.; Erlapally, D.; Karuna, G.; Srilakshmi, V.; Adilakshmi, K. Analysis Of Solar Power Generation Forecasting Using

Machine Learning Techniques. E3S Web Conf. 2021, 309, 01163. [CrossRef]

https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
http://doi.org/10.1016/j.egyr.2020.07.020
http://dx.doi.org/10.1016/j.rser.2016.09.137
http://dx.doi.org/10.1016/j.erss.2020.101716
http://dx.doi.org/10.3390/su14084832
http://dx.doi.org/10.1016/j.rser.2020.109792
http://dx.doi.org/10.3390/en16031434
http://dx.doi.org/10.1016/j.pecs.2018.10.003
http://dx.doi.org/10.1051/e3sconf/202130901163

Axioms 2023, 12, 266 28 of 31

9. Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation
forecasting: A review. Renew. Energy 2017, 105, 569–582. [CrossRef]

10. Kuo, W.C.; Chen, C.H.; Hua, S.H.; Wang, C.C. Assessment of Different Deep Learning Methods of Power Generation Forecasting
for Solar PV System. Appl. Sci. 2022, 12, 7529. [CrossRef]

11. Carrera, B.; Kim, K. Comparison Analysis of Machine Learning Techniques for Photovoltaic Prediction Using Weather Sensor
Data. Sensors 2020, 20, 3129. [CrossRef]

12. Kim, S.G.; Jung, J.Y.; Sim, M.K. A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data Using
Machine Learning. Sustainability 2019, 11, 1501. [CrossRef]

13. Zamo, M.; Mestre, O.; Arbogast, P.; Pannekoucke, O. A benchmark of statistical regression methods for short-term forecasting
of photovoltaic electricity production, part I: Deterministic forecast of hourly production. Sol. Energy 2014, 105, 792–803. .
[CrossRef]

14. Wu, Y.K.; Huang, C.L.; Phan, Q.T.; Li, Y.Y. Completed Review of Various Solar Power Forecasting Techniques Considering
Different Viewpoints. Energies 2022, 15, 3320. [CrossRef]

15. Zhang, W.; Li, Q.; He, Q. Application of machine learning methods in photovoltaic output power prediction: A review. J. Renew.
Sustain. Energy 2022, 14, 022701. [CrossRef]

16. Markovics, D.; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical
weather prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364. [CrossRef]

17. Vennila, C.; Titus, A.; Sudha, T.; Sreenivasulu, U.; Reddy, N.; Jamal, K.; Lakshmaiah, D.; Jagadeesh, P.; Belay, A. Forecasting solar
energy production using machine learning. Int. J. Photoenergy 2022, 2022, 7797488. [CrossRef]

18. Lim, S.C.; Huh, J.H.; Hong, S.H.; Park, C.Y.; Kim, J.C. Solar Power Forecasting Using CNN-LSTM Hybrid Model. Energies 2022,
15, 8233. [CrossRef]

19. Alkhayat, G.; Mehmood, R. A review and taxonomy of wind and solar energy forecasting methods based on deep learning.
Energy AI 2021, 4, 100060. [CrossRef]

20. Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble
stacking approach. Energy 2022, 240, 122812. [CrossRef]

21. Alkhayat, G.; Hasan, S.H.; Mehmood, R. SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar
Energy Forecasting. Energies 2022, 15, 6659. [CrossRef]

22. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers.
Manag. 2019, 198, 111799. . [CrossRef]

23. Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energy
2021, 172, 276–288. [CrossRef]

24. Jebli, I.; Belouadha, F.Z.; Kabbaj, M.I.; Tilioua, A. Deep learning based models for solar energy prediction. Adv. Sci. Technol. Eng.
Syst. J. 2021, 6, 349–355. [CrossRef]

25. Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic power forecasting with a hybrid deep learning approach. IEEE Access
2020, 8, 175871–175880. [CrossRef]

26. Aljanad, A.; Tan, N.M.L.; Agelidis, V.G.; Shareef, H. Neural Network Approach for Global Solar Irradiance Prediction at Extremely
Short-Time-Intervals Using Particle Swarm Optimization Algorithm. Energies 2021, 14, 1213. [CrossRef]

27. Zhou, Y.; Zhou, N.; Gong, L.; Jiang, M. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm
and extreme learning machine. Energy 2020, 204, 117894. [CrossRef]

28. Panda, S.; Dhaka, R.K.; Panda, B.; Pradhan, A.; Jena, C.; Nanda, L. A review on application of Machine Learning in Solar Energy
& Photovoltaic Generation Prediction. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems
(ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1180–1184. [CrossRef]

29. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

30. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.
[CrossRef]

31. Aditya Pai, B.; Devareddy, L.; Hegde, S.; Ramya, B. A time series cryptocurrency price prediction using lstm. In Emerging Research
in Computing, Information, Communication and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 653–662.

32. Chen, K.; Zhou, Y.; Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market. In
Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015; pp. 2823–2824.

33. Stoean, C.; Paja, W.; Stoean, R.; Sandita, A. Deep architectures for long-term stock price prediction with a heuristic-based strategy
for trading simulations. PLoS ONE 2019, 14, e0223593. [CrossRef]

34. Bukhari, A.H.; Raja, M.A.Z.; Sulaiman, M.; Islam, S.; Shoaib, M.; Kumam, P. Fractional neuro-sequential ARFIMA-LSTM for
financial market forecasting. IEEE Access 2020, 8, 71326–71338. [CrossRef]

35. Stoean, C.; Stoean, R.; Atencia, M.; Abdar, M.; Velázquez-Pérez, L.; Khosravi, A.; Nahavandi, S.; Acharya, U.R.; Joya, G.
Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep
Neural Network Techniques with Electrooculogram Signals. Sensors 2020, 20, 3032. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.renene.2016.12.095
http://dx.doi.org/10.3390/app12157529
http://dx.doi.org/10.3390/s20113129
http://dx.doi.org/10.3390/su11051501
http://dx.doi.org/10.1016/j.solener.2013.12.006
http://dx.doi.org/10.3390/en15093320
http://dx.doi.org/10.1063/5.0082629
http://dx.doi.org/10.1016/j.rser.2022.112364
http://dx.doi.org/10.1155/2022/7797488
http://dx.doi.org/10.3390/en15218233
http://dx.doi.org/10.1016/j.egyai.2021.100060
http://dx.doi.org/10.1016/j.energy.2021.122812
http://dx.doi.org/10.3390/en15186659
http://dx.doi.org/10.1016/j.enconman.2019.111799
http://dx.doi.org/10.1016/j.renene.2021.02.166
http://dx.doi.org/10.25046/aj060140
http://dx.doi.org/10.1109/ACCESS.2020.3025860
http://dx.doi.org/10.3390/en14041213
http://dx.doi.org/10.1016/j.energy.2020.117894
http://dx.doi.org/10.1109/ICEARS53579.2022.9752404
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1371/journal.pone.0223593
http://dx.doi.org/10.1109/ACCESS.2020.2985763
http://dx.doi.org/10.3390/s20113032
http://www.ncbi.nlm.nih.gov/pubmed/32471077

Axioms 2023, 12, 266 29 of 31

36. Stoean, R.; Stoean, C.; Atencia, M.; Rodríguez-Labrada, R.; Joya, G. Ranking Information Extracted from Uncertainty Quantifica-
tion of the Prediction of a Deep Learning Model on Medical Time Series Data. Mathematics 2020, 8, 1078. [CrossRef]

37. Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos
Solitons Fractals 2020, 140, 110212. [CrossRef] [PubMed]

38. Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons
Fractals 2020, 135, 109864. [CrossRef]

39. Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing
2019, 323, 203–213. [CrossRef]

40. Stegherr, H.; Heider, M.; Hähner, J. Classifying Metaheuristics: Towards a unified multi-level classification system. Nat. Comput.
2022, 21, 155–171. [CrossRef]

41. Emmerich, M.; Shir, O.M.; Wang, H. Evolution strategies. In Handbook of Heuristics; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 89–119.

42. Fausto, F.; Reyna-Orta, A.; Cuevas, E.; Andrade, Á.G.; Perez-Cisneros, M. From ants to whales: Metaheuristics for all tastes. Artif.
Intell. Rev. 2020, 53, 753–810. [CrossRef]

43. Beni, G. Swarm intelligence. In Complex Social and Behavioral Systems: Game Theory and Agent-Based Models; Sotomayor, M.,
Pérez-Castrillo, D., Castiglione, F., Eds.; Springer: New York, NY, USA, 2020; pp. 791–818.

44. Abraham, A.; Guo, H.; Liu, H. Swarm intelligence: Foundations, perspectives and applications. In Swarm Intelligent Systems;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–25.

45. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
46. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
47. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.

[CrossRef]
48. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);

Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.
49. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.

[CrossRef]
50. Yang, X.S. Firefly algorithms for multimodal optimization. In Proceedings of the International Symposium on Stochastic

Algorithms, Zurich, Switzerland, 13–14 September 2007; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.
51. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
52. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
53. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
54. Zivkovic, M.; Bacanin, N.; Venkatachalam, K.; Nayyar, A.; Djordjevic, A.; Strumberger, I.; Al-Turjman, F. COVID-19 cases

prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 2021, 66, 102669. [CrossRef]
55. Zivkovic, M.; Venkatachalam, K.; Bacanin, N.; Djordjevic, A.; Antonijevic, M.; Strumberger, I.; Rashid, T.A. Hybrid Genetic

Algorithm and Machine Learning Method for COVID-19 Cases Prediction. In Proceedings of the International Conference on
Sustainable Expert Systems: ICSES 2020; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 176, p. 169.

56. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M.; Zivkovic, M. Task scheduling in cloud computing environment by
grey wolf optimizer. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November
2019; pp. 1–4.

57. Bezdan, T.; Zivkovic, M.; Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Multi-objective Task Scheduling in Cloud Computing
Environment by Hybridized Bat Algorithm. In Proceedings of the International Conference on Intelligent and Fuzzy Systems;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 718–725.

58. Bezdan, T.; Zivkovic, M.; Antonijevic, M.; Zivkovic, T.; Bacanin, N. Enhanced Flower Pollination Algorithm for Task Scheduling
in Cloud Computing Environment. In Machine Learning for Predictive Analysis; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 163–171.

59. Zivkovic, M.; Bezdan, T.; Strumberger, I.; Bacanin, N.; Venkatachalam, K. Improved Harris Hawks Optimization Algo-
rithm for Workflow Scheduling Challenge in Cloud–Edge Environment. In Computer Networks, Big Data and IoT; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 87–102.

60. Abbasi-khazaei, T.; Rezvani, M.H. Energy-aware and carbon-efficient VM placement optimization in cloud datacenters using
evolutionary computing methods. Soft Comput. 2022, 26, 9287–9322. [CrossRef]

61. Zivkovic, M.; Bacanin, N.; Tuba, E.; Strumberger, I.; Bezdan, T.; Tuba, M. Wireless Sensor Networks Life Time Optimization Based
on the Improved Firefly Algorithm. In Proceedings of the 2020 International Wireless Communications and Mobile Computing
(IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1176–1181.

62. Zivkovic, M.; Bacanin, N.; Zivkovic, T.; Strumberger, I.; Tuba, E.; Tuba, M. Enhanced Grey Wolf Algorithm for Energy Efficient
Wireless Sensor Networks. In Proceedings of the 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi
Sad, Serbia, 26–27 May 2020; pp. 87–92.

http://dx.doi.org/10.3390/math8071078
http://dx.doi.org/10.1016/j.chaos.2020.110212
http://www.ncbi.nlm.nih.gov/pubmed/32839642
http://dx.doi.org/10.1016/j.chaos.2020.109864
http://dx.doi.org/10.1016/j.neucom.2018.09.082
http://dx.doi.org/10.1007/s11047-020-09824-0
http://dx.doi.org/10.1007/s10462-018-09676-2
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.scs.2020.102669
http://dx.doi.org/10.1007/s00500-022-07245-y

Axioms 2023, 12, 266 30 of 31

63. Bacanin, N.; Tuba, E.; Zivkovic, M.; Strumberger, I.; Tuba, M. Whale Optimization Algorithm with Exploratory Move for Wireless
Sensor Networks Localization. In Proceedings of the International Conference on Hybrid Intelligent Systems, Sehore, India,
10–12 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 328–338.

64. Zivkovic, M.; Zivkovic, T.; Venkatachalam, K.; Bacanin, N. Enhanced Dragonfly Algorithm Adapted for Wireless Sensor Network
Lifetime Optimization. In Data Intelligence and Cognitive Informatics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 803–817.

65. Bezdan, T.; Cvetnic, D.; Gajic, L.; Zivkovic, M.; Strumberger, I.; Bacanin, N. Feature Selection by Firefly Algorithm with Improved
Initialization Strategy. In Proceedings of the 7th Conference on the Engineering of Computer Based Systems, Novi Sad, Serbia,
26–27 May 2021; pp. 1–8.

66. Bezdan, T.; Zivkovic, M.; Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Glioma Brain Tumor Grade Classification from MRI
Using Convolutional Neural Networks Designed by Modified FA. In Proceedings of the International Conference on Intelligent
and Fuzzy Systems, İzmir, Turkey, 21–23 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 955–963.

67. Zivkovic, M.; Bacanin, N.; Antonijevic, M.; Nikolic, B.; Kvascev, G.; Marjanovic, M.; Savanovic, N. Hybrid CNN and XGBoost
Model Tuned by Modified Arithmetic Optimization Algorithm for COVID-19 Early Diagnostics from X-ray Images. Electronics
2022, 11, 3798. [CrossRef]

68. Strumberger, I.; Tuba, E.; Zivkovic, M.; Bacanin, N.; Beko, M.; Tuba, M. Dynamic search tree growth algorithm for global
optimization. In Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems, Costa de Caparica,
Portugal, 8–10 May 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 143–153.

69. Preuss, M.; Stoean, C.; Stoean, R. Niching Foundations: Basin Identification on Fixed-Property Generated Landscapes. In
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO ’11), Dublin, Ireland, 12–16 July
2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 837–844. [CrossRef]

70. Jovanovic, D.; Antonijevic, M.; Stankovic, M.; Zivkovic, M.; Tanaskovic, M.; Bacanin, N. Tuning Machine Learning Models Using
a Group Search Firefly Algorithm for Credit Card Fraud Detection. Mathematics 2022, 10, 2272. [CrossRef]

71. Petrovic, A.; Bacanin, N.; Zivkovic, M.; Marjanovic, M.; Antonijevic, M.; Strumberger, I. The AdaBoost Approach Tuned by Firefly
Metaheuristics for Fraud Detection. In Proceedings of the 2022 IEEE World Conference on Applied Intelligence and Computing
(AIC), Sonbhadra, India, 17–19 June 2022; pp. 834–839.

72. Bacanin, N.; Sarac, M.; Budimirovic, N.; Zivkovic, M.; AlZubi, A.A.; Bashir, A.K. Smart wireless health care system using graph
LSTM pollution prediction and dragonfly node localization. Sustain. Comput. Inform. Syst. 2022, 35, 100711. [CrossRef]

73. Jovanovic, L.; Jovanovic, G.; Perisic, M.; Alimpic, F.; Stanisic, S.; Bacanin, N.; Zivkovic, M.; Stojic, A. The Explainable Potential
of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing VOCs’ Environmental Fate. Atmosphere 2023, 14, 109.
[CrossRef]

74. Bacanin, N.; Zivkovic, M.; Stoean, C.; Antonijevic, M.; Janicijevic, S.; Sarac, M.; Strumberger, I. Application of Natural Language
Processing and Machine Learning Boosted with Swarm Intelligence for Spam Email Filtering. Mathematics 2022, 10, 4173.
[CrossRef]

75. Stankovic, M.; Antonijevic, M.; Bacanin, N.; Zivkovic, M.; Tanaskovic, M.; Jovanovic, D. Feature Selection by Hybrid Artificial
Bee Colony Algorithm for Intrusion Detection. In Proceedings of the 2022 International Conference on Edge Computing and
Applications (ICECAA), Tamilnadu, India, 13–15 October 2022; pp. 500–505.

76. Milosevic, S.; Bezdan, T.; Zivkovic, M.; Bacanin, N.; Strumberger, I.; Tuba, M. Feed-Forward Neural Network Training by Hybrid
Bat Algorithm. In Proceedings of the Modelling and Development of Intelligent Systems: 7th International Conference, MDIS
2020, Sibiu, Romania, 22–24 October 2020; Revised Selected Papers 7; Springer International Publishing: Berlin/Heidelberg,
Germany, 2021; pp. 52–66.

77. Gajic, L.; Cvetnic, D.; Zivkovic, M.; Bezdan, T.; Bacanin, N.; Milosevic, S. Multi-layer Perceptron Training Using Hybridized Bat
Algorithm. In Computational Vision and Bio-Inspired Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 689–705.

78. Bacanin, N.; Zivkovic, M.; Al-Turjman, F.; Venkatachalam, K.; Trojovskỳ, P.; Strumberger, I.; Bezdan, T. Hybridized sine cosine
algorithm with convolutional neural networks dropout regularization application. Sci. Rep. 2022, 12, 1–20. [CrossRef] [PubMed]

79. Bacanin, N.; Stoean, C.; Zivkovic, M.; Jovanovic, D.; Antonijevic, M.; Mladenovic, D. Multi-Swarm Algorithm for Extreme
Learning Machine Optimization. Sensors 2022, 22, 4204. [CrossRef] [PubMed]

80. Jovanovic, L.; Jovanovic, D.; Bacanin, N.; Jovancai Stakic, A.; Antonijevic, M.; Magd, H.; Thirumalaisamy, R.; Zivkovic, M.
Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator.
Sustainability 2022, 14, 14616. [CrossRef]

81. Bukumira, M.; Antonijevic, M.; Jovanovic, D.; Zivkovic, M.; Mladenovic, D.; Kunjadic, G. Carrot grading system using computer
vision feature parameters and a cascaded graph convolutional neural network. J. Electron. Imaging 2022, 31, 061815. [CrossRef]

82. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

83. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing convolutional neural network hyperparameters by
enhanced swarm intelligence metaheuristics. Algorithms 2020, 13, 67. [CrossRef]

84. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Quasi-oppositional differential evolution. In Proceedings of the 2007 IEEE
Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2229–2236.

http://dx.doi.org/10.3390/electronics11223798
http://dx.doi.org/10.1145/2001576.2001691
http://dx.doi.org/10.3390/math10132272
http://dx.doi.org/10.1016/j.suscom.2022.100711
http://dx.doi.org/10.3390/atmos14010109
http://dx.doi.org/10.3390/math10224173
http://dx.doi.org/10.1038/s41598-022-09744-2
http://www.ncbi.nlm.nih.gov/pubmed/35440609
http://dx.doi.org/10.3390/s22114204
http://www.ncbi.nlm.nih.gov/pubmed/35684824
http://dx.doi.org/10.3390/su142114616
http://dx.doi.org/10.1117/1.JEI.31.6.061815
http://dx.doi.org/10.1016/j.eswa.2021.116158
http://dx.doi.org/10.3390/a13030067

Axioms 2023, 12, 266 31 of 31

85. Bacanin, N.; Bezdan, T.; Venkatachalam, K.; Zivkovic, M.; Strumberger, I.; Abouhawwash, M.; Ahmed, A.B. Artificial neural
networks hidden unit and weight connection optimization by quasi-refection-based learning artificial bee colony algorithm. IEEE
Access 2021, 9, 169135–169155. [CrossRef]

86. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

87. Heidari, A.A.; Faris, H.; Aljarah, I.; Mirjalili, S.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. Available online: https://aliasgharheidari.com/HHO.html (accessed on 12
January 2023). [CrossRef]

88. Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
89. LaTorre, A.; Molina, D.; Osaba, E.; Poyatos, J.; Del Ser, J.; Herrera, F. A prescription of methodological guidelines for comparing

bio-inspired optimization algorithms. Swarm Evol. Comput. 2021, 67, 100973. [CrossRef]
90. Shapiro, S.S.; Francia, R. An approximate analysis of variance test for normality. J. Am. Stat. Assoc. 1972, 67, 215–216. [CrossRef]
91. Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany,

1992; pp. 196–202.
92. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777.
93. Shrestha, A.K.; Thapa, A.; Gautam, H. Solar radiation, air temperature, relative humidity, and dew point study: Damak, Jhapa,

Nepal. Int. J. Photoenergy 2019, 2019, 8369231. [CrossRef]
94. Behr, H.D. Trends and Interdependence of Solar Radiation and Air Temperature—A Case Study from Germany. Meteorology 2022,

1, 341–354. [CrossRef]
95. Tao, H.; Ewees, A.A.; Al-Sulttani, A.O.; Beyaztas, U.; Hameed, M.M.; Salih, S.Q.; Armanuos, A.M.; Al-Ansari, N.; Voyant, C.;

Shahid, S.; et al. Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid
intelligence model. Energy Rep. 2021, 7, 136–157. [CrossRef]

96. Gürel, A.E.; Ağbulut, Ü.; Biçen, Y. Assessment of machine learning, time series, response surface methodology and empirical
models in prediction of global solar radiation. J. Clean. Prod. 2020, 277, 122353. [CrossRef]

97. Pyrgou, A.; Santamouris, M.; Livada, I. Spatiotemporal analysis of diurnal temperature range: Effect of urbanization, cloud cover,
solar radiation, and precipitation. Climate 2019, 7, 89. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3135201
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
https://aliasgharheidari.com/HHO.html
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.eswa.2020.113338
http://dx.doi.org/10.1016/j.swevo.2021.100973
http://dx.doi.org/10.1080/01621459.1972.10481232
http://dx.doi.org/10.1155/2019/8369231
http://dx.doi.org/10.3390/meteorology1040022
http://dx.doi.org/10.1016/j.egyr.2020.11.033
http://dx.doi.org/10.1016/j.jclepro.2020.122353
http://dx.doi.org/10.3390/cli7070089

	Introduction
	Background
	Literature Survey
	Long Short-Term Memory
	Bidirectional Long Short-Term Memory
	Metaheuristic Optimization

	Methods
	Original Reptile Search Algorithm
	Improved RSA Algorithm
	Multivariate Time-Series Prediction Framework Based on the HRSA and Complexity of Introduced Approach

	Experimental Results
	Data set Description
	Metrics
	Experimental Setup
	Simulation Results
	LSTM Experiments
	BiLSTM Experiments
	Comparison with Other ML/DL Models

	Statistical Analysis and Results Interpretation
	Statistical Tests
	Best Model Interpretation

	Conclusions
	References

