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Crack detection is a crucial task in the periodic survey of high-rise buildings and infrastructure. Manual survey is notorious for low
productivity. )is study is aimed at establishing an image processing-based method for detecting cracks on concrete wall surfaces
in an automatic manner. )e Roberts, Prewitt, Canny, and Sobel algorithms are employed as the edge detection methods for
revealing the crack textures appearing in concrete walls. )e median filtering and object cleaning operations are used to enhance
the image and facilitate the crack recognition outcome. Since the edge detectors, the median filter, and the object cleaning
operation all require the appropriate selection of tuning parameters, this study relies on the differential flower pollination
algorithm as a metaheuristic to optimize the image processing-based crack detection model. Experimental results point out that
the newly constructed approach that employs the Prewitt algorithm can achieve a good prediction outcome with classification
accuracy rate � 89.95% and area under the curve � 0.90. )erefore, the proposed metaheuristic optimized image processing
approach can be a promising alternative for automatic recognition of cracks on the concrete wall surface.

1. Introduction

Large vertical concrete structures are widely observed in high-
rise buildings, retaining structures, and infrastructure. Due to
the combined effects of aging, inclement climate conditions,
thermal expansion/contraction, and human activities, the
health of concrete structures is reducing over time [1]. )us,
ensuring the acceptable level of integrity of these structures is
a crucial part in maintenance tasks. Notably, the periodic
condition survey by means of visual inspection is the com-
monly used method to obtain valuable information on the
current state of the structure. It is because visual changes in
structures directly indicate structural health conditions [2].

A large number of previous works have particularly fo-
cused on detecting cracks in concrete structures [3–5]. )e
reason is that cracks are a major concern when considering the

safety, durability, and serviceability of structures [1, 6]. Iden-
tification of cracks is an important step in structure mainte-
nance, which facilitates the effort in reducing their harmful
effect. Moreover, timely information about cracks is crucial to
prevent potential catastrophic events due to structural failures.

Despite the critical roles of reinforced concrete walls in
various structures (e.g., high-rise buildings, retaining walls,
dams, and tunnels), human-based visual inspection is still
a common method especially in developing countries. )is
fact is due to the limited access to sophisticated but costly
equipment used for machine-based periodic surveys of
structure conditions. Needless to say, manual inspection is
not only slow in progress but also has low consistency due to
quantitative evaluation [1]. )e assessment outcomes of
human inspectors are largely determined by their level of
training and experience. Notably, the observation of
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inspectors is also hindered by irregular lighting conditions
and elevations [7]. )ese facts significantly reduce the ac-
curacy of themanual crack detection.Moreover, the phase of
data processing and compiling is also very time-consuming
especially for structures with a large surface area of concrete
walls such as skyscrapers and dams. Kim et al. [8] sum-
marized that manual visual inspection is ineffective in terms
of cost, safety, and evaluation accuracy.

Due to those reasons, developing automatic methods for
detecting concrete wall cracks has drawn attentions of many
scholars [9–11]. Recently, various image processing tech-
niques have been employed to boost the performance of
concrete surface crack detection in both aspects of accuracy
and productivity. In these methods, these techniques are
aimed at recognizing cracks presented on a two-dimensional
image, followed by further analysis of crack properties
[12, 13].

Abdel-Qader et al. [14] employed edge-detection ap-
proaches including Sobel, Canny, and fast Haar transform
for detecting cracks appearing in bridges. A crack-measuring
system relying onmultitemporal images with the application
of the first derivative of a Gaussian filter was proposed by
Chen et al. [15]. Chen and Hutchinson [16] utilized the level
set method and morphological image processing techniques
to recognize and analyze cracks in the laboratory environ-
ment. An image processing technique that uses various
morphological operations including background brightness
adjustment, binarisation, and shape analysis has been put
forward by Lee et al. [6] to improve the crack detection
performance. Adhikari et al. [17] established an edge
detection-based method for measuring crack width of the
bridge concrete structure. Dorafshan [18] relied on three
commonly employed edge detectors including the Sobel,
Roberts, and Gaussian high-pass filter methods for detecting
cracks on surfaces of bridge decks; this study points out that
the Sobel edge detector has achieved the most accurate crack
detection outcome with an accuracy rate of 92%.

Recently, Yang et al. [5] investigated the performance of
a novel approach that employs image matching based on the
optical flow and subpixel to analyze slight concrete surface
displacements; this approach has shown good performance
in detecting thin cracks. An image processing-based model
for detection of surface cracks in building structures using an
improved Otsu method for image thresholding has been
proposed by Hoang [12]. Nguyen et al. [3] proposed
a multiphase technique for analyzing images that use
a B-spline level set model and a Savitzky–Golay filter.

Besides edge detection and image filtering approaches,
machine learning has also been successfully employed in
concrete surface crack detection [8–10]. Particularly, con-
volutional neural network (CNN) models have drawn at-
tention of many scholars in constructing automatic crack
recognition models [2, 4, 19, 20].

Recently, Dorafshan et al. [21] have compared the ca-
pability of six edge detectors (the Roberts, Prewitt, Sobel,
Laplacian of Gaussian, Butterworth, and Gaussian algo-
rithms) and CNN for crack detection in concrete structures.
)e research finding is that CNN has outperformed those
edge detectors by a large margin. )e main advantage of

CNN is that the feature extraction and pattern classification
can be performed in an integrated and autonomous manner.
However, CNNs often require a large number of training
data samples and a considerable computational expense.
Moreover, the performance of the edge detectors can be
potentially optimized and improved with the use of meta-
heuristic algorithms.

Since automatic concrete wall crack detection is a chal-
lenging task due to arbitrary forms of cracks, inconsistent
lighting condition, and disturbing noise patterns (e.g., spallings,
stains, and holes) [8], investigating other alternative tools can
be useful in both academic and practicing aspects. Moreover,
despite the fact that edge detection algorithms have been
employed for concrete surface crack detection, few studies have
been dedicated in investigating the performance of these al-
gorithms integrated with metaheuristics. It is noted that the
implementation of edge recognition models demands a proper
setting of tuning parameters. )e fine tuning of these pa-
rameters potentially leads to improvements in crack detection
accuracy. )erefore, there is a need to supplement the body of
knowledge by conducting studies with the focus on the hy-
bridization of edge detection and metaheuristic algorithms.

)is study is aimed at filling the aforementioned gap in
the literature by constructing novel edge detection-based
methods for concrete wall crack recognition. )e new
method relies on a median filter for noise removal, four edge
detection algorithms (Roberts, Prewitt, Sobel, and Canny),
and a morphological operation for filtering out unwanted
background objects in digital images. )e median filter, the
four edge detection algorithms, and the employed mor-
phological operation all necessitate appropriate settings of
their tuning parameters. As being observed in the literature,
the selection of parameters of image processing models can
be formulated as optimization problems [22–24]. Hence, our
study relies on the differential flower pollination, as a met-
aheuristic algorithm, to optimize the crack detection model
by means of identifying an appropriate set of model
hyperparameters. Furthermore, a dataset including 1080
image samples has been collected to validate the new con-
struction approach.

)e rest of the paper is organized as follows: the second
part briefly reviews the research methodology, followed by
the third part that describes the image acquisition process;
the proposed metaheuristic optimized edge detection model
is presented in the fourth section; the experimental results
will be reported in the fifth section, followed by several
concluding remarks of the study being stated in the final
section.

2. Research Methodology

2.1. Median Filter (MF). MF is an effective approach to
smooth the digital image. )is filter helps to remove the
unwanted noise existing in the concrete wall background
such as small stains or spallings. In image processing, MF is
highly preferable since this image smoothing method can
preserve edges which are potentially cracks. For a fixed
window size and in the aspect of edge preservation, Arias-
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Castro and Donoho [25] experimentally showed that the
result of MF can be better than that of Gaussian blur.

For each pixel in an image under analysis for crack de-
tection, MF replaces each pixel with the median of its
neighboring pixels [26].)e number of the neighboring pixels
depends on the window size which is a parameter of MF. )e
common choice of the window size is definitely context
dependent and usually requires a trial-and-error process to
determine the appropriate setting. MF can help suppress
unwanted details on the image background. However, a too
large value of window size can lead to a significant loss of
information regarding the cracking objects. In this study, the
window size is considered to be a hyperparameter of the
integrated crack detection model, and it is optimized by the
employed metaheuristic algorithm.

2.2. /e Employed Edge Detection Algorithms. Generally,
edge detectors are mathematical methods that are able to
recognize points in an image at which the gray-level intensity
expresses discontinuities [27]. )e point locations at which
the gray-level intensity varies sharply can be grouped into
segments called edges. Edge detection algorithms are highly
suitable for identifying cracks in concrete walls. It is because
crack pixels are highly associated with pixel locations having
discontinued gray-level intensity. )erefore, this study em-
ploys four edge detection approaches (the Roberts, Prewitt,
Sobel, and Canny algorithms) for automatic crack recogni-
tion. )e descriptions of these edge detection approaches are
briefly presented in this section of the study.

2.2.1. Roberts Edge Detection Method. )e Roberts method,
first described by Roberts [28], is a simple and fast algorithm for
calculating the spatial gradient measurement on a digital image.
)is algorithm quickly reveals locations featuring high spatial
frequency which often correspond to crack objects. To im-
plement the Roberts method, the image is first converted from
theRGB format into the grayscale format. After being processed
by this algorithm, pixel values at each location of the output
image are the approximated absolute magnitude of the spatial
gradient of the original grayscale image at the location [29].

)e following filters Rx and Ry are applied to the whole
image separately:

Rx �
−1 0
0 1

[ ],
Ry �

0 −1
1 0

[ ].
(1)

Subsequently, these two filters are combined to calculate
the absolute magnitude of the gradient as follows:

RG �
��������������������
Rx ·NIR( )2 + Ry ·NIR( )2

√
, (2)

where RG is the absolute magnitude of the gradient, the
symbol · denotes a dot product of two matrices, and NIR

denotes an image neighborhood with the size of 2 × 2 pixels
[29].

)e Roberts edge detector requires a hyperparameter TR
which is a threshold parameter. If the gradient values of
pixels in the image are smaller than the threshold value, they
are replaced by these threshold values. )us, an image with
detected edges can be obtained from the gradient with the
use of a threshold value TR.

Figure 1 illustrates edge detection results using the
Roberts method for an image without cracks and an image
with cracks. It is clearly seen that the quality of the crack
detection outcome strongly depends on the selection of the
parameter TR.

2.2.2. Prewitt Edge Detection Method. )e Prewitt edge
detection [30] also relies on two filters to estimate the de-
rivatives of each location within an image. Similar to the
Roberts algorithm, the Prewitt algorithm also requires
a parameter TP which serves as a threshold value for de-
termining edges. Figure 2 provides examples of edge de-
tection results using the Prewitt method for an image
without cracks and an image with cracks.

)e following filters to compute the approximation to
the derivatives are used to highlight edge pixels:

Px �
−1 −1 −1
0 0 0

1 1 1

 ,

Py �
−1 0 1
−1 0 1
−1 0 1

 .
(3)

)e two aforementioned filters are combined to compute
the total gradient as follows:

PP �
��������������������
Px ·NIP( )2 + Py ·NIP( )2

√
, (4)

where NIP denotes an image neighborhood with the size of
3 × 3 pixels [29].

2.2.3. Sobel Edge Detection Method. As proposed in the
previous work in [31], the Sobel edge detection is a widely
employed method in image processing [32]. Notably, this
edge detector highlights edges by first smoothing the image
before calculating the derivatives. )e filter hx is employed
for smoothing the image before computing the partial de-
rivative in the x direction:

hx �
1 1

2 2

1 1

 . (5)
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Original image Enhanced by MF Edge detection TR = 0.01

Edge detection TR = 0.02 Edge detection TR = 0.05 Edge detection TR = 0.1

(a)

Original image Enhanced by MF Edge detection TR = 0.01

Edge detection TR = 0.02 Edge detection TR = 0.05 Edge detection TR = 0.1

(b)

Figure 1: Edge detection result using the Roberts method: (a) an image without cracks and (b) an image with cracks.
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Original image Enhanced by MF Edge detection TP = 0.01

Edge detection TP = 0.02 Edge detection TP = 0.05 Edge detection TP = 0.1

(a)

Original image Enhanced by MF Edge detection TP = 0.01

Edge detection TP = 0.02 Edge detection TP = 0.05 Edge detection TP = 0.1

(b)

Figure 2: Edge detection result using the Prewitt method: (a) an image without cracks and (b) an image with cracks.
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Because the filters used for derivative approximation and
image smoothing are both linear, they can be integrated into
the following form for the x direction [29]:

hSobel,x �
1 0 −1
2 0 −2
1 0 −1

 , (6)

where hSobel,x is the filter employed for approximating the
derivative for the x direction.

In the same manner, the filter that computes the partial
derivative in the y direction is shown as follows [29]:

hSobel,y �
1 2 1

0 0 0

−1 −2 −1

 , (7)

where hSobel,y is the filter used for approximating the de-
rivative for the y direction.

Accordingly, the final outcome of the gradient ap-
proximations can be combined to give the gradient mag-
nitude via the following formula:

hSobel �
��������������������������
hSobel,x ·NIS( )2 + hSobel,y ·NIS( )2

√
, (8)

where hSobel is the combined result of the gradient ap-
proximations andNIS denotes an image neighborhood with
the size of 3 × 3 pixels [29].

Notably, a threshold value TS determines the pre-
sentation of the output image with all edges being displayed
(Figure 3). If the Sobel gradient values of pixels are lesser
than the threshold value TS, they are substituted by the
threshold value [33].

2.2.4. Canny Edge DetectionMethod. Canny [34] introduced
a multistep algorithm for edge recognition. A Gaussian
convolution is first applied to the image. Accordingly, a 2D
first-derivative operator is computed to reveal locations of
the image featuring intensity discontinuities. At the first
step, the employed Gaussian filter is presented as follows:

g(m, n) � Gσ(m, n)∗f(m, n), (9)

where

Gσ �
1����
2πσ2

√ exp −m
2 + n2
2σ2

( ). (10)

Moreover, Gσ is a Gaussian function with the variance of
σ2. Herein, the value of σ is chosen to be the default value

�
2

√

as suggested by the MATLAB Image Processing Toolbox
[35]. )e symbol ∗ denotes the convolution operator;m and
n are the indices used to specify the location of a pixel within
an image. f(m, n) represents an image neighborhood at the
pixel coordinate of (m, n).

Accordingly, the gradient of g(m, n) using a certain
gradient operator (e.g., Sobel) is calculated using the fol-
lowing equation:

gm,n(m, n) �
�������������������������������
gm(m, n) ·NIC( )2 + gn(m, n) ·NIC( )2√

,

(11)
where NIC represents an image neighborhood and
gm,n(m, n) denotes the combined result of the estimated
gradients.

In the next step, nonmaximum suppression is performed
to thin out the edges [34]. Moreover, it is noted that the
Canny method relies on two parameters of T1 and T2 to
carry out a double thresholding strategy (Figure 4). Edge
pixels that are stronger than the upper threshold T2 are
determined as strong edges. )ose that are weaker than the
lower threshold T1 are suppressed. Moreover, edge pixels
that range between T1 and T2 are determined to be weak
edges. Finally, all the edge pixels not connected to strong
edge pixels and belonging to the weak edge group are all
suppressed.

2.3. /e Differential Flower Pollination (DFP) Algorithm for
Model Parameter Optimization. )e determination of the
hyperparameters of image processing approaches can be
a challenging problem [36]. )e first reason is the landscape
feature of the cost function to be minimized can be com-
plicated and may contain a large number of local minima.
Another reason is that the search space of the parameters is
continuous; thus, there is an infinite number of possible
solutions. Accordingly, metaheuristic algorithms are highly
suitable for dealing with such a circumstance.

DFP [37] is a global optimizer that inherits the advan-
tages from the two popular metaheuristic algorithms of the
differential evolution (DE) and the flower pollination al-
gorithm (FPA). DFP employs the Lévy-flight-based global
explorative search of FPA [38] and the explorative local
search based on mutation-crossover operators of DE. As
experimentally demonstrated in the previous work [37],
DFP can help optimize the model parameters with satis-
factory outcomes.

)e general picture of the DFP optimization algorithm is
demonstrated in Figure 5. In the first iteration (gDFP � 1), all
population members with PopSize individuals are randomly
initiated within the feasible search domain. During the
evolutionary process, each member’s position is altered
through either the FPA-based global pollination operator or
the DE-based local pollination operator. Moreover, based on
suggestions of previous works [37, 39], a selection proba-
bility P � 0.8 is used to determine the frequencies of the
global and local pollination phases.

)e process of Lévy-flight-based global pollination can
be expressed in the following equation:

Xtriali � XgDFP
i + L. XgDFP

i −Xbest( ), (12)

where g is the index of the current generation and Xtriali is
a newly generated trial individual.

)e process of DE-based local pollination is divided into
two steps and described in the following way:
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Original image Enhanced by MF Edge detection TS = 0.01

Edge detection TS = 0.02 Edge detection TS = 0.05 Edge detection TS = 0.1

(a)

Original image Enhanced by MF Edge detection TS = 0.01

Edge detection TS = 0.02 Edge detection TS = 0.05 Edge detection TS = 0.1

(b)

Figure 3: Edge detection outcome employing the Sobel method: (a) an image without cracks and (b) an image with cracks.
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Original image Enhanced by MF Edge detection T1 = 0.001 and T2 = 0.1

Edge detection T1 = 0.2 and T2 = 0.5 Edge detection T1 = 0.3 and T2 = 0.6 Edge detection T1 = 0.6 and T2 = 0.8

(a)

Original image Enhanced by MF Edge detection T1 = 0.001 and T2 = 0.1

Edge detection T1 = 0.2 and T2 = 0.5 Edge detection T1 = 0.3 and T2 = 0.6 Edge detection T1 = 0.6 and T2 = 0.8

(b)

Figure 4: Edge detection outcome employing the Canny method: (a) an image without cracks and (b) an image with cracks.
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generate a mutated flower: Xmutated
i,gDFP

� xr1 ,gDFP + F. xr2 ,gDFP − xr3 ,gDFP( ),
(13)

where r1, r2, and r3 represent three random indices and F
denotes a mutation scale factor:

generate a crossed flower : Xcrossed
j,i,gDFP+1

�
Xmutated
j,i , if randj ≤Cr or j � rnb(i),

Xj,i,gDFP
, if randj >Cr and j≠ rnb(i),




(14)

where Cr represents the crossover probability which is often
chosen to be 0.8 [40]. Moreover, as recommend by Hoang
et al. [37], F is drawn from a Gaussian distribution with
mean � 0.5 and standard deviation � 0.15.

3. Acquisition of Concrete Wall Images

To construct the image processing-based model for detecting
cracks appearing on concrete wall surfaces, this study has
collected images from several buildings in the Da Nang city
(Vietnam). �e camera is positioned at a distance of about 1
meter from the concrete walls. It is noted that image samples
with their ground truth status of crack or noncrack have been
categorized by inspectors. To alleviate the computation cost,
image size is fixed to be 50 × 50 pixels. �us, image cropping
operation is performed to create image samples. In addition,
since one pixel represents an area of roughly 3.0 × 3.0mm2,
the surface area covered by one image sample is approxi-
mately 150 × 150mm2. For each class label of concrete wall
condition, 540 image samples have been collected. Hence, the
image dataset includes 1080 samples. �e collected dataset is
demonstrated in Figure 6. It is noted that all the images have
been captured by the camera of Asus ZenFone 4 Max Pro
(16MP resolution and F2.0 aperture lens).

4. The Proposed Metaheuristic Optimized
Image Processing Model for Concrete Wall
Crack Detection

�is section describes the proposed method for automatic
detection of cracks on the concrete wall surface. Since the

model is a combination of metaheuristic and edge detection
algorithms used for concrete wall crack recognition, it is
named the “Metaheuristic Optimized Edge Detection
model for concrete wall Crack Recognition” (MO-EDCR).
�e MO-EDCR model (Figure 7) consists of three basic
steps:

(1) Noise suppression by means of MF

(2) Edge identification using the algorithms of the
Roberts, Prewitt, Sobel, and Canny detectors

(3) Morphological operations for removing unwanted
small objects

As can be seen from Figure 7, to construct the automatic
crack recognition model, there are three groups of hyper-
parameters needed to be determined: the window size pa-
rameter (W) used in the step of median filtering, the edge
detectors’ thresholds (TE), and a threshold parameter (Thm)
used in the morphological operation for removing small
objects. It is noted that the tuning parameters of the edge
detection algorithms are TR for the Roberts method, TP for
the Prewitt method, TS for the Sobel method, and T1 and T2

for the Canny method. �e ranges of the window size pa-
rameter (W), the edge detectors’ thresholds (TE), and
a threshold parameter (Thm) are [2 10], [0 1], and [0, 0.1],
respectively.

It is noted that the size of an image sample is 50 × 50
pixels. �us, if elements of W are greater than 10 which
surpasses 20% of the image size, the processed image sample
is too blurred, and this leads to a significant loss in the image
detail. �us, the maximum value of elements ofW is selected
to be 10. �e range of TE is chosen to comply with the
feasible range of thresholding parameters used in edge
detectors which are specified by the MATLAB Image Pro-
cessing Toolbox [35]. In the case of Thm, since the removed
objects are often dirts or noisy points, their sizes are
comparatively smaller than those of crack objects. Based on
several trial-and-error experiments, the range of Thm of [0,
0.1] is found to be appropriate for the collected image
samples. �erefore, this range of Thm is selected to ease the
optimization process of DFP.

When the images with recognized edges are obtained,
the objects, demonstrated by pixels having the intensity 1,
are identified and isolated with the use of the MATLAB

DFP
population

Levy flight-
based-global
pollination 

DE operations-
based local
pollination 

r < 0.8

r ~ U(0,1)
Satisfied

Not
satisfied

gDFP < GMAX

DFP
algorithm

starts

gDFP = 1

Cost function
evaluation

gDFP = gDFP + 1
Optimized

model
parameters

PopSize

Satisfied
Not

satisfied

Figure 5: �e DFP optimization algorithm. Note: GMAX denotes the maximum number of generations. U(0, 1) is a uniform number
generator. r denotes a random number generated from U(0,1). gDFP is the index of the current generation.
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Image Processing Toolbox [35]. Objects that have the size
smaller than a certain threshold are removed from the digital
image because they are often unwanted noncrack ones. �e
minimum size (MS) of an object is computed as follows:

MS � PN × Thm, (15)

where PN is the total number of pixels of an image. Herein,
PN � 50 × 50 � 2500. As mentioned earlier, Thm is
a threshold parameter employed for removing small objects;
this parameter is also automatically determined by DFP.

Moreover, the following cost function (CF) is used to
evaluate the quality of a set of model parameters:

CF �
FPR + FNR

2
, (16)

where FPR and FNR are the false-positive rate and the false-
negative rate, respectively. �e equations used to compute
FPR and FNR will be presented in the next section. �us, if
the aforementioned CF is minimized, then it is possible to
obtain a model that features low values of both FPR and FNR.

(a)

(b)

Figure 6: Samples of the image dataset: (a) noncrack images and (b) crack images.

Edge detection 
algorithm

Roberts Prewitt

DFP optimizer

Model parameter 
initialization

Stopping 
criterion

gDFP = gDFP + 1

No

Small object 
removal

Optimized crack 
detection model

Yes

Median 
filter 

Canny Sobel

W TE Thm

gDFP = 1

Figure 7: �e proposed model for recognition of cracks on the concrete wall surface (MO-EDCR). Note: W denotes the window size
parameter. TE is the edge detection threshold. �m is a threshold parameter used in the morphological operation for small object removal.
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5. Experimental Results

5.1. Performance Evaluation. Since the detection of cracks in
concrete walls is formulated as a two-class categorization
problem, the measurement indices used for quantifying the
classification model can be employed. )e first commonly
used index is the classification accuracy rate (CAR). )e
higher the CAR value, the better the model performance. As
mentioned earlier, ground truth labels of crack or noncrack
for each image sample are assigned by human inspectors.
Since this study serves as a preliminary survey to collect the
current state of buildings, the ground truth labels are de-
termined at an image level.

In addition, the true-positive rate TPR (the percentage
of positive instances correctly classified), the false-positive
rate FPR (the percentage of negative instances mis-
classified), the false-negative rate FNR (the percentage of
positive instances misclassified), and the true-negative rate
TNR (the percentage of negative instances correctly clas-
sified) are also widely employed. )ese four rates are
computed as follows:

TPR � TP

TP + FN,

FPR � FP

FP + TN,

FNR � FN

TP + FN,

TNR � TN

TN + FP,

(17)

where TP, TN, FP, and FN denote the true-positive, true-
negative, false-positive, and false-negative values,
respectively.

Furthermore, based on the outcomes of TP, FP, and FN,
the precision or positive predictive value (PPV), negative
predictive value (NPV), recall, and F1 score can be com-
puted for measuring predictive capability. )ese indices are
calculated as follows [41, 42]:

precision � TP

TP + FP ,

NPV � TN

TN + FN ,

recall � TP

TP + FN ,

F1 Score � 2TP

2TP + FP + FN .

(18)

5.2. Model Prediction Result and Performance Comparison.
Before the model construction phase, the dataset consisting
of 1080 image samples has been divided into two sets: the
training set which accounts for 70% of the data and the

testing set which consists of 30% of the data. )e first set is
used for model construction, and the second set is employed
for demonstrating predictive performance of the proposed
model. During the model construction phase, DFP, as
a metaheuristic algorithm, optimizes the tuning parameters
of the image processing model. )e most appropriate values
of tuning parameters are then employed to establish the
proposed MO-EDCR.

Optimization results of MO-EDCR which employed the
Roberts, Prewitt, Sobel, and Canny algorithms are illustrated
in Figure 8. )e maximum number of iterations (GMAX) of
the DFP-based search engine is set to be 100 iterations. As
observed from this figure, the DFP metaheuristic algorithm
can help the image processing-based crack detection model
to quickly converge to a good solution of model parameters.
)e optimized parameters of the proposed MO-EDCR for
each edge detector are reported in Table 1. As can be seen
from this table, the window sizes used in MF are 5 × 5 for the
Roberts, Prewitt, and Sobel algorithms. However, the most
appropriate window size in the case of the Canny algorithm
is 3 × 3. In addition, the best threshold values of the Robert,
Prewitt, and Sobel edge detectors are 0.0160, 0.0213, and
0.0220, respectively. Since the Canny algorithm requires two
threshold values, these two values are found to be 0.3144 and
0.9058 by DFP.

)e most suitable values of Thm used in the morpho-
logical operation phase of the Roberts, Prewitt, Sobel, and
Canny algorithms are 0.0137, 0.0081, 0.0082, and 0.0196,
respectively. It is interesting to see that the employment of
the Prewitt and Sobel methods has resulted in a quite similar
value of Thm. Meanwhile, the Roberts and Canny ap-
proaches require a comparatively higher value of Thm. )us,
it can be seen that the values of Thm for different edge
detectors may not be similar. )is phenomenon can be
explained by the fact that the edges obtained from different
algorithms have different thicknesses. Moreover, the win-
dow size parameter employed by the Canny algorithm (W �
[3, 3]), which is automatically identified by DFP, is lower
than those of other algorithms (W � [5, 5]) because the
Gaussian filter has been used in the Canny algorithm to
partially smooth the image sample.

To reliably assess the model performance, the model
construction and verification phases have been repeated 20
times to obtain the measurement indices of CAR, AUC,
TPR, FPR, FNR, TNR, precision, and recall. It is noted that
the training and testing datasets in an individual run are
different and randomly sampled from the original dataset.

Table 2 provides the detailed outcomes of the predictive
performances of the MO-EDCR that employs the Roberts
algorithm, the Prewitt algorithm, the Sobel algorithm, and
the Canny algorithm. In this table, the mean, standard
deviation (Std), and coefficient of variation (COV) of the
prediction performance of each crack detection model are
reported. It is noted that COV is the ratio of the standard
deviation to the mean of prediction performance.

)e MO-EDCR model using these four edge detectors is
denoted as DFP-Roberts, DFP-Prewitt, DFP-Sobel, and
DFP-Canny, respectively. Observably, the DFP-Prewitt
has attained the best prediction performance with
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CAR � 89.954%, AUC � 0.900, precision � 0.910, and recall
� 0.890, followed by DFP-Roberts (CAR � 89.630%, AUC �
0.896, precision � 0.930, and recall � 0.857), DFP-Sobel

(CAR � 89.475%, AUC � 0.895, precision � 0.925, and recall
� 0.858), and DFP-Canny (CAR � 83.411%, AUC � 0.834,
precision � 0.808, and recall � 0.880).

DFP-Prewitt also attains the highest NPV � 0.881, fol-
lowed by DFP-Roberts (0.878). �e NPV of DFP-Sobel
(0.866) is relatively close to that of DFP-Canny (0.868).
�e best prediction outcome in terms of F1 score is achieved
by DFP-Roberts (0.903). �e F1 score of DFP-Prewitt
(0.895) is equal to that of DFP-Sobel. DFP-Canny attains
the lowest F1 score � 0.833.

Although the Roberts algorithm alone may not be as
effective in edge detection as other algorithms, the DFP-
Roberts has obtained the prediction performance which
surpasses other models in several performancemeasurement
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Figure 8: Optimizing result ofMO-EDCR that employs (a) the Roberts algorithm, (b) the Prewitt algorithm, (c) the Sobel algorithm, and (d)
the Canny algorithm.

Table 1: �e optimized model parameters.

Edge detector Optimized model parameter

Roberts
TR � 0.0160, W � [5.0000, 5.0000],

and Thm � 0.0137

Prewitt
TP � 0.0213, W � [5.0000, 5.0000],

and Thm � 0.0081

Sobel
TS � 0.0220, W � [5.0000, 5.0000],

and Thm � 0.0082

Canny
T1 � 0.3144, T2 � 0.9058, W � [3.0000, 3.0000],

and Thm � 0.0196
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indices. �is result can be due to the integration of the
Roberts algorithm with the DFP metaheuristic approach,
median filter, and morphological operations used for image
cleaning. �e latter three methods of computational in-
telligence and image processing techniques have assisted the
Roberts algorithm by alleviating its weakness. �erefore, the
integrated model of DFP-Roberts has obtained compara-
tively good crack classification performance for the currently
collected image dataset.

�e recall and TPR values of DFP-Canny (0.880) are
close to those of DFP-Roberts (0.890); however, other in-
dices of DFP-Canny are inferior to those of the other three
edge detectors.�e results of MO-EDCR using the four edge
detectors are graphically shown in Figures 9 and 10. Fig-
ure 10 presents the statistical characteristics of classification
performance of the four crack detection models obtained
from the repeated subsampling process with 20 runs. �e
model performances are graphically described by the four
box plots. It is noted that the bottom and top of each box plot
are the first and third quartiles of data, respectively; the red
band within the box denotes the median [43].

Based on the result comparison and with the consid-
eration that AUC is the main measurement index, it can be
concluded that the MO-EDCR model that employs the
Prewitt algorithm is best suited for the image dataset col-
lected at hand. Figure 11 provides examples of crack de-
tection results performed by MO-EDCR using the Prewitt
edge detector. Moreover, the processing time of the MO-
EDCR model employing the four edge detection algorithms,
which is obtained through 20 repeated model runs, is re-
ported in Table 3.

6. Conclusion

�is study has constructed an automatic approach for the
periodic survey of concrete wall structures. �e new ap-
proach is aimed at quickly and accurately identifying cracks
on the concrete wall surface by analyzing the images cap-
tured by digital cameras. �e model, named MO-EDCR,
consists of three main steps: MF-based noise suppression,
edge detection, and cleaning of small objects. Each of these
three steps requires hyperparameters to be appropriately set.

Table 2: Classification result comparison.

Prediction result
DFP-Prewitt DFP-Roberts DFP-Sobel DFP-Canny

Mean Std. COV Mean Std. COV Mean Std. COV Mean Std. COV

CAR 89.954 1.033 0.011 89.630 1.307 0.015 89.475 1.069 0.012 83.411 1.666 0.020
AUC 0.900 0.010 0.012 0.896 0.013 0.014 0.895 0.011 0.012 0.834 0.017 0.020
TPR 0.890 0.022 0.024 0.857 0.015 0.018 0.858 0.019 0.022 0.880 0.028 0.031
FPR 0.091 0.017 0.181 0.065 0.019 0.289 0.069 0.016 0.239 0.213 0.027 0.126
FNR 0.110 0.022 0.197 0.143 0.015 0.106 0.142 0.019 0.132 0.120 0.028 0.231
TNR 0.909 0.017 0.018 0.935 0.019 0.020 0.931 0.016 0.018 0.787 0.027 0.034
Precision 0.910 0.014 0.016 0.930 0.017 0.019 0.925 0.018 0.019 0.808 0.020 0.024
Recall 0.890 0.022 0.024 0.857 0.015 0.018 0.858 0.019 0.022 0.880 0.028 0.031
NPV 0.881 0.020 0.022 0.879 0.018 0.020 0.866 0.018 0.021 0.868 0.018 0.021
F1 score 0.895 0.017 0.019 0.903 0.016 0.017 0.895 0.014 0.016 0.833 0.017 0.021

DFP-Prewitt DFP-Roberts DFP-Sobel DFP-Canny
0.8

0.85

0.9

0.95

CAR

AUC

Precision

Recall

Figure 9: Model performance comparison.
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�e hyperparameter of the first step is the window size of
MF.

�e free parameter of the second step is the thresholding
values of the four edge detection methods (the Roberts,
Prewitt, Sobel, and Canny algorithms). �erefore, DFP is
used in this research to automatically identify the proper
setting for those hyperparameters of MO-EDCR. Experi-
mental results point out that MO-EDCR with the em-
ployment of the Prewitt method can help attain the most
desired prediction outcome with CAR � 89.954% and AUC
� 0.900. With CAR close to 90% and AUC of 0.9, the newly
constructed MO-EDCR is a promising alternative to assist
maintenance agencies in the tasks of periodic surveys of
buildings and infrastructure.

Future developments of the current work may include
the investigation of other advanced edge detectors and
metaheuristic algorithms to meliorate the prediction

accuracy. Moreover, comparative works that benchmark
the performances of metaheuristic optimized edge de-
tectors and deep neural networks can also be promising
research directions in the field of image-based crack
recognition.

As mentioned earlier, at this current stage of the study,
the ground truth labels of samples are considered at an
image level. Accordingly, the classification result is con-
sidered to be a true positive if the edge detection model
can detect a part of a crack object.�is is a limitation of the
current model since it is beneficial for building mainte-
nance agencies to be capable of detecting the whole crack
object. �erefore, in a future work, a more sophisticated
image processing model with the capability of recognizing
cracks at a pixel level can be constructed to perform deeper
analyses on the properties of cracks on the building
surface.
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Figure 10: Model performance comparison in terms of (a) AUC, (b) CAR, (c) precision, and (d) recall.
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