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ABSTRACT
The Frequency Assignment Problem (FAP) is one of the key
issues in the design of GSM networks (Global System for
Mobile communications), and will remain important in the
foreseeable future. There are many versions of FAP, most of
them benchmarking-like problems. We use a formulation of
FAP, developed in published work, that focuses on aspects
which are relevant for real-world GSM networks. In this pa-
per, we have designed, adapted, and evaluated several types
of metaheuristic for different time ranges. After a detailed
statistical study, results indicate that these metaheuristics
are very appropriate for this FAP. New interference results
have been obtained, that significantly improve those pub-
lished in previous research.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization

General Terms
Algorithms, Performance
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Automatic Frequency Planning, Metaheuristics
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1. INTRODUCTION
Frequency planning is one of the key problems in the de-

sign of GSM systems (Global System for Mobile communi-
cations) [19]. In frequency planning, the available frequency
band is slotted into channels (or frequencies) which have
to be allocated to the elementary transceivers (TRXs) in-
stalled in the base stations of the network. This problem is
known as Automatic Frequency Planning (AFP), Frequency
Assignment Problem (FAP), or Channel Assignment Prob-
lem (CAP). FAP is a hard design task because the usable
radio spectrum is very scarce and frequencies have to be
reused throughout the network, and consequently, some in-
evitable degree of interference will occur. It is the goal of
the designer to minimize the interference and satisfy other
design constraints.

Tackling the FAP is crucial for today’s GSM operators not
only at the stage of the initial design, but also in subsequent
modifications of the network aimed at solving, for instance,
unpredicted interference reports or handling an increase of
traffic demand in some areas. Indeed, by mid 2006 GSM ser-
vices were used by more than 1.8 billion subscribers1 across
210 countries, representing approximately 77% of the world’s
cellular market. It is widely accepted that the third gen-
eration mobile telecommunication system (Universal Mobile
Telecommunication System or UMTS) [21], will coexist with
the enhanced releases of the GSM standard (GPRS [11] and
EDGE [9]) at least in the first phases. GSM is then ex-
pected to play an important role as a dominating technol-
ogy for many years. Therefore, frequency planning in these
networks will be an important task, at present as well as in
the future.

Several different problem types are subsumed under the
general FAP framework, and many mathematical models
have been proposed since the late sixties [1]. Our work is fo-
cussed on concepts and models which are relevant for current

1http://www.wirelessintelligence.com/
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real-world GSM frequency planning [7]. For these reasons,
we separate ourselves from existing results, since our prob-
lem is far different from those reported in the literature with
similar names (which are benchmarking-like problems). We
have used a new formulation, proposed by the authors of
[16], so as to take full advantage of realistic and accurate in-
terference information from a real-world GSM network. As
a generalization of the graph coloring problem, the FAP is
NP-hard [12] and therefore using exact algorithms to solve
real-sized instances of the problem is not practical. Meta-
heuristics [4, 5, 10] become the choice here.

Encouraged by the success of published work, where
an ACO algorithm was applied to a real-world FAP for-
mulation [16], we have endeavored to tackle this prob-
lem within the OPLINK coordinated research project
(http://oplink.lcc.uma.es) using several metaheuristic
techniques. The large effort required to design and adapt
the different metaheuristics to our FAP version justifies this
coordinated task. Indeed, our long term goal is to cover a
wide range of types of metaheuristics on this real-world op-
timization problem. In the current paper, we have covered
the two main types of techniques by using both population-
based and trajectory-based metaheuristics.

Since the OPLINK project is composed of four Spanish
research groups, two prototypical techniques were selected
for each kind of metaheuristic types. Each of the research
groups is in charge of the development of one optimization
method, depending on its technical expertise. This way, the
chosen algorithms have consisted of Genetic Algorithms and
Scatter Search for the population-based category and Local
Search with Heuristic Restarts (LSHR) and a (1+2) Evolu-
tionary Algorithm for the trajectory-based metaheuristics.
In order to ensure all the algorithms were programmed in
the most efficient way and following common guidelines, the
coordinated work has also involved the supervision of the
design and development of techniques by the other groups.
Great care has been put into making proper comparisons
between the algorithms by using the same programming lan-
guage, compiler options, and running all the algorithms un-
der the same experimental conditions. In particular, previ-
ous work highlighted the importance of hybridizing meta-
heuristics with local search in this problem [16]. In order to
improve the fairness of the comparison between the meta-
heuristics, the four algorithms tested in this paper use the
same local search algorithm. Results are very promising
since a new best solution for the tackled real-world GSM
network has been computed.

The organization of the paper is as follows. In Section 2,
we present the background of our frequency assignment
problem and the mathematical formulation used for its solu-
tion. In Section 3 we outline these four chosen metaheuris-
tics. Finally, in Section 4 we present the experimental eval-
uation of the algorithms, and then offer some conclusions
and an outline of future work in Section 5.

2. FREQUENCY ASSIGNMENT IN GSM
NETWORKS

The frequency planning is the last step in the layout of a
GSM network. Prior to tackling this problem, the network
designer has to address some other issues: where to install
the BTSs (Base Transceiver Station) or how to set configura-
tion parameters of the antennae (tilt, azimuth, etc.), among

others [18]. Once the sites for the BTSs are selected and
the sector layout is decided, the number of TRXs to be in-
stalled per sector has to be fixed. This number depends on
the traffic demand that the corresponding sector has to sup-
port. Frequency planning lies in the assignment of a channel
(a frequency) to every TRX [7]. The optimization problem
arises because the usable radio spectrum is generally very
scarce and, consequently, frequencies have to be reused by
many TRXs in the network.

However, the multiple use of a same frequency may cause
interferences that may reduce the quality of service (QoS)
down to unsatisfactory levels. Indeed, significant interfer-
ence may occur if the same or adjacent-channels are used
in neighboring, overlapping cells. The point here is that
computing this level of interference is a difficult task which
depends not only on the channels, but also on the radio
signals and the properties of the environment. The more
accurate the measure of the interference in a given GSM
network, the higher the quality of the frequency plan that
can be computed for this network. Several ways of quantify-
ing this interference exist, ranging from theoretical methods
to extensive measurements [14]. They all result in a so-called
interference matrix, denoted by M . Each element M(i, j) of
M indicates the degradation of the network quality if cells
i and j operate on the same frequency. This is called co-
channel interference. Apart from co-channel interference it
may exist a so-called adjacent-channel interference, which
occurs when two TRXs operate on adjacent channels (i.e.,
one TRX operates on channel f and the other on channel
f +1 or f − 1). An accurate interference matrix is therefore
an essential requirement for frequency planning because the
ultimate goal of any frequency assignment algorithm will be
to minimize the sum of the interferences.

In real-life situations, additional complicating factors such
as separation constraints among cells, or advanced inter-
ference reduction techniques such as frequency hopping or
dynamic power control, etc., may be considered. The inter-
ested reader is referred to [7] for a more detailed description
of frequency planning in actual GSM networks.

2.1 Mathematical Formulation
Let T = {t1, t2, . . . , tn} be a set of n transceivers, and

let Fi = {fi1, . . . , fik} ⊂ N be the set of valid frequen-
cies that can be assigned to a transceiver ti ∈ T , i =
1, . . . , n. Note that k —the cardinality of Fi— is not nece-
ssarily the same for all the transceivers. Furthermore, let
S = {s1, s2, . . . , sm} be a set of given sectors (or cells) of
cardinality m. Each transceiver ti ∈ T is installed in ex-
actly one of the m sectors. Henceforth we denote the sector
in which a transceiver ti is installed by s(ti) ∈ S. Finally,
given a matrix M = {(μij , σij)}m×m, called the interfer-
ence matrix. The two elements μij and σij of a matrix en-
try M (i, j) = (μij , σij) are numerical values greater than or
equal to zero. In fact, μij represents the mean and σij the
standard deviation of a Gaussian probability distribution
describing the carrier-to-interference ratio (C/I) [24] when
sectors i and j operate on a same frequency. The higher the
mean value, the lower the interference and thus the better
the communication quality. Note that the interference ma-
trix is defined at sector (cell) level, because the transceivers
installed in each sector all serve the same area.

A solution to the problem is obtained by assigning to
each transceiver ti ∈ T one of the frequencies from Fi.
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A solution (or frequency plan) is henceforth denoted by
p ∈ F1 × F2 × · · · × Fn, where p(ti) ∈ Fi is the frequency
assigned to transceiver ti. The objective is to find a solution
p that minimizes the following cost function:

C(p) =
�
t∈T

�
u∈T,u �=t

Csig(p, t, u) . (1)

In order to define the function Csig(p, t, u), let st and su be
the sectors in which the transceivers t and u are installed,
that is, st = s(t) and su = s(u), respectively. Moreover,
let μstsu and σstsu be the two elements of the correspond-
ing matrix entry M(st, su) of the interference matrix with
respect to sectors st and su. Then, Csig (p, t, u) =����
���

K if st = su, |p(t)− p(u)| < 2
Cco(μstsu , σstsu) if st �= su, μstsu > 0, |p(t)− p(u)| = 0
Cadj(μstsu , σstsu) if st �= su, μstsu > 0, |p(t)− p(u)| = 1
0 otherwise.

(2)
K >> 0 is a very large constant defined by the network
designer so as to make it undesirable allocating the same or
adjacent frequencies to transceivers serving the same area.
Furthermore, function Cco(μ, σ) is defined as follows:

Cco(μ, σ) = 100
�
1.0−Q

�cSH − μ

σ

��
(3)

where

Q(z) =

� ∞

z

1√
2π

e
−x2

2 dx (4)

is the tail integral of a Gaussian probability distribution
function with zero mean and unit variance, and cSH is a
minimum quality signalling threshold. Function Q is widely
used in digital communication systems because it character-
izes the error probability performance of digital signals [23].
This means that Q

	
cSH−μ

σ



is the probability of the C/I ra-

tio being greater than cSH and, therefore, Cco(μstsu , σstsu)
computes the probability of the C/I ratio in the serving area
of sector st being below the quality threshold due to the in-
terferences provoked by sector su. That is, if this probability
is low, the C/I value in the sector st is not likely to be de-
graded by the interfering signal coming from sector su and
thus the communication quality yielded is high. (Note that
this is compliant as to defining a minimization problem.)
On the contrary, a high probability —and consequently a
high cost— causes the C/I mostly to be below the minimum
threshold cSH and thus incurring in low quality communica-
tions.

As function Q has no closed form for the integral, it has
to be evaluated numerically. For this purpose we use the
complementary error function E:

Q(z) =
1

2
E

�
z√
2

�
(5)

In [20], a numerical method is presented that allows the
value of E to be computed with a fractional error smaller
than 1.2 · 10−7. Analogously, function Cadj(μ, σ) is defined
as

Cadj(μ, σ) = 100
	
1.0 −Q

	
cSH−cACR−μ

σ




= 100

�
1.0− 1

2
E
�

cSH−cACR−μ

σ
√

2

��
.

(6)

The only difference between functions Cco and Cadj is the
additional constant cACR > 0 (adjacent channel rejection) in
the definition of function Cadj. This hardware specific con-
stant measures the receiver’s ability to receive the wanted
signal in the presence of an unwanted signal at an adja-
cent channel. Note that the effect of constant cACR is that
Cadj(μ, σ) < Cco(μ, σ). This makes sense, since using adja-
cent frequencies (channels) does not provoke such a strong
interference as using the same frequencies.

The new feature of this mathematical model is to be
found in the definition of the interference matrix informa-
tion, which is directly imported from real world GSM fre-
quency planning as currently conducted in the industry (and
not generated in a computer by sampling random variables).
This definition allows not only the computation of high per-
formance frequency plans, but also the prediction of QoS.
Indeed, both the definition of the interference matrix and
the subsequent computations carried out to obtain the cost
values are motivated by real-world GSM networks since they
are related to the computation of the BER (Bit Error Rate)
performance of Gaussian Minimum Shift Keying (GMSK),
the modulation scheme used for GSM [23].

3. PROPOSED METAHEURISTICS
The aim of this section is to present the algorithms

used in this work for solving the proposed FAP. Both
population-based (Genetic Algorithms and Scatter Search)
and trajectory-based metaheuristics (Evolutionary Algo-
rithms and Local Search with Heuristic Restarts) have been
evaluated. All of them use the same local search algorithm,
which will be described in this section as well. ACO will
also be briefly described, in order to compare the four new
metaheuristics with previous work in the literature [16].

3.1 Local Search
The application of local search methods allows admissible

solutions to be achieved in relatively short times. This is
a typical requirement within commercial tools, the context
in which the tackled problem resides. In order to perform
a fair comparison of the implemented approaches, the local
search strategy (see Algorithm 1) has been defined as a com-
mon element for all the proposed metaheuristics. The local
search strategy has been specifically designed to deal with
our version of FAP.

The aim of the designed local search is to optimize the as-
signment of frequencies to TRXs in a given sector, without
changing the remaining network assignments. Candidate so-
lutions (or plans) are encoded as arrays of integer values p,
where p(t) is the frequency assigned to TRX t. The neigh-
bours of a candidate solution are obtained by replacing the
TRXs frequencies of each sector. Therefore, the neighbour-
hood size is the number of sectors in the network. The re-
assignment of frequencies inside a sector is performed in the
following way: first, the available frequencies for the sector
are sorted by their involved cost. Then, two possibilities are
considered, either assign the frequency with lowest associ-
ated cost to a TRX that is allowed to use that frequency, or
assign its two adjacent frequencies to two different TRXs (if
they are allowed to use these frequencies). For each of the
new generated partial solution the same process is repeated
until all TRXs in the sector have been assigned a frequency.
The complete solution with lowest associated cost is consid-
ered as the new neighbour.
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When all TRXs in a given sector are allowed to use the
same frequency ranges, the neighbour generation process en-
sures the achievement of the optimal frequency assignment
inside the analyzed sector, considering the remaining net-
work fixed. Also, it has to be noted that this local search
will never assign the same frequency or adjacent frequencies
to two TRXs within the same sector (these co-channel and
adjacent-channel interferences are the highest-cost kind of
interference, as shown in Eq. 2).

The order in which neighbours are analyzed is determined
in a random way (line 7 of Algorithm 1), but trying to
avoid the generation of neighbours that are not going to
improve the current solution. For such purpose a set called
currentSectors containing the sectors that might improve
the current solution is mantained. Initially all sectors are
introduced in currentSector (line 2). For the generation
of a new neighbour, a sector sec is randomly extracted from
currentSector (line 7) and its frequencies reassigned (line 8).
The local search moves to the first new generated neighbour
that improves the current solution (lines 9-10), adding all
the sectors that interfere or are interfered by sec to the set
of the next sectors (nextSectors) to considere (lines 11-12).
Each time currentSectors set is emptied (line 6) sectors in
the next set are transferred to the current set (line 4) and the
nextSectors set is cleared (line 5). The local search stops
when none of the neighbours improves the current solution
(line 3).

Algorithm 1 Pseudocode for Local Search

1: Input: current solution S
2: nextSectors← {1, ..., numberOfSectors}
3: while (nextSectors ! = ∅) do
4: currentSectors← nextSectors
5: nextSectors← ∅
6: while (currentSectors != ∅) do
7: sec← extract a random sector from currentSectors
8: neighbour ← reassign frequencies of S in sector sec
9: if (neighbour improves S) then

10: S ← neighbour
11: nextSectors + = sectors interfered by sec
12: nextSectors + = sectors that interfere sec
13: end if
14: end while
15: end while
16: return S

3.2 Ant Colony Optimization (ACO)
Since we want to compare with previously published re-

sults on the problem, we have included the algorithm which
reported the best results for the problem so far, the ACO
presented in [16]. As far as we know, this is the only instance
of metaheuristics applied on this version of FAP. To sum-
marize this approach, it works as any other ACO algorithm:
at each iteration candidate solutions are constructed in a
probabilistic way. The probabilistic solution construction
is based on a so-called pheromone model (denoted by T ),
which is a set of numerical values that encode the algorithms’
search experience. After the construction phase, some of
the generated solutions are used to update the pheromone
values in a way that aims at biasing the future solution con-
struction towards good solutions found during the search
process. The particular approach implemented is known as

MMAS algorithm in the so-called hyper-cube framework
(HCF); see [3].

3.3 Steady-State Genetic Algorithm (ssGA)
This algorithm is a standard steady state GA (ssGA). The

tentative solutions managed by ssGA are encoded as arrays
of integer values, p, where p(ti) ∈ Fi is the frequency as-
signed to transceiver ti. That is, the solutions manipulated
are tentative frequency plans of the given FAP problem in-
stance.

Algorithm 2 Pseudocode for ssGA

1: population ← ∅
2: initialize(population)
3: while not time-limit do
4: parents ← binaryTournament(population)
5: offspring ← UX(parents,pc)
6: offspring ← randomMutation(offspring,pm)
7: offspring ← localSearch(offspring,localSearchSteps)
8: population ← insert(population,offspring)
9: end while

An outline of the algorithm is shown in Algorithm 2. The
algorithm starts by creating a population of random individ-
uals, so that all the TRXs of each individual are randomly
assigned with one of their valid frequencies. As to the ge-
netic operators, ssGA uses binary tournament as selection
scheme (line 4). This operator works by randomly choosing
two individuals from the population and the one having the
best (lowest) fitness is selected. The algorithm applies then
uniform crossover (UX) in which every allele of the offspring
(i.e., the frequency of each TRX) is chosen randomly from
one of the two parents (line 5). The mutation operator used
is the random mutation in which the frequencies of a set of
randomly chosen TRXs of the solution are reassigned with
a random valid frequency. Next, the offspring undergoes a
local search phase (line 7) which finally replaces the worst
individual in the population, if the newly generated one is
better (lower FAP cost).

3.4 Scatter Search (SS)
Scatter Search (SS) [17] [15] works with a quite small set

of solutions called RefSet (solutions are encoded by using
the same representation as ssGA, that is, arrays of integer
values). This set is made with the most representative so-
lutions from the population. RefSet is divided into quality
solutions (the best frequency plans for the FAP problem)
and diverse solutions (the most different ones). The number
of individuals for each subset has been specially configured
to solve the FAP problem. Thus, in our case, both subsets
in the RefSet have the same size.

A brief description of the algorithm can be seen in Algo-
rithm 3.

As we can observe, we have followed the typical structure
of SS. The algorithm starts with the generation of the pop-
ulation through the assignment of a valid frequency to each
single TRX in each solution (line 1). These frequencies are
assigned randomly, but by using some heuristic doing impos-
sible to assign the same frequency or adjacent frequencies to
two TRXs within the same sector (this avoids the highest-
cost interferences). Then, an Improvement Method fixed to
the FAP problem is applied to each population individual to
try to improve it (line 2). This method is the local search
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Algorithm 3 Pseudocode for Scatter Search

1: initialize(population)
2: population ← localSearch(population)
3: RefSet ← generateFrom(population)
4: while not time-limit do
5: SubSet ← subSetGenerator(RefSet)
6: SubSet ← combinationMethod(SubSet)
7: RefSet ← localSearch(SubSet)
8: RefSet ← generateFrom(RefSet, population)
9: end while

we have explained previously (Section 3.1). After generating
RefSet (line 3) we use a Subset Generation Method (line 5)
to create all possible subsets from the RefSet. The next step
is to apply the Solution Combination Method (line 6) to the
solutions in each subset. The solutions are combined in a
pair-wise way. Finally, the local search will be applied again
(line 7) to try to improve a frequency planning obtained as
a result of the combination method. Frequency plannings
are replaced in the RefSet so that the best solutions to the
FAP problem keep in there. When all combinations have
been made, the b/2 best solutions are saved in the RefSet
and a new population is generated to select the b/2 most
diverse solutions (line 8). The distance used to measure the
diversity among frequency plans is the sum of the absolute
values of the difference between all the frequencies assigned
to TRX. With this new RefSet the algorithm restarts a new
iteration until the time limit for the experiment is expired
(line 4).

3.5 Evolutionary Algorithm (EA)
This algorithm is a (μ + α) EA approach, with a muta-

tion operator specifically designed to face the FAP problem.
The selected values for μ and α are 1 and 2, respectively.
The EA approach (Algorithm 4) has been combined with
the local search method to improve the algorithm conver-
gence. Individuals are encoded as in ssGA (see Section 3.3).
The individual of the first population is heuristically gener-
ated (line 1). In each generation, two new individuals are
obtained by means of the mutation operator (line 4). The
best individual among the new generated ones and the par-
ent is selected to survive (line 6). After every creation of an
individual the local search is applied to it (lines 2, 5).

Algorithm 4 Pseudocode for (1+2) EA

1: initialize(population)
2: population ← localSearch(population)
3: while not time-limit do
4: offspring ← randomMutation(population)
5: offspring ← localSearch(offspring)
6: population ← best(population, offspring)
7: end while

The heuristic that generates the initial individual is based
on avoiding the strongest interferences. For this purpose,
interferences between sectors are considered in a decreasing
order, and the TRXs involved in each interference are re-
assigned. If an assignment that avoids such and previously
considered interferences can’t be done, next interferences in-
volving any of these sectors are not considered, i.e. their
frequency assignation is unchangeable.

The variation of individuals in the population is based
on a single mutation operator. First, the operator randomly
selects one sector, and then, the TRXs in the selected sector,
and also the ones in the interferer and victim sectors are
randomly reassigned.

3.6 Local Search with Heuristic Restarts
(LSHR)

This algorithm extends the local search algorithm de-
scribed in Section 3.1, by adding periodically guided per-
turbations, to avoid local minima. In short, it periodically
restarts local search by means of a probability distribution
F learned during the search process. F is a matrix with
dimension Msectors × Nfrequencies and it is updated in
a similar fashion as PBIL [2]. The algorithm is summarized
in Algorithm 5.

Algorithm 5 Pseudocode for Local Search with Heuristic
Restarts
1: initialize(probability matrix F )
2: S∗ ← S ← generateFrom(F )
3: while not time-limit do
4: S ← localSearch(S)
5: S∗ ← best(S,S∗)
6: F ← update(F ,S)
7: S ← generateFrom(F )
8: end while

Matrix F is a probability distribution representing a mem-
ory of the search process so far. Fij is the probability that
frequency j is assigned to sector i. According to Algorithm
5, the probability distribution F is initialized in line 1 with
uniform probabilities (Fij = 1/(M×N)). An initial solution
S is obtained from F by means of roulette-wheel (line 2).
The best-so-far solution S∗ is also initialized. Then, a loop
is entered where local search is applied on current solution
S (line 4). S is considered for replacing S∗ in line 5. Fi-
nally, F is updated with the improved solution S (line 6).
In order to update F , Fij is reinforced if the frequency
j is assigned to sector i in solution S. More specifically,
F ′

ij = (1− fr)∗Fij + fr ∗Pij , where Pij = 1 if frequency j is
assigned to sector i in the best solution, and Pij = 0 other-
wise. fr is the learning rate. The loop is repeated until time
is exhausted. The Generate procedure in line 7 represents
the heuristic restart step required so that the local search
jumps out of local minima. LSHR returns the best plan S∗

found during the search.

4. EXPERIMENTAL EVALUATION
This section describes the problem instance used in this

paper, and presents the empirical results of the four algo-
rithms tested.

4.1 Problem Instance
Here, we want to provide the reader with details on the

FAP instance which is being tackled. The GSM network
used has 711 sectors with 2,612 TRXs to be assigned a
frequency; the constants used in the mathematical formu-
lation [16] were set to K = 100, 000, cSH = 6 dB, and
cACR = 18 dB, respectively. Each TRX has 18 available
channels (from 134 to 151). Figure 1 displays the network
topology, every triangle representing a sectorized antenna in
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Table 1: Empirical results of the metaheuristics for 3 different time limits. The best, average, and standard
deviation of 30 executions are presented.

Time 120 seconds 600 seconds 1800 seconds
limit

Best Average Std. Best Average Std. Best Average Std.
ACO 90736.3 93439.5 1318.9 89946.3 92325.4 1092.8 89305.9 90649.9 727.5
ssGA 87477.3 89540.4 991.1 86755.7 87850.8 573.6 85720.3 86908.9 379.8
SS 91216.7 94199.6 1172.3 91069.8 93953.9 1178.6 91069.8 93820.4 1192.3
(1+2) EA 87763.9 92294.0 1407.6 86064.8 89669.8 1164.8 85607.3 88574.3 1100.3
LSHR 88543.0 92061.7 585.3 88031.0 89430.9 704.2 87743.0 88550.3 497.0

Figure 1: Topology of the GSM instance used.

which operate several TRXs. This GSM network is currently
operating in a U.S. 400 km2 city with more than 500,000 peo-
ple, so its solution is of great practical interest. The data
source to build the interference matrix based on the C/I
probability distribution uses thousands of Mobile Measure-
ment Reports (MMRs) [14] rather than propagation pre-
diction models. MMRs are a more accurate data source,
as they capture the call location pattern in the network
and do not rely on predictions. These properties make our
GSM problem more realistic than standard available bench-
marks [8]. Indeed, the most similar available instances are
the COST 259 benchmark, but the basic traffic load is drawn
at random according to an empirically observed distribution,
and signals are predicted with several propagation models.
The Philadelphia, CELAR and GRAPH instances [8] are
even simpler.

4.2 Parameterization
This section summarizes the parameter settings for each

of the algorithms. Experiments were carried out to find
the best set of parameter values for each algorithm. These
parameter settings are:

• ssGA: Population size = 10, uniform crossover with
pc = 1.0, random mutation with pm = 0.2, selection
with binary tournament, replacement = worst individ-
ual

• SS: Population size = 40, RefSet size = 10, Solution
combination method = uniform crossover

• EA: μ = 1, α = 2

• LSHR: Learning rate fr = 0.1

4.3 Empirical Results
Experiments for all the algorithms have been carried out

under exactly the same conditions: a PC with a 3GHz pro-
cessor and 2GB RAM has been used for this purpose2. We
have used gcc version 3.2.3 on a Red Hat Linux 2.4.21-4.
Since we are dealing with stochastic algorithms, we have
carried out 30 independent runs for each metaheuristic.

In order to provide the results with statistical confidence
and detect differences between the algorithms within short
and long time ranges, we have considered three different time
limits (120, 600, and 1800 seconds) and performed statistical
comparisons on them. The best and average results of the 30
executions for every algorithm are summarized in Table 1.
For comparison purposes, we also provide the interference
of plans generated randomly (random1), and those gener-
ated randomly, but removing the most costly interferences
-cochanel and adjacent-channel within the same sector- (ran-
dom 2) in Table 2. Table 2 also displays the results of the
common local search algorithm used by the four metaheuris-
tics. This local search method is very fast: it takes only
1.81 seconds (on average) to get an average interference of
105155.6. Although not shown in Table 1, it is important
to remark that the best result of local search (97682.0) is
worse than the worst result of the four metaheuristics within
the 120 seconds time limit (96214.0). We can draw several
preliminary conclusions from Tables 1 and 2: (1) all meta-
heuristics perform better than the common local search al-
gorithm, (2) ssGA is the best performing algorithm for all
time limits (on average), (3) (1+2) EA and LSHR perform
similarly, and (4) all metaheuristics but SS improve on aver-
age over the results of previous research (ACO) [16]. These
conclusions will now be qualified by statistical tests.

The following statistical analysis has been performed for
every time limit [6, 22]. First a Kolmogorov-Smirnov test
is performed in order to check whether the values of the
results follow a normal (gaussian) distribution or not. If
so, the Levene test checks for the homogeneity of the vari-
ances. If samples have equal variance (positive Levene test),
an ANOVA test is done; otherwise we perform a Welch test.
For non-gaussian distributions, the non-parametric Kruskal-
Wallis test is used to compare the medians of the algorithms.
We consider here a confidence level of 95% (i.e., significance
level of 5% or p-value under 0.05), which means that the
differences are unlikely to have occurred by chance with a
probability of 95%. To further analyze the results statisti-
cally, we have then included a post-hoc testing phase in Ta-
ble 3 which allows for a multiple comparison of samples. We

2Experiments with ACO were run in our 3GHz computer.
Therefore, results reported here differ from those in [16].
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Table 2: Best, average, and standard deviation of 30
executions of random search and the common local
search algorithm.

Best Average Std.
Random1 3.53E+13 3.33E+14 1.20E+14
Random2 244930.2 248587.6 2419.5
Local Search 97682 105155.6 2077.2

Table 3: Statistical Comparison between meta-
heuristics for the 120, 600, and 1800 seconds time
limits. The matrix shows pairs of algorithms not
significantly different. — means the algorithm is
significantly different from all the rest.

Time limit 120 600 1800
ACO SS — —
ssGA — — —
SS ACO — —
(1+2) EA — LSHR LSHR
LSHR — (1+2) EA (1+2) EA

have used the multcompare function provided by Matlab c©.
It chooses the most appropriate type of critical value to be
used in the multiple comparison, which ranges from the more
conservative HSD or Tukey-Kramer method to less conser-
vative Scheffe’s S procedure [13]. The same confidence level
has been kept for this testing phase (α = 0.05).

Table 3 summarizes our significance test. For the 120 sec-
onds results, all the differences between algorithms are sig-
nificant, except ACO and SS, which perform equally well.
In the case of the 600 and 1800 seconds time limits, only
LSHR and (1+2) EA results show no significant differences.
Let us remember that Table 1 indicated that ssGA was the
best algorithm for all time limits, and now Table 3 shows
that ssGA is statistically significantly better than the rest
of algorithms. This makes ssGA the best performing algo-
rithm. On the other hand differences between LSHR and
(1+2) EA are not significant (except within the 120 seconds
time limit).

Finally, we want to give a more detailed view of the evo-
lution of interference along time for all the metaheuristics.
Figure 2 displays the evolution of the average interference,
every 120 seconds, from 2 to 30 minutes. Figure 2 shows
that all algorithms obtain excellent results compared to local
search alone. The graphic confirms that the best performing
algorithm is ssGA, followed by (1+2) EA and LSHR. Both
(1+2) EA and LSHR display the same behavior. It can also
be noticed that in the range from 2 to 30 minutes, (1+2) EA,
LSHR, and ssGA descend at a similar rate, but ssGA obtains
the lowest interference values because it managed to descend
faster during the first 120 seconds. The convergence of SS
is the slowest one, reducing the FAP costs slightly during
the time frame used. It is also interesting to note that the
initialization heuristics used by (1+2) EA and SS have no
apparent effects on performance. By comparing (1+2) EA
(that uses initialization heuristics) and LSHR (that does not
use them) in Figure 2, we can see that any improvement of
these heuristics is lost after the first 120 seconds. Addition-
ally, ssGA does not apply any initialization heuristics and
obtains the lowest interference for all time ranges.
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Figure 2: Average interference of the four meta-
heuristics every 120 seconds.

To sum up, our cooperative effort has managed to im-
prove results beyond those found by the initial ACO algo-
rithm. Both a population-based (ssGA) and a trajectory-
based ((1+2) EA) have obtained significantly better results
than the ACO. Also, in absolute terms, one of the new algo-
rithms ((1+2) EA) has produced a best plan in 1800 seconds
of 85607.3 interference units, well beyond the 89305.9 units
of the initial ACO algorithm. It has to be remarked that,
based on our experience, achieving differences of 3698.6 units
in the long term (1800 seconds) is very difficult. Therefore,
one of the results of our team effort is to set a new best
absolute interference value for our real-world FAP version.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have tackled a real-world Frequency As-

signment Problem (FAP) for GSM mobile networks. This
work differs from previous approaches to FAP, because our
new formulation focuses on real-world aspects of GSM net-
works, such as the use of actual interference data, measured
on the field. Four research groups have collaborated in the
design and adaptation of different metaheuristics, both tra-
jectory and population-based, for our version of FAP. Fol-
lowing previous research advice [16], all of the algorithms
have been hybridized with an efficient local search method,
adapted to FAP. It has to be remarked that all the meta-
heuristics use the same local search method, to improve the
fairness of the comparison. The techniques have been care-
fully evaluated and compared on a large real-world instance
of FAP. It has to be remarked that this is the first time
that Genetic Algorithms, Scatter Search, Evolutionary Al-
gorithms, and Local Search with Restarts, have been applied
to this version of FAP, which improve on previous results
[16]. Previous work so far had only applied Ant Colony Op-
timization and (1+10) Evolutionary Algorithm.

To summarize, the most important contributions of the
coordination of our four research groups are: the use of a
FAP formulation with real-world features [16]; the design
and adaptation of four different metaheuristics to this FAP;
the detailed statistical comparison of all our results; and the
generation of a new best result, significantly better than the
ones published in the literature [16]. This result and the
experience gained will guide future research.

Evaluating the algorithms by using additional real-world
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instances is a matter of future work. The formulation of the
FAP problem as a multiobjective optimization problem will
be investigated as well.
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