
ORIGINAL ARTICLE

Metaheuristics for the feedforward artificial neural network
(ANN) architecture optimization problem

Adenilson R. Carvalho • Fernando M. Ramos •

Antonio A. Chaves

Received: 21 September 2009 / Accepted: 22 November 2010

� Springer-Verlag London Limited 2010

Abstract This article deals with evolutionary artificial

neural network (ANN) and aims to propose a systematic

and automated way to find out a proper network architec-

ture. To this, we adapt four metaheuristics to resolve the

problem posed by the pursuit of optimum feedforward

ANN architecture and introduced a new criteria to measure

the ANN performance based on combination of training

and generalization error. Also, it is proposed a new method

for estimating the computational complexity of the ANN

architecture based on the number of neurons and epochs

needed to train the network. We implemented this

approach in software and tested it for the problem of

identification and estimation of pollution sources and for

three separate benchmark data sets from UCI repository.

The results show the proposed computational approach

gives better performance than a human specialist, while

offering many advantages over similar approaches found in

the literature.

Keywords Neural network architecture �
Optimization algorithms � Evolutionary computation

1 Introduction

Artificial neural networks (ANNs) have been a topic of

interest in research institutes worldwide. Although much

has been proposed and studied about, there are still many

issues about the model of ANNs that need to be better

understood. There are no prior assurances the adopted

model will be successful in the task for which it was

designed. Much has been studied and researched in try to

find systematic ways to adjust an ANN model for a prob-

lem in particular aiming at optimizing its overall perfor-

mance. These surveys are based on almost all aspects in the

ANNs modeling such as the different types of activation

function, the weights initialization, the training data col-

lection, pre- and post-processing, the training algorithms,

and error functions. However, theoretical and empirical

evidences found in literature show the search and definition

of an ANN optimal or near-optimal architecture are the

most important factors for model computational perfor-

mance, efficiency, and accuracy [1].

We can formulate the problem of identifying an opti-

mized network architecture as a search in the space of

neural network topologies where each point represents a

possible architecture. If we associate with each point

(architecture) a performance level based on some opti-

mality criterion (such as complexity, minimum square

error, and learning speed), we can build and display a

surface in the three-dimensional space. Finding an optimal

architecture in this case would be equivalent to find the

highest or the lowest point of this surface, that is, its global

extreme points depending on the criteria used [2].

In this work, we apply a group of metaheuristics to solve

this problem. There are no registers in the literature of any

attempt toward use the GEO and the VNS as an optimization

method for the best network architecture problem. Further,

A. R. Carvalho (&) � F. M. Ramos � A. A. Chaves

Laboratory for Computing and Applied Mathematics (LAC),

Brazilian National Institute for Space Research (INPE),

São José dos Campos, São Paulo, SP, Brazil

e-mail: adenilson@lac.inpe.br

F. M. Ramos

e-mail: fernando@lac.inpe.br

A. A. Chaves

e-mail: chaves@lac.inpe.br

123

Neural Comput & Applic

DOI 10.1007/s00521-010-0504-3

we define the computational complexity of a feedforward

ANN architecture as a function of the total number of

weights and bias present in its structures and the time

required for the network learning. We derive from this a

penalty term that is used to evaluate the objective function to

avoid overcomplex networks architectures. The use com-

bined of these elements is also a contribution of this work.

Another contribution of this work was to include two

weighting factors (q1 and q2, see Sect. 3.3), that measure

the influence of the generalization and training errors in the

algorithmic search process, allowing to us to fine tune the

progress of the optimization.

1.1 The feedforward network

Considering the universe of possible ANNs, the feedfor-

ward neural network was the first and arguably simplest

type of artificial neural network devised. In this network,

the information moves in only one direction, forward, from

the input nodes through the hidden nodes (if any) and to the

output nodes. There are no cycles or loops in the network.

By a feedforward ANN architecture, we mean a number of

constitutive elements among which stands out the number

of layers, the number of processing units (neurons) in each

layer, the activation function, and the training algorithm

(because it determines the final value of weights and bias).

Beyond these, there are two other factors also important to

define an extended ANN architecture: the learning rate að Þ
and the momentum term gð Þ. These two terms play an

important role in the BP because they control the conver-

gence speed of the ANN. It has been noted that by using

this parameters effectively reduces the network training

time and accelerates the convergence to the optimum [3].

The learning rate is a term used in the ANN learning

rule to update the connection weights. Its value is restricted

to the interval [0, 1] and controls the amount that a con-

nection weight changes in response to an error signal. If the

selected learning rate is very large, then the local minimum

can be overcome constantly, resulting in slow oscillations

and convergence to a minor error state. If the learning rate

is low, the number of iterations needed can be very large,

resulting in low performance [4].

The momentum term is a commonly used to update rule

introduced by [3] which is a fraction of the previous weight

change to the current weight change during the weights

adjustment stage. Adding such term can help smooth out

the descent path by preventing extreme changes in the

gradient due the local anomalies.

1.2 The multilayer perceptron

This paper proposes a method for finding out the best ANN

architecture by using multilayer perceptron feedforward

networks with backpropagation training algorithm. A

multilayer perceptron (MLP) is a feedforward artificial

neural network model that maps sets of input data onto an

appropriate output set. It is a variation of the standard

linear perceptron in which it uses three or more neuron

layers (nodes) with nonlinear activation functions. It is

more powerful than the perceptron because it can distin-

guish data that are not linearly separable, or separable by a

hyperplane [5].

In addition, we use the backpropagation (BP) algorithm,

that is, one of the most popular methods for training

multilayer feedforward neural networks. Essentially, the

BP algorithm is a supervised learning method, which pro-

vides a way to calculate the gradient of the error function

efficiently. Multilayer perceptrons using a backpropagation

algorithm are the standard algorithm for any supervised

learning pattern recognition process and the subject of

current research in computational neuroscience and parallel

distributed processing. They are useful in research by their

ability to solve problems stochastically, which often allows

one to get approximate solutions for complex problems.

The rest of this paper is organized as follows. Section 2

addresses Evolutionary computation. In the Sect. 3, we

explain in detail the methodology adopted in this work.

The obtained results and discussions based on the perfor-

mance comparison with two other approaches to the same

problem are presented in the Sect. 6 Finally, in the Sect. 7,

we draw some conclusions and future works.

2 Evolutionary computation

There is no a clear and unambiguous indication of how we

find the best architecture among the many choices pre-

sented. Further, we not even know in advance the correct

network topology to be applied. In practice, this problem is

usually solved in part by using empirical methods based on

repetitive trial and error method. In this case, we could say

the success of this method depends almost solely and

exclusively of previous experience and intuition of expert

human behind the scene, involving therefore a high degree

of uncertainty. In such methods, we spent much CPU time

in unnecessary simulations and that not cover the entire

available architecture choices set for a particular problem.

Also, we almost always found a suboptimal solution that

corresponds to a lower solution if compared to that

obtained by using an autonomous search method.

It is therefore an exhausting task to design and build an

ANN for a specific problem. There are a few rigorous

project principles that are available to define the ANN and,

however, many parameters to adjust. The constructive

methods are an alternative to artificial neural networks

designing, but the computational cost required for certain

Neural Comput & Applic

123

applications can be prohibitive, besides the difficulty pre-

sented in the high-dimension input spaces treatment.

Therefore, the goal here is to consider advanced evolu-

tionary computation techniques, which also promote

achieving ANN architectures that are dedicated, specific to

each problem.

The evolutionary computation is a branch of computer

science that proposes an alternative paradigm to conven-

tional data processing. This new paradigm, unlike the

conventional, does not require, to solve a problem, the

prior knowledge of a way to find a solution. It is based on

evolutionary mechanisms found in nature, such as self-

organization and adaptive behavior (see [6, 7]). These

mechanisms have been discovered and formalized by

Darwin in his theory of natural evolution, according to

which, life on earth is the result of a process where the

most suitable and adapted having therefore more chances

of reproducing are selected by the environment.

We can divide the evolutionary computing into two

main groups: evolutionary computing to train ANN or to

adjust its weights and evolutionary computing for ANN

architectures definition [8].

In a similar way, [9] identified two approaches to code

the ANN architecture in a binary string or in a decimal

representation. One is the strong specification scheme (or

direct encoding scheme) where a network’s architecture is

explicitly coded. The other is a weak specification scheme

(or indirect encoding scheme) where the exact connectivity

pattern is not explicitly represented.

We can include as examples of the application of the

strong specification scheme [9–13]. On other hand, the

applications of the weak specification scheme include [1, 2,

14, 15, 16, 17]. An extensive comparison between various

methods of coding can be found at [18].

Our approach falls into this last category since it uses an

indirect encoding scheme for finding out the best archi-

tecture to solve a problem in particular. However, unlike

most other approaches, besides employing a purely evo-

lutionary strategy like genetic algorithm (GA) or ant col-

ony optimization (ACO) for example, we also applied

some alternative combinatorial methods like Simulate

Annealing or Variable Neighborhood Search that were very

successful in solving problems with too many parameters

that exhibit a clear exponential trend in the number of

feasible solutions.

3 Methodology

This paper presents an innovative approach for optimizing

feedforward MLP ANN architecture based on the use of

global search metaheuristics.

To solve the optimal ANN architecture search problem,

we implement the algorithm known as Generalized Extre-

mal Optimization (GEO) [19–21], the Variable Neighbor-

hood Search (VNS) [22, 23], Simulated Annealing (SA)

[24], and canonical genetic algorithm (GA-based version

[25, 26].

3.1 Candidate solution representation

Optimal network architectures can be evolved to fit a given

task at hand. Both the network topology representation and

search operators used in our experiments are the most

important issues to considerer in the evolution of

architectures.

In our approach, we applied the above-mentioned opti-

mization algorithms to evolve: (1) the number of hidden

layers;(2) the number of processing elements present in

each hidden layer;(3) the ANN learning rate;(4) the

momentum term; and (5) the ANN activation function.

The learning rate að Þ can take any of the values given by

the sum below:

a ¼
Xk

i¼1

ak � 2�k ð1Þ

where ak 2 f0; 1g and k [N. A similar expression is

adopted for the momentum term gð Þ. In this work, we use

k ¼ 6 for a and k ¼ 4 for g.

The possible values for the remaining parameters are

shown in the Table 1 below:

The ANN built from information encoded in binary

structures is trained on simulated data generated from the

LAMBDA model (see Sect. 4), which is a well-known

forward model and that is widely used in dispersion pol-

lution studies.

For the simulation performed in this paper, we code the

parameters of the problem in a 19-bit binary string. The

first and second groups of six and four bits correspond to

the learning rate and momentum, respectively. We repre-

sent the activation function type employed in the network

training and the number of hidden layers permitted in the

network solution by the third and fourth groups consisting

Table 1 Interval of values assumed by the parameters that define a

network architecture

Parameter Values

Activation function {Tanha, sigmoid, logb, gaussian}

Hidden layers {1, 2, 3}

Neurons in each hidden layer {1, 2, …, 32}

a Hiperbolic tangent
b Logarithmic

Neural Comput & Applic

123

of two bits each one that follows. The last group of five bits

is related to the number of neurons in each layer. Because

of the binary encoding scheme and the number of bits used,

the number of neurons in each hidden layer is restricted to

[0, 31] since 1 ? 2 ? 4 ? 8 ? 16 = 31. To further clarify

the applied encoding scheme, two different candidate

solutions, and its decoded forms, are provided in Fig. 1.

When we decrease or increase the string of bits, we are

expanding or reducing the number of possible architectures

(the architecture space dimension), thus ensuring the gen-

erality of the methodology.

It is easy to show the number of possible solutions

(ANN architectures) represented by binary strings follows

a simple power law given by the equation n ¼ 2b where

b is the number of bits in the binary string solution and

n the number of solutions. So, in this work, our search

space was formed by 524288 possible network architec-

tures solutions that matches to 219 binary combinations.

In this work, we adopt the limit of up to two hidden

layers and 32 neurons in each layer only for practical

reasons (computational time). Anyhow, studies have shown

that for feedforward ANNs with continuous nonlinear

activation function, a hidden layer with an arbitrarily large

number of neurons is enough because of their universal

approximation property [27–29]. So, the employed limit is

more than enough for most applications.

3.2 Network learning and test

After coding each candidate solution into a network

architecture, we perform the network training. In the next

step, the final model is tested with the test set data, which is

the model generalization test, to ensure that the results on

the selection and training set are real, and not artifacts of

the training process. Of course, to fulfill this role properly,

the test set is used only once and contains data that do not

belong to the training set.

At this stage, the ANN has ‘‘learned’’ to identify the gas

emissions of an area source or accurately classify a given

input pattern and is also capable of predicting the untrained

output patterns.

After that we assign a score to the solution formed

according to an objective function (see Sect. 3.3 below)

previously defined. So, we build a new candidate solution

using the same method described above and the process

repeats itself.

It is important to mention that in this work, we used a

random weight initialization function for all weights and

bias with values randomly distributed, chosen from interval

[-1, 1]. We also employed the early stopping training

strategy using cross validation for the network training as

described in [28].

The ANN model optimization that aims to obtain an

optimal or suboptimal network architecture follows similar

steps no matter what the metaheuristics employed. These

common steps for search algorithms are described below.

3.3 Objective function applied

In this work, we deal with a complex combinatorial opti-

mization problem where we are interested in finding a

minimum cost network topology, showing better perfor-

mance with less computational overload possible. To that

end, we built an objective function that consists of a

combination of two criteria for error and one penalty that

can be expressed by:

fobj ¼ penalty� q1 � Etrain þ q2 � Egen

q1 þ q2

� �
ð2Þ

where q1 and q2 (q1, q2 [0; q1, q2 [<) are adjustment

factors used to weigh the degree of importance attributed to

the training and generalization errors, respectively. Usually

we have q1� q2 because we are interested in models that

provide good answers when confronted with an input data

set that does not belong to training set, that is, that is

known to generalize. In particular, for this work, we use

three sets of values for q1 and q2 (see Table 2).

The function fobj is the function whose value should be

minimized by algorithms implemented. Thus, it becomes

clear that fobj is composed by the sum of errors in the

training and generalization stages multiplied by the penalty

due to the architecture complexity of the ANN in question.

The minimum value of fobj corresponds to a simple archi-

tecture and exhibits a consistent behavior in the space of

solutions combined with low training and generalization

errors. Here, we mean by ‘‘simple’’ a solution whose

architecture is reduced in terms of weight numbers and

learning time.
Fig. 1 Binary encoding examples of two candidate solutions to

network architectures and its decimal representation

Neural Comput & Applic

123

3.3.1 Detailing the criteria used to compose

the objective function

Training error Criteria This term is important because it

provides us with a quantitative indication of the network

training level and is directly related to the ability to

memorize the network. The mean square error formula

used to calculate the training error can be expressed as

follows:

Etrain ¼

ffi
1

2N
�
XN

i¼1

XM

j¼1

Ymij
� Ydij

� �2
vuut ð3Þ

where Etrain is the training error, Ydij
is the desired output

value (target) in ith training pattern for the jth ANN output

layer neuron, Ydij
is the ANN response in ith training pat-

tern for the jth ANN output layer neuron, N is the number

of training patterns or examples presented to the network,

and M is the number of neurons in output layer.

Generalization error criteria This refers to the ability of

ANN to identify and respond to patterns that are similar but

not identical to the patterns with which the network was

trained. It appears more important than the training error as

a parameter signaling the performance of the ANN model

in most applications. The formula used to set the error is as

follows:

Egen ¼

ffi
PM

i¼1

Ymi
� Ydi

½ �2

M

vuuut
ð4Þ

where Egen gen is the generalization error, Ydi
is the target

value for the ith output neuron, Ymi
is the ANN predicted

value of the ith output neuron, and M is the number of

neurons in output layer.

Penalty due the network complexity The third criterion

determines the influence of the ANN architecture on the

objective function values. We can define the computational

complexity of a feedforward ANN architecture as the total

number of weights and bias present in its structure. When

we talk about optimization of an ANN architecture, we are

interested in obtaining models or architectures that present

a performance as close as possible to a global optimum for

the problem in question or, at least, that produce

suboptimal answers better than the answers provided by a

non-optimized model. In other words, we look for network

architectures with low training and generalization errors.

To this end, we developed a criterion that favors lighter

architectures by applying a penalty term to the objective

function. By using smaller architectures, we avoid the

network training data overadjustment, known as ‘‘overfit-

ting’’ [5], and speed up the training process because there

will be fewer processing units and weight factors to be

calculated.

In an optimization problem, such penalty is incorporated

to the objective function in such a way to constraint the

universe of possible ANN architectures. It penalizes larger

and complex ANN architectures with too many neurons in

the hidden layers or that need too much CPU time (learning

time). Ideally, the penalty value should be an exponential

function of the ANN complexity and not a linear function

as we might expect. This occurs because the sum of the

weights and bias number also increases in a nonlinear way

with the number of hidden layers and hidden neurons.

Thus, the penalty applied would be gradually increasing as

the total number of weights and bias is low and rapidly

when the architecture is complex.

So the general shape of the criterion for an ANN

architecture penalty would be given by

P1 ¼ a� ef ðxÞ ð5Þ

where a is a constant and f (x) a function of the weights and

bias total number, usually denoted by an exponential

function.

We also included restrictions on the learning time of the

patterns present in the network input. To that end, we

introduced a second penalty term that considers the number

of cycles or epochs needed to perform the training. In this

work, we define this factor penalty as a linear function in

the number of epochs, that is, g(y), that has the form

P2 = b 9 y ? c.

where b is a constant that measures the slope of the line

and y represents the number of training epochs or cycles.

So, grouping the terms defined above, we have the fol-

lowing global expression for the penalty applied to the

model:

Penalty ¼ P1 þ P2 ð6Þ

In this work, specifically, we assume the following

global expression for the penalty due to the model

complexity:

Penalty ¼ 5� 10�8 � ex2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
P1

þ 5� 10�5 � yþ 1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
P2

ð7Þ

where x is the number of weights in the connections and

y the number of epochs necessary in the network training.

Table 2 Values applied in each one of the experiments performed in

this work for the weighting factors applied to the training (q1) and

generalization (q2) errors

Experiment q1 q2

#1 1.0 0.1

#2 1.0 1.0

#3 0.1 1.0

Neural Comput & Applic

123

Both P1 as P2 can be represented by any continuous

monotonic function and strictly increasing in the range

[1, ?].

Figure 2 below displays a three dimensional for the

penalty function applied in this work. As previously men-

tioned, in applying such a penalty function to our problem,

we prefer solutions with fewer neurons in each hidden

layer and that, at the same time, not need many iterations to

converge on an appropriate solution.

4 First case study: identification and estimation

of atmospheric pollutant sources

In this work, we used a multilayer perceptron ANN to solve

the problem of estimating air pollution sources (see [30]).

We tested the methodology using data from the dispersal

Lagrangian stochastic LAMBDA model for pollution dis-

persion (acronym for LAgrangean Model for Buoyant

Dispersion in Atmosphere), developed to study the pollu-

tants transport and diffusion on land plan (see [31, 32]).

The meteorological data used by LAMBDA model to

simulate the dispersion of particles by the wind are

extracted from Copenhagen [30] and displayed in the

Table 3. This table shows the speeds and average direc-

tions of three strata of wind obtained in five different hours

and correspond to the measurements performed on 19/10/

1978 (Grining).

The data needed for the problem solving were provided

from six sensors, with a detection area of 0:1 m � 0:1 m,

positioned at a height of 10 m and installed in the region

with the layout defined by Table 4.

So, the forward model described in [33] is used to

produce 500 data sets that are used by the inversion model.

The inverse problem to be solved by the ANN model and

that can be found in [34] consisted of obtaining the pol-

lutants concentration in the six sensors from sources

properly discretized in 12 subareas according to the Fig. 3.

The visual representation of the sensors can be seen in the

Fig. 4.

5 Benchmark data sets

Additionally, a number of experiments were conducted

with standard benchmark data sets of the University of

0
2000

4000
6000

8000
10000

0

2500

5000

7500
10000

0

10

20

30

40

50

60

Number of epochs
Number of weights

P
en

al
ty

Fig. 2 Three-dimensional visualization tridimensional of the penalty

function applied to the problem

Table 3 Meteorological data for average wind speed and direction

extracted from the Copenhagen experiment

Hour Speed V
!ðm/sÞ Direction U

!ð�Þ

12:05 2.6 5.7 5.7 290 310 310

12:15 2.6 5.1 5.7 300 310 310

12:25 2.1 4.6 5.1 280 310 320

12:35 2.1 4.6 5.1 280 310 320

12:45 2.6 5.1 5.7 290 310 310

Source: [33]

Table 4 Position of the sensors in the study area

Sensor Position x (m) Position y (m)

1 400 500

2 600 300

3 800 700

4 1,000 500

5 1,200 300

6 1,400 700

Source: [33]

Fig. 3 Discretization of the study area into a rectangular grid (5 � 5)

of cells. Source: [33]

Neural Comput & Applic

123

California Irvine (UCI) machine learning repository [35] to

test the performance of our system. For this study, we used

the Wisconsin Breast Cancer Data Set, the adult data set,

and Glass Identification data set. The first one, The Wis-

consin Breast Cancer Data set, consists of 569 cases, of

which 357 are diagnosed as benign and the remaining 212

are known to be malignant. There are no missing attributes

in the data set, and in this case, we are interested in clas-

sifying the breast tumor as benign and malignant. The adult

data set contains the questionnaire data of the ‘‘adult’’

database (originally called the ‘‘Census Income’’ Database)

formed by a data frame with 48,842 observations on the

following 15 variables. It was originally used to predict

whether income exceeds USD 50 K/year based on census

data. Finally, the third one is greatly imbalanced and

extremely sparse, having seven classes with only a few

instances in each class. It is composed of 214 instances

without missing values of six different classes and is an

example of a data set with a special overlap problem. The

data set consists of nine inputs, which correspond to six

different classes of glass i.e. three types of window, con-

tainers, and headlamps. The three window classes were

extremely overlapping and difficult to separate.

6 Computational experiments

The following are the computational results obtained from

experiments performed for each metaheuristic used in such

work. All algorithms are implemented in the Java language

and computer tests were conducted under the Linux

operating system, in a microcomputer processor with AMD

Athlon (tm) 64 Processor 3,200?, 1.53 GHz and 1 Gb MB

of RAM.

6.1 Results for the identification and estimation

of atmospheric pollutant sources

Initially, three computational experiments were conducted

in accordance with Table 2 (see Sect. 3.3). The parameters

matching to the best found solution after a predetermined

number of consecutive objective function evaluations are

displayed in the Tables 5, 6, and 7.

In a first experiment, we assigned a larger weight to the

ability of ANN to learn the presented patterns at the

expense of its generalization ability. We present the results

in Table 5. In the second experiment, the ANN learning

and generalization errors had equal weights in the objective

function arrangement. The results of these simulations are

shown in the Table 6 and finally, in the Table 7, we sim-

ulate a more realistic scenario, in which the ability to

generalize, or find a correct output value for an unknown

ANN pattern, it is more relevant than the ability to learn the

model.

The analysis of this results highlights the virtues of

using an automated evolutionary approach in the search for

optimal parameters of ANN-based models.

Thanks to approach employed, we were able to produce

ANN architectures with great generalization power and

with low computational cost for the problem considered.

We can note this in the experiments f6; 12g and f3; 12g of

Tables 6 and 7, respectively.

The best network architecture found was obtained after

5,000 iterations of the canonical genetic algorithm and

corresponds to the network parameters configuration

shown in the experiment #12 of Table 6. The solution leads

to a network architecture with two hidden layers and few

neurons in each of them (5 and 7, respectively) and sug-

gests to apply a hyperbolic tangent activation function in

the intermediate layers. Curiously, this solution was

obtained giving equal weight to both network training and

generalization errors. Other solutions with good tradeoff

between computational cost required and performance

offered were obtained in experiment 12 of Table 7 and

experiment 6 of Table 6.

Moreover, when comparing the tables above, it appears

the weighting assigned to the training and generalization

errors has influence on the final solution of architecture

obtained by the search algorithm. As we might expect, the

values for the generalization errors shown in Table 5 are

larger on average than those of Table 7 and and this dif-

ference becomes greater as we increase the number of

epochs for training the network. This is due the fact we

credited more weight to the training error at the expense of

Fig. 4 Sensor positioning, represented by filled circle, in the study

area. Source: [33]

Neural Comput & Applic

123

the network generalization ability in the objective function

composition in the experiments of the Table 5.

By comparison, it can be inferred from results the

topology (architecture) produced by GEOvar was lower

than those produced by other metaheuristics. SA, GA, and

VNS yielded solutions with few hidden nodes at a low

computational cost. The ratio between the best and the

worst solution obtained in these experiments, considering

the same number of objective functions evaluations in each

case, was 0.2214, 0.1978, and 0.1173 for 100, 1,000, and

5,000 evaluations, respectively. These values reveal

another interesting fact about the proposed model evolutive

dynamic: if we increase the number of objective function

evaluations, some algorithms or metaheuristics tend to

excel the others.

The next step was to compare the results got with our

strategy with other non-optimized approaches for the

problem. In the Table 8, we compare the results of the

optimization algorithms with the solution obtained by [33]

and [34]. Luz et al. applied in their work two stochastic

techniques: optimization by particle swarm (particle swarm

optimization - PSO) and optimization by colony of ants

(ant colony optimization - ACO). In a recent work, Paes

et al. used an MLP neural network with simple parameters

adjustment, that is, without any concern about how to get a

little more optimized network architecture for the problem.

The low error, both in absolute and relative terms,

obtained by the optimization technique shows the superi-

ority of the approach over other simpler strategies. In [33],

we can see some results divergent and with many oscilla-

tions around the exact profile. Instead, if we consider the

strategy employed by [34], what we can note is a clear

tendency to underestimate the sources (areas A12–A19) and

overestimate the sinks (areas A2–A9).

Table 5 Best ANN architectures encountered by VNS, SA, GEO, and GA algorithms

Exp Metaheuristics # Evaluations Fobj Architecture a g /ð�Þ Etrein Egen

#1 VNS 100 6 � 31 � 12 � 12 0.34375 0.1875 Sigmoid 0.01502 0.5704

#2 VNS 1,000 6 � 5 � 4 � 12 0.25 0.375 Sigmoid 0.02673 0.1924

#3 VNS 5,000 6 � 6 � 15 � 12 0.25 0.1875 Tanh 0.00913 0.1429

#4 SA 100 6 � 6 � 11 � 12 0.265625 0.125 Logarithmic 0.02054 0.5338

#5 SA 1,000 6 � 15 � 14 � 12 0.75 0.5 Sigmoid 0.01518 0.2887

#6 SA 5,000 6 � 10 � 11 � 12 0.296875 0.0625 Tanh 0.00706 0.1478

#7 GEOvar 100 6 � 10 � 7 � 12 0.546875 0.0625 Sigmoid 0.01906 0.4367

#8 GEOvar 1,000 6 � 26 � 12 0.28125 0.1875 Tanh 0.02034 0.7717

#9 GEOvar 5,000 6 � 5 � 6 � 12 0.203125 0.0 Tanh 0.0113 0.2841

#10 GA 100 6 � 21 � 12 0.046875 0.8125 Sigmoid 0.03128 0.6356

#11 GA 1,000 6 � 6 � 11 � 12 0.140625 0.375 Sigmoid 0.02177 0.4527

#12 GA 5,000 6 � 5 � 16 � 12 0.015625 0.5 Tanh 0.00962 0.1608

In such experiments, the weighting factors given to training (q1) and generalization (q2) errors were 1.0 and 0.1, respectively

Table 6 Best ANN architectures encountered by VNS, SA, GEO, and GA algorithms

Exp Metaheuristics # Evaluations Fobj Architecture a g /ð�Þ Etrein Egen

#1 VNS 100 6 � 15 � 16 � 12 0.125 0.1875 Gauss 0.02992 0.5030

#2 VNS 1,000 6 � 11 � 30 � 12 0.578125 0.4375 Sigmoid 0.01842 0.4120

#3 VNS 5,000 6 � 8 � 8 � 12 0.046875 0.75 Tanh 0.02333 0.1651

#4 SA 100 6 � 8 � 10 � 12 0.984375 0.5 Sigmoid 0.02580 0.3358

#5 SA 1,000 6 � 14 � 15 � 12 0.109375 0.625 Tanh 0.00739 0.1527

#6 SA 5,000 6 � 5 � 6 � 12 0.140625 0.5 Tanh 0.01676 0.0756

#7 GEOvar 100 6 � 3 � 16 � 12 0.09375 0.25 Tanh 0.02215 0.8788

#8 GEOvar 1,000 6 � 7 � 18 � 12 0.078125 0.375 Logarithmic 0.02501 0.4381

#9 GEOvar 5,000 6 � 23 � 12 0.1875 0.625 Sigmoid 0.02082 0.6103

#10 GA 100 6 � 27 � 12 0.984375 0.375 Tanh 0.02620 0.7358

#11 GA 1,000 6 � 17 � 10 � 12 0.03125 0.6875 Gauss 0.03079 0.4407

#12 GA 5,000 6 � 5 � 7 � 12 0.109375 0.4375 Tanh 0.01589 0.0716

In such experiments, the weighting factors given to training (q1) and generalization (q2) errors were equal to 1.0

Neural Comput & Applic

123

6.2 Results for the benchmark data sets

Experiments were conducted with three UCI data sets by

using the proposed optimization model. The results express

the values for the network configuration parameters after

10,000 epochs. Here, similarly to the previous section, we

considered three scenarios for the arrangement of the

weighting factors q1 and q2. We shown this additional

results obtained with the UCI data sets in Tables 9, 10 and

11 below.

The results for the UCI data set benchmark classification

confirmed the trends identified in the first study case. VNS

and GA metaheuristics were the best performing in the

previous experiment and, similarly, also accounted for the

highest marks here. For the glass data set, the canonical

genetic algorithm (CGA) performed better in the classifi-

cation of glass types with an accuracy of 63.86%, which

can be considered a good match if compared with the

results obtained by trial and error traditional approach for

multilayer perceptron neural networks. VNS metaheuristic

gets the best results for Wisconsin and adult data set

classification by generating lightweight solutions present-

ing low computational complexity, although Simulate

Annealing and GA have also been efficient in the task of

generating good network topologies. Considering the data

sets used in this work, the methodology was able to gen-

erate MLP topologies automatically, with much fewer

connections than the maximum number allowed.

It is important to point out the focus of this work does

not concern the use and posterior comparison of the

metaheuristics employed, nor even to find out the best

solution for the problem considered, but to propose new

alternatives for the ‘‘blind search’’ strategy, commonly

addressed by a trial and error iterative process. Obviously,

the results obtained and displayed on Tables 9, 10 and 11

above could also be obtained by using other metaheuristics.

Table 7 Best ANN architectures encountered by VNS, SA, GEO, and GA algorithms

Exp Metaheuristics # Evaluations Fobj Architecture a g /ð�Þ Etrein Egen

#1 VNS 100 6 � 18 � 25 � 12 0.484375 0.625 Sigmoid 0.02083 0.4371

#2 VNS 1,000 6 � 9 � 17 � 12 0.296875 0.125 Tanh 0.0167 0.1753

#3 VNS 5,000 6 � 17 � 2 � 12 0.109375 0.625 Logarithmic 0.01548 0.1126

#4 SA 100 6 � 12 � 12 � 12 0.21875 0.0 Tanh 0.01066 0.3004

#5 SA 1,000 6 � 15 � 14 � 12 0.75 0.5 Sigmoid 0.01518 0.2887

#6 SA 5,000 6 � 3 � 13 � 12 0.0625 0.5 Logarithmic 0.02228 0.1331

#7 GEOvar 100 6 � 25 � 12 0.453125 0.0 Tanh 0.02867 1.2825

#8 GEOvar 1,000 6 � 22 � 15 � 12 0.046875 0.75 Logarithmic 0.01727 0.4073

#9 GEOvar 5,000 6 � 5 � 30 � 12 0.28125 0.125 Tanh 0.01264 0.3503

#10 GA 100 6 � 23 � 14 � 12 0.234375 0.125 Logarithmic 0.03048 1.3568

#11 GA 1,000 6 � 31 � 2 � 12 0.015625 0.875 Logarithmic 0.01759 0.5527

#12 GA 5,000 6 � 6 � 9 � 12 0.25 0.375 Logarithmic 0.01417 0.1195

In such experiments, the weighting factors given to training (q1) and generalization (q2) errors were 0.1 and 1.0, respectively

Table 8 Network performance

comparison using noisy input

data (5% white gaussian noise)

The values are in gram of

pollutant per millimeter every

tenth of a second
a Particle swarm optimization

Area Exact (PSOa) [33] ANN architecture

6 � 30 � 12 [34]

Optimized ANN architecture

6 � 5 � 7 � 12

A2 10 09.34 10.97 9.89

A3 10 10.07 11.02 9.85

A4 10 11.26 11.07 9.88

A7 10 10.95 10.91 10.01

A8 10 10.93 10.79 9.97

A9 10 14.99 11.17 9.92

A12 20 20.79 18.43 20.11

A13 20 19.83 18.44 20.20

A14 20 13.06 18.41 20.14

A17 20 18.72 18.26 20.24

A18 20 22.76 18.43 20.13

A19 20 22.76 18.43 20.19

Neural Comput & Applic

123

Table 9 Test set accuracy rate (%) results including best ANN architectures encountered by VNS, SA, GEO and GA algorithms

UCI data set Metaheuristic Test set accuracy rate (%) Architecture a g /ð�Þ

Wisconsin VNS 97.50 6 � 16 � 11 � 12 0.21875 0.1875 Gauss

Wisconsin SA 96.63 6 � 31 � 5 � 12 0.25 0.375 Gauss

Wisconsin GEOvar 96.72 6 � 11 � 3 � 12 0.140625 0.1875 Logarithmic

Wisconsin GA 97.27 6 � 4 � 6 � 12 0.26562 0.25 Logarithmic

Adult VNS 83.82 6 � 22 � 12 0.78125 0.5 Sigmoid

Adult SA 84.75 6 � 3 � 14 � 12 0.046875 0.8125 Sigmoid

Adult GEOvar 83.80 6 � 10 � 7 � 12 0.09375 0.375 Tanh

Adult GA 84.03 6 � 6 � 8 � 12 0.140625 0.25 Tanh

Glass VNS 58.92 6 � 15 � 11 � 12 0.125 0.4375 Logarithmic

Glass SA 57.88 6 � 17 � 8 � 12 0.984375 0.5 Logarithmic

Glass GEOvar 56.80 6 � 20 � 12 0.859375 0.0 Tanh

Glass GA 61.83 6 � 3 � 18 � 12 0.109375 0.25 Logarithmic

In such experiments the weighting factors given to training (q1) and generalization (q2) errors were 1.0 and 0.1, respectively

Table 10 Test set accuracy rate (%) results including best ANN architectures encountered by VNS, SA, GEO, and GA algorithms

UCI data set Metaheuristic Test set accuracy rate (%) Architecture a g /ð�Þ

Wisconsin VNS 99.31 6 9 6 9 13 9 12 0.109375 0.625 Gauss

Wisconsin SA 97.98 6 9 5 9 4 9 12 0.5625 0.0625 Logarithmic

Wisconsin GEOvar 96.12 6 9 31 9 12 0.03125 0.5 Gauss

Wisconsin GA 98.75 6 9 12 9 5 9 12 0.1.875 0.375 Tanh

Adult VNS 84.85 6 9 4 9 6 9 12 0.140625 0.5 Logarithmic

Adult SA 85.76 6 9 3 9 19 9 12 0.09375 0.375 Sigmoid

Adult GEOvar 83.26 6 9 3 9 16 9 12 0.09375 0.25 Logarithmic

Adult GA 84.51 6 9 3 9 16 9 12 0.140625 0.5 Sigmoid

Glass VNS 57.45 6 9 8 9 4 9 12 0.75 0.5 Logarithmic

Glass SA 61.12 6 9 2 9 10 9 12 0.140625 0.375 Sigmoid

Glass GEOvar 60.95 6 9 3 9 16 9 12 0.46875 0.4375 Gauss

Glass GA 63.86 6 9 27 9 12 0.125 0.5625 Logarithmic

In such experiments, the weighting factors given to training (q1) and generalization (q2) errors were equal to 1.0

Table 11 Test set accuracy rate (%) results including best ANN architectures encountered by VNS, SA, GEO, and GA algorithms

UCI data set Metaheuristic Test set accuracy rate (%) Architecture a g /ð�Þ

Wisconsin VNS 98.68 6 � 3 � 16 � 12 0.265625 0.1875 Tanh

Wisconsin SA 97.75 6 � 14 � 12 0.453125 0.5 Sigmoid

Wisconsin GEOvar 96.26 6 � 31 � 11 � 12 0.25 0.5625 Tanh

Wisconsin GA 99.25 6 � 4 � 5 � 12 0.015625 0.6875 Sigmoid

Adult VNS 85.91 6 � 4 � 6 � 12 0.3125 0.1875 Tanh

Adult SA 85.05 6 � 11 � 14 � 12 0.28125 0.125 Sigmoid

Adult GEOvar 83.60 6 � 5 � 10 � 12 0.09375 0.25 Gauss

Adult GA 84.96 6 � 7 � 5 � 12 0.125 0.25 Logarithmic

Glass VNS 57.92 6 � 30 � 12 0.09375 0.4375 Gauss

Glass SA 59.61 6 � 16 � 18 � 12 0.109375 0.626 Logarithmic

Glass GEOvar 59.11 6 � 3 � 15 � 12 0.21875 0.0 Tanh

Glass GA 62.74 6 � 4 � 5 � 12 0.09375 0.6875 Logarithmic

In such experiments, the weighting factors given to training (q1) and generalization (q2) errors were 0.1 and 1.0, respectively

Neural Comput & Applic

123

What we can infer about these and other results findings

from the literature is the mere employment of any sys-

tematic and automated search method as proposed in this

work is preferable to its absence.

Finally, we can say that although we applied the approach

to solving specific problems like estimating air pollution

sources, it is generic and robust enough to be adapted and

applied to any problem that may be solved through ANNs.

7 Conclusion and final remarks

This paper proposes a new methodology for choosing

feedforward ANN architecture with minimum complexity

and optimal performance. We adapt and compare four

global search metaheuristics to train and find out improved

ANN architectures. The first case study consisted in to

estimate correctly the intensity and location of the pollu-

tants sources. Additionaly, more experiments were per-

formed with three data sets from UCI repository. The

network architecture selection considered not only the

network training error but also the generalization error as a

pruning criterion. Also, the generalization error is not

simply measured but directly calculated during the evolu-

tionary process. After that the architecture is trained by

using a subset that does not belong to the test set. A new

criterion to measure the ANNs model complexity based on

the number of weights presents in the network arrangement

and on the number of epochs needed for training is created

and included in the methodology.

Based on the results obtained and those found in litera-

ture, we must highlight that it is fully justifiable to evolve the

ANN architecture if our interest is to get a solution dedicated

and adapted to the context of the problem. The time needed

to evolve an architecture and find an appropriate setting for

the problem is fully justified if compared with the time spent

in an empirical ‘‘trial and error’’ procedure. Besides, we get

near-optimal network architectures by using an autonomous,

systematic, and well-behaved process, not only because of

experience, intuition or even luck. The results also generate

interesting conclusions on the importance of each input

feature in classification and prediction tasks.

However, the computational cost translated into pro-

cessing time for a monoprocessor machine to perform tens

of thousands of objective function evaluations is still high

and may become impractical if we adopt a greater granu-

larity in the search space. A promising alternative would be

to parallelize the optimization algorithm code and execute

it in a multiprocessor environment, using the fact that

ANNs are an intrinsically parallel algorithm. Another

alternative would be the use of distributed parallel pro-

cessing technology by grid computing where it would be

possible to achieve a high processing rate by dividing the

processing tasks among multiple machines. These pro-

cesses would be executed when the machines were not

being used by the user, avoiding the processing waste of

the machine. In both cases, with minor code adjustments

and improving the hardware, we could reduce the search

time in more than one order of magnitude.

Acknowledgments The author is very grateful for the physical and

financial support provided to this research by CAPES and CNPq.

References

1. Bernardos PG, Vosniakos GC (2004) Optimizing feedforward

artificial neural network architecture. Eng Appl Artif Intell

20(3):365–382

Algorithm 1 Summary of the methodology employed for the feedforward ANN architecture optimization problem

Neural Comput & Applic

123

2. Yao X, Liu Y (1997) A new evolutionary system for evolving

artificial neural networks. IEEE Trans Neural Netw 8(3):694–713

3. Rumelhart DE, Hinton GE, Willians RJ (1986) Learning internal

representations of back-propagating error. Nat Biotechnol

323:533–536

4. Rojas R (1996) Neural networks, a systematic introduction,

neural networks, a systematic introduction. Springer-Verlag, New

York

5. Haykin S (1995) Neural networks. A comprehensive foundation,

neural networks. A Comprehensive Foundation, Macmillan, New

York

6. Goldberg DE, Holland JH (1988) Genetic algorithms and

machine learning: introduction to the special issue on genetic

algorithms. Mach Learn 3:95–99

7. Farmer JD, Toffoli T, Wolfram S (1983) Cellular automata.

Proceedings of an interdisciplinary workshop at Los Alamos,

New Mexico, March 7–11

8. Iyoda EM (2000) Inteligência computacional no projeto au-

tomático de redes neurais hı́bridas e redes neurofuzzy heterogê-

neas, Tese de Doutorado—Universidade Estadual de Campinas

(UNICAMP)—Campinas, SP: [s.n.]

9. Miller GF, Todd PM, Hedge SU (1991) Designing neural net-

works. Neural Netw 4:53–60

10. Arifovic J (2001) Using genetic algorithms to select architecture

of a feedforward artificial neural network. Physica A 289:574–

594

11. Whitley D, Starkweather T, Bogart C (1989) Genetic algorithm

and neural networks: optimizing connections and connectivity.

Computing 14:347–361

12. Schafer JD, Caruana RA, Eshelman LJ (1990) Using genetic

search to exploit the emergent behavior of neural networks.

Physica D 42:244–248

13. Menczer F, Parisi D (1992) Evidence of hyperplanes in the

genetic learning of neural networks. Biol Cybernet 66:283–289

14. Kitano H (1994) Evolution, complexity, entropy and artificial

reality. Physica D 75:239–263

15. Kitano H (1990) Designing neural networks using genetic algo-

rithms with graph generation system. Complex Syst 4:461–476

16. Harp S, Samad A, Guha A (1989) Toward the genetic synthesis of

neural networks. In: Schafer JD (ed) Proceedings of the third

international conference on genetic algorithms. Morgan Kauf-

man, San Mateo, CA, pp 762–767

17. Chen Z, Xiao J, Cheng J (1997) A program for automatic

structure search. Proceedings of the 1997 international confer-

ence on neural networks, pp 308–311

18. Koehn P (1994) Combining genetic algorithms and neural net-

works: the enconding problem, master thesis, University of

Tennessee, Knoxville, EUA

19. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality

in a simple model of evolution. Phys Rev Lett 71(24):4083–4086

20. Sousa FL, Vlassov V, Ramos FM (2003) Generalized extremal

optimization for solving complex optimal design problems. Lect

Notes Comput Sci 2723:375–376

21. Bak P (1996) How nature works. Copernicus, Springer-Verlag,

New York

22. Hansen P, Mladenovic N (1995) A variable neighborhood algo-

rithm: a new metaheuristic for combinatorial optimization,

abstracts of papers at optimization days, 112

23. Hansen P, Mladenovic N (2003) Variable neighborhood search.

In: Glover F, Kochenberger G (eds) Handbook of metaheuristics.

Kluwer, Dordrecht, pp 145–184

24. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by

simulated annealing. Sci Agric 220(4598):671–680

25. Goldberg DE (1989) Genetic algorithms in search, optimization,

and machine learning. Addison-Wesley, Reading

26. Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, Englewood Cliffs

27. Hornik K (1993) Some new results on neural network approxi-

mation. Neural Netw 6:1069–1072

28. Bishop C (1995) Neural networks for pattern recognition. Oxford

University Press, Oxford

29. Ripley BD (1996) Pattern recognition and neural networks, pat-

tern recognition and neural networks. Cambridge University

Press, Cambridge

30. Roberti DR, Anfossi D, Campos Velho HF, Degrazia GA (2005)

Estimating emission rate and pollutant source location. Cienc Nat

(special volume):131–134

31. Ferrero E, Anfossi D (1998) Comparison of PDFs, closures

schemes and turbulence parameterizations in lagrangian sto-

chastic models. Int J Environ Pollut 9:384–410

32. Ferrero E, Anfossi D, Brusasca G, Tinarelli G (1995) Lagrangian

particle model LAMBDA: evaluation against tracer data. Int J

Environ Pollut 5:360–374

33. Luz EFP, Campos Velho HF, Becceneri JC, Roberti DR (2007)

Estimating atmospheric area source strength through particle

swarm optimization, inverse problems, desing and optimization

symposium IPDO-2007, April 16–18, Miami (FL), USA,

1:354–359

34. Paes FF, Campos Velho HF, Carvalho AR, Luz EP (2008)

Identifing atmospheric pollutant sources using artificial neural

networks, AGU 2008 joint assembly, Fort Lauderdale (FL), USA,

pp 131–134

35. Frank A, Asuncion A (2010) UCI machine learning repository [

http://archive.ics.uci.edu/ml]. University of California, School of

Information and Computer Science, Irvine, CA

Neural Comput & Applic

123

http://archive.ics.uci.edu/ml

	Metaheuristics for the feedforward artificial neural network (ANN) architecture optimization problem
	Abstract
	Introduction
	The feedforward network
	The multilayer perceptron

	Evolutionary computation
	Methodology
	Candidate solution representation
	Network learning and test
	Objective function applied
	Detailing the criteria used to compose the objective function

	First case study: identification and estimation of atmospheric pollutant sources
	Benchmark data sets
	Computational experiments
	Results for the identification and estimation of atmospheric pollutant sources
	Results for the benchmark data sets

	Conclusion and final remarks
	Acknowledgments
	References

