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Abstract. This article analyzes the performance of metaheuristics on the vehicle routing problem

with stochastic demands (VRPSD). The problem is known to have a computationally demanding

objective function, which could turn to be infeasible when large instances are considered. Fast

approximations of the objective function are therefore appealing because they would allow for an

extended exploration of the search space. We explore the hybridization of the metaheuristic by

means of two objective functions which are surrogate measures of the exact solution quality.

Particularly helpful for some metaheuristics is the objective function derived from the traveling

salesman problem (TSP), a closely related problem. In the light of this observation, we analyze

possible extensions of the metaheuristics which take the hybridized solution approach VRPSD-TSP

even further and report about experimental results on different types of instances. We show that,

for the instances tested, two hybridized versions of iterated local search and evolutionary algorithm

attain better solutions than state-of-the-art algorithms.

Mathematics Subject Classifications (2000): 68T20, 90C27, 90C59, 90B06, 90C15.

Key words:: objective function approximation, local search, a priori tour.

1. Introduction

Vehicle routing problems (VRPs) concern the transport of items between depots

and customers by means of a fleet of vehicles. Solving a VRP means to find the

best set of routes servicing all customers and respecting the operational

constraints, such as vehicles capacity, time windows, driver’s maximum working

time. VRPs are a key issue in supply-chain and distribution systems today, and

they are becoming increasingly complex. For this reason there is an ever in-

creasing interest in routing models that are dynamic, stochastic, rich of con-

straints, and thus have more and more complex objective functions.
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Models that focus particularly on the stochasticity of information are mainly

known in the literature as Stochastic VRPs (SVRPs), and the problem we are

addressing in this paper belongs to this class. In SVRPs elements of the problem

such as the set of customers visited, the customers demands, or the travel times,

are modeled as stochastic variables with known probability distributions, and the

objective function is usually the expected cost of the planned routes. Note,

however, that in SVRPs one needs to specify not only the concept of Fplanned

routes,_ but also the way planned routes are to be modified in response to the

realization of the stochastic information.

One common feature of SVRPs is that they all have at least one deterministic

counterpart, which is the VRP that one obtains by considering zero-variance

probability distributions for the stochastic elements of the problem. SVRPs are

thus NP-hard problems, like most VRPs. An important point that increases the

difficulty of SVRPs is that they have an objective function (expected cost) which

is much more computationally expensive than their deterministic counterparts.

For this reason, a key issue in solving SVRPs by heuristics and metaheuristics is

the use of fast and effective objective function approximations that may accel-

erate the search process. Due to the analogy between stochastic and deterministic

VRPs, a reasonable choice for the objective function approximation of a given

SVRP is the objective function of corresponding, or similar, deterministic

problems.

In this paper, we investigate the use of objective function approximations

derived from deterministic problems in the context of the vehicle routing problem

with stochastic demands (VRPSD). This is an NP-hard problem, and despite the

fact that it has a quite simple formulation, it arises in practice in many real world

situations. One example is garbage collection, where it is indeed impossible to

know a priori how much garbage has to be collected at each place. Another

example where the demand is uncertain is the delivery of petrol to petrol stations.

In fact, when a customer issues the order it is still unknown how much he will

sell in the time between the order and the delivery.

In the VRPSD problem one vehicle of finite capacity leaves from a depot with

full load, and has to serve a set of customers whose exact demand is only known

on arrival at the each customer location. A planned route in this context is very

simple: a tour starting from the depot and visiting all customers exactly once; this

is also called a priori tour, and it will be addressed as such in the remainder of

the paper. The a priori tour is a sort of skeleton that fixes the order in which

customers will be served, but the actual route the vehicle would travel would

include return trips to the depot for replenishments when needed. The points at

which return trips are performed are, in general, stochastic. The objective

function to be minimized is the expected cost of the a priori tour.

Due to the nature of the a priori tour, a feasible solution for the VRPSD may

also be seen as a feasible solution for a traveling salesman problem (TSP) on the

set of customers (depot included). Moreover, if the vehicle has infinite capacity,
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the consequent VRPSD is, in fact, a TSP. Due to these analogies, a natural

approximation of the VRPSD objective function is the length of the a priori tour.

In this paper we consider basic implementations of five metaheuristics: sim-

ulated annealing [23], tabu search [14], iterated local search [25], ant colony

optimization [10] and evolutionary algorithms [1]. Our main goal is to test the

impact on metaheuristics of interleaving the exact VRPSD objective function

with the a priori tour length as an approximation of it. This mixture changes the

search landscape during the search for good quality solutions and can be seen as

innovative type of hybridization of metaheuristic’s search process that has not

been yet explored in the literature. In particular, we investigate two types of

hybridization: first, we consider a local search algorithm (OrOpt) for which a

quite good approximation for the exact VRPSD objective function is available,

and we compare metaheuristics using this underlined local search by applying

both VRPSD approximation and TSP approximation. Second, we further exploit

the TSP analogy, by choosing the 3-opt local search operator, which is very good

for the TSP, but for which there is no immediate VRPSD approximation.

The remainder of the paper is organized as follows. In Section 2 we give the

formal description of the VRPSD, we describe in detail the objective function,

the state of the art about the VRPSD, and the relevant aspects of generating a

benchmark of instances for this problem, taking into account the existing literature.

Section 3 describes at high level the metaheuristics and the other algorithms

analyzed. Section 4 reports details about tested instances, parameters used for the

metaheuristics, computation times allowed. Sections 5 and 6 describe the com-

putational experiments on the first type of hybridization (the use of TSP objective

function in OrOpt) and on the second type of hybridization (the use of the 3-opt

local search with the TSP objective function), respectively. Section 7 summa-

rizes the main conclusions that can be drawn from the experimental results.

2. The Vehicle Routing Problem with Stochastic Demand

The VRPSD is defined on a complete graph G ¼ ðV;A;DÞ, where V ¼
f0; 1; . . . ; ng is a set of nodes (customers) with node 0 denoting the depot, A ¼
fði; jÞ : i; j 2 V; i 6¼ jg is the set of arcs joining the nodes, and D ¼ fdij : i; j 2
V; i 6¼ jg are the travel costs (distances) between nodes. The cost matrix D is

symmetric and satisfies the triangular inequality. One vehicle with capacity Q

has to deliver goods to the customers according to their demands, minimizing the

total expected distance traveled, and given that the following assumptions are

made. Customers’ demands are stochastic variables �i, i ¼ 1; . . . ; n independent-

ly distributed with known distributions. The actual demand of each customer is

only known when the vehicle arrives at the customer location. It is also assumed

that �i does not exceed the vehicle’s capacity Q, and follows a discrete prob-

ability distribution pik ¼ Probð�i ¼ kÞ, k ¼ 0; 1; 2; . . . ;K � Q. A feasible solu-

tion to the VRPSD is a permutation of the customers s ¼ ðsð0Þ; sð1Þ; . . . ; sðnÞÞ
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starting at the depot (that is, sð0Þ ¼ 0), and it is called a priori tour. The vehicle

visits the customers in the order given by the a priori tour, and it has to choose,

according to the actual customer’s demand, whether to proceed to the next

customer or to go to depot for restocking. Sometimes the choice of restocking is

the best one, even if the vehicle is not empty, or if its capacity is bigger than the

expected demand of the next scheduled customer; this action is called Fpreventive

restocking._ The goal of preventive restocking is to avoid the risk of having a

vehicle without enough load to serve a customer and thus having to perform a

back-and-forth trip to the depot for completing the delivery at the customer.

The expected distance traveled by the vehicle (that is, the objective function),

is computed as follows. Let s ¼ ð0; 1; . . . ; nÞ be an a priori tour. After the service

completion at customer j, suppose the vehicle has a remaining load q, and let

fjðqÞ denote the total expected cost from node j onward. With this notation, the

expected cost of the a priori tour is f0ðQÞ. If Lj represents the set of all possible

loads that a vehicle can have after service completion at customer j, then, fjðqÞ
for q 2 Lj satisfies

fjðqÞ ¼ Minimumf f
p

j ðqÞ; f r
j ðqÞg; ð1Þ

where

f
p

j ðqÞ ¼ dj;jþ1 þ
X

k:k�q

fjþ1ðq� kÞpjþ1;k

þ
X

k:k>q

½2djþ1;0 þ fjþ1ðqþ Q� kÞ�pjþ1;k ; ð2Þ

f r
j ðqÞ ¼ dj;0 þ d0;jþ1 þ

XK

k¼1

fjþ1ðQ� kÞpjþ1;k; ð3Þ

with the boundary condition fnðqÞ ¼ dn;0; q 2 Ln. In (2–3), f
p

j ðqÞ is expected

cost corresponding to the choice of proceeding directly to the next customer,

while f r
j ðqÞ is the expected cost in case preventive restocking is chosen. As

shown by Yang et al. in [33], the optimal choice is of threshold type: given the a

priori tour, for each customer j there is a load threshold hj such that, if the

residual load after serving j is greater than or equal to hj, then it is better to

proceed to the next planned customer, otherwise it is better to go back to the

depot for preventive restocking. The computation of f0ðQÞ runs in OðnKQÞ
time; the memory required is OðnQÞ, if one is interested in memorizing all

intermediate values fjðqÞ, for j ¼ 1; 2; . . . ; n and q ¼ 0; 1; . . . ;Q, and OðQÞ
otherwise. Procedure 1 is an implementation of the recursion (2–3) for the

computation of f0ðQÞ and of the thresholds. According to the above definition,

the VRPSD is a single-vehicle routing problem. Note that there would be

no advantage in considering a multiple-vehicle problem by allowing multiple
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a priori tours, since, as proved by Yang et al. [33], the optimal solution is always

a single tour.

The literature about the VRPSD and SVRPs in general is quite rich.

Formulations of SVRPs include the Traveling Salesman Problem with Stochastic

Customers (TSPSC), the Traveling Salesman Problem with Stochastic Travel

Times (TSPST), the Vehicle Routing Problem with Stochastic Customers

(VRPSC), the Vehicle Routing Problem with Stochastic Customers and Demands

(VRPSCD). For a survey on the early approaches to these problems, see [12] and

[4]; for a more recent survey, especially on mathematical programming

approaches used for SVRPs, see [22]. In the following we summarize the main

contributions to solve the VRPSD and similar problems, relevant to this paper.

– Jaillet [17, 18] and Jaillet-Odoni [19] derive analytic expressions for the

computation of the expected length of a solution for the Probabilistic

Traveling Salesman Problem and variations of it;
– Bertsimas [2] proposes the cyclic heuristic for the VRPSD, by adapting to a

stochastic framework one of the heuristics presented by Haimovitch and

Rinnooy Kan [16] in a deterministic context; later, Bertsimas et al. [3]

improve this heuristic by applying dynamic programming, to supplement the

a priori tour with rules for selecting returns trips to the depot, similarly to

the preventive restocking strategy; their computational experience suggests

that the two versions of the cyclic heuristic provide good quality solutions

when customers are randomly distributed on a square region;
– Gendreau, Laporte and Séguin [11] present an exact stochastic integer prog-

ramming method for the VRPSCD (the same method can be applied to the

VRPSD as well); by means of the integer L-shaped method [24] they solve

instances with up to 46 and 70 customers and 2 vehicles, for the VRPSCD and

VRPSD, respectively; in [13], they also develop a tabu search algorithm

Procedure 1 Computation of the VRPSD objective function f0ðQÞ

for ðq ¼ Q;Q� 1; . . . ; 0Þ do

fnðqÞ ¼ dn;0

for ð j ¼ n� 1; n� 2; . . . ; 1Þ do

compute f r
j (by means of equation (3))

for ðq0 ¼ Q;Q� 1; . . . ; 0Þ do

compute f
p

j ðq0Þ (by means of equation (2))

compare f r
j and f

p
j ðq0Þ for finding the threshold hj

compute fjðq0Þ (by means of equation (1))

end for

end for

end for

compute f0ðQÞ
return f0ðQÞ
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called TABUSTOCH for the same problem; this algorithm is to be

employed when instances become too large to be solved exactly by the L-

shaped method;
– Teodorović and Pavković [31] propose a Simulated Annealing algorithm to

solve the multi-vehicle VRPSD, with the assumption that no more than one

route failure is allowed during the service of each vehicle.
– Gutjahr [15] applies S-ACO to the Traveling Salesman Problem with Time

Windows, in case of stochastic service times. S-ACO is a simulation-based

Ant Colony Optimization algorithm, that computes the expected cost of a

solution (the objective function), by Monte Carlo sampling.
– Secomandi [27, 28] applies Neuro Dynamic Programming techniques to the

VRPSD; he addresses the VRPSD with a re-optimization approach, where

after each new exact information about customers demand is updated, the a

priori tour planned on the not yet served customers is completely re-

planned; this approach may find solutions with a lower expected value with

respect to the preventive restocking strategy, but it is much more

computationally expensive; moreover, the a priori tour may be completely

different from the actual tour followed by the vehicle, and this situation is

often seen as a disadvantage by companies;
– Yang et al. [33] investigate the single- and multi-vehicle VRPSD; the latter

is obtained by imposing that the expected distance traveled by each vehicle

does not exceed a given value; the authors test two heuristic algorithms, the

route-first-cluster-next and the cluster-first-route-next, which separately

solve the problem of clustering customers which must be served by

different vehicles and the problem of finding the best route for each cluster;

both algorithms seem to be efficient and robust for small size instances, as

shown by comparisons with branch-and-bound solutions to instances with

up to 15 customers; the authors also adapt to the stochastic case (both

single- and multi-vehicle VRPSD) the OrOpt local search due to Or [26], by

proposing a fast approximation computation for the change of the objective

function value of a solution modified with a local search move.

The OrOpt local search and objective function approximation are used in

the present paper as building blocks of our metaheuristics, therefore we will

describe them in detail in the following subsection.

2.1. THE OrOpt LOCAL SEARCH

A basic move of the OrOpt local search, as suggested by Yang et al. in [33],

works as follows. Given a starting a priori tour, sets Sk of k consecutive

customers with k 2 f1; 2; 3g are moved from one position to another in the tour,

like in Figure 1. In the following we describe the two types of approximation

schemes used for the computation of the move cost. The first one, that we call
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VRPSD, is the one proposed in [33], and the second one, that we call TSP, only

computes the length change of the a priori tour.

VRPSD approximation scheme. The move cost is computed in two stages: i)

compute the saving from extracting the set of customers from the tour; ii)

compute the cost of inserting it back somewhere else in the tour. Let i and

iþ k þ 1 be the nodes immediately preceding, respectively following, Sk in the

tour, and let j be the node immediately after which Sk is to be inserted, as shown

in Figure 1. Here, we assume that j is after i in the a priori tour. Let fiðqÞ and

fiþkþ1ðqÞ be the expected cost-to-go from nodes i, respectively iþ k þ 1 onward

before the extraction of Sk . Apply one dynamic programming recursion step

starting with cost vector fiþkþ1ð�Þ at node iþ k þ 1 back to node i, without

considering the sequence Sk . Let f 0i ð�Þ be the resulting cost vector at node i, that

is, after extracting Sk from the tour. Then, define the approximate extraction

saving as a simple average over q of fiðqÞ � f 0i ðqÞ. The computation of the

approximate insertion cost of Sk between nodes j and jþ 1 in the tour, is done

analogously, if we assume that the insertion point (node j) is after the extrac-

tion point (node i). Let fjðqÞ be the cost-to-go at node j before inserting Sk , and

f 00j ðqÞ be the cost-to-go at node j after inserting the Sk . The total approximate

cost of an OrOpt move is computed by subtracting the approximate extraction

saving from the approximate insertion cost, as follows

�VRPSD ¼
PQ

q¼0½ð f 00j ðqÞ � fjðqÞÞ � ð fiðqÞ � f 0i ðqÞÞ�
Qþ 1

: ð4Þ

Note that the cost vectors are assumed to be already available from the

computation of the expected cost for the starting tour, thus, they do not need to

be computed when evaluating equation (4). The only computations that must be

done here are the evaluation of cost vectors f 0iþ1ð�Þ and f 00j ð�Þ, requiring OðKQÞ
time, and the average of equation (4), requiring OðQÞ time. Therefore, with the

proposed VRPSD approximation, the cost of an OrOpt move can be computed in

OðKQÞ time. Although it is possible that tours which are worsening with respect

to the evaluation function are accepted because recognized as improving by the

approximate evaluation, in practice this approximation scheme behave quite

well. For a deeper discussion on the issues related with this scheme we refer the

reader to the original paper [33].

i

Sk

i+k j j+1i+1 i+k+1

Figure 1. How an a priori tour is modified after performing an OrOpt move, where the set

of consecutive customers Sk (here, k ¼ 3) is moved forward in the tour.
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TSP approximation scheme. In the TSP approximation scheme the cost of an

OrOpt move coincides with the difference between the length of the tour before

the move and after the move:

�TSP ¼ di;iþkþ1 þ dj;iþ1 þ diþk; jþ1 � di;iþ1 � diþk;iþkþ1 � dj; jþ1; ð5Þ

where, as before, i and j are the extraction, respectively insertion point of a string

of k consecutive customers (see Figure 1). Clearly, �TSP is computable in con-

stant time.

The OrOpt neighborhood examination follows the same scheme proposed in

[33]. Briefly, all possible sequences of length k 2 f1; 2; 3g are considered for

insertion in a random position of the tour after the extraction point. Then, only

the Fbest_ move among those of length k is chosen. The Fbest_ move is the move

corresponding to the most negative move cost, which is computed by equation

(4) in the VRPSD approach and by equation (5) in the TSP approach.

2.2. BENCHMARK

In the literature there is no commonly used benchmark for the VRPSD, therefore

we have generated our own testbed. We have tried to consider instances which

are Finteresting_ from different points of view, by controlling four factors in the

generation of instances: customer position, capacity over demand ratio, variance

of the stochastic demand, and number of customers.

Instances may be divided into two groups, uniform and clustered, according to

the position of customers. In uniform instances, the position of customers is

chosen uniformly at random on a square of fixed size. In clustered instances,

coordinates are chosen randomly with normal distributions around a given

number of centers. This results in clusters of nodes, a typical situation for

companies serving customers positioned in different cities.

The ratio between the total (average) demand of customers and the vehicle’s

capacity is an important factor that influences the Fdifficulty_ of a VRPSD

instance [11]. The bigger the ratio, the more Fdifficult_ the instance. Here, the

vehicle capacity Q is chosen as Q ¼ dtotal average demand�r
n

e; where the parameter r

may be approximately interpreted as the average number of served customers

before restocking.

Each customer’s demand is an integer stochastic variable uniformly dis-

tributed on an interval. The demand interval for each customer i is generated

using two parameters: the average demand Di, and the spread Si, so that the

possible demand values for customer i are the 2Si þ 1 integers in the interval

½Di � Si;Di þ Si�. The spread is a measure of the variance of the demand of each

customer.

The particular parameters used to generate the test instances for our expe-

riments are reported in Section 4.
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3. The Metaheuristics

We aim at an unbiased comparison of the performance of five well-known

different metaheuristics for this problem. In order to obtain a fair and meaningful

analysis of the results, we have restricted the metaheuristic approaches to the use

of the common OrOpt local search. In the following we briefly and schematically

describe the main principles of each metaheuristic and give the details of their

implementations for the VRPSD.

– Simulated Annealing (SA)

Determine initial candidate solution s

Set initial temperature T ¼ Ti according to annealing schedule

While termination condition not satisfied:

Probabilistically choose a neighbor s0 of s

If s0 satisfies probabilistic acceptance criterion (depending on T):

s := s0

Update T according to annealing schedule

The initial temperature Ti is given by the average cost of a sample of 100

solutions of the initial tour multiplied by �; every  � n iterations the

temperature is updated by T  ��T (standard geometric cooling); after

� � � n iterations without improvement, the temperature is increased by

adding Ti to the current value; the solution considered for checking

improvements is the best since the last re-heating.

– Tabu Search (TS)

Determine initial candidate solution s

While termination criterion is not satisfied:

Choose the best neighbor s0 of s that is either non-tabu or

satisfies the aspiration criterion, and set s := s0

Update tabu attributes based on s0

The neighborhood of the current solution s is explored. The non-tabu

neighbors are considered for the selection of the next current solution. If the

value of a tabu neighbor is better than the best found solution, then this

neighbor is also considered for selection (aspiration criterion). The best

considered neighbor, i.e., the one with the lowest value, is selected. In order

to avoid cycling around the same set of visited solutions, we found

convenient to have a variable neighborhood: for any current solution s,

instead of considering the whole neighborhood, we choose a subset of it

according to a probability distribution. We experimentally verified that the

used variable neighborhood is able to avoid cycles and to explore a larger

part of the search space.
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– Iterated Local Search (ILS)

Determine initial candidate solution s

Perform local search on s

While termination criterion is not satisfied:

r := s

Perform perturbation on s

Perform local search on s

Based on acceptance criterion, keep s or revert to s :¼ r

The perturbation consists in a sampling of n neighbors according to the 2-opt

exchange neighborhood [20]; each new solution is evaluated by exact cost

function (Procedure 1) and if a solution is found that has cost smaller than

the best solution found so far plus ", the sampling ends; otherwise, the best

solution obtained during the sampling is returned; the acceptance criterion

keeps s if it is the best solution found so far.

– Ant Colony Optimisation (ACO)

Initialise weights (pheromone trails)

While termination criterion is not satisfied:

Generate a population sp of solutions by a randomised

constructive heuristic

Perform local search on sp

Adapt weights based on sp

Pheromone trails are initialized to �0; sp solutions are generated by a

constructive heuristic and refined by local search; a global update rule is

applied r times; sp solutions are then constructed by using information

stored in the pheromone matrix; after each construction step a local update

rule is applied to the element �i; j corresponding to the chosen customer pair:

�i;j ¼ ð1�  Þ � �i;j þ  � �0, with  2 [0,1]; after local search, weights are

again updated by the global update rule �i; j ¼ ð1� �Þ��i; j þ �� q

Cbs , with

� 2 [0,1] and Cbs the cost of the best-so-far solution (note that heuristic

information is only used in the initialization phase).

– Evolutionary Algorithm (EA)

Determine initial population sp

While termination criterion is not satisfied:

Generate a set spr of solutions by recombination

Generate a set spm of solutions from spr by mutation
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Perform local search on spm

Select population sp from solutions in sp, spr, and spm

At each iteration two solutions are chosen among the best ones to generate a

new solution spr through Edge Recombination [32] (a tour is generated

using edges present in both two other tours, whenever possible); the

mutation swaps adjacent customers (without considering the depot) with

probability pm; finally, the solution improved by local search replaces the

worst solution in the population.

The initial solution(s) for all metaheuristics are obtained by the Farthest

Insertion constructive heuristic [21]; it builds a tour by choosing as next

customer the not yet visited customer which is farthest from the current one.

Here, we consider a randomized version of this heuristic (RFI) which picks the

first customer at random, and after the tour has been completed, shifts the starting

customer to the depot.

In order to use a reference algorithm for comparison among metaheuristics

(see Section 4), we also implemented a simple random restart algorithm which

uses the RFI heuristics plus local search and restarts every time a local optimum

is found, until the termination condition is reached; the best solution found

among all the restarts is picked as the final solution; we call such algorithm RR.

4. Experimental Setup

In this article we report two computational experiments with two different goals:

i) we analyze metaheuristics performance to test the hypothesis of the relation

between the TSP and VRPSD; ii) we study the performance of enhanced versions

of the best algorithms found in the first set of experiments. Moreover, we relate

these results with parameters of the instance.

We consider instances with 50, 100 and 200 customers and with customers

uniformly distributed or grouped in clusters. In uniform instances, the position of

customers is chosen uniformly at random in the square ½0; 99�2. Clustered

instances are generated with two clusters, with centers randomly chosen in the

square ½0; 99�2. The variance of the normal distribution used to generate cus-

tomers coordinates around the centers is equal to ð0:8= ffiffiffi
n
p Þ � ðmax:coordinateÞ.

This corresponds to variance values of about 11, 8, and 6, respectively for

instances with 50, 100, and 200 customers. The position of the depot is fixed at

(1,1). The average number of customers served before restocking is maintained

fixed to 4, thus yielding ratios for total demand over vehicle capacity in the

range from 12 to 50. Typical values for this ratio in the VRPSD literature are

below 3, however higher values are closer to the needs of real contexts [5]. In all

instances, average demands Di at each customer i are taken with equal prob-

ability from ½1; 49� or ½50; 100�. With regard to demand spread, instead, instances
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may be divided into two groups: low spread instances, in which each customer i

has Si chosen at random in ½1; 5�, and high spread instances, in which each

customer i has Si chosen at random in ½10; 20�. For each combination of size,

distribution of customers, and demand spread, 75 instances were generated,

making a total of 900 instances.

The metaheuristic parameters were chosen in order to guarantee robust

performances over all the different classes of instances; preliminary experiments

suggested the following settings:

SA: � ¼ 0:05, � ¼ 0:98,  ¼ 1, and � ¼ 20;

TS: pnt ¼ 0:8 and pt ¼ 0:3;

ILS: " ¼ n
10

;

ACO: sp ¼ 5, �0 ¼ 0:5,  ¼ 0:3, � ¼ 0:1, q ¼ 107, and r ¼ 100;

EA: sp ¼ 10, pm ¼ 0:5.

Given the results reported in [6, 7], we decided to only perform one run for

each metaheuristic on each instance.j The termination criterion for each

algorithm was set to a time equal to 30, 120 or 470 sec. for instances respectively

of 50, 100 or 200 customers. Experiments were performed on a cluster of 8 PCs

with AMD Athlon(tm) XP 2800+ CPU running GNU/Linux Debian 3.0 OS, and

all algorithms were coded in C++ under the same development framework.

In order to compare results among different instances, we normalized results

with respect to the performance of RR. For a given instance, we denote as cMH

the cost of the final solution of a metaheuristic MH, cRFI the cost of the solution

provided by the RFI heuristic, and CRR the cost of the final solution provided by

RR; the normalized value is then defined as

Normalized Value for MH ¼ cMH � cRR

cRFI � cRR

: ð6Þ

Besides providing a measure of performance independent from different instance

hardness, this normalization method gives an immediate evaluation of the

minimal requirement for a metaheuristic; it is reasonable to request that a

metaheuristic performs at least better than RR within the computation time under

consideration.

5. First Hybridization: Using Approximate Move Costs in Local Search

The main goal of this first experiment is to see whether approximating the exact

but computationally demanding objective with the fast computing length of the a

j In [6] it is formally proved that if a total of N runs of a metaheuristic can be performed for

estimating its expected performance, the best unbiased estimator, that is, the one with the least

variance, is the one based on one single run on N randomly sampled (and therefore typically

distinct) instances.
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Figure 2. Aggregate results over all 900 instances. From top to bottom: boxplot of

normalized results; interaction plot for the two factors: metaheuristic and objective function

approximation scheme; error bars plot for simultaneous confidence intervals in the all-

pairwise comparison. The boxplot is restricted to values in ½�10:5; 5�, few outliers fell

outside this interval. In the error bar plot, ranks range from 1 to 12, the number of algorithms

considered in the experiment.
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priori tour is convenient or not. Our hypothesis is that the speedup due to the use

of a fast approximation of the objective is an advantage especially during the

phase of local search, when many potential moves must be evaluated before one

is chosen.

In order to test the advantage of a speedup across the metaheuristics, we apply

to each of them the OrOpt local search described in Section 2.1, and we test two

versions for each metaheuristic according to the type of approximation scheme

used in the local search, VRPSD-approximation or TSP-approximation. This set

up allows to use statistical techniques for a systematic experimental analysis. In

particular, we consider a two-way factor analysis, where metaheuristics and type

of objective function are factors and instances are considered as blocks [9].

The first plot of Figure 2 is the boxplot of the results over all instances after

the normalization. Negative values indicate an improvement over random restart

and the larger is the absolute value the larger is the improvement. It emerges that,

in average, ILS, EA and TS are able to do better than RR, while SA and ACO

perform worse. We check whether these results are also statistically significant.

The assumptions for a parametric analysis are not met, hence we rely on non-

parametric methods.

The central plot of Figure 2 shows the interaction between the two factors,

metaheuristic and approximation scheme. Interaction plots give an idea of how

different combinations of metaheuristic and approximation scheme affect the

average normalized result. The lines join the average value for each meta-

heuristic. If lines are not parallel it means that there is an interaction effect, that

is, metaheuristics perform differently with different approximation scheme. From

the plot, we see that a certain interaction effect is present between the two

factors, hence, it would be appropriate to report the effects of one factor

separately for each level of the other. In the third plot of Figure 2 we report,

however, together both VRPSD and TSP approximation schemes, but we

distinguish the effects of this factor on each metaheuristic. The plot presents the

simultaneous confidence intervals for the all-pairwise comparison of algorithms.

Interval widths are obtained by the Friedman two-way analysis of variance by

ranks [8], after rejecting the hypothesis that all algorithms perform the same. The

difference between two algorithms is statistically significant at a level of

confidence of 5% if their intervals do not overlap.

From the interaction and the all-pairwise comparison plots of Figure 2 we can

conclude that:

– The improvements of EA, ILS, and TS over RR are statistically significant.
– The presence of an interaction effect between metaheuristic and approxi-

mation scheme shows that EA, ILS and ACO perform better with TSP-

approximation while the opposite result holds for TS and SA. While EA,

ILS and ACO use the local search as a black-box, TS and SA employ their

own strategy for examining the neighborhood in the local search. This result
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indicates that, for becoming competitive, these two methods require a good

approximation of the objective function.
– The metaheuristics which perform better are EA, ILS and TS. Furthermore,

EA and ILS take significant advantage from TSP-approximation scheme.

6. Second Hybridization: Further Exploiting the TSP Analogy

Given the results in the previous section, it is reasonable to investigate what

happens if we exploit even more the hybridization based on the TSP objective

function. For this purpose, we consider one of the best performing TSP state-of-

the-art metaheuristics, and we observe that it is based on iterated local search

with the 3-opt local search operator [30]. We, therefore, hybridize the best

algorithms determined in the previous section (ILS, EA) with the 3-opt local

search for TSP. We do not hybridize TS, instead, since we observed that it

exhibits better results with the VRPSD-approximation rather than with the TSP-

approximation. The new algorithms that we consider are the following.

TSP-soa. If the solution found solving the TSP was comparable in quality to

those found by our metaheuristics, there would be no point in investigating

algorithms specific for the VRPSD. We consider therefore a transformation of

the problem into TSP by focusing only on the coordinates of the customers

(depot included). We then solve the TSP with a TSP state-of-the-art algorithm

[30] and shift the TSP solution found to start with the depot thus yielding a

VRPSD solution. This solution is finally evaluated by the VRPSD objective

function (Procedure 1). The algorithm for the TSP is an iterated local search

algorithm that uses a 3-opt exchange neighborhood, and a double bridge move as

perturbation, i.e., it removes randomly four edges from the current tour and adds

four other edges, also chosen at random, that close the tour.

ILS-hybrid. It is obtained by modifying the acceptance criterion in TSP-soa, that

is, the best solution according to Procedure 1 is chosen rather that the best TSP

solution.

EA-hybrid. It is derived from EA-tsp by replacing the local search with a 3-opt

local search based on the TSP objective function. The recombination and

mutation operators are maintained unchanged, since these are deemed to be the

components that determined the success of EA in Figure 2. The selection

operator remains also unchanged, and is based on the VRPSD objective function

computed by Procedure 1.

In order to have a comparison with previous methods from the VRPSD lit-

erature, we also test the effective CYCLIC heuristic [2], that we implemented as

follows:

– solve a TSP over the n customers, plus the depot, by using the TSP-soa

algorithm;
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– consider the n a priori tours obtained by the cyclic permutations

si ¼ ð0; i; iþ 1; . . . ; n; 1; . . . ; i� 1Þ; i ¼ 1; 2; . . . ; n;
– evaluate the n a priori tours by the VRPSD objective function (Procedure 1)

and choose the best one.

For the comparison of these algorithms we designed an experimental analysis

based on a single factor layout with blocks [9]. Since the assumption for

parametric tests are again violated, we use the Friedman two-way analysis of

variance by ranks.

Average rank
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CYCLIC

TSP–soa
Uniform

Figure 3. All-pairwise comparisons by means of simultaneous confidence intervals on

uniform and clustered instances.
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Figure 4. All-pairwise comparisons by means of simultaneous confidence intervals on

instances with different demand spread.
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In Figures 3–5 we present the simultaneous confidence intervals after

rejecting the hypothesis that all algorithms perform the same. We distinguish

results by presenting the instances grouped according to the three main features

defined in Section 4. Since these the analysis is repeated on the same data, we

adjust the Ffamily-wise_ level of confidence for each test dividing it by a factor of

three [29].

The main indication arising from the results is that a mere TSP algorithm is

not sufficient to produce high quality solutions for the VRPSD instances under

any of the circumstances tested. VRPSD problem-specific algorithms, which take

into account the stochasticity of the problem, yield always better solutions.

Nevertheless, the best performances are achieved by hybridization of TSP and

VRPSD approaches. EA-hybrid and ILS-hybrid in many cases perform

statistically better than all other algorithms and, when significant, differences

are also practically relevant. On the contrary, the difference between these two

approaches is statistically significant only in one case. The comparison with the

CYCLIC heuristic indicates that the algorithms we presented improve consid-

erably the solution for VRPSD with respect to previous known approaches.

Considering the characteristics of the instances, the position of customers

seems not to have an impact on the rank of algorithms. On the contrary, the

different position occupied by the algorithms in the ranks with respect to instance

size indicates that the larger the instances the higher is the importance of speed

Average rank
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Figure 5. All-pairwise comparisons by means of simultaneous confidence intervals on

instances with different number of customers.
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over precision in the evaluation of neighbors in local search. This expected result

is exemplified by the worsening of the average rank of EA-tsp as size increases.

Finally, spread of demand has also a considerable influence. With small

spread it is convenient to consider the costs of Fpreventive restockings_ and thus

the use of Procedure 1 is appropriate. With large spread, on the contrary, the

higher uncertainty of the right point in the tour for Fpreventive restocking_ makes

the evaluation of solution by means of Procedure 1 not far from that provided by

a TSP evaluation, with the negative impact of a higher computational cost.

7. Conclusions

The main contribution of this paper is the study of the hybridization on five well

known metaheuristics with different objective function approximations to solve

the VRPSD. In particular, we introduced a TSP-approximation, which uses the

length of the a priori tour as surrogate for the exact but computationally

demanding VRPSD evaluation, and we showed its superiority with respect to a

known VRPSD-approximation.

More precisely, first we considered a local search algorithm (OrOpt) for which

a good approximation for the exact VRPSD objective function is available, and

we compared metaheuristics using this local search by applying both the VRPSD-

approximation and the TSP-approximation. Secondly, we exploited further the

TSP analogy, by choosing the 3-opt local search operator, which is very good for

the TSP, but for which there is no immediate VRPSD approximation.

With the first type of hybridization, we have shown that metaheuristics using

the local search as a black-box (EA, ILS and ACO) perform better when using

the TSP-approximation, while metaheuristics that use their own strategy for

examining the neighborhood in the local search, perform better with the more

precise but more computationally expensive VRPSD-approximation. With the

second type of hybridization based on the use of the 3-opt local search, we

considerably improved the performance of the best metaheuristics for the

VRPSD, and we were unable to discover significant differences between the two

best algorithms, EA and ILS.

All the metaheuristics implemented found better solutions with respect to

the CYCLIC heuristic (which is known from the literature to perform well on

different types of instances) and with respect to solving the problem as a TSP.

This latter point is important because it demonstrates that the stochasticity of the

problem and the finite demand over capacity ratio is not neglectable and that the

development of VRPSD-specific algorithms is needed. We proposed a TSP-

VRPSD hybrid approach that clearly outperforms the current state-of-the-art.
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