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Parkinson’s disease (PD) affects the movement of people, including the differences in writing skill, speech, tremor, and stiffness in
muscles. It is significant to detect the PD at the initial stages so that the person can live a peaceful life for a longer time period. The
serious levels of PD are highly risky as the patients get progressive stiffness, which results in the inability of standing or walking.
Earlier studies have focused on the detection of PD effectively using voice and speech exams and writing exams. In this aspect, this
study presents an improved sailfish optimization algorithm with deep learning (ISFO-DL) model for PD diagnosis and clas-
sification. The presented ISFO-DL technique uses the ISFO algorithm and DL model to determine PD and thereby enhances the
survival rate of the person. The presented ISFO is a metaheuristic algorithm, which is inspired by a group of hunting sailfish to
determine the optimum solution to the problem. Primarily, the ISFO algorithm is applied to derive an optimal subset of features
with a fitness function of maximum classification accuracy. At the same time, the rat swarm optimizer (RSO) with the bidi-
rectional gated recurrent unit (BiGRU) is employed as a classifier to determine the existence of PD. The performance validation of
the IFSO-DL model takes place using a benchmark Parkinson’s dataset, and the results are inspected under several dimensions.
The experimental results highlighted the enhanced classification performance of the ISFO-DL technique, and therefore, the
proposed model can be employed for the earlier identification of PD.

1. Introduction

Parkinson’s disease (PD) is a brain disorder that occurs as a
consequence of the loss of brain cells. It mainly affects body
mobility. Its symptom gradually becomes evident. Some of
these symptoms that perform at early stages are tremors,
slowness in movement, poor body posture, rigidness in
muscles, deviation in speech, handwriting strokes, and
imbalance [1]. In this disorder, a person’s nerve cell

gradually loses their ability to communicate between them,
which results in nervous system disorders such as depres-
sion. This disease must be diagnosed at earlier stages because
it is incurable. When the accurate symptom of PD is rec-
ognized with their relative weightage, then doctors can
suggest a pathology lab test for this feature and diagnosis
might take place at an initial consultation itself. It will result
in an earlier diagnosis of Parkinson’s disease. The symptoms
such as changes in speaking patterns and handwriting
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strokes might assist in an earlier diagnosis of this disorder
[2]. Erdogu Sakar and team lately received a speech dataset
by examining the pronunciation of vowels “a” and “o0” of
disease-affected persons. Except speaking patterns, hand-
writing stroke patterns might help in detecting the disorder
[3]. Factors studied for distinguishing a person from a
healthier patient are individual age, fare handedness (right/
left), maximum and mean distance among given summary
in test, handwriting strokes noted in the drawing, and test
time duration.

Recently, data have been improved by number of in-
stances and numbers of features that make data noisier [4].
The noisier datasets could create the model to decrease the
predicted accuracy, increase the computation cost, increase
the complexity, and train the data slower. Therefore, feature
selection developed an essential task for machine learning
(ML) beforehand training the models [5]. The feature se-
lection (FS), also known as attribute selection, is a method
that focuses on finding a subset from the provided com-
prehensive set of features and fewer downgrades of the
system performance; thus, the subsets of feature forecast the
target with accuracy analogous to the performances of the
original set of features and with the reducing computation
costs. The FS method is categorized into wrapper-based and
filter-based algorithms. The filter-based method utilizes a
statistical method for finding the vital of all features (at-
tributes). The wrapper-based method utilizes the machine-
learning (ML) method. The wrapper-based method is
computationally costly when compared to the filter-based
method [6]. The wrapper method is additionally classified as
heuristic search algorithm and sequential search algorithm.

An evolutionary algorithm is a part of artificial intelli-
gence (AI) system that primarily focused on biological
evolution. Biological evolution includes 4 major procedures
such as selection, reproduction, mutation, and recombina-
tion [7]. Different from conventional optimization models,
evolutionary algorithms depend on random sampling. This
process is continuously employed on the solution officially
reported as population, and the FF was employed for de-
termining the quality of solutions. This solution changes
based on the evolutionary procedure that finally assists to
discover the global solution to the problems [8]. The evo-
lutionary method has been recognized for performing well
under distinct scenarios since it does not consider the
fundamental fitness landscape. Even an easy evolutionary
algorithm could easily resolve difficult challenges [9]. The
only drawbacks in the evolutionary algorithm are the
computational cost factor that is decreased by the fitness
function calculation.

This study presents an improved sailfish optimization
algorithm with deep learning (ISFO-DL) model for PD
diagnosis and classification. The presented ISFO-DL tech-
nique designs an ISFO-based feature selection technique to
derive an optimal subset of features with a fitness function of
maximum classification accuracy. At the same time, the rat
swarm optimizer (RSO) with the bidirectional gated re-
current unit (BiGRU) is employed as a classifier to determine
the existence of PD. The experimental validation of the
IFSO-DL model is carried out using a benchmark
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Parkinson’s dataset, and the results are inspected under
several dimensions.

The rest of the paper is arranged as follows. Section 2
offers the related works, Section 3 provides the proposed
model, Section 4 inspects the performance validation, and
Section 5 draws the conclusion.

2. Related Works

Huseyn [10] presented the DL methodology for realizing
healthy people, analysis of PD, and multiple system atrophy.
Oh et al. [11] employed the EEG signal of 20 PD and 20
standard subjects in this work. A 13-layer CNN framework
could conquer the requirement for the traditional feature
representation phases that are carried out. Wang et al. [12]
introduced a novel deep-learning model for the earlier
detection and classification of PD using the premotor fea-
tures. In particular, to diagnose PD at earlier stages, various
symptoms have been taken into account. Shahid and Singh
[13] developed a DNN method with the decreased input
feature space of Parkinson’s telemonitoring datasets for
predicting PD evolution. PD is a progressive and chronic
nervous system disorder, which impacts the motion of body.
PD is measured by utilizing the unified PD rating scale
(UPDRS).

Kaur et al. [14] surged a feasible medical decision-making
method, which assists the medical professionals in detecting
the PD-affected person. In this study, a certain architecture-
based grid searching optimization method is presented for
developing an enhanced DL algorithm to forecast the earlier
diagnosis of PD; therefore, various hyperparameters are to be
tuned and set for the assessment of DL algorithm. The grid
searching optimization method includes its performance, the
optimization of DL method, and the hyperparameters. In the
study by Sivaranjini S. and Sujatha [15], an effort has been
made for classifying the MR images of healthier control and PD
subjects with the DL-NN model. The CNN framework AlexNet
is utilized for refining the detection of PD. The MR image is
tested to provide the accuracy measures and trained with the
transfer learned network.

Quan et al. [16] presented a Bi-LSTM method for
capturing the time-series dynamic feature of a speech signal
to PD diagnosis. The dynamic speech feature is evaluated on
the basis of energy content evaluation from the transition
under voiced to unvoiced segments (offset) and the tran-
sition from unvoiced to voiced segments (onset). Sigcha et al.
[17] proposed a novel methodology-based RNN and a single
waist-worn triaxial accelerometer for enhancing the FOG
recognition accuracy to be utilized in real home
environment.

Leung et al. [18] focused on developing DL, an ensemble
method for the prediction in person with PD. The initial and
next phases of the method extracted features from DaTscan
and medical measures of motor symptoms, respectively.
Then, an ensemble of DNN model was trained on distinct
subsets of the extracted feature for predicting the person
results from 4years afterward early baseline screening.
Masud et al. [19] introduced an ACSA- and DL-based
optimal FS technique. The presented method is the
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integration of CROW Search and DL (CROWD) SSAE-NN.
PD dataset has been taken for experimental purposes.

3. The Proposed ISFO-DL Model

In this study, the ISFO-DL technique has been developed
for PD detection and classification. The proposed ISFO-
DL technique is mainly intended to determine PD and
thereby enhance the survival rate of the person. The
presented ISF-DL technique involves three major pro-
cesses namely ISFO-based feature selection, BiGRU-based
classification, and RSO-based hyperparameter optimiza-
tion. These three processes are elaborated in the suc-
ceeding sections.

3.1. Design of ISFO-Based Feature Selection Technique. At
this stage, the ISFO algorithm is employed to choose an
optimal subset of features and thereby boost the classifier
results. Research has established that group hunting is the
major social behavior in groups of fish, birds, mammals, and
arthropods. In comparison with individual hunting, group
hunting could save the energy utilization of the hunter to
attain the aim of catching prey. Sailfish is employed for
saving the present optimum solution, although sardines are
applied in the searching space for finding an optimal so-
lution. The arithmetical expression of the model is given as
follows.

The population locations of sardines and sailfish are
arbitrarily initiated, and every sardine and sailfish are al-
located a randomized location X%, and X% p(j)> Succes-
sively, where i € {sail fish}, j € {sardlines}, and k represent
the iteration count. The upgraded location of sailfish has
been arithmetically given as follows:

k k
X5kt = Xetie ~ bic X <rand(0, 1) x %

injure k
injur _XSF(i)>’ (1)

Y =2 xrand(0,1) x Pd - Pd, (2)
P
pd =1 umS : (3)
NumSF + NumSD

Let X’S‘F 0 be the preceding location of the ith sailfish, and
Y, indicates a coeflicient created at kth iteration, using
equation (2). To conserve the optimum solution of all the
iterations, the sardine and sailfish with optimal fitness value
are known as “elite” sailfish and “injured” sardine, respec-
tively, and their location at iteration k is represented as X,
and X{‘njure. P d denotes the density of prey sardines that
indicates the number of prey in all the iterations, as in
equation (3). NumSF and NumSD stand for the population
of sailfish and sardines [20], and the relation is NumSP =
NumSDx percent, in which percent characterizes the pri-
mary species of sailfish as a percentage of sardine
populations.

A novel location of the sardines at k iteration is estimated
as follows:

k k
XS+D1( 5 =rand (0, 1) ><(Xelite -

k
; X+ ATK),  (4)

ATK = A x (1 — (2 x iter X ¢)), (5)
a = NumSD x ATK, (6)
B =dxATK (7)

Here, XX (j) signifies the preceding location of the jth
sardine. iter denotes the amount of existing iterations. ATK
means the sailfish attacking strength, i.e., decreased linearly
on all the iterations given by equation (5). Once the A =4
and ¢ =0.001, if ATK<0.5, the amount of sardines that
upgrade the location («) and the number of parameters of
them (f) is evaluated by equations (6) and (7). When
ATK>0.5, each sardine gets upgraded.

For simulating the procedure of the sailfish catching
sardines, when f(SDj) < f (SF,), then the location of later
can be substituted with the place of the sardine i, as
follows:

X];F(i) = Xl;D(j) f(SD]-) < f(SE)). (8)

Chaotic mapping algorithms have both randomness and
certainty and stochastic behavior and nonlinear motion.
Chaos concept is the study of dynamic systems. The stim-
ulating property of this system is that if there is a slight
modification in the algorithm, the entire algorithm gets
affected. The research has shown that the primary value of
chaotic technique, the population of metaheuristic model,
was initiated based on the relationship of chaotic mapping,
and chaotic order was made, which could efficiently save the
variety of populations and conquer the premature problems
of traditional optimization method. Figure 1 illustrates the
process flow of SFO technique.

The population initiation of sardines and sailfish in the
SFO is a stochastic approach. It is based on population
initiation while searching for an optimum solution. For
enhancing the global searching capacity of the model and
preventing the problems that the diversities of sardine and
sailfish population reduce in late searches, hence we pro-
posed a population initialization of sailfish and sardines
using tent chaotic operator. The tent map can be described as
follows:

Ty = 9)

I—Ti, T;>0.7.
0.3
In the equation, T; denotes that the sequence of ith it-
eration (T; € (0,1)) indicates the tent chaotic sequence
distribution of T, with the primary value T, = 0.9 in 200
iterations. Next, the sardine and sailfish populations are
initiated:
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F1GURE 1: Process flow of SFO.

Xspisn) = Tinn X (X = Xip) + Xip »
Xsp( T % (Xup = Xip) + Xip-

While X (;,1) and X p(j,q) indicate the location value
of individual sardines and sailfish, X ;, and Xy, represent the
upper and lower bounds of the individual sardines and
sailfish in each dimension.

Assume the novel feature set be & = {f1, f5, ..., fph
where D implies the entire amount of features or dimension
of feature set, and consider the class label be C =
{e1, ..., ¢}, wherel stands for the amount of classes. The FS
technique determines a subset S={s;, ..., s,}, where
m<D,S c &, and S is minimal classification error rate than
some other subsets of similar size or some appropriate subset
of S. FS is the binary optimized issue, where the solution was
restricted to binary values from 0 to 1. At this point, the
solution has signified utilizing a binary vector where 1 refers
that the equivalent feature was chosen and 0 demonstrates
the equivalent feature is not chosen. The size of this vector
was equivalent to the number of features from the original
dataset. The ISFO was presented for solving continuous
optimized issues in which the solution contains the real
value. For mapping the continuous search space of typical
ISFO to binary one, it can utilize a transfer function [21]. It
can be utilized as a sigmoid transfer function and written as
follows:

(10)
) =

L (11)

T(X)=1+e

At this point, utilizing the probability value attained in
equation (11), the present place of sailfish was upgraded by
the following equation:

4 1, if rnd< T(Xd (t)),
Xt = . (12)
0, if rmdxT(X*().

Usually, the FS is a multiobjective issue, with 2 objec-
tives: (a) for achieving maximum classification accuracy (for
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instance, maximized issue) and (b) for selecting minimal
number of features (for instance, minimized issue). Using
equation (15), these 2 objectives are joined and the FS issue
was changed to single-objective issue.

|Fitness = wy(S) + (1 — w) %l, (13)
where S stands for the chosen feature subset, |S| defines the
cardinality of chosen feature subset or the number of chosen
features, y(S) signifies the classification error rate of S, D
refers the novel dimensional of dataset, and w € [0, 1] sig-
nifies weight.

3.2. Design of the RSO-BiGRU-Based Classification Model.
During the classification process, the RSO-BiGRU model is
applied to carry out the classification process. Learning is a
continuous representation that is effective to control se-
quential data. An RNN is mostly appropriate to encoded
sequential data. Figure 2 demonstrates the framework of
BiGRU. During this analysis, it can utilize BiGRU for
learning [22]. The computation of BiGRU was separated into
2 parts: forward and reverse order data broadcasts. To
provide sentence X = (x,, X5, ...,X,), x € R¥, x refers the
concatenating vector of present word and place, and the
forward GRU was computed as follows:

i=c(Wyx, +Wyh_, +b), (14)
f=0(W, x, +W,h_, +b), (15)
g =tanh(W x, + W, (ioh ) +b,),  (16)
h,=(1-f)oh_, +fog, (17)

where W, and b, signify the weight matrix and bias vectors,
respectively; o refers the sigmoid functions; and © stands for
the element-wise multiplication. x, implies the input word
vector at time steps 7, and A, signifies the hidden state of
current time step 7. h; and h; demonstrate the outcome of
forward and backward GRUs, respectively. The BiGRU
output is represented as follows:

RO [717 ] (18)

To effectively tune the hyperparameters involved in the
BiGRU model, the RSO is applied to it.

The rats are territory animals that live from the set of
combined males and females. The performance of rats is
very aggressive from several analyses that are outcome
from the death of any animals. This aggressive perfor-
mance is a vital simulation of this work but chase and
fight with prey. The chasing and fighting behavior of the
rats can be used to model the RSO algorithm and can be
utilized to solve optimization problems. This subsection
explains the performance of rats, for instance, chasing
and fighting. Afterward, the presented RSO technique is
summary.
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Output Layer

Bi-GRU Layer 2

Bi-GRU Layer 1

Input Layer

FiGure 2: Structure of BiGRU.

3.2.1. Chasing the Prey. In general, the rats are social animals
to chase the prey under the set with situation social agonistic
efficiency. For defining this efficiency mathematically, it can
be assumed that optimum search agents have skill of place of
the prey. Another search agent has upgraded its places in
terms of optimum search agents attained so far. The sub-
sequent formulas are presented under this process:

B-aFw+C(F0-Fw)

where _P>,~(x) demonstrates the places of rats and _P)r(x)
signifies the better optimum solutions.
However, A and C parameters were calculated as follows:

A=R-x ><< )where, x=0,1,2, ..., MaXpera0ns

Maxlteration

(20)
C =2 -rand. (21)

So, R and C imply the arbitrary numbers among [1, 5]
and [0,2], respectively. The parameters A and C are re-
sponsible for optimum exploration and exploitation over the
course of rounds.

3.2.2. Fighting with Prey. For mathematically defining the
fight procedure of rats with prey, the subsequent formula
was projected:

Pi(x+1)= |?r (x) - 73’], (22)

where ?i (x + 1) implies the upgraded next places of rat. It
stores the optimum solution and upgrades the places of
other search agents in terms of optimum search agent. The
rat (A, B) upgraded their place nearby the place of prey
(A*, B*). By altering the parameters as revealed in equations
(20) and (21), the distinct amount of places is achieved on
the present place [23]. Also, this technique is comprehensive

from n-dimensional environments. Consequently, the ex-
ploration and exploitation have been guaranteed using the
value of parameters A and C. The projected RSO technique
stores optimum solutions with many operators.

4. Performance Validation

This section inspects the PD classification result analysis of
the presented IFSO-DL technique. The results are investi-
gated against four datasets namely HandPD Spiral, HandPD
Meander, Speech PD, and Voice PD [24-26]. Table 1 and
Figure 3 offer the selected features attained by the IFSO-DL
technique with other FS methods. The results show that the
IFSO-DL technique has chosen the least number of features
compared with other FS techniques on all test datasets. For
instance, with the HandPD Spiral dataset with 13 features,
the IFSO-DL technique has selected a set of 4 features,
whereas the MGOA, MGWO, and OCFA techniques have
chosen a total of 5, 7, and 8 features, respectively.

Likewise, with the HandPD Meander dataset with 13
features, the IFSO-DL system has selected a set of 6 features,
whereas the MGOA, MGWO, and OCFA methods have
chosen a total of 8, 8, and 7 features, respectively. Mean-
while, with the Speech PD dataset with 23 features, the IFSO-
DL system has selected a set of 10 features, whereas the
MGOA, MGWO, and OCFA techniques have chosen a total
of 11, 12, and 13 features, respectively. Eventually, with the
Voice PD dataset with 26 features, the IFSO-DL manner has
selected a set of 7 features, whereas the MGOA, MGWO, and
OCEFA algorithms have chosen a total of 8, 9, and 17 features,
respectively.

Table 2 offers a detailed comparative result analysis of the
IFSO-DL technique with recent methods on the test
HandPD Spiral dataset. The results show that the MGWO-
KNN and MGOA-KNN techniques have obtained lower
accuracy of 0.734 and 0.756, respectively. In line with this,
the MGOA-DT technique has attained moderate accuracy of
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TaBLE 1: Selected features of existing with the proposed model.

Dataset Total features MGOA MGWO OCFA IFSO-DL
HandPD Spiral 13 5 7 8 4
HandPD Meander 13 8 8 7 6
Speech PD 23 11 12 13 10
Voice PD 26 8 9 17 7
30 -
W 251 .
I
=
<
S 20+ .
o
& -
o
E 15 .
10 - -
5F _
HandPD Spiral HandPD Meander Speech PD Voice PD
Dataset
I Total Features [ MGOA
3 OCFA I [FSO-DL
Bl MGWO

FIGURE 3: FS analysis of the IFSO-DL technique with 4 datasets.

TaBLE 2: Result analysis of existing with the proposed IFSO-DL
model on the HandPD Spiral dataset.

Methods Accuracy DR FAR
MGOA-KNN 0.756 0.853 0.531
MGOA-RF 0.929 0.979 0.219
MGOA-DT 0.890 0.947 0.281
MGWO-KNN 0.734 0.819 0.500
MGWO-RF 0.924 0.940 0.119
MGWO-DT 0.924 0.940 0.119
IFSO-DL 0.933 0.982 0.080

0.890. At the same time, MGOA-RF, MGWO-RF, and
MGWO-DT techniques have accomplished reasonable ac-
curacy of 0.929, 0.924, and 0.924, respectively. However, the
IFSO-DL technique has outperformed the other techniques
with the maximum accuracy, DR, and FAR of 0.933, 0.982,
and 0.080, respectively.

Figure 4 demonstrates the accuracy of graph analysis of
the IFSO-DL technique on the test HandPD Spiral dataset.
The figure portrays that the IFSO-DL technique has gained
increased training and validation accuracies. It is noted that
the IFSO-DL technique has accomplished improved vali-
dation accuracy over the training accuracy.

The loss graph analysis of the IFSO-DL technique is
investigated in Figure 5. The figure shows that the IFSO-DL
technique has accomplished enhanced outcomes with the
lower validation loss compared with training loss. It also

demonstrates that the IFSO-DL technique has obtained
reduced validation loss compared with training loss.

Table 3 suggests a detailed comparative outcome analysis of
the IFSO-DL technique with recent approaches on the test
HandPD Meander dataset. The results outperformed that the
MGWO-KNN and MGOA-KNN systems have obtained
minimum accuracy of 0.728 and 0.748, respectively. Afterward,
the MGOA-DT manner has gained moderate accuracy of
0.890. Also, MGOA-RF, MGWO-RF, and MGWO-DT sys-
tems have accomplished reasonable accuracy of 0.937, 0.930,
and 0.880, respectively. However, the IFSO-DL method has
exhibited the other methodologies with the maximal accuracy,
DR, and FAR of 0.940, 1.000, and 0.135, respectively.

Figure 6 reveals the accuracy graph analysis of the IFSO-
DL manner on the test HandPD Meander dataset. The figure
shows that the IFSO-DL technique has reached improved
training and validation accuracies. It can be clear that the
IFSO-DL algorithm has accomplished improved validation
accuracy over the training accuracy.

The loss graph analysis of the IFSO-DL system is studied
in Figure 7. The figure portrays that the IFSO-DL technique
has accomplished enhanced outcomes with the lower vali-
dation loss related to training loss. It also outperforms that
the IFSO-DL technique has gained lower validation loss
related to training loss.

Table 4 provides a brief comparative outcome analysis of
the IFSO-DL system with recent approaches on the test Speech
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Accuracy Graph - HandPD spiral Dataset
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FIGURE 4: Accuracy analysis of IFSO-DL technique under the HandPD Spiral dataset.

Loss Graph - HandPD spiral Dataset
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FIGURE 5: Loss analysis of IFSO-DL technique under the HandPD Spiral dataset.
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TaBLE 3: Result analysis of existing with the proposed IFSO-DL model on the HandPD Meander dataset.
Methods Accuracy DR FAR
MGOA-KNN 0.748 0.858 0.476
MGOA-RF 0.937 1.000 0.191
MGOA-DT 0.890 0.918 0.167
MGWO-KNN 0.728 0.858 0.600
MGWO-RF 0.930 0.991 0.222
MGWO-DT 0.880 0.920 0.222
IFSO-DL 0.940 1.000 0.135

Accuracy Graph - HandPD Meander Dataset
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FIGURE 6: Accuracy analysis of IFSO-DL technique under the HandPD Meander dataset.

PD dataset. The results depicted that the MGWO-KNN and
MGOA-KNN methods have obtained minimal accuracy of
0.918 and 0.897, respectively. Besides, the MGOA-DT tech-
nique has reached moderate accuracy of 0.846. Likewise,
MGOA-RF, MGWO-RF, and MGWO-DT methods have ac-
complished reasonable accuracy of 0.949, 0.939, and 0.898,
respectively. However, the IFSO-DL technique has shown the
other algorithms with the maximal accuracy, DR, and FAR of
0.953, 1.000, and 0.185, respectively.

Figure 8 displays the accuracy graph analysis of the
IFSO-DL approach on the test Speech PD dataset. The figure
demonstrates that the IFSO-DL technique has achieved
higher training and validation accuracies. It can be obvious
that the IFSO-DL technique has accomplished increased
validation accuracy over the training accuracy.

The loss graph analysis of the IFSO-DL algorithm is
explored in Figure 9. The figure depicts that the IFSO-DL
technique has accomplished superior results with the lower
validation loss compared with training loss. It can also
portray that the IFSO-DL technique has reached reduced
validation loss related to training loss.

Table 5 provides a detailed comparative outcome analysis
of the IFSO-DL manner with recent techniques on the test
Voice PD dataset. The results demonstrated that the
MGWO-KNN and MGOA-KNN methodologies have gained
minimal accuracy of 0.858 and 0.918, respectively. Similarly,
the MGOA-DT technique has achieved moderate accuracy of
1.000. Subsequently, MGOA-RF, MGWO-RF, and MGWO-
DT methods have accomplished reasonable accuracy of 1.000,
1.000, and 1.000, respectively. Finally, the IFSO-DL technique
has displayed the other algorithms with the higher accuracy,
DR, and FAR of 1.000, 1.000, and 0.000, respectively.

Figure 10 exhibits the accuracy graph analysis of the
IFSO-DL system on the test Voice PD dataset. The figure
portrays that the IFSO-DL technique has reached increased
training and validation accuracies. It is noticeable that the
IFSO-DL methodology has accomplished higher validation
accuracy over the training accuracy.

The loss graph analysis of the IFSO-DL approach is
examined in Figure 11. The figure outperforms that the
IFSO-DL method has accomplished enhanced outcomes
with the lesser validation loss related to training loss. It also
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Loss Graph - HandPD Meander Dataset
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FIGURE 7: Accuracy analysis of IFSO-DL technique under the HandPD Meander dataset.
TaBLE 4: Result analysis of existing with the proposed IFSO-DL model on the Speech PD dataset.
Methods Accuracy DR FAR
MGOA-KNN 0.897 0.967 0.300
MGOA-RF 0.949 1.000 0.222
MGOA-DT 0.846 0.900 0.300
MGWO-KNN 0.918 0.974 0.300
MGWO-RF 0.939 1.000 0.300
MGWO-DT 0.898 0.949 0.300
[FSO-DL 0.953 1.000 0.185

shows that the IFSO-DL manner has obtained reduced
validation loss connected to training loss.

Figure 12 shows the accuracy analysis of the IFSO-DL
technique with other recent techniques on the four test
datasets [27]. The figure portrays that the IFSO-DL tech-
nique has gained effective outcomes with the maximum
accuracy values on all the test datasets.

Figure 13 illustrates the DR analysis of the IFSO-DL
algorithm with other recent manners on the four test
datasets. The figure shows that the IFSO-DL technique

has achieved effective outcomes with the maximal DR
values on all the test datasets.

Figure 14 depicts the FAR analysis of the IFSO-DL
method with other recent approaches on the four test
datasets. The figure outperforms that the IFSO-DL system
has reached effective outcomes with higher FAR values on all
the test datasets. From the abovementioned tables and
figures, it is apparent that the IFSO-DL technique has been
found to be an effective tool for PD detection and
classification.
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FIGURE 8: Accuracy analysis of IFSO-DL technique under the Speech PD dataset.

Loss Graph - Speech PD Dataset
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FIGURE 9: Loss analysis of IFSO-DL technique under the Speech PD dataset.

TaBLE 5: Result analysis of existing with the proposed IFSO-DL model on the Voice PD dataset.

Methods Accuracy DR FAR
MGOA-KNN 0.918 0.835 0.009
MGOA-RF 1.000 1.000 0.000
MGOA-DT 1.000 1.000 0.000
MGWO-KNN 0.858 0.803 0.081
MGWO-RF 1.000 1.000 0.000
MGWO-DT 1.000 1.000 0.000

IFSO-DL 1.000 1.000 0.000
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FIGURE 10: Accuracy analysis of IFSO-DL technique under the Voice PD dataset.
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FIGURE 11: Loss analysis of IFSO-DL technique under the Voice PD dataset.
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5. Conclusion

In this study, the ISFO-DL technique has been developed
for PD detection and classification. The proposed ISFO-
DL technique is mainly intended to determine PD and
thereby enhance the survival rate of the person. The
presented ISF-DL technique involves three major pro-
cesses namely ISFO-based feature selection, BIGRU-based
classification, and RSO-based hyperparameter optimiza-
tion. The design of ISFO and RSO algorithms finds useful
to significantly enhance the PD classification perfor-
mance. The experimental validation of the IFSO-DL
model is carried out using a benchmark Parkinson’s
dataset, and the results are inspected under several di-
mensions. The experimental results highlighted the en-
hanced classification performance of the ISFO-DL
technique, and therefore, the proposed model can be
employed for the earlier identification of PD. In future, the
PD classification performance can be boosted by the use of
outlier detection and clustering approaches.
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