
MetaJava: An Efficient Run-Time
Meta Architecture for Java™

Jürgen Kleinöder, Michael Golm

June 1996 TR-I4-96-03

Computer Science
Department

Operating Systems — IMMD IV

Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Technical Report

Copyright 1996 IEEE.

Published in the Proceedings of the International Workshop on Object
Orientation in Operating Systems — IWOOOS ’96, October 27-18, 1996,
Seattle, Washington.

Personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE.

Contact:
Manager, Copyrights and Permissions
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

1

MetaJava: An Efficient Run-Time
Meta Architecture for Java™

Jürgen Kleinöder1, Michael Golm
University of Erlangen-Nürnberg, Dept. of Computer Science IV

Martensstr. 1, D-91058 Erlangen, Germany
{kleinoeder, golm}@informatik.uni-erlangen.de

Abstract
1

Adaptability to special requirements of applications is a
crucial concern of modern operating system2 architectures.
Reflection and meta objects are means to achieve this
adaptability. This paper reports on ideas and experience we
obtained while extending the run-time system of the object-
oriented language Java with reflective capabilities.

We explain our model of an object-oriented architecture
that allows flexible and selective attachment of reflective
properties to objects. We show how reflection can be
obtained with minimal changes to the existing system and
how the penalty in run-time performance can be minimized.
Our architecture is not limited to special application
domains like distributed or concurrent computing but can
also be used to support different security policies, just–in-
time compilation, location control of mobile objects, etc. As
an example, a remote method invocation mechanism is
described to demonstrate how the Java programming model
can be enhanced using our meta architecture.

1 Introduction

Today’s applications demand more flexible support from
operating systems (OS) for a variety of tasks and run-time
properties, including distribution, security, persistence,
fault tolerance, and synchronization. The OS should pro-
vide these services in a transparent way, so that application
programs do not need to be modified if new or different run-
time properties are required. One approach to providing this
support is to extend the OS for the required services as was
done for fault tolerance in Delta [7] or for persistence in the
Grasshopper Kernel [15]. This strategy has some deficien-
cies. It is neither user customizable nor extendible. A sec-
ond approach is to provide the required functionality in the

1.This work is supported by theDeutsche Forschungsgemeinschaft
DFG GrantSonderforschungsbereich SFB 182, ProjectB2.

2.When we talk about operating systems we include system libraries,
run-time systems, and virtual machines.

form of libraries. This approach has the advantage of being
user customizable but it is not transparent to the functional
code of the application program.

We advocate a reflective software architecture to over-
come these deficits while retaining customizabilityand
transparency.

We use Java as our target system and call the extended
system MetaJava. Nevertheless our principles may be used
to equip other systems with reflective capabilities.

We are aware that we must impose some constraints to
make our extension attractive to a large community of Java
users. So we avoided changes to the compiler and the virtual
machine. We merely added extensions to the virtual machine.

Section 2 introduces reflection and metaprogramming.
Section 3 describes our computational model. Section 4 pre-
sents the design and implementation. Section 5 outlines
some examples. We conclude with a comparison with
related work and a short note about the current project status
and future work in sections 6 and 7.

2 Reflection and metaprogramming

In the past programs had to fulfil a task in a limited com-
putational domain. Demands of today’s applications are
becoming more complex: multithreading (synchronization,
deadlock detection, etc.), distribution, fault tolerance,
mobile objects, extended transaction models, persistence,
and so on. These demands make it necessary for an applica-
tion program to observe and adjust its own behavior. Many
ad hoc extensions to languages and run-time systems have
been implemented to support features such as persistence.
Reflection is a fundamental concept for a uniform imple-
mentation of all these different demands.

According to Maes [18],reflection is the capability of a
computational system to “reason about and act upon itself”
and adjust itself to changing conditions.Metaprogramming
separates functional from non-functional code.Functional
code is concerned with computations about the applica-
tion’s domain (base level), non-functional code resides at
the meta level, supervising the execution of the functional

Copyright 1996 IEEE. Published in the Proceedings of the International Workshop on Object Orientation in Operating Systems — IWOOOS ’96, October 27-18, 1996, Seattle,
Washington.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

2

code. To enable this supervision, some aspects of the base-
level computation must be reified.Reification is the process
of making something explicit that is normally not part of the
language or programming model.

As pointed out in [9] there are two types of reflection:
structural and behavioral reflection (in [9] termed computa-
tional reflection). Structural reflection reifies structural
aspects of a program, such as inheritance and data types.
A common technique for structural reflection is to let one
meta class control a number of base classes. Run-Time Type
Identification (RTTI) of C++ [25] is an example of struc-
tural reflection. Behavioral reflection is concerned with the
reification of computations and their behavior. Our architec-
ture deals with behavioral reflection at run time. We show
how a run-time meta architecture can be built that is nearly
as efficient as one that operates only at compile time. A pro-
gramming environment that incorporates a meta architec-
ture gains the following advantages:

Increased productivity. Like object-oriented program-
ming, metaprogramming is a new paradigm which leads to
more structured and easily maintainable programs.

Separation of concerns.In conventional programming the
application program is mixed with and complicated by pol-
icy algorithms. This makes it difficult to understand, main-
tain, debug, and validate the program.

Separation of the reflective from the base algorithm
makes reusability of policies feasible [11], [14]. The use of
a separate meta space allows the application programmer to
focus on the application domain. The additional functional-
ity is supplied as a library of meta components or is devel-
oped together with the application program. We regard
reflective decomposition as a new structuring technique in
addition to functional and object-oriented decomposition.

Configurability. The meta level establishes an open system
architecture [13]. New policies can be implemented without
changing the application code. This is especially useful for
class libraries, where the library designer can only guess the
demands of the library user.

Not only application developers can profit from metapro-
gramming but also application users may replace meta com-
ponents to tailor the application to their particular needs.
Typically, a system administrator will tailor the meta space,
so that the application can take care of local resources such
as processors, printers, network connections, or hard disks.

Transparency.Transparency and orthogonality of base
system and meta system are desirable features but cannot
always be guaranteed in real applications. Consider a meta
object that implements a bounded buffer synchronization
scheme. It does not make sense to attach it to a base object
that does not have a bounded buffer semantics (i.e., two
operationsput andget to access the buffer).

3 Computational model

Traditional systems consist of an operating system and,
on top of it, a program which exploits the OS services using
an application programmer interface (API).

Our reflective approach is different. The system consists
of the OS, the application program (thebase system), and
themeta system. The program may not be aware of the meta
system. The computation in the base system raises events
(see Figure 1). These events are delivered to the meta sys-
tem. The meta system evaluates the events and reacts in a
specific manner. All events are handled synchronously.
Base-level computation is suspended while the meta object
processes the event. This gives the meta level complete con-
trol over the activity in the base system. For instance, if the
meta object receives amethod-enter event, the default
behavior would be to execute the method. But the meta
object could also synchronize the method execution with
another method of the base object. Other alternatives would
be to queue the method for delayed execution and return to
the caller immediately, or to execute the method on a differ-
ent host. What actually happens depends entirely on the
meta object used.

In our current implementation a computation only raises
an event if one of its methods is called. We plan to include
more event types in a later version of MetaJava. One could
imagine events for outgoing method calls, variable accesses
or object creations.

A base object also can invoke a method of the meta
object directly. This is called explicit meta interaction and is
used to control the meta level from the base level.

Not every object must have a meta object attached to it.
Meta objects may be attached dynamically to base objects
at run time. This is especially important if a distributed com-

base system

event

reflection

attached
to a reference

(reification)

Figure 1: Computational model of behavioral reflection

meta system

attached to a
group of objects

meta obj.

meta obj.

meta system

3

putation is controlled at the meta level and arbitrary method
arguments need to be made reflective. As long as no meta
objects are attached to an application, our meta architecture
does not cause any overhead. So applications only have to
pay for the meta-system functionality where they really
need it.

A meta object can be attached to a reference, an object or
a class. If it is attached to an object, the semantics of the
object is changed. Sometimes it is desirable only to change
the semantics of one reference to the object — for example,
when tracing accesses to the reference, or when attaching a
certain security policy to the reference [24]. Attaching a
meta object to a class makes all instances of the class reflec-
tive.

To fulfill its tasks the meta object has access to a set of
methods which can manipulate the internal state of the vir-
tual machine. These methods are called themeta interface
of the virtual machine. Only theMetaObject class, its sub-
classes, and members of the packagemeta can invoke these
methods. A list of the most important methods of the meta
interface is given in Figure 2.

4 Implementation issues

Integration into Java. We implemented the meta interface
methods as a collection of native methods that reside in a
dynamic link library. Extending the virtual machine this
way is common practice. Sun has used this technique with
the network package java.net and the UNIX library libnet.so
(Figure 3).

Changes to the Java object structure(Figure 4). To reify
incoming method calls (i. e., to pass control to the meta sys-
tem), the object’s method table is replaced by a new one that
contains stub procedures in the place of the original meth-
ods (Figure 5). The original methods are saved at the end of
the method table. To avoid effects on non-reflective objects
of the same class, the class block has to be duplicated. The
superclass pointer of the reflective class block is modified to
point to the original class block. This makes the reflective
object type compatible with the original object.

Figure 2: Selected methods of the meta interface
of the MetaJava virtual machine

void attachObject (MetaObject meta, Object base)
Bind a meta object to a base object.

MetaObject findMeta (Object base)
Find the responsible meta object for a base object.

Object continueExecutionObject (EventMethodCall event)
Continue the execution of a base-level method. This calls the
non-reflective method. No event is generated, otherwise the
reflection would not terminate.

Object doExecuteObject (EventMethodCall event)
Execute a method. Contrary to the previous method, this one
calls the method as if it were called by an ordinary base
object.

Object createNewInstance (EventObjectCreation event)
Create a new instance of a class. The class name is passed as
String (as part of theevent parameter).

void createStubs (Object obj, String methods[])
Create method stubs for the base object, which replace the
specified methods. If such a method is called, the stub dele-
gates control to the event-handler method of the attached
meta object.

Object cloneReference (Object ref)
Create a new reference which points to the same object as the
one given. This method is used to attach meta objects to ref-
erences.

Class cloneClass (Object ref)
Clone the class of the object given. The clone becomes the
class of this object. This method is used when a meta object
is attached to an object to avoid interference with other
instances of the same class.

virtual machine

normal service

MetaObject

(base interface)

System Socket

libnet.so libmeta.so

Figure 3: Extension of the Java virtual
machine with a meta interface

internals
(meta interface)

Figure 4: Structure of a Java object (simplified)

classdescriptor

obj

data

method
table

superclass

...

m1
m2

class blockhandle

classdescriptor

obj

data
method

table
superclass

...

method
table

superclass

...

m1
m2

m1
m2

@m1
@m2

Figure 5: Structure of a reflective object

handle orig. class block

reflective class block

4

To attach a meta object to a reference, the object handle
is duplicated using thecloneReference method of the meta-
interface and the reference is redirected to the reflective
handle (Figure 6).

These modifications of the object structures cause some
problems. The identity of objects is checked by the virtual
machine by comparing the handle pointers. If a meta object
is attached to a reference, as shown in Figure 6, the differ-

ence between the references becomes visible at the base
level. This violates transparency but can only be changed by
modifying the compare–byte-code evaluation in the inter-
preter. To check the identity of Java objects the interpreter
should not compare handle pointers, but the pointers to the
data area in the handle.

Stub processing.Figure 7 describes the passing of parame-
ters between base level and meta level and the correspond-
ing stack layout. It also shows the efficiency of the mecha-
nism: An empty meta object, which passes control immedi-
ately back to the base level, adds the cost of two additional
method invocations and the cost of allocating a buffer for
the method arguments.

5 Use of meta objects

5.1 Tracing method invocations:MetaTrace

The classMetaTrace, listed in Figure 8, is a very simple
meta object, which only prints out the method name and the
arguments of the called method and then continues the base-
level computation. Due to the different return types (void,
int, Object, etc.) of Java methods, the event-handler methods
have to be implemented for each return type. If one wants to

classdescriptor

obj

data
method

table
superclass

...

method
table

superclass

...

m1
m2

m1
m2

@m1
@m2

classdescriptor

obj

Figure 6: Object structure for a reflective reference

orig. class block

reflective class block

reflective
reference

reflective handle

handle

args
this

this
arg1
arg2

stack frame of m1

eventMethodEnter

continueExecution

...

@m1 this
arg1
arg2

args
this

...

Figure 7: Invocation of a reflective method

local vars of
stub code

arguments
of method

➁

➀
copy

copy

➂

➃ ➄

➅
➆

When methodm1 is invoked, the stack contains thethis-
pointer of the called object and the method arguments➀.

The stub code allocates a new array of object references➁
and copies the arguments into it. It then calls the event-handler
methodeventMethodEnter ➂ of the meta object and passes a ref-
erence to the argument buffer(args).

The computation continues on the meta level now. Finally
the meta object may decide to execute the original base-level
method with a call to the meta-interface method
continueExecution ➃. The args pointer is passed➄ to allow
reconstruction of the argument list➅ before invoking the saved
original methodm1 (@m1) ➆.

public class MetaTrace extends MetaObject
{

public void attachObject (Object o, String methodnames[]) {
createStubs(o, methodnames);
attachObject(this, o);

}

public void eventMethodEnterVoid (EventMethodCall event) {
System.out.println(“Method“ + event.methodname + “called!”);
System.out.println(“Signature“ + event.signature);
for(int i=0; i< event.n_args; i++) {

System.out.println(“Arg:“ + event.arguments[i].toString());
}
continueExecutionVoid(event);

}

public Object eventMethodEnterObject (
EventMethodCall event) {

System.out.println(“Method“ + event.methodname + “called!”);
System.out.println(“Signature“ + event.signature);
for(int i=0; i< event.n_args; i++) {

System.out.println(“Arg:“ + event.arguments[i].toString());
}
Object ret = continueExecutionObject(event);
System.out.println(“returned:“ + ret.toString());
return ret;

}
}

Figure 8: The implementation of the tracing meta object

5

trace the methods invoked on a certain object, an instance of
theMetaTrace class has to be attached to the object with

(new MetaTrace()).attachObject(obj, methods);
whereobj is the base object andmethods is an array of
method names of the base object.

5.2 Remote method invocations:MetaRemote

Figure 9 shows what happens when an object invokes a
method of a remote object. A program with similar behavior
is given in Figure 10. Prior to the method call, the calling
object obtained a reference to the remote object in the form
of a proxy. While, at first sight, this situation appears to be
identical to ordinary remote method invocations, as in the
Spring OS [20] or in CORBA environments [23], there is an
important difference: Normally proxy objects are used as
stubs to forward a method call to its destination. In our case,
the proxy is just an empty shell with a meta object attached

to it. The proxy is only used to pass control to the meta level
where the communication protocol is implemented (e. g. an
interface to a CORBA ORB).

This way, catching remote method invocations is abso-
lutely identical to method-call tracing or to the processing
of access-control lists before allowing a method execution.

Performance tuning.Special meta-level implementations
are outside the focus of this paper, so we will just mention
some examples of improvements to the meta system
described. One possibility would be to copy at least immu-
table data types, such as all primitive types (byte, char,
enum, float, double, int, long, short, boolean) andString to
the remote node instead of passing references. Copying
mutable objects would require a coherence protocol
between the replicas. An alternative — which, however,
entails different semantics — would be to copy them with-
out coherence guarantees as in CORBA (with non-CORBA
objects) or Sun’s Java RMI [29]. Hints for the optimal strat-

meta-level

method invocation
transition between base-level and meta-level

base-level

node1 node2

O.m1(A)

A.m2(…)
Oproxy

X

A

O1

S1

register(A) return(Aref)

M1

Aproxy

doExecute(O,m1,Aproxy)

M2

createS2

doExecute(A,m2,…)

1e

1a

1b

1c

1d

…Oref,m1,Aref
1f

1g

2 2a

2b

2c
…Aref,m2,…

…Aref
2d

distributed system

network communication

Figure 9: Invocation of remote methods with reference passing

Object X calls methodm1 of remote objectO.This base-level action is implemented at the meta level as follows: AsO lives
on a different node,X actually callsOproxy. Meta objectM1 is attached toOproxy and thus it receives themethod-enter-event.
M1 registers the argument objectA with object serverS1 and obtains the location-independent handleAref. It calls serverS2
with this handle, the method name, and the handleOref for the base objectO. ServerS2 installs the proxyAproxy for the argument
object at node 2 and attaches meta objectM2 to it. ServerS2 calls the base-level objectO using the meta-interface method
doExecute(). O executes the method code (base-level computation) and invokes methodm2 of argument objectA (and reaches
Aproxy). This call is caught by meta objectM2 and delegated toS1 at node 1.S1 mapsAref to the registered local reference
A and jumps back to the base-level usingdoExecute().

1 1a
1b 1c

1d 1e
1f

1g

2
2a 2b 2c
2d

6

egy for parameter passing (shallow or deep copy) could be
provided by the base level with explicit meta interaction
[17]. Long proxy chains could be shortened on return of the
remote method call, especially if the chain starts and ends
on the same node. The current location of the remote object
could be piggybacked with the reply. If objects are primarily
used at a different node, it would be reasonable to let them
migrate to that node. This could be done with aMetaMigrate
meta object. Migration and copying would need an
extended meta interface (Figure 2), which supports access
to the object’s state.

5.3 Further proposals for meta objects

Migration control. Different strategies to control the
migration of objects, e.g. the computational field model
[27], can be implemented at the meta level as shown in [22].

Object clustering.Grouping of objects can sometimes pro-
vide more advantages than keeping objects and their mem-
ory location orthogonal [6]. A meta object may control all
object creations performed by a root object and its descen-
dants, and place them into the same memory segment. With
the separation of base-level and meta-level code, the group-
ing in segments can even be transparent to the base level,
while the current location of the objects is visible at the
meta level.

Security. Meta objects can be used to implement various
security policies. For example, a meta object can be
attached to a reference before passing it to an unsure object,
to control access to it and its propagation. Such a meta
object may be used for expiration or revocation of access
rights to the reference. Meta objects can also serve as guards
to check all accesses to a specific object. Special concepts,
such as the Java security manager, can also be implemented
by meta objects. Security meta objects can be very useful in
Applet programming.

Active objects.Active objects are considered to be a suit-
able new programming paradigm for facilitating program-
ming in multithreaded environments. Active objects have
their own thread of control to execute their method code.
Synchronization is done at the object border using message
queues. We argue that active objects are just ordinary
objects with a special meta object, calledMetaActive,
attached to them.MetaActive queues methods and executes
them asynchronously in its own thread. The thread of the
caller returns immediately. Returned references get a
MetaFuture meta object, which suspends the execution of
threads accessing the result until the method execution has
been finished and the result has been computed.

Atomic objects.Atomic objects offer an interface with
atomic guarantees: only when an operation is completed
does it have an effect on the object state. Furthermore all
changes are visible at once, usually when the method
returns. Stroud and Wu [26] use meta-object protocols to
implement atomic data types with different concurrency-
control algorithms.

Synchronization.Meta objects can be used to implement
generic synchronization schemes — for example, constrain-
ing the sequence of events with path expressions, as pro-
posed in [2]. Lopes and Liebeherr [16] separate synchroni-
zation patterns from functional code and use a special code
generator to create an object-oriented program from a struc-
tural, a behavioral, and a concurrency code block. The con-
currency code block could be implemented at the meta
level.

Extended transactions.The classic ACID model of trans-
actions is not sufficient for some application domains, espe-
cially for reactive applications [8]. To make extended trans-
action models practical to use, Barga and Pu [1] propose a
Reflective Transaction Framework which transparently
assigns extended semantics to transactions.

Fault tolerance.Fabre and colleagues show how different
fault-tolerance mechanisms can be implemented at the meta
level [10].

Figure 10: Application of theMetaRemote meta object

package meta.test.remote.test0;
import meta.remote.*;

class Arg {
int v;
public void set5 () { v = 5; }
public int get () { return v; }

}

class Callee {
public void test (Arg a) {

System.out.println(“Test.test1”);
a.set5();

}
}

class Caller {
public void doit (String host) {

MetaRemote m = new MetaRemote(host, 5555);
Callee s = (Callee) m.attachNewInstance(

“meta/test/remote/test0/Callee”);
Arg a = new Arg();
s.test(a);
System.out.println(“called a.get(): “ + a.get());

}
}

7

Just-in-time compilation. The meta interface can be
extended by the addition of methods to allocate native code
buffers and to execute native code in such a buffer. Such
methods may be employed by a special meta object which,
when receiving amethod-enter event, dynamically com-
piles the byte code of the base-level method into the buffer
and then executes the compiled method.

6 Related work

OpenC++.Building a meta-level architecture for C++ is
not an easy task. Traditional C++ compilers limit the infor-
mation that is available (i. e. inspectable and modifiable) at
run time. Ideas to save information at compile time for use
at run time are described in [12], [28]. OpenC++ Version 2
[3], [4] is a compile-time MOP for C++. The OpenC++
compiler translates an OpenC++ program into a C++ pro-
gram. The translation process can be customized by a meta-
level program. OpenC++ is a very good tool for performing
optimizations that a standard optimizer cannot carry out
because an application-specific meta-level program uses
information about program semantics that is usually not
available to an optimizer. Due to its compile-time architec-
ture, C++ has some limitations. It is only possible to create
reflective classes but not reflective objects or references.
Meta classes cannot be attached to base classes dynamically
at run time. To reify method calls the compilation of the
calling code is modified. Thus it is not possible to use reflec-
tive classes from precompiled code.

AL-1/D. AL-1/D [21] is a Smalltalk-based language for
distributed computing. AL-1/D partitions the meta level into
different views of the base system to facilitate programming
in a distributed environment. This partitioning contains a lot
of predefined semantics. In MetaJava, active objects and
message queues, for example, do not need to be part of the
language’s programming model, because they can easily be
implemented on the meta level.

Coda.Coda [19] uses fine-grained decomposition into dif-
ferent concepts of base objects (send, receive, accept,
queue, protocol, execution, state). Coda was designed to be
used in a distributed environment and this is visible in the
decomposition. For example receive, queue and accept are
mainly used to implement different message-queueing pol-
icies. Coda is a promising approach to a structured compo-
sition of meta-level components.

Moostrap. Moostrap [5] is a prototype-based language.
Method execution is split into two phases:lookup andapply.
Lookup is similar to our event mechanism, whereas apply
resembles thedoExecute meta-interface method.

7 Project status and future work

The meta objectsMetaTrace andMetaRemote have been
implemented as described. Furthermore a simple just-in-
time–compiler meta object has been implemented. The
meta interface has been extended with several methods to
support a fully reflective architecture, which allows inspec-
tion and modification of all aspects of classes and objects
(e.g. reading and writing the byte code of methods, modify-
ing the constant pool of a class, reading the layout of the
instance variables, etc.).

Our current implementation still has some limitations.
These limitations are mainly due to the primitive data types
of Java, which are not subclasses of Java’sObject Class.
Methods that have primitive types as arguments or return
types can not be reified yet. This will be changed in a later
version of MetaJava where primitive types will be packed
into their corresponding wrapper type (e.g.Integer for int).

We are currently experimenting with the composition of
meta objects and the configuration of the meta system. One
major issue is to develop concepts to make the attachment
of the meta objects to software modules configurable and to
keep such configuration statements out of the functional
code of the application program.

Another very important topic, which has not been
addressed in this paper, is the aspect of security: It is obvi-
ous that, by providing the meta-level interface as we
described it, the user can gain control over any component
of the run-time system. Mechanism to avoid misusage have
to be provided by a security architecture.

Further information about the project status can be
obtained from http://www4.informatik.uni-erlangen.de/
IMMD-IV/Projects/PM/Java/.

8 Conclusion

Adding a meta-level architecture to the Java virtual
machine opens the Java environment for a broad range of
run-time system extensions. We have described the mecha-
nisms to achieve these extensions. As in all other open oper-
ating system architectures, the remaining issue is to develop
concepts that allow comfortable configuration and control
of these mechanisms without muddling the functional code
of the application software.

9 References

[1] R. Barga and C. Pu. Reflection on a Legacy Transaction Pro-
cessing Monitor.Proceedings of Reflection ‘96, San Fran-
cisco, Ca., pp. 63–78, April 1996.

8

[2] R. H. Campbell and N. Habermann. The Specification of
Process Synchronization by Path Expressions.Lecture
Notes in Computer Science,vol. 16, Springer Verlag, New
York, 1974, pp 89–102.

[3] S. Chiba and T. Masuda. Designing an Extensible Distrib-
uted Language with a Meta-Level Architecture.Proceed-
ings of ECOOP ‘93, the 7th European Conference on
Object-Oriented Programming,Kaiserslautern, Germany,
LNCS 707, Springer-Verlag, pp. 482–501.

[4] S. Chiba. OpenC++ Programmer’s Guide for Version 2.
Technical Report SPL-96-024, Xerox PARC, 1996.

[5] P. Cointe. Definition of a Reflective Kernel for a Prototype-
Based Language.International Symposium on Object Tech-
nologies for Advanced Software,Kanazawa, Japan, LNCS
742, Springer-Verlag, Nov. 1993.

[6] T. Cooper and M. Wise. The Case for Segments.Proceed-
ings of the 4th International Workshop on Object Orienta-
tion in Operating Systems,Lund, Sweden, IEEE, 1995, pp.
94–102.

[7] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, J. Voiron.
Active Replication in Delta-4. 22.International Symposium
on Fault-Tolerant Computing, Boston, Ma., IEEE, 1992, pp.
28–37.

[8] T. Eirich.The ACID-Fission — Pay Only for What You Need.
Technical Report TRI4-09-94, University of Erlangen-
Nürnberg, IMMD IV, Sept. 1994.

[9] J. Ferber. Computational Reflection in class based Object-
Oriented Languages.Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ‘89,New Orleans, La., Oct. 1989,
pp. 317–326.

[10] J. Fabre, V. Nicomette, T. Perennou, R. J. Stroud, Z. Wu.
Implementing fault tolerant applications using reflective
object-oriented programming.Proceedings of the 25th IEEE
Symposium on Fault Tolerant Computing Systems,1995.

[11] W. L. Hürsch, C. V. Lopes.Separation of Concerns.Techni-
cal Report NU-CCS-95-03, Northeastern University, Bos-
ton, February 1995.

[12] R. Johnson and M. Palaniappan. MetaFlex: A Flexible
Metaclass Generator.Proceedings of ECOOP ‘93, the 7th
European Conference on Object-Oriented Programming,
Kaiserslautern, Germany, LNCS 707, Springer-Verlag,
1993, pp. 501–527.

[13] G. Kiczales. Beyond the Black Box: Open Implementation.
IEEE Software, Vol. 13, No. 1, pp. 8-11.

[14] G. Kiczales et al.Aspect-Oriented Programming. Position
Paper for the ACM Workshop on Strategic Directions in
Computing Research, MIT, June 14-15 1996
(http://www.parc.xerox.com/spl/projects/aop/).

[15] A. Lindström. Multiversioning and Logging in the Grass-
hopper Kernel Persistent Store.Proceedings of the 4th Inter-
national Workshop on Object Orientation in Operating Sys-
tems,Lund, Sweden, IEEE, 1995, pp. 14–23.

[16] C. V. Lopes and K. J. Lieberherr. Abstracting Process-to-
Function Relations in Concurrent Object-Oriented Applica-
tions.Proceedings of ECOOP ‘94, the 8th European Con-
ference on Object-Oriented Programming,LNCS 821,
Springer-Verlag, 1994, pp. 81–99.

[17] C. V. Lopes. Adaptive Parameter Passing.2nd International
Symposium on Object Technologies for Advanced Software,
Kanazawa, Japan, LNCS 1049, Springer-Verlag, March
1996.

[18] P. Maes.Computational Reflection. Technical Report 87_2,
Artificial Intelligence Laboratory, Vrieje Universiteit Brus-
sel, 1987.

[19] J. McAffer. Meta-Level Architecture Support for Distrib-
uted Objects.Proceedings of the 4th International Work-
shop on Object Orientation in Operating Systems,Lund,
Sweden, IEEE, 1995, pp. 232–241.

[20] J. Mitchell, J. Gibbons, G. Hamilton, et al. An Overview of
the Spring System.Proceedings of the COMPCON Spring
1994, San Francisco, Ca., 1994.

[21] H. Okamura, M. Ishikawa, and M. Tokoro. Metalevel
Decomposition in AL-1/D.International Symposium on
Object Technologies for Advanced Software,Kanazawa,
Japan, LNCS 742, Springer-Verlag, Nov. 1993.

[22] H. Okamura and Y. Ishikawa. Object Location Control
Using Meta-level Programming.Proceedings of ECOOP
‘94, the 8th European Conference on Object-Oriented Pro-
gramming,LNCS 821, Springer-Verlag, 1994, pp. 299–319.

[23] Object Management Group.The Common Object Request
Broker: Architecture and Specification. Rev. 2.0, July 1995.

[24] T. Riechmann.Security in Large Distributed, Object-Ori-
ented Systems.Technical Report TRI4-02-96, University of
Erlangen-Nürnberg, IMMD IV, Mai 1996.

[25] B. Stroustrup. Run Time Type Identification for C++.
USENIX C++ Conference proceeding, Portland, Or., Aug.
1992.

[26] R. J. Stroud and Z. Wu. Using Metaobject Protocols to
Implement Atomic Data Types.Proceedings of ECOOP
‘95, the 9th European Conference on Object-Oriented Pro-
gramming,LNCS 952, Springer-Verlag, Aug. 1995, pp.
168–189.

[27] M. Tokoro. Computational Field Model: Toward a New
Computing Model/Methodology for Open Distributed
Computing Systems.Proceedings of the 2nd Workshop on
Future Trends in Distributed Computing Systems, Cairo,
Sep. 1990.

[28] R. Voss. Time Invariant Member Function Dispatching For
C++ Evolvable Classes. OOPSLA ‘93Workshop on Object-
Oriented reflection and Metalevel Architectures, Washing-
ton D. C., Oct. 1993.

[29] A. Wollrath, R. Riggs, J. Waldo. A Distributed Object
Model for the Java System.Proceedings of the Conference
on Object-Oriented Technologies and Systems, COOTS ‘96,
Toronto, Jun. 1996, pp. 219– 231.

