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Metal-Assisted Ligand-Centered Electrocatalytic Hydrogen Evolution
upon Reduction of a Bis(thiosemicarbazonato)Cu(II) Complex

Andrew Z. Haddad, Steve P. Cronin, Mark S. Mashuta, Robert M. Buchanan,
and Craig A. Grapperhaus*

Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States

*S Supporting Information

ABSTRACT: In this study, we report the electrocatalytic behavior of the neutral, monomeric Cu(II) complex of diacetyl-bis(N-
4-methyl-3-thiosemicarbazonato), CuL1, for metal-assisted ligand-centered hydrogen evolution in acetonitrile and
dimethylformamide. CuL1 displays a maximum turnover frequency (TOF) of 10 000 s−1 in acetonitrile and 5100 s−1 in
dimethylformamide at an overpotential of 0.80 and 0.76 V, respectively. The rate law is first-order in catalyst and second-order in
proton concentration. Gas analysis from controlled potential electrolysis confirms CuL1 as an electrocatalyst to produce H2 with
a minimum Faradaic efficiency of 81% and turnover numbers as high as 73 while showing no sign of degradation over 23 h. The
H2 evolution reaction (HER) was probed using deuterated acid, demonstrating a kinetic isotope effect of 7.54. A proton
inventory study suggests one proton is involved in the rate-determining step. Catalytic intermediates were identified using 1H
NMR, X-ray photoelectron, and UV−visible spectroscopies. All catalytic intermediates in the proposed mechanism were
successfully optimized using density functional theory calculations with the B3LYP functional and the 6-311g(d,p) basis set and
support the proposed mechanism.

■ INTRODUCTION

Rising energy demands coupled with growing concerns of
repercussion from global climate change have ignited
considerable interest in the development of carbon neutral
energy systems.1−3 Hydrogen is a promising component of
these systems, representing a lightweight, energy dense energy
carrier. Hydrogen evolution reactions (HERs), which involve a
two-electron reduction of protons, can be used to store energy
in H2, with subsequent energy release through hydrogen
oxidation reactions (HORs).4−6 Platinum is an excellent
catalyst for HERs and HORs,7 yet its scarcity and high costs
limit practical large scale application, leading to the pursuit of
sustainable and inexpensive homogeneous and heterogeneous
materials many which employ earth abundant first-row
transition metals.8−21 One of these promising systems are the
pendant-base bis(diamine) nickel complexes of Dubois and
Bullock, which proceed with the participation of a crucial metal-
hydride intermediate.22−26 Following this cue from nature,
many others have employed the metal-hydride approach to
generate HER catalysts that operate via similar hydride-based
mechanisms.
Traditional HER catalysis follows a metal-centered route,

employing a transition metal capable of accommodating
multiple oxidation states for the two-electron hydride transfer

associated with hydrogen evolution. There is an emerging
interest in the use of redox-active ligands that open alternate
HER routes, including ligand-assisted metal-centered,27 ligand-
centered,28−30 and metal-assisted ligand-centered reactiv-
ity,31,32,29 Scheme 1.
Among the latter two of these three classes, the ligand can

often participate in redox events either in an implicit or explicit
nature.33 Due to their ability to act as electron reservoirs, redox
noninnocent ligands can drastically alter reactivity and enhance
catalytic properties of transition-metal complexes, which have
made them attractive candidates in the field of catalysis.33−35

Small molecule transition-metal complexes featuring redox
noninnocent ligands thus have garnered considerable interest
among many fields of catalysis, including water oxidation,36,37

alcohol oxidation,38 carbon dioxide activation,39 hydrogen
evolution,15,27−29,31,32,40 and hydrogen oxidation.41

The redox noninnocent formalism can be traced back to the
early work by Jørgensen, when in 1966 he termed ligands as
either innocent or noninnocent in an attempt to avoid
confusion when describing whether a ligand allowed the
oxidation state of the central atom to be identified.42 Further
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inquiries into exploiting catalysis using noninnocent ligands
intensified upon the discovery of metal-radical locales in the
active sites of several metalloenzymes such as galactose oxidase
and hydrogenase, both which implicate ligand noninnocence as
a crucial factor in their activity.43−45 The thiosemicarbazone
ligand classification as a redox active ligand has been well-
documented,38,46−49 and can stabilize low oxidation states of
many metal complexes such as nickel iron and copper due to
their soft N2S2 or N3S donor sets, making them attractive
candidates for studying catalytic reactions with these metals.
The first nontransition-metal homogeneous HER catalyst

reported was an aluminum-bis(imino)pyridine complex by
Thompson et al. that evolves H2 with a TOF of 3.3 h−1 and
with an overpotential of 0.5 V via ligand-centered reduction and
protonation events.29 Haddad et al. reported a rhenium
dithiolate complex as the first reversible, ligand-centered
catalyst for both HER and HOR, which proceeds through a
radical coupling mechanism,32,50 while Solis et al. reported a
nickel phlorin intermediate with a hydridic C−H bond that
reacts with an external acid to produce H2 in a purely ligand-
centered process.51 Following these reports, Zarkadoulas et al.
reported DFT computations that suggested Ni-dithiolene HER
catalysts may proceed via metal-hydrides or a ligand-centered
mechanism.15

Recently, we reported the first example of catalytic HER with
the noninnocent bis(thiosemicarbazone) ligand framework,
Scheme 2.28 The zinc complex of diacetyl-bis(N-4-methyl-3-

thiosemicarbazone), ZnL1, catalyzes HER with a maximum
TOF of 1170 s−1. The HER mechanism was established
through a rigorous protocol involving kinetic studies, including
digital simulations of electrochemical data, DFT computations
of catalytic intermediates, and location of the transition state.
Results indicate a ligand-centered process involving a binuclear
transition state with evolution of H2 via ligand hydride-proton
coupling. Notably, the free ligand H2L

1 also demonstrates
similar HER activity. Very recently, Straistari et al. reported
HER activity with a related bis(thiosemicarbazonato)Ni(II)
complex with an enhanced TOF of 3080 s−1, proposed to
involve initial ligand-centered reduction and protonation
followed by metal-centered reduction.52

In this study, we continue our pursuit of alternate HER
strategies with the report of metal-assisted ligand-centered HER
catalysis using the copper complex of diacetyl-bis(N-4-methyl-
3-thiosemicarbazone), CuL1, Scheme 2. The electrochemistry
of CuL1 was previously investigated by both Mauer et al. in
200253 and Holland et al. in 200854 during its study as a
radiopharmaceutical agent for the diagnosis of hypoxia.
Notably, Holland and co-workers observed a reduction at
−1.007 V vs SCE in the presence of HBF4 that they assigned to
the reduction of protons. This was supported by the presence
of small bubbles, which was attributed to hydrogen formation,
at the Pt working electrode upon prolonged reduction. Herein,
we report a detailed investigation of CuL1 in the presence of
acetic acid that conclusively demonstrates electrocatalytic HER
activity. Evaluation of the mechanism by electrochemical,
spectroscopic, and density functional theory (DFT) methods
supports a metal-assisted ligand-centered pathway.

■ EXPERIMENTAL SECTION

Electrochemical Methods. All cyclic voltammetry (CV) and
controlled potential coulometry (CPC) measurements were recorded
using a Gamry Interface potentiostat/galvanostat which was connected
to a glassy carbon working electrode (6.5 mm diameter, surface area =
0.07 cm2), a platinum wire counter electrode, and Ag/AgCl reference
electrode. Before use, the working electrode was polished using an
aqueous alumina slurry. The working and counter electrodes were
cleaned before use by washing with water, ethanol, isopropanol, and
acetone and then sonication for 10 min in acetonitrile/DMF. CV
measurements were conducted using a three-neck electrochemical cell
that was washed and dried in an oven overnight before use. All
electrochemical experiments were conducted under a N2 atmosphere.
All CPC measurements were conducted using a two-chambered glass
electrolysis cell with working and auxiliary compartments separated by
a frit with a volume of 10 mL in each, washed and dried the night
before use. The working compartment was fitted with a glassy carbon
working electrode and an Ag/AgCl reference electrode. The auxiliary
compartment was fitted with a Pt wire counter electrode. The working
compartment contained 0.292 M acetic acid added to a 0.1 M
Bu4NPF6 acetonitrile or DMF solution, while the auxiliary compart-
ment was filled with 0.1 M Bu4NPF6 acetonitrile or DMF solution.
Both compartments were purged for 15 min with N2 prior to
electrolysis. A control (blank) CPC study was conducted and
subtracted from experimental results (Supporting Information).
Electrolysis measurements were performed after addition of 0.6 mM
CuL1 to the working compartment for several time durations. The
evolved gas was subjected to gas chromatography thermal conductivity
(GC-TCD) analysis at the end of the electrolysis using a Gow-Mac
series 400 GC-TCD equipped with a molecular sieve column for
product detection. The column was heated to 130 °C under N2 gas
flow with 250 μL injection samples injected onto the column to
confirm H2 as the gaseous product.

Overpotential Determination. Overpotential can be defined as
the difference between the thermodynamic and equilibrium potentials

Scheme 1. Overview of Reactivity Using Noninnocent
Ligands

Scheme 2. Thiosemicarbazone-Based HER Electrocatalysts
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for a given reaction and the potential at which the reaction occurs
under a set of specific conditions. The accurate determination of
overpotential requires an estimation of Ecat/2 and Eref (E1/2

T ), each of
which can change, depending on the reaction conditions. The value for
the potential for catalysis should be related to the catalytic current, and
therefore, we use Ecat/2. Eref is the half-wave potential of the most acidic
couple in solution. This value is based on the standard potential of
proton reduction in the solvent E°H/H2. Using the methods of
Artero,55 Eref is calculated using eq 1, which allows for calculation of
the overpotential (η) for proton reduction by CuL1 under some
specific experimental conditions.

ε= ° − + −
°

+E E
xRT

F
K

RT

F

C

C

2.303
p

2
lnT

a1/2 H /H D
0

H
2

2 (1)

The overpotential can then be estimated as η = |(Eref − Ecat/2)| (see
Supporting Information for all sample calculations).
Faradaic Efficiency Determination. Evolved gas from the

cathode compartment displaced water in a cylinder with radius 1.12
cm by a height of 2.16 cm. Using the equation for the volume of a
cylinder, V = π(r)2h, we can calculate the volume displaced. This is
calculated to be 8.51 mL. Using the conversion factor of 24.0 L of any
ideal gas per one mole of gas at room temperature allows us to
quantify the number of moles of H2 evolved as 3.56 × 10−4 moles.
This value can then be compared to the theoretical number of moles
of H2 evolved based on total charge passed, determined to be 4.40 ×

10−4. Faradaic efficiency is defined as moles of H2 quantified/mol of
H2 theoretical based on charge × 100%. This corresponds with a
minimum Faradaic efficiency of 81.0% (Supporting Information).
Turnover Frequency Determination.

=
+i nFA Dk[cat] [H ]cat

2
(2)

Eq 2 details the relationship between the catalytic current icat, the
catalyst concentration [cat], and the acid concentration [H+] for a
catalytic reaction that is second-order in acid and first-order in
catalyst.56 The terms n, F, A, and D are the normal electrochemical
terms related to the number of electrons transferred, Faraday’s
constant, area of the electrode (0.07 cm2), and diffusion constant,
respectively.
Eq 2 (Randle−Sevcik equation) provides the relationship between

the peak current (ip), catalyst concentration, and scan rate (ν) in the
absence of acid. The factor of 0.4463 is related to the diffusion
equations;57 R is the gas constant, and T is temperature in K. The
other terms are the same as in eq 1. Application of eq 3 was used for

the construction of Cottrell plots (Figure 1) and determination of the
CuL1 diffusion coefficient.

=i FA
FvD

RT
0.4463 [cat]p (3)

Thus, the ratio of icat/ip (eq 4) is obtained from the quotient eqs 1 and
2.

=

+i

i

n RTk

Fv0.4463

[H ]cat

p

2

(4)

Under pseudo first-order conditions where kobs = k[H+]2, eq 4
simplifies to 5.58

=
i

i

n RTk

Fv0.4463
cat

p

obs

(5)

Eq 5 can be simplified further to eq 6, when n = 2, and when at scan
rate independent conditions can be used to estimate the observed rate
constant or turnover frequency (TOF) (see Supporting Information
for sample calculations).

=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k v
i

i
1.94

p
obs

cat

2

(6)

Eqs 2−6 are used for TOF estimation for electrocatalysts under “pure
kinetic conditions” where plateau current is easily observable as an S-
shaped wave that is scan rate independent.59 The CVs reported in this
manuscript show plateau current at low acid concentrations that are
scan rate independent. Upon increasing substrate concentration, data
collected under scan rate independent conditions no longer display S-
shaped waves, making current plateaus increasingly more difficult to
observe. This is attributed to the proximity of the catalytic wave to the
edge of the solvent window. Foot of the wave analysis (FOWA) is an
alternate method to determine TOF that was developed specifically for
electrocatalysts that do not operate under pure kinetic conditions.60,61

FOWA was developed for electrocatalysts in which the first step
involves electron transfer (i.e., EECC or ECEC) and its application
requires an accurate measurement of E1/2 for the catalyst in the
absence of substrate. However, the HER mechanism for CuL1 involves
an initial protonation step (CECE) such that it is not possible to
measure E1/2 of the catalyst in the absence of substrate. Given this
complication, TOF values were determined using plateau current
analysis (eqs 2−6) despite the absence of S-shaped waves. As noted by
Dempsey in a recent review,59 plateau current analysis “cannot be
rigorously applied” under these conditions, but it “can be useful in an
initial assessment of catalyst performance because even current
enhancements for non-ideal waves are reflective of catalysis.” Further,
she notes that in such cases, the plateau current method “generally
underestimates the rate constant.”59

X-ray Photoelectron Spectroscopy of Electrode Adsorbed
Films. CPEs of 0.6 mM CuL1 with 0.292 M acetic acid added in 0.1 M
Bu4NPF6 DMF and ACN solutions were run for 23.5 and 4.2 h,
respectively. After completion of electrolysis, the working electrode
was removed and washed with DI water. A visible red-brown film
persisted on the electrode surface. The films were scraped off using a
spatula, collected onto wax paper, and transferred to a glass vial, which
was sealed and wrapped with parafilm. XPS analysis was conducted by
the Nanoscale Characterization Facility at the University of Indiana
(Bloomington, IN) using a PHI VersaProbe II Scanning X-ray
Microprobe system.

Computational Methods. Initial benchmark calculations were
performed using M06, B3LYP, and B97-D.62−67 On the basis of the
energetic minima results, B3LYP was chosen for use as the functional
for subsequent calculations. Optimizations were performed in the gas
phase using DFT employing the B3LYP exchange correlation
functional and the 6-311G(d,p) basis set for all atoms as implemented
in the Gaussian09 suite of programs for electronic structure,68 and
ChemCraft was used for graphics visualization.69 All optimizations
were performed under tight constraints with no symmetry imposed.
All input coordinates are available in the Supporting Information.

NMR Spectroscopy of [CuL1H2]
+. A 5 mL solution of 8.9 mM

CuL1 in DMSO-d6 was prepared in an Ar filled glovebox. To this
solution was added 10 mg of bis(cyclopentadienyl)cobalt(II). The
solution was stirred for 15 min during which time the solution changed

Figure 1. CVs of CuL1 in 0.1 M Bu4NPF6 ACN solution at scan rates
of 0.1 (black), 0.2 (blue), 0.3 (light blue), 0.4 (green), 0.5 (light
green), 0.6 (purple), 0.7 (yellow), 0.8 (orange), 0.9 (red), and 1.0
(black) V/s.CuL1. Inset: Cottrell plot of peak current vs square root of
scan rate.
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color from red to light purple. A 700 μL portion of the resulting
solution was transferred to an NMR tube and capped for analysis. A
second 700 μL portion was transferred to an NMR tube followed by
addition of 2 μL of aqueous HPF6 (55 wt %). Data were collected on a
Varian 400 MHz NMR. Reduction of CuL1 to [CuL1]− by cobaltocene
was confirmed by UV−vis measurements. In a round-bottom flask 19
mg of CuL1 was dissolved in 30 mL of deoxygenated DMF under N2.
An aliquot was removed, and the spectrum was recorded. Then, 1
equiv of bis(cyclopentadienyl)cobalt(II) was added, and the solution
was stirred for 15 min. Finally, 2 equiv of aqueous HPF6 (55 wt %)
was added. An aliquot was removed, and the spectrum was recorded.

■ RESULTS AND DISCUSSION

Synthesis and Electrochemical Characterization. The
CuL1 compound was isolated as an air-stable burgundy solid
from H2L

1 and copper(II) acetate as previously reported by
Dilworth et al.70,71 The cyclic voltammogram (CV) of CuL1 in
acetonitrile (ACN) or dimethylformamide (DMF) containing
0.1 M Bu4NPF6 as supporting electrolyte displays a reversible
CuII/I event at −1.20 V vs ferrocenium/ferrocene (Fc+/Fc),
consistent with prior reports. Additional CV data collected at
multiple scan rates from 0.1 to 1.0 V/s in ACN (Figure 1) and
DMF (data not shown) were used to construct Cottrell plots
(Figure 1, inset), establishing that the CuII/I reduction is
diffusion limited, thus demonstrating the potential of CuL1 as a
homogeneous electrocatalyst. The slope of the plot yields a
diffusion coefficient of 7.9 × 10−6 cm2/s in ACN and 9.35 ×

10−6 cm2/s in DMF. The formal CuIII/II couple was observed at
0.24 V vs Fc+/Fc in DMF and ACN in line with prior reports,
but this event was not further evaluated in the current study.
Homogeneous Catalytic Hydrogen Evolution: Cyclic

Voltammetry and KIE. Addition of acetic acid exceeding
0.024 M to 0.6 mM ACN solutions of CuL1 shifts the CuII/I

reduction potential from −1.20 to −0.95 V and introduces a
catalytic cathodic current at −1.70 V vs Fc+/Fc (Figure 2A).
The +0.25 V shift is consistent with protonation prior to the
initial electrochemical reduction and is consistent with
previously reported results with CuL using the strong acid
HBF4.

32,54 Single protonation prior to reduction was confirmed
through UV−visible spectroscopy analysis, vide infra. The ratio
of the catalytic current to the peak current displays linear
dependence on the acid concentration up to 0.157 M,
indicating a second-order dependence of the catalytic rate on
the acid concentration.72 At concentrations greater than 0.157
M, the current response begins to plateau, reaching an acid
independent region at concentrations of 0.269 M, (Figure 2B).
This transition from second-order to zero-order dependence
requires a pre-equilibrium step(s) involving two protons that
precedes the rate-determining step for H2 elimination. The

current becomes scan rate independent at 0.2 V/s. CVs run at
higher scan rates result in a decrease of current response;
therefore, values reported for CuL1 are based on current
response at 0.2 V/s. Under these conditions the ip of the Cu

II/I

reduction event, 14.0 μA, and the icat max from the acid-
independent region, 2.25 mA at an overpotential of 0.8 V,
correspond with a maximum icat/ip value of 161, affording a
TOF of 10 000 s−1.55,60,73,74 While the maximum TOF is
substantial, its merit is severely diminished by the large
overpotential of 0.8 V required (Figure 2C).
The electrocatalytic activity of 0.6 mM CuL1 with acetic acid

was also assessed in DMF. Previous electrochemical studies in
DMF indicated that acetic acid does not protonate CuL1 at
concentrations up to 0.022 M acetic acid.53 However, an
increase in current at −1.9 V vs Fc+/Fc is observed upon
increasing additions of acetic acid at higher concentrations
(Figure 3A). At concentrations of acid greater than 0.292 M,
the current saturates reaching a maximum icat of 1.49 mA
(Figure 3A inset). Acid addition results in a shift of the CuII/I

potential from −1.20 to −0.95 V, as observed in ACN,
attributed to a single protonation event prior to reduction.
Catalytic current becomes independent of scan rate above 1.0
V/s (Figure 3B). Under these conditions icat is 1490 μA

Figure 2. (A) CVs of 0.6 mM CuL1 (black) in 0.1 M Bu4NPF6 ACN with 0.0244 (purple), 0.0448 (light purple), 0.0896 (light blue), 0.134 (pink),
0.179 (yellow), 0.244 (light green), and 0.269 (red) M CH3COOH, Inset: Blow up of CV showing shift of CuII/I reduction event. (B) Plot of icat/ip
vs [CH3COOH] for 0.60 mM CuL1 (blue) at scan rates of 0.20 (X), 0.50 (●) and 1.00 (*) V/s. (C) Catalytic Tafel plot of CuL1 in ACN (blue) and
in DMF (purple) with comparison of performance for hydrogen evolution with those of others reported in literature. Blue ⧫: CoII(dmgH)2py; green
●: [Ni(P2

PhNPh)2]
2+; red ■: NiL2; magenta.61

Figure 3. (A) CVs of 0.6 mM CuL1 (black) in 0.1 M Bu4NPF6 DMF
with 0.0244 (purple), 0.0672 (dark purple), 0.112 (blue), 0.157
(green), 0.202 (light green), 0.246 (yellow), 0.269 (orange), and 0.292
(red) M CH3COOH. (inset) Plot of icat/ip vs [CH3COOH] for 0.6
mM CuL1 at scan rates of 0.20 (⧫), 0.50 (■), and 1.00 (▲) V/s. (B)
CVs of 0.6 mM CuL1 (black) in 0.1 M Bu4NPF6 DMF with 0.292 M
CH3COOH at scan rates from 0.1 to 1.0 V/s. (inset) Plot of icat vs
scan rate for 0.6 mM CuL1 in 0.1 M Bu4NPF6 DMF with 0.292 M
CH3COOH.
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(overpotential = 0.76 V), and ip is 29 μA, giving a TOF of 5100
s−1, which is significantly lower than the TOF in ACN.
The Tafel plot of the log TOF versus overpotential for CuL1

(Figure 2C) displays the TOF as a function of the applied
overpotential.61 At high overpotentials CuL1 displays high
logTOF values, reaching a maximum of 3.99. CuL1 maintains a
logTOF value greater than one, only with applied over-
potentials greater than 0.25 V. As previously noted, the
maximum logTOF for CuL1 of 3.99 requires a large
overpotential of 0.8 V. Comparatively, state-of-the-art metal-
hydride HER electrocatalysts, such as nickel-bis(diphosphine)
and cobaloxime exhibit logTOF values of 4.00 at overpotentials
of 0.50 and 0.40 V, respectively.61 Our previously reported
ligand-centered electrocatalysts ZnL1 and H2L

1 have lower
maximum logTOF values than CuL1, and achieve logTOF
values of 3.06 and 3.12 at overpotentials of 0.75 and 1.4 V,
respectively.28 Artero’s related NiL2 electrocatalyst achieves a
maximum logTOF of 3.50 at an overpotential of 0.4 V, similar
to the state-of-the-art metal-hydride HER catalysts.52

Analysis of the CVs of CuL1 under catalytic HER conditions
reveal a new oxidation event at a potential of −0.65 V Fc+/Fc
during the return anodic scan (Figure 2A inset), which is
assigned to the Cu(II/I) couple of the diprotonated copper(I)
intermediate, [CuL1H2]

+. This event is 300 mV more positive
than the Cu(II/I) couple of the monoprotonated [CuL1H]+,
which in turn is 250 mV more positive than the CuL1. The
intensity of the peak current at −0.65 V demonstrates scan rate
dependence typical of diffusion controlled behavior (Figure
3B), confirming it is not due to an adsorbed species.
As noted above, the catalysis is second-order in acid in the

acid dependent regime. To determine the order with respect to
the catalyst, the concentration of CuL1 was varied from 0.1 to
1.0 mM in solution containing 0.15 M acetic acid. A plot of
catalyst concentration versus peak current reveals a linear
relationship, confirming a first-order dependence on the
concentration of the catalyst (Supporting Information) and
an overall third-order process.
To further evaluate the HER mechanism of CuL1, the H/D

kinetic isotope effect (KIE) was measured. CuL1 displays a
large KIE of 7.54 using 100% CD3CO2D. The high KIE value
observed when using 100% CD3CO2D is distinct from the
inverse KIEs reported for some HER catalysts proceeding
through metal-hydrides75 but similar to that observed for a
ligand-centered Rethiolate HER catalyst.32 Because CuL1 HER
catalysis is second-order in [H+], a proton inventory study was
conducted to determine the number of protons involved in the
rate-determining step.76 Cyclic voltammograms collected with
variable quantities of CH3CO2H and CD3CO2D were used to
generate plots of KIE versus the percent fraction of CD3CO2D
(Figures 4A and B). The plot yields a linear fit consistent with
the involvement of a single proton in the rate-determining step.
Controlled Potential Electrolysis. A series of controlled

potential electrolysis (CPE) experiments was performed using
0.6 mM CuL1 and 0.292 M acetic acid with potential held at
−1.65 V vs Fc+/Fc, in both DMF and ACN (Table 1).
Electrolysis in 0.1 M Bu4NPF6 DMF solutions was allowed to
run for 84 400 s (23.4 h), resulting in a total charge passed of
85.0 C, corresponding to 4.4 × 10−4 moles of H2 produced with
a turnover number (TON) of 73.3. Gas analysis of the
headspace using GC-TCD confirms H2 as the gaseous product
(Supporting Information). The charge increases linearly over
time with no signs of degradation or decrease in activity over 23
h (Figure 5). A second CPE in DMF over 72 120 s (20 h)

yielded comparable results, giving a slightly lower charge of
67.0 C, producing 3.5 × 10−4 moles of H2 corresponding with a
TON of 58.3.
The CPEs performed in 0.1 M Bu4NPF6 ACN passed similar

charge, giving values of 60.4 and 84.7 C corresponding to TON
values of 51.7 and 73.3 over shorter electrolysis times of 15 000
and 13 000 s, respectively (Figure 5). The current in ACN is
significantly higher than that in DMF, resulting in a steeper
slope in the charge-time plots, consistent with relative TOFs
from CV studies. Electrolysis beyond 15 000 s in ACN is
complicated by diffusion across the frit from the working to
auxiliary compartment. This results in the appearance of a
brown, cloudy mixture in the auxiliary compartment concurrent
with the plateauing of charge. This phenomenon was
consistently observed in ACN, but was absent in DMF.

Control Experiments. A series of control experiments was
performed to confirm CuL1 as the electrocatalyst. First, CVs
were recorded on ACN and DMF solutions containing only

Figure 4. (A) CVs of 0.6 mM CuL1 in 0.1 M Bu4NPF6 ACN solution
with 0.269 M acetic acid at 0 (dark red), 20 (red), 40 (yellow), 60
(green), 80 (light blue), and 100 (dark blue) mole % of CD3COOD.
(B) Plot of KIE vs % CD3COOD.

Table 1. Summary of CPE Results

entrya solventc,d
duration
(S−1)

charge
(C)

moles of H2 produced
(× 10−4) TON

1 ACN 15 000 60.4 3.1 52

2 ACN 13 000 84.7 4.4 73

3 DMF 84 400 67.0 3.5 58

4 DMF 72 120 85.0 4.4 73b

aOverpotential 0.8 V vs Fc+/Fc for all CPEs. bFaradaic efficiency 81%
(see Supporting Information). cBlank run of 0.292 M acetic acid in
DMF yields 68.2 mC. dBlank run of 0.292 M acetic acid in ACN yields
57.6 mC.

Figure 5. CPE of 0.6 mM CuL1 in 0.1 M Bu4NPF6 ACN (pink and
orange) or 0.1 M Bu4NPF6 DMF (red and blue) solutions with 0.292
M CH3COOH added; 0.1 M Bu4NPF6 DMF with 0.292 M
CH3COOH, no CuL1 (green).
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acetic acid. Addition of 67.2 mM acetic acid to 0.1 M Bu4NPF6
ACN solutions resulted in an observable current of 300 μA
(Figure 6A). However, after 2 CV cycles the current drops to a

stable value near 100 μA. Upon addition of 0.6 mM CuL1, the
current increases to 900 μA (Figure 6A). In DMF addition of
22.4 mM acetic acid results in a modest current increase of ∼5
μA (Figure 6B). Addition of 0.6 mM CuL1 to this solution
resulted in an increase in current, giving a value of 200 μA
(Figure 6B). This is in contrast to the report by Mauer et al.
from 2002, where the authors state that in the presence of
0.0224 M acetic acid in DMF, CVs of CuL1 show no observable
change.53 However, in the prior study, the scans were not
extended beyond −1.0 V vs Ag wire (−1.60 V vs Fc+/Fc). At
more cathodic potentials, a substantial change in the CVs of
CuL1 with 22.4 mM acetic acid added is observed with an
increase in current onset potentials near −1.7 V vs Fc+/Fc
(Figure 6B). These control experiments identify CuL1 as the
source of the catalytic activity but do not exclude the possibility
that it may be the precursor to an adsorbed catalyst.77−79

To probe for adsorption of the CuL1 on the electrode surface
prior to catalysis, a soak test was performed using the methods
of Dempsey and co-workers.78 The working electrode was
immersed overnight in a 0.1 M Bu4NPF6 ACN solution
containing 0.6 mM CuL1 and 0.292 M acetic acid. It was then
removed, washed with DI water, and placed into a fresh
solution of 0.1 M Bu4NPF6 ACN, with no added acid or
catalyst. The resulting CV displayed no redox events, indicating
no detectable adsorption of CuL1 derived species under these
conditions.

A second series of controls were performed to evaluate if a
catalytically active adsorbed species forms during CV catalysis.
These post-CV dip tests were conducted after 10 and 50 cycles.
During the 50 cycles from −0.5 to −2.3 V vs Fc+/Fc on 0.6
mM CuL1 solutions under acid saturated conditions, the
current reaches a maximum value of ∼1.5 mA. The working
electrode was removed, washed with DI water, and immersed
into a fresh solution of 0.1 M Bu4NPF6 ACN or DMF. The
resulting CVs showed no significant Faradaic current in the
window from −0.5 to −2.3 V. Upon addition of 0.292 M acetic
acid, a catalytic current of 1 mA was observed at −1. Notably,
Holland et al.54 previously reported a two electron stripping
wave at 0.4 V vs SCE (−0.1 V vs Fc+/Fc) following reduction
of CuL1 in the presence of HBF4. The peak was assigned to
oxidation of a surface adsorbed Cu(I) dimer, [(CuL1H2)2]

2+.
After we extended the scan window to include this event, the
catalytic current at −1.7 V is absent. This confirms that at least
some of the HER catalysis results from adsorbed CuL1 species.
To probe if all the catalytic activity results from adsorbed

catalysts, we repeated the post-CV dip test after 10 cycles from
−0.5 to −2.5 V vs Fc+/Fc on 0.6 mM CuL1 solutions under
acid saturated conditions, again reaching maximum current
values of ∼1.5 mA. The working electrode was removed,
washed with DI water, and immersed into a fresh solution of
0.1 M Bu4NPF6 DMF. As before, the resulting CVs showed no
observable Faradaic current in the window from −0.5 to −2.5
V. CVs following addition of 0.292 M acetic acid showed only
400 μA of current at −1.7 V. While these results indicate that
surface adsorbed CuL1 is responsible for some of the catalytic
current after as few as 10 cycles, they clearly show that the
majority of HER activity under homogeneous conditions is due
to dissolved CuL1 complex.
In addition, a postelectrolysis dip-test was performed

following CPE studies of CuL1 catalyzed HER. Under these
conditions, a substantial amount of surface adsorbed CuL1

derived complex is expected. After both CPEs in DMF and
ACN, the working electrode was removed, washed with DI
water, and immersed into a fresh 0.1 M Bu4NPF6 DMF/ACN
solution. The CV was collected. In contrast to the post-CV dip
tests, the electrode displays 3 reduction events at −0.9, −1.4,
and −2.1 V vs Fc+/Fc. The first two events are near the
observed Cu(II/I) reduction potentials of [CuL1H]+ and CuL1,
respectively. The most cathodic event is near the reduction
potential of H2L

1.28 Upon addition of 0.292 M acetic acid to
the solution, current increases, and catalysis is observed (Figure
7).
Analysis of the films following electrolysis in DMF and ACN

by X-ray photoelectron spectroscopy revealed atomic percen-
tages consistent with CuL1, Figure 8. While the data does not
confirm intact CuL1 in the film, it strongly suggests that the
ligand and the metal are incorporated in the film in equal molar
quantities. Further, high resolution XPS (see Supporting
Information) confirms the presence of Cu ions in either the
+1 or +2 charge state, which is inconsistent with the formation
of metallic Cu nanoparticles. However, we cannot completely
exclude the formation of oxidized copper nanoparticles such as
Cu oxide infused with equimolar quantities of L1 or some other
organic component of similar elemental composition. The data
from the two solvents are indistinguishable. On the basis of our
electrochemical analysis and detailed control studies, it is
evident that some of the observed catalysis is due to a
homogeneous process, although we cannot estimate what
amount is attributable to a heterogeneous process. Further

Figure 6. (A) CVs run in 0.1 M Bu4NPF6 ACN solutions, showing
blank ACN (blue) with 0.0672 M acetic acid added (black dashed)
and with 0.0672 M acetic acid and 0.6 mM CuL1 (red). (B) CVs run
in 0.1 M Bu4NPF6 DMF solutions, showing blank DMF (blue) with
0.0224 M acetic acid added (black dashed) and with 0.0224 M acetic
acid and 0.6 mM CuL1 (red).

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.7b01608
Inorg. Chem. 2017, 56, 11254−11265

11259

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01608/suppl_file/ic7b01608_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01608/suppl_file/ic7b01608_si_001.pdf
http://dx.doi.org/10.1021/acs.inorgchem.7b01608


characterization and activity studies of CuL1-based films are
ongoing.
Protonated Derivatives of CuL1. A series of protonated

derivatives of CuL1 was evaluated as potential catalytically
relevant intermediates. These include the mono- and
diprotonated Cu(II) complexes [CuLH]+ and [CuLH2]

2+ and
the Cu(I) analogue CuLH. The Cu(II) complexes were
previously observed spectroscopically and in electrochemical
studies upon addition of HBF4 to CuL1.54 The dinuclear Cu(I)
complex [(CuLH2)2]

2+, which was previously characterized by
single crystal X-ray diffraction,80 was not considered as a
catalytically relevant species under homogeneous conditions, as
the reaction is first-order in CuL1.
To confirm that protonation of the Cu(II) complex CuL1

occurs under catalytic conditions prior to reduction, acid
titrations were monitored by UV−visible spectroscopy. The
spectrum of 0.6 mM CuL1 in deoxygenated DMF shows
absorbance bands at 310, 375, 475, and 520 nm. The solution
was titrated with acetic acid, increasing in concentration from
0.022 to 0.382 M (Figure 9). The absorbance bands of CuL1

decrease in intensity, concurrent with increases at 405 and 460
nm, consistent with the formation of [CuL1H]+.54 The
proposed protonation site is the hydrizino N, in line with
previous reports and density functional theory computations
(vide infra).
To characterize the reduced Cu(I) species, the Cu(II)

complex CuL1 was chemically reduced using cobaltocene and
spectroscopically analyzed in the absence and presence of acid.
The UV−visible spectrum (see Supporting Information) upon
reduction in DMF is consistent with the formation of

[CuL1]−.54 Addition of HPF6 results in a decrease in band
intensity at 360 and 505 nm. To further confirm the
protonation of [CuL1]−, 1H NMR spectra were collected in
DMSO-d6 (see Supporting Information). In the absence of
acid, [CuL1]− displays peaks at δ (ppm) = 1.99 (s, 6H) CCH3,
2.66 (s, 6H) NHCH3, and 5.72 (s, 2H) NHCH3, which are
similar to values reported for ZnL1 in DMSO-d6.

81 Addition of
aqueous HPF6 generates a spectrum consistent with the
diprotonated Cu(I) complex [CuL1H2]

+. The 1H NMR
shows a new set of peaks at δ (ppm) = 2.07 (s, 6H) CCH3,
3.03 (s, 6H) NHCH3, 8.26 (s, 2H) NHCH3, and 10.91 (s, 2H)
NNH, which are similar to values for H2L

1.70

The diprotonated Cu(II) complex [CuL1H2]
2+ was pre-

viously observed in CVs collected in the presence of HBF4.
54

However, our CH3COOH titration studies show no evidence
of a second protonation event under catalytic conditions.
Although [CuL1H2]

2+ is not catalytically relevant, X-ray quality
crystals of [CuL1H2]

2+ were obtained from acetonitrile/
methanol/perchloric acid solution. The ORTEP representation
shows protonation of both hydrizino nitrogens, axial coordina-
tion of one perchlorate, and axial association of the second
perchlorate, Figure 10. A complete description of the
crystallographic details is provided in the Supporting
Information.

Proposed Homogeneous HER Mechanism. A proposed
CECE mechanism for homogeneous HER catalyzed by CuL1 is
shown in Scheme 3. Step 1 is an initial chemical (C) event
involving protonation of the hydrazino nitrogen on CuL1 to
yield [CuL1H]+. This is followed by an electrochemical step
(E) assigned as a metal-centered reduction giving the neutral
Cu(I) species, CuL1H. Step 3 is a chemical step involving
protonation on the other hydrazino nitrogen, affording the
Cu(I) cation, [CuL1H2]

+. Step 4 is the final electrochemical
step, a proposed ligand-centered reduction to give the neutral
species, CuL1H2. The CuL1H2 complex can be regarded as
Cu(I) coordinated by a nitrogen-centered radical. Step 5 shows
double bond rearrangement, resulting in an anionic coordinated
nitrogen. This anionic nitrogen induces an internal proton
transfer, a tautomerism that has been observed in many
thiosemicarbazone complexes,38,83−85 leading to formation of
the H2 evolving complex. Finally, in step 6, hydrogen is evolved
through hydrogen atom or proton/hydride coupling at the
adjacent N−H bonds.
The proposed mechanism is consistent with the exper-

imentally determined rate law and the KIE proton inventory
study. Both protons are added to a single CuL1 complex prior

Figure 7. Postelectrolysis dip test performed on working electrode
post CPE. The electrode was washed with DI water and immersed into
a fresh solution of 0.1 M Bu4NPF6 ACN (black) upon addition of
0.292 M CH3COOH (red).

Figure 8. Calculated (red) and XPS experimental (blue) relative
atomic mass percent for postelectrolysis CuL1 derived films. Error bars
show ±3σ for 4 experimental measurements.

Figure 9. UV−visible spectra of CuL1 titrated with CH3COOH; 0.022
(dark red), 0.044 (red), 0.056 (light red), 0.067 (orange), 0.089 (light
orange), 0.112 (yellow), 0.134 (light green), 0.157 (green), 0.202 (sky
blue), 0.244 (blue), 0.269 (magenta), 0.292 (light blue), 0.337
(purple), and 0.382 (black) M.
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to the rate-determining step (rds), consistent with the first-
order catalyst and second-order proton dependence on current.
The proton inventory study suggests that a single proton is
involved in the rds This is consistent with proton
tautomerization, step 5, over hydrogen evolution, step 6, as
the rate limiting event. The solvent dependency of the TOF
further supports this interpretation. The TOF in DMF is
approximately one-half that in ACN. This is attributed to H-
bonding interactions between DMF and ligand N−H groups.
These stabilizing interactions retard the rate limiting tautome-
rization step in DMF relative to ACN. To assess the viability of
this mechanism, density functional theory computations on all
proposed species were performed.
Density Functional Theory Investigations. All proposed

complexes in Scheme 3 were assessed using DFT using the
B3LYP functional62 and the 6-311g(d,p) basis set. First, we
evaluated the protonation event associated with step 1.
Calculations on the singly protonated intermediate,
[CuL1H]+, support our assignment of the hydrazino nitrogen
as the site of protonation. For [CuL1H]+ (S = 1/2), the Cu, S,
N3 (hydrazino), N4 (coordinated), and N6 (pendant amine)
were evaluated as possible protonation sites. In each structure,
the geometry and frequencies were optimized and the energies
minimized. The hydrizino protonated geometry is energetically
preferred, lying 10 kcal/mol lower than the metal-hydride
(Figure 11A). Protonation at S is less favored by 12 kcal/mol

and attempts to optimize structures with protonation on N4
and N6 resulted in migration of the hydrogen onto the
hydrazino nitrogen.
Next, the one-electron reduced protonated species, CuL1H

(S = 0) (Figure 11B), was examined to determine if reduction,
step 2, impacts the location of the proton. Computed free
energies for structures with protonation at Cu, S, and each N,
clearly indicate that protonation on the hydrazino N is still
favored. Protonation at S is disfavored by 11 kcal/mol, while
protonation at the pendant amine is less favored by 18 kcal/
mol. Attempts to optimize CuL1H with protonation at the
coordinated nitrogen again resulted in migration of hydrogen
onto the hydrazino nitrogen. We also considered CuL1H with
protonation on the hydrazino nitrogen in its triplet electronic
configuration (S = 1). However, it is 5.77 kcal/mol higher in
energy (Supporting Information), confirming the nature of the
first reduction as metal-based.
Step 3 of the proposed mechanism involves addition of a

second proton to CuL1H. Energy minimizations of the doubly
protonated, singly reduced intermediate, [CuL1H2]

+ in both the
singlet (S = 0) and triplet (S = 1) electronic states were
performed. For each spin state, the copper, the opposing
hydrazino nitrogen (N1), sulfur (S2), the pendant amine (N6),
and the coordinated nitrogen (N4) were all considered as the
second protonation site. In both electronic states, protonation
on the opposing hydrazino nitrogen (N1) is favored over all
other protonation sites by at least 8 kcal/mol. Comparison of
the singlet and triplet state the energies for protonation on N4
indicate the singlet is more stable by 6.09 kcal/mol (Figure 12).
The addition of the second electron, step 4, leads to

formation of the hydrogen evolving complex CuL1H2 through
proposed rearrangement, step 5. The geometry and frequencies
of CuL1H2 were optimized with one proton located on N3
while considering multiple sites for the second proton,

Figure 10. ORTEP82 representation of [Cu(L1H2)(ClO4)]ClO4.
Selected distances (Å): Cu1−N1 1.9579(18), Cu1−N4 1.9557(18),
Cu1−S1 2.2462(6), Cu1−S2 2.2593(6), Cu1−O1 2.5166(16), Cu1···
O7 2.9233(19), N2−H2n 0.78(3), N3−H3n 0.76(3), N4−N5
1.364(2), N5−H5n 0.78(2), N6−H6n 0.78(3). Selected angles
(deg): N1−Cu1−N4 78.80(7), N1−Cu1−S1 86.88(6), N4−Cu1−
S(2) 86.08(5), S1−Cu1−S2 108.02(2), N2−N1−Cu1 118.19(14),
N1−N2−H2n 121(2), N5−N4−Cu1 119.13(14), N4−N5−H5n
119.9(19).

Scheme 3. Proposed Mechanism of Hydrogen Evolution by
CuL1

Figure 11. (A) Energetic stability of protonated species, [CuL1H]+ (S
= 1/2). (B) Energetic stability of protonated/reduced species, CuL1H
(S = 0), B3LYP/6-311g(d,p).

Figure 12. Energetic stability of the protonated/reduced/protonated
species, [CuL1H2]

+, in the singlet (S = 0) and triplet (S = 1) electronic
states, B3LYP/6-311g(d,p).
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including the copper, the opposing hydrazino nitrogen (N1),
sulfur (S2), the pendant amine (N6), and the coordinated
nitrogen (N4). Energy minimizations indicate that placement
of the second proton on N1 or N4 nitrogen are most favored
by at least 17 kcal/mol, compared to all other sites (Figure
13A). Notably, energies for protonation at N1 and N4 differ by

only 0.39 kcal/mol, indicating that the tautomerization
associated with step 5 in the proposed mechanism is viable.
Further, examination of the spin-density (SD) shows that the
second reduction is primarily ligand-based, with 34% on N2,
38% on C4, 14% on N1, 8% on N5, and only 3% on Cu (Figure
13B).
Discussion. Thiosemicarbazone ligands and their metal

complexes are relatively new to the field of electrochemical
proton reduction but are emerging as an important class of
HER catalysts. The current work represents the fifth
thiosemicarbazone motif to be reported as an active HER
catalyst since the first report at the end of 2015.28,52,86 These
complexes present intriguing reactivity as the thiosemicarba-
zone ligand can participate in electron transfer events, either
with or without a transition metal, rendering it noninnocent.
Additionally, thiosemicarbazone ligands can be protonated
generating various tautomeric forms, rendering it not only
noninnocent, but also promiscuous. The combination of these
two factors appears to be strongly dependent on the identity of
the metal ion, resulting in the three distinct types of HER
reactivity: (a) ligand-assisted metal reactivity with Ni, (b)
ligand-centered reactivity with Zn, and (c) metal-assisted ligand
reactivity with Cu.
The impact of the metal is manifested in the initial

protonation and reduction sites. For both CuL1 and ZnL1, a
hydrazino N is protonated prior to the initial reduction. For
NiL2, it is reported that ligand-centered reduction must precede
protonation, which then occurs at a coordinated N.52 The
initial site of reduction can be rationalized based on the relative
energies of the metal d-orbitals and an unoccupied ligand
centered orbital, Scheme 4. The metal d-orbital energies
decrease from Ni2+ to Cu2+ to Zn2+ with increasing effective
nuclear charge. For Ni2+ there is a vacant ligand-centered
orbital that lies below the vacant metal dz2 orbital, yielding a
ligand-centered radical upon reduction. For Cu2+, the stabilized
d-orbital manifold falls below the ligand-centered orbital
resulting in metal-centered reduction. For Zn2+, the d-orbitals

are filled requiring ligand-centered reduction. Additionally, the
site of reduction and the localization of spin-density impact the
site of protonation. For Cu, the proton remains on the
hydrizino nitrogen after metal-centered reduction. In contrast,
for Ni the ligand-centered reduction favors double bond
rearrangement similar to step 5 in Scheme 3. As a result, the
tautomers with protonation of the hydrizino N and anionic
coordinated N have similar energies.52 For Zn, the tautomer
with the proton remaining on the hydrizino N remains favored
after ligand-centered reduction.
The mechanism for H2 evolution is a consequence of the

initial protonation and reduction sites. For Ni, Straistari et al.
posit that the second reduction is metal-based, generating a
nucleophilic d9 Ni(I) center. Further protonation is proposed
to occur at the metal generating a NiIII-hydride as the
catalytically active species for H2 evolution. In this context,
NiL2 demonstrates ligand-assisted metal reactivity, in which the
ligand serves as an auxiliary redox site to facilitate two-electron
chemistry at the metal. This is a common role for redox active
ligands in transition-metal catalysis. In contrast, the HER
chemistry of ZnL1 is strictly ligand-centered. Its HER
mechanism localizes all chemical and electrochemical steps
on the ligand, with the metal providing structural support. As in
the case of NiL2, initial protonation and reduction is ligand-
centered; however, the d10 Zn(II) is incapable of undergoing a
second reduction, and HER proceeds via a bimolecular
process.28

The HER chemistry of CuL1 displays a less common type of
mechanism with redox noninnocent ligands, which we defined
as metal-assisted ligand-centered reactivity. The initial metal-
centered reduction leads to a d10 Cu(I), which is isoelectronic
with ZnL1. As such, it can accommodate subsequent ligand-
based protonation and reduction events with evolution of H2

from the ligand-center. In this context, the metal serves as the
auxiliary redox site, which facilitates two-electron chemistry at
the ligand.

■ CONCLUSION

To the best of our knowledge, CuL1 is the first HER
electrocatalyst to demonstrate a metal-assisted ligand-centered
mechanism. The redox noninnocence and protonation
promiscuity of the thiosemicarbazone ligand framework
provides for a variety of HER mechanisms that are dependent
on the metal ion. The CuL1 system exhibits the highest
reported TOF of any ligand-centered homogeneous HER
catalysts to date. However, its high activity requires large
overpotential that limits its realistic application as a functional
HER catalyst. Nonetheless, the metal-assisted ligand reactivity

Figure 13. (A) Energetic stability of CuL1H2 (S = 1/2). (B) Spin-
density map of CuL1H2 with second protonation on N4, B3LYP/6-
311g(d,p).

Scheme 4. Qualitative Frontier Molecular Orbital Diagram
Highlighting Site of Reduction
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of CuL1 provides a new template for future HER electro-
catalysts that function without the participation of a metal-
hydride. The current study demonstrates that noninnocent
ligands can work in conjunction with a redox-active metal to
promote ligand-centered reactivity. This represents a new
approach to the development of electrocatalysts for HER and,
possibly, the activation of other small molecules.
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(74) Saveánt, J. M.; Su, K. B. Homogeneous Redox Catalysis of
Electrochemical Reaction 6. Zone Diagram Representation Of The
Kinetic Regimes. J. Electroanal. Chem. Interfacial Electrochem. 1984,
171, 341−349.

(75) Marinescu, S. C.; Winkler, J. R.; Gray, H. B. Molecular
Mechanisms of Cobalt-Catalyzed Hydrogen Evolution. Proc. Natl.
Acad. Sci. U. S. A. 2012, 109, 15127−15131.
(76) Venkatasubban, K. S.; Schowen, R. L. The proton inventory
technique. Crit. Rev. Biochem. 1984, 17, 1−44.
(77) Kaeffer, N.; Morozan, A.; Fize, J.; Martinez, E.; Guetaz, L.;
Artero, V. The Dark Side of Molecular Catalysis: Diimine−Dioxime
Cobalt Complexes Are Not the Actual Hydrogen Evolution Electro-
catalyst in Acidic Aqueous Solutions. ACS Catal. 2016, 6, 3727−3737.
(78) Lee, K. J.; McCarthy, B. D.; Rountree, E. S.; Dempsey, J. L.
Identification of an Electrode-Adsorbed Intermediate in the Catalytic
Hydrogen Evolution Mechanism of a Cobalt Dithiolene Complex.
Inorg. Chem. 2017, 56, 1988−1998.
(79) McCarthy, B. D.; Donley, C. L.; Dempsey, J. L. Electrode
initiated proton-coupled electron transfer to promote degradation of a
nickel(ii) coordination complex. Chem. Sci. 2015, 6, 2827−2834.
(80) Cowley, A. R.; Dilworth, J. R.; Donnelly, P. S.; Labisbal, E.;
Sousa, A. An Unusual Dimeric Structure of a Cu(I) Bis-
(thiosemicarbazone) Complex: Implications for the Mechanism of
Hypoxic Selectivity of the Cu(II) Derivatives. J. Am. Chem. Soc. 2002,
124, 5270−5271.
(81) Acta Crystallographica Section C Betts, H. M.; Barnard, P. J.;
Bayly, S. R.; Dilworth, J. R.; Gee, A. D.; Holland, J. P. Controlled Axial
Coordination: Solid-Phase Synthesis and Purification of Metallo-
Radiopharmaceuticals. Angew. Chem., Int. Ed. 2008, 47, 8416−8419.
(82) Farrugia, L. ORTEP-3 for Windows - a version of ORTEP-III
with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30,
565.
(83) Donnelly, P. S.; Paterson, B. M. Process for the preparation of
asymmetr ica l b is(thiosemicarbazones) . Google Patents
US20110305632A1, 2015.
(84) Gingras, B. A.; Suprunchuk, T.; Bayley, C. H. The preparation of
some thiosemicarbazones and their copper complexes: Part iii. Can. J.
Chem. 1962, 40, 1053−1059.
(85) Fusetto, R.; White, J. M.; Hutton, C. A.; O’Hair, R. A. J.
Structure of olefin-imidacloprid and gas-phase fragmentation chem-
istry of its protonated form. Org. Biomol. Chem. 2016, 14, 1715−1726.
(86) Jing, X.; Wu, P.; Liu, X.; Yang, L.; He, C.; Duan, C. Light-Driven
Hydrogen Evolution With A Nickel Thiosemicarbazone Redox
Catalyst Featuring Ni···H Interactions Under Basic Conditions. New
J. Chem. 2015, 39, 1051−1059.

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.7b01608
Inorg. Chem. 2017, 56, 11254−11265

11265

http://www.chemcraftprog.com
http://dx.doi.org/10.1021/acs.inorgchem.7b01608

