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Abstract: In recent years �frustrated Lewis pairs� (FLPs) have
been shown to be effective metal-free catalysts for the hydro-
genation of many unsaturated substrates. Even so, limited
functional-group tolerance restricts the range of solvents in
which FLP-mediated reactions can be performed, with all
FLP-mediated hydrogenations reported to date carried out in
non-donor hydrocarbon or chlorinated solvents. Herein we
report that the bulky Lewis acids B(C6Cl5)x(C6F5)3�x (x = 0–3)
are capable of heterolytic H2 activation in the strong-donor
solvent THF, in the absence of any additional Lewis base. This
allows metal-free catalytic hydrogenations to be performed in
donor solvent media under mild conditions; these systems are
particularly effective for the hydrogenation of weakly basic
substrates, including the first examples of metal-free catalytic
hydrogenation of furan heterocycles. The air-stability of the
most effective borane, B(C6Cl5)(C6F5)2, makes this a practically
simple reaction method.

Since the initial reports into their reactivity by Stephan
et al., frustrated Lewis pairs (FLPs) have attracted great
interest for their ability to act as metal-free polar hydro-
genation catalysts.[1] By rational modification of both the
Lewis acidic and Lewis basic components, FLPs have been
developed that are effective for the reduction of a wide range
of unsaturated substrates, both polar (e.g. imines, enol
ethers)[2] and non-polar (e.g. 1,1-diphenylethylene).[3]

In addition to H2, FLPs have been shown to readily react
with a wide variety of other functional groups including
ethers,[4] carbonyls,[5] and weakly acidic C�H[6] and N�H
bonds.[7] Though impressive, this diverse reactivity has gen-
erally rendered FLPs incompatible with many common
organic solvents. In particular, the ubiquity in FLP chemistry
of very strong, air-sensitive, Lewis acids, such as B(C6F5)3 (1 a)

and derivatives thereof, has significantly limited the use of
donor solvents, such as ethers, which tend to form strong
classical donor–acceptor adducts. For many FLPs this coor-
dination is followed by nucleophilic cleavage of the activated
C�O bond (Scheme 1). In particular, ring-opening of THF
was one of the first reported FLP-mediated transformations,
and as such is often viewed as an archetypal FLP reaction.[4c]

Consequently, only a few explicit reports exist of H2 activation
by FLPs in donor-solvent media, all of which were based on
stoichiometric phosphine or amine bases, and none of which
described any subsequent catalytic hydrogenation reactivity.[8]

Recent work has shown that near-stoichiometric mixtures
of 1a (Figure 1) and specific ethers (Et2O, crown ethers) are
capable of acting as hydrogenation catalysts in non-donor
solvents, such as CD2Cl2, neatly demonstrating that such
ethers are not fundamentally incompatible with FLP H2

activation chemistry.[9] Meanwhile, Paradies and co-workers
have reported use of the THF adduct of B(2,6-F2C6H3)3 as
a convenient source of the borane for certain P/B and N/B
FLP-catalyzed hydrogenations.[10] These results led us to
speculate that, with an appropriate Lewis acid, not only
should FLP-mediated hydrogenation be possible in stronger
donor ethereal solvents, but such solvents might remove the
need for an additional “frustrated” Lewis base, by performing
that role themselves.

The use of reaction media other than hydrocarbons and
chlorinated solvents is inherently appealing; the low polarity
of the hydrocarbons limits their effectiveness at solubilizing
many potential polar substrates (ePhMe = 2.38, c.f. eTHF = 7.52,
eDCM = 8.93),[11] while chlorinated solvents have become
increasingly unattractive as chemists become more concerned
about the �greenness� of their reactions.[12]

Previously, we have investigated the extremely hindered
boranes B(C6Cl5)x(C6F5)3�x (x = 1–3, Figure 1) and found that
although electrophilicity increases with the number of
perchlorophenyl groups, Lewis acidity decreases as a result
of increasing steric hindrance.[13] Significantly, and unlike 1a,
these boranes were also found to demonstrate appreciable

Scheme 1. Some examples of ether C�O cleavage by FLPs.[4b, c]
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stability to air and moisture. Herein we describe investiga-
tions into the behavior of this family of boranes in the donor-
solvent THF, and report the ability of such solutions to
effectively catalyze the hydrogenation of even weakly basic
substrates, using an operationally simple method that does
not require the addition of an auxiliary Lewis base.

Although 1a binds strongly to THF, we envisioned that
the strength of this interaction might be reduced by increasing
steric bulk. Rational modification of the Lewis acid has been
shown to lead to improved functional-group tolerance in
FLP-catalyzed hydrogenation reactions.[10, 14] Thus B(C6Cl5)-
(C6F5)2 (1b), though more electrophilic than 1a,[13] is found to
bind the solvent only weakly when dissolved in neat THF. The
reversibility of the binding is clear from variable-temperature
(VT) NMR analysis of THF solutions of 1b ; below 0 8C the
11B NMR shift remains constant at d = 3.8 ppm, consistent
with the four-coordinate 1b·THF adduct (c.f. d = 3.3 ppm for
1a·THF in CD2Cl2).[15] Upon warming, however, the reso-
nance signal moves progressively downfield, reaching d =

23.9 ppm at 60 8C, indicative of a shift in the equilibrium
towards free, uncoordinated 1b (c.f. d = 63.6 ppm for free 1b
in PhMe, see Supporting Information). A similar trend is
observed in the 19F NMR spectrum over the same temper-
ature range, with the para fluorine resonance signal shifting
from d =�158.0 ppm at 0 8C (Ddm,p = 7.1 ppm) to d =

�153.3 ppm (Ddm,p = 10.9 ppm) at 60 8C. The increased sep-
aration of the meta and para resonances is consistent with
a move away from four-coordinate and towards three-
coordinate boron (c.f. Ddm,p = 18.3 ppm for 1b in PhMe).[16]

Based on these results the 1b/THF system can be considered
to be on the borderline between a classical and a frustrated
Lewis pair.[17]

THF solutions of B(C6Cl5)2(C6F5) (1c), which is bulkier
still, show no sign of coordination at all at room temperature
(11B d = 63.5 ppm, c.f. d = 64.1 ppm in PhMe). Only upon
cooling to �40 8C do signals consistent with a THF adduct
become apparent in the 19F NMR (see Supporting Informa-
tion). We observed no evidence for adduct formation with
B(C6Cl5)3 (1d) in THF between �100 8C and 60 8C.

Admission of H2 (4 bar) to a THF solution of 1b at room
temperature leads to immediate appearance of a resonance
signal at d = 11.19 ppm in the 1H NMR spectrum. Upon
cooling to �25 8C a new doublet (singlet in the 1H-decoupled
spectrum) can also be resolved at d =�19.6 ppm in the
11B NMR spectrum (J = 90 Hz). The 11B NMR data is con-
sistent with previous reports of the borohydride anion
[1b·H]� ,[18] while the new 1H NMR resonance lies within
the range reported for protonated THF.[19] These results are
therefore consistent with reversible H2 activation by an FLP-
type mechanism, with THF acting as the Lewis base
(Scheme 2a).[20] Although no resonance signals attributable

to [1 b·H]� are apparent in the 1H NMR spectrum, this can be
attributed to line broadening as a result of the quadrupolar
10B/11B nuclei, in addition to broadening arising from dynamic
dihydrogen bonding, which may be expected in the Brønsted
acidic medium.[18, 21] The possibility that [1 b·H]� is formed
instead as a result of hydride abstraction from the solvent can
be discounted based on the observation of the 11B borohy-
dride resonance signal as a doublet in both proteo and
deutero THF, as well as the lack of any reaction in the absence
of H2 (Scheme 2b). Conclusive evidence is provided by using
D2 in place of H2, which replaces the 11B doublet at d =

�19.6 ppm with a singlet at the same shift, and a comparable
signal in the 2H spectrum diagnostic of [THF-D]+, or a solvate
thereof (Figure 2).

Further evidence for H2 activation is provided by THF
solutions of B(C6Cl5)3 (1d). After heating to 60 8C for 1h
under H2 (4 bar), new resonance signals can clearly be
observed at d = 11.34 ppm and d =�8.7 ppm (d, J =

91 Hz)[8c] in the room temperature 1H and 11B NMR spectra,
respectively.

Clearly H2 activation in this manner generates a substan-
tially acidic proton (the pKa of protonated THF has been
measured as �2.05 in aqueous H2SO4).[22] Strong Brønsted
acids can initiate polymerization of THF,[19b,c] as can strong

Scheme 2. a) Reversible H2 activation by B(C6Cl5)(C6F5)2 in THF and
b) potential hydride abstraction from THF, which is not observed.

Figure 2. 1H and 2H NMR spectra of 1b in [D8]THF under H2, and in
proteo THF under D2, respectively (inset: 11B and 11B {1H} spectra at
�25 8C).

Figure 1. Boranes 1a–1d, studied for hydrogenation efficacy in THF
solvent.
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Lewis acids, including 1a.[23] Nevertheless, during the course
of our studies no evidence for borane or proton-catalyzed
polymerization of THF was detected for solutions of 1a–d
under H2, even after prolonged heating.[24] Nor, during our
subsequent investigations into catalytic hydrogenation, was
any FLP-mediated ring-opening of the solvent observed, even
in the presence of relatively basic imines.

1a has been shown to catalyze the hydrogenation of bulky
imines in PhMe through a FLP mechanism.[25] However, since
the reaction relies on the substrate to act as the frustrated
Lewis base for initial H2 activation, it works relatively poorly
for less electron-rich, and hence less basic, imines. The bulky
electron-deficient N-tosyl imine 2a, for example, was
reported to require forcing conditions, in particular high H2

pressures, to achieve appreciable conversion (Table 1,
entries 1 and 2).

In contrast, the same imine was rapidly reduced in the
presence of 1b in [D8]THF under much milder conditions
(5 mol% 1b, 60 8C, 4 bar H2, 3 h), as was the related substrate
2b (Table 1, entries 3 and 4). Furthermore, the air-stability of
1b meant the initial reaction mixture could be conveniently
prepared under air using pre-dried solvent, without the need
for use of a glovebox (Table 1, entry 5). In addition to 2a and
2b the bulky N-aryl imines 2c and 2 d were also successfully

reduced (Table 1, entries 6 and 7), as was the less bulky N-aryl
imine 2e, although in this final case slightly higher catalyst
loadings were necessary to achieve complete conversion,
owing to reversible binding of 1b to the product 3e (Table 1,
entry 8).

Notably, when the hydrogenation experiments were
repeated in a non-basic solvent (C7D8) rather than in
[D8]THF, under otherwise identical conditions, the weakly
basic substrates 2 a and 2b showed no evidence of hydro-
genation (Table 1, entries 9 and 10). Conversely, the relatively
basic imines 2d and 2e both show appreciable conversions in
C7D8 (Table 1, entries 12 and 13). This divergent reactivity is
consistent with hydrogenation occurring by two distinct
mechanisms. In the first, H2 activation by 1b/THF is followed
by sequential proton and hydride transfer to generate the
product amine (Scheme 3, route a). In the second mechanism,

H2 is activated instead by a 1b/substrate FLP in the manner
described by Stephan et al., with subsequent transfer of
hydride to the protonated imine (Scheme 3, route b).[25b] The
reduction of 2d and 2e in non-donor solvent (C7D8) clearly
demonstrates the feasibility of the route b mechanism. By
contrast the lack of reactivity for the more weakly basic
substrates 2a and 2b in C7D8, suggests that their reduction in
THF occurs solely by solvent-mediated hydrogen activation.
The different reactivity is consistent with other observations
and can be understood intuitively: H2 activation using the
substrate as the frustrated Lewis base will become less
favorable as the substrate becomes less basic. However, the
high Brønsted acidity of protonated THF allows for levelling
even to relatively electron-poor substrates. Interestingly, 2c
also fails to undergo hydrogenation in C7D8, despite being of
similar basicity to 2e (Table 1, entry 11). In this case steric
shielding of the basic nitrogen atom presumably inhibits
direct H2 activation.

The hydrogenation mechanism (route a), where H2 acti-
vation is mediated by the Lewis acid and the solvent, is also

Table 1: FLP-mediated hydrogenation of imines.

Entry Substrate Solvent T [8C] [B] (mol%) t
[h]

Yield [%][a]

1[b,c] 2a C7H8 80 1a (10) 22 7
2[b,d] 2a C7H8 80 1a (10) 22 99
3 2a [D8]THF 60 1b (5) 3 >99 (98)[e]

4 2b [D8]THF 60 1b (5) 3 >99
5 2a THF 60 1b (5) 3 >99[f ]

6 2c [D8]THF 60 1b (5) 8 >99 (99)[e]

7 2d [D8]THF 80 1b (5) 18 71
8 2e [D8]THF 60 1b (15) 8 91
9 2a C7D8 60 1b (5) 3 0
10 2b C7D8 60 1b (5) 3 0
11 2c C7D8 60 1b (5) 8 0
12 2d C7D8 80 1b (5) 18 79
13 2e C7D8 60 1b (15) 8 26
14 2a Dioxane 60 1b (5) 41 96
15 2a [D8]THF 60 1c (5) 72 90
16 2a [D8]THF 80 1a (10) 72 84
17 2a [D8]THF 80 1d (5) 72 0

[a] Yields measured by in situ 1H NMR spectroscopy, using 1,3,5-
trimethoxybenzene in C6D6 in a capillary insert as an internal integration
standard. [b] Result reported by Klankermayer and Chen.[25a] [c] 10 bar H2.
[d] 30 bar H2. [e] Number in parentheses is yield isolated after increasing
to 1 mmol scale (see Supporting Information). [f ] Initial reaction mixture
prepared using pre-dried solvent under air (see Supporting Information).

Scheme 3. Proposed mechanisms for hydrogenation of imines by
activation of H2 using either a) THF solvent or b) substrate as
a frustrated Lewis base.
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feasible for other ethereal solvents. Solutions of 1b in 1,4-
dioxane catalyze the hydrogenation of 2d under identical
conditions to solutions in [D8]THF, albeit more slowly
(Table 1, entry 14). The lower rate is consistent with the
lower basicity of 1,4-dioxane (pKaH =�2.92 in aqueous
H2SO4),[22, 26] but may also partially be attributed to its
reduced polarity relative to THF (edioxane = 2.22, eTHF =

7.52),[11] which will make cleavage of H2 into ionic H+/H�

adducts less favorable (Scheme 3, route a). Some variation of
the borane is also tolerated: use of 1c leads to a reduction in
reaction rate, but otherwise only a minor change in outcome
(Table 1, entry 15). In fact, even 1 a is observed to effectively
catalyze hydrogenation at slightly higher temperatures
(Table 1, entry 16); clearly under these conditions, coordina-
tion of THF is sufficiently reversible to allow some H2

activation to occur. No reaction is observed with 1 d,
suggesting [1d·H]� to be a much poorer hydride donor.
Given that 11B NMR spectroscopic analysis suggests the
equilibrium between 1 d and [1d·H]� under H2 favors 1d,
this lack of reactivity is most likely due to kinetic (steric)
rather than thermodynamic factors (Table 1, entry 17).

Given the success of 1b as a hydrogenation catalyst for
electron-poor imines we were interested in its ability to effect
hydrogenation of other weakly basic substrates. To date the
only reported example of FLP-mediated hydrogenation of
a weakly basic aromatic heterocycle describes the reduction
of indoles under very high pressures of H2.

[2] Nevertheless,
admission of just 5 bar H2 to a mixture of 1b and N-methyl
pyrrole (4a) or 2,5-dimethylpyrrole (4b) in THF led to
formation of the reduced species [5·H]+[1b·H]� (Scheme 4).
No catalytic turnover was observed due to the relatively low
acidity of the pyrrolidinium borohydride products (although

it should be noted that the reduction of the pyrroles 4 to the
corresponding pyrrolidines, 5, does require the use of two
equivalents of H2). Similar limitations have been reported for
the FLP-mediated hydrogenation of anilines to much more
basic cyclohexylamines.[27]

It was anticipated that the use of furans instead of pyrroles
might lead to superior results; the substituted tetrahydrofuran
products ought to be no more basic than the solvent, and so
should not prevent catalytic turnover. Indeed, although
attempts to hydrogenate furan itself were unsuccessful,
several more electron-rich methyl-substituted furans, 6, did
undergo catalytic hydrogenation (Scheme 4), despite the fact
that such compounds are extremely weak bases.[28] This
represents the first reported example of FLP-catalyzed
hydrogenation of aromatic O-heterocyclic rings, and nicely
demonstrates the value of the borane/solvent systems de-
scribed. In addition to these novel results, attempts to reduce
compounds from a variety of previously-studied substrate
classes were also successful, under similar conditions (Sche-
me 4).[1b,c]

In conclusion, we have shown that THF solutions of
boranes 1 are capable of effecting H2 activation in the absence
of any additional Lewis base. Solutions of 1b in particular are
effective catalysts for the metal-free hydrogenation of a vari-
ety of substrates by a solvent-assisted mechanism. Compound
1b shows appreciable stability in air, which further increases
the practicality of this system relative to the 1a-derived
alternatives.
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