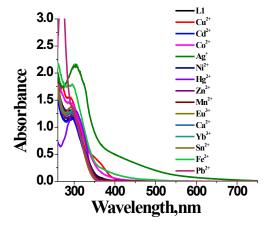
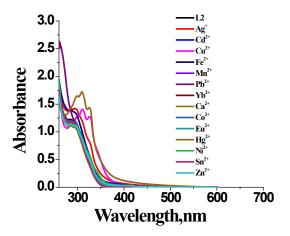
## **Supporting Information**

# Metal Ion Detection by Naphthylthiourea Derivatives through 'Turn-On' Excimer Emission

Chanchal Agarwal, Edamana Prasad\*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India Fax: (+) 91-2257-4202, , *Tel.:* +91-44-2257-4232


E-mail: pre@iitm.ac.in


### Contents

## Page Number

| 1.       | UV-Visible absorption spectra of L1, L2 and L3 in presence of metal ions (Figure S1-S3)                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.       | UV-visible absorption spectra of L1 (75 $\mu$ M) upon addition of Hg <sup>2+</sup> in DMSO (Figure S4)04                                                                                                                                                          |
| 3.       | Excited state decay from L1 and L1 upon treating with Hg <sup>2+</sup> ion in DMSO (Figure S5 & S6)                                                                                                                                                               |
| 4.       | Job's plot between Hg <sup>2+</sup> and L1, L2 and L3 in DMSO (Figure S7-S9)04-05                                                                                                                                                                                 |
| 5.<br>6. | Detection limit and EDAX spectrum of L1 upon treating with $Hg^{2+}$ (Figure S10-S11)05<br>UV-Visible absorption spectra of L2 and L3 in presence of $Hg^{2+}$ (Figure S12 &                                                                                      |
| 7.       | S13)                                                                                                                                                                                                                                                              |
| 8.       | Excited state decay from L2 and L3 upon treating with Hg <sup>2+</sup> ion in DMSO (Figure S16-S19)07                                                                                                                                                             |
| 10.      | Detection limit of L2 and L3 upon treating with $Hg^{2+}$ (Figure S20-S21)08<br>Photophysical study of L1 in presence of $Cu^{2+}$ in DMSO (Figure S22-S24)09<br>UV-visible absorption spectra of L2 and L3 upon addition of $Cu^{2+}$ in DMSO (Figure S25 & S26) |
|          | Steady state fluorescence spectra of L2 and L3 upon addition of Cu <sup>2+</sup> in DMSO (Figure S27 & S28)                                                                                                                                                       |
| 13.      | <sup>1</sup> H NMR experiment of L3 in DMSO- $d_6$ in the presence of Cu <sup>2+</sup> acetate (Figure S29)                                                                                                                                                       |
| 15.      | Job's plot between $Cu^{2+}$ and L2 and L3 in DMSO (Figure S30 and S31)11<br>Binding constant and detection limit of L2 and L3 in presence of $Cu^{2+}$ in DMSO (Figure S32-S35)                                                                                  |
|          | Excited state decay from L2 in presence of $Cu^{2+}$ in DMSO (Figure S36)14<br>EDTA effect on L2- $Cu^{2+}$ and L3- $Cu^{2+}$ system in DMSO (Figure S37 & S38)14                                                                                                 |

| <b>18.</b> UV-Visible of L2 and L3 in the presence of $Co^{2+}$ and $Ag^{+}$ respectively in DMSO (Figure               |
|-------------------------------------------------------------------------------------------------------------------------|
| S39-S40)14                                                                                                              |
| <b>19.</b> Steady state fluorescence spectra and Job's plot in DMSO (Figure S41-S44)15                                  |
| <b>20.</b> Excited state decay from L2 and L3 in presence of $Co^{2+}$ and $Ag^{+}$ , respectively in DMSO              |
| (Figure S45-S46)16                                                                                                      |
| <b>21.</b> Binding constant of L2 in presence of Co <sup>2+</sup> in DMSO (Figure S47)16                                |
| <b>22.</b> Detection limit of L2 and L3 in presence of $Co^{2+}$ and $Ag^{+}$ ion (Figure S48-S49)16                    |
| 23. <sup>1</sup> H NMR experiment of L2 and L3 in DMSO- $d_6$ in the presence of Ag <sup>+</sup> and Co <sup>2+</sup> , |
| respectively (Figure S50 and S51)17                                                                                     |
| 24. EDTA effect on L2-Co <sup>2+</sup> and L3-Ag <sup>+</sup> system in DMSO, respectively (Figure S52 &                |
| S53)                                                                                                                    |
| <b>25.</b> Interference study (Figure S54-S59)                                                                          |
| <b>26.</b> UV-Visible absorption spectra of L1 in presence of metal ions in aqueous medium                              |
| (Figure S60)20                                                                                                          |
| <b>27.</b> Excited state decay from L1 and L1 in presence of $Hg^{2+}$ in aqueous medium (Figure S61                    |
| & S62)                                                                                                                  |
| <b>28.</b> Steady state fluorescence spectra of L1 in presence of $Hg^{2+}$ in aqueous medium (Figure                   |
| S63)                                                                                                                    |
| <b>29.</b> Job's plot and detection limit study of L1 in presence of $Hg^{2+}$ in aqueous medium (Figure                |
| S64 & S65)                                                                                                              |
| <b>30.</b> Comparison experiment for the detection of $Hg^{2+}$ ion at room temperature and at low                      |
| temperature (Figure S66)                                                                                                |
|                                                                                                                         |





**Figure S1:** UV-visible absorption spectra of L1 (75µM) upon addition of metal salts (3 equivalents) in DMSO.

**Figure S2:** UV-visible absorption spectra of L2 (75µM) upon addition of metal salts (1 equivalent) in DMSO.

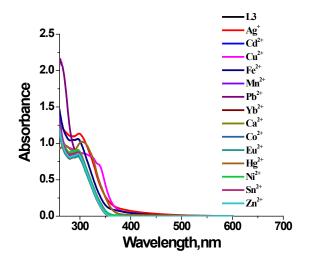
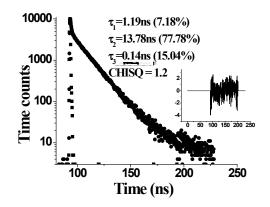
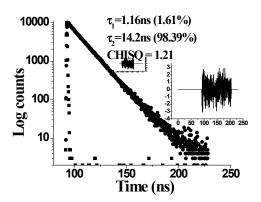
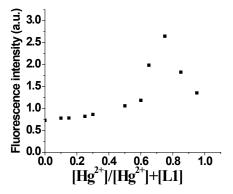
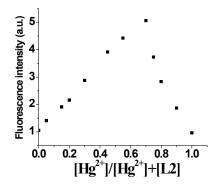



Figure S3: UV-visible absorption spectra of L3 (75µM) upon addition of metal salts (1 equivalent) in DMSO.



Figure S4: UV-visible absorption spectra of L1 (75  $\mu$ M) upon addition of Hg<sup>2+</sup> (0-3 equivalents) in DMSO.



Figure S5: Excited state decay from L1 (75 $\mu$ M) in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.



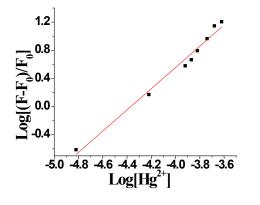
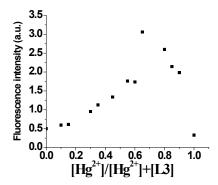
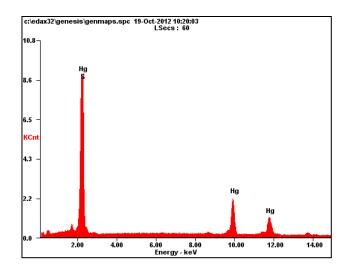
**Figure S6**: Excited state decay from L1 upon treating with  $Hg^{2+}$  in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.

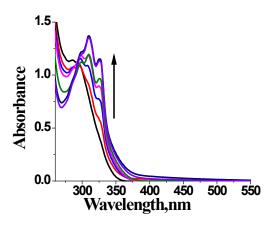


**Figure S7**: Fluorescence intensity has plotted with respect to mole fraction of  $[Hg^{2+}]$ . Changes in fluorescence intensity band at 426 nm of L1 and  $Hg^{2+}$  system with a total concentration of 75µM in DMSO, indicating a 3:1 stoichiometric ratio of  $Hg^{2+}$ :L1 ( $\lambda_{ex}$  was 345 nm and  $\lambda_{em}$  was 426 nm.



**Figure S8:** Fluorescence intensity has plotted with respect to mole fraction of  $[Hg^{2+}]$ . Changes in fluorescence intensity band at 426 nm of L2 and  $Hg^{2+}$  system with a total concentration of 75µM in DMSO, indicating a 2:1 stoichiometric ratio of  $Hg^{2+}$ :L2 ( $\lambda_{ex}$  was 345 nm and  $\lambda_{em}$  was 426 nm.



Figure S10: Plot of intensity of L1 (75 $\mu$ M) with respect to [Hg<sup>2+</sup>] (15-240  $\mu$ M).  $\lambda_{ex}$  was 345 nm.



**Figure S9:** Fluorescence intensity has plotted with respect to mole fraction of  $[Hg^{2+}]$ . Changes in fluorescence intensity band at 426 nm of L3 and  $Hg^{2+}$  system with a total concentration of 75µM in DMSO, indicating a 2:1 stoichiometric ratio of  $Hg^{2+}$ :L3 ( $\lambda_{ex}$  was 345 nm and  $\lambda_{em}$  was 426 nm.



**Figure S11:** HgS formation upon addition of Hg<sup>2+</sup> into L1 in DMSO was confirmed by EDAX



**Figure S12:** UV-visible absorption spectra of L2  $(75\mu M)$  upon addition of Hg<sup>2+</sup> (0-2 equivalents) in DMSO.

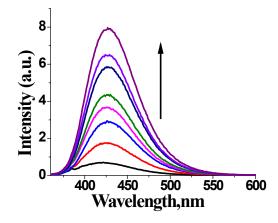
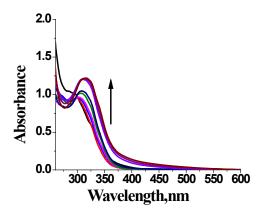




Figure S14: Steady state fluorescence spectra of L2 (75 $\mu$ M) upon addition of Hg<sup>2+</sup> (2 equivalents) in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S13:** UV-visible absorption spectra of L3  $(75\mu M)$  upon addition of Hg<sup>2+</sup> (0-2 equivalents) in DMSO.

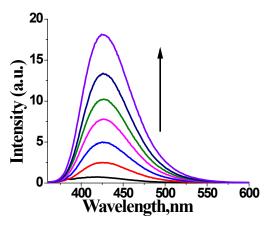



Figure S15: Steady state fluorescence spectra of L3 (75 $\mu$ M) upon addition of Hg<sup>2+</sup> (3 equivalents) in DMSO.  $\lambda_{ex}$  was 345 nm.

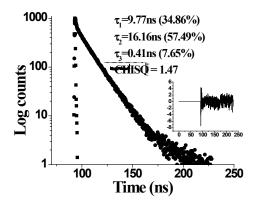
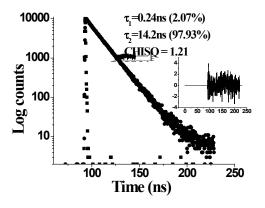




Figure S16: Excited state decay from L2 (75 $\mu$ M) in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.



**Figure S17**: Excited state decay from L2 upon treating with  $Hg^{2+}$  in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.

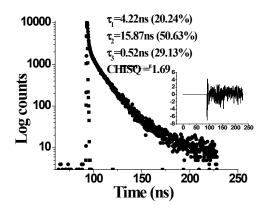



Figure S18: Excited state decay from L3 (75 $\mu$ M) in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.



**Figure S19**: Excited state decay from L3 upon treating with  $Hg^{2+}$  in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.

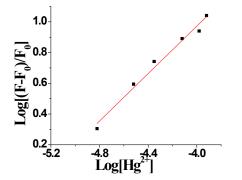
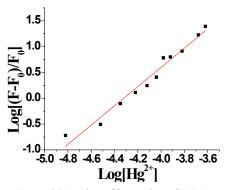
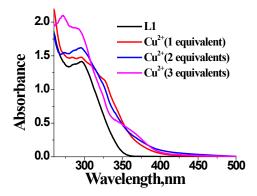
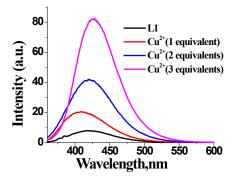
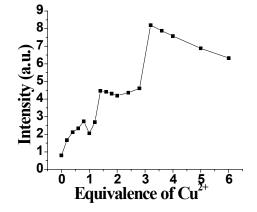
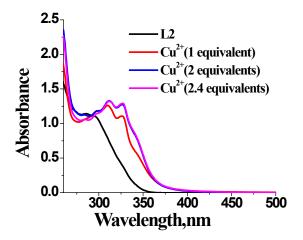



Figure S20: Plot of intensity of L2 (75 $\mu$ M) with respect to [Hg<sup>2+</sup>] (15-120  $\mu$ M).  $\lambda_{ex}$  was 345 nm.

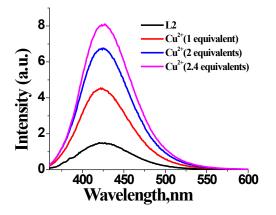






Figure S21: Plot of intensity of L3 (75 $\mu$ M) with respect to [Hg<sup>2+</sup>] (15-240  $\mu$ M) in DMSO.  $\lambda_{ex}$  was 345 nm.

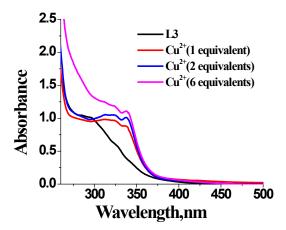



**Figure S22:** UV-visible absorption spectra of L1 (75 $\mu$ M) upon addition of Cu<sup>2+</sup> (0-3 equivalents) in DMSO.

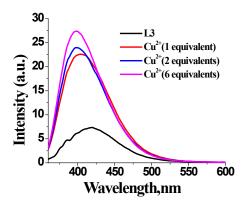



**Figure S23:** Steady state fluorescence spectra of L1 (75 $\mu$ M) upon addition of Cu<sup>2+</sup> (0-3 equivalents) in DMSO.  $\lambda_{ex}$  was 345 nm.

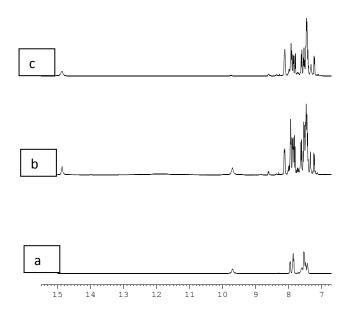



**Figure S24:** Plot of emission titration profile of L1 (75 $\mu$ M) as a function of gradual addition of 0-6 equivalents (0-450  $\mu$ M) of Cu<sup>2+</sup> in DMSO showing the non linear increment in the fluorescence intensity.  $\lambda_{ex}$ =345nm.




**Figure S25:** UV-visible absorption spectra of L2 (75 $\mu$ M) upon addition of Cu<sup>2+</sup> (0- 2.4 equivalents) in DMSO.

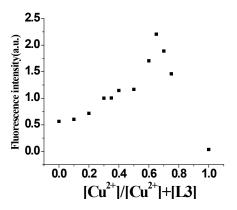



**Figure S27:** Steady state fluorescence spectra of L2 (75 $\mu$ M) upon addition of Cu<sup>2+</sup> (0- 2.4 equivalents) in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S26:** UV-visible absorption spectra of L3 (75 $\mu$ M) upon addition of Cu<sup>2+</sup> (0-6 equivalents) in DMSO.




**Figure S28:** Steady state fluorescence spectra of L3 (75 $\mu$ M) upon addition of Cu<sup>2+</sup> (0- 6 equivalents) in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S29:** <sup>1</sup>H NMR experiment of L3 in DMSO- $d_6$  in the absence of Cu<sup>2+</sup> acetate (spectrum a) and after the addition of 1 equivalents (spectrum b), 2.0 equivalents (spectrum c).



**Figure S30:** Job's plot between Cu<sup>2+</sup> and L2 in DMSO. It confirms 1:1 binding mode.



**Figure S31:** Job's plot between  $Cu^{2+}$  and L3 in DMSO. It confirms 2:1 binding mode.

### Binding constant determination by Modified Tsien equation:

The stoichiometry between  $Cu^{2+}$  ions and L3 is 2:1 which has been calculated by using Job's method. Equation 1 shows complex formation between  $Cu^{2+}$  ions (B) and L1 (A). The ratio between  $Cu^{2+}$  ions and L1 is m:n.

$$mB + nA \xrightarrow{K} AnBm$$
 [1]

where K is the equilibrium constant of the reaction. According to the modified Stern-Volmer equation, the relationship between the change in the fluorescence intensities, the concentration of  $\text{Cu}^{2+}$  [B] and the total concentration of L1 [A] can be expressed as follows:

$$\frac{F_0 - F}{F} = K[A]^{n-1}B^m$$
(2)

suppose the change in the fluorescence intensities  $(\Delta F) = F_0 + F$ , the equation 2 will be

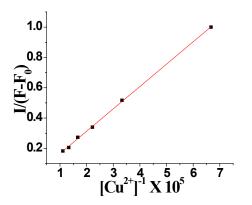
$$\log\left(\Delta F/F\right) = \log k + (n-1)\log[A] + m\log[B],\tag{3}$$

Where  $F_0$  and F represent the fluorescence intensities of L1 in the absence and in the presence of Cu<sup>2+</sup>, respectively. The relative fluorescence intensity,  $\alpha$ , can be experimentally determined by measuring the fluorescence intensity,

$$\alpha = \frac{F - F_1}{F_0 - F_1} \tag{4}$$

Here, *F* is the fluorescence intensity of L1 in presence of different equivalent of  $Cu^{2+}$ .  $F_1$  is the maximum fluorescence intensity of L1- $Cu^{2+}$  system.  $F_0$  is the fluorescence intensity of L1 and the relationship between  $\alpha$  and  $Cu^{2+}$  concentrations can be shown by modified Tsien equation

$$[M^{n+}]^m = \frac{1}{n \cdot K} \cdot \frac{1}{[L]_T^{n-1}} \cdot \frac{1-\alpha}{\alpha^n}$$
(5)


*n* is the charge on the metal ion. *m* is the number of metal ion bound to the ligand. [L] is the concentration of the ligand. The response of L1 with different concentrations of  $Cu^{2+}$  has been fitted by using equation 5.

### The binding constant K determination by the Benesi-Hildebrand equation

The binding constant K for L2-  $Cu^{2+}$  system was determined by the Benesi-Hildebrand equation. Based on the assumption that the fluorescence change is only induced by the formation of a 1:1 complex between L2 and metal ion (M), the equilibrium can be expressed by the following equations:

$$1/(F - F_0) = 1/\{K (F_{max} - F_0)[Cu^{2+}]\} + 1/(F_{max} - F_0)$$
(6)

where  $F_0$  is the fluorescence intensity of L2 in absence of Cu<sup>2+</sup>, *F* is the fluorescence intensity of L2 at any given Cu<sup>2+</sup> concentration and  $F_{\text{max}}$  is the maximum fluorescence intensity of L2 in presence of Cu<sup>2+</sup> in solution. The association constant *K* was evaluated graphically by plotting  $1/(F - F_0)$  against $1/[Cu^{2+}]$ . Binding constant was obtained from the slope and intercept.



**Figure S32:** Benesi-Hildebrand plot of L2 with  $Cu^{2+}$  ions assuming 1:1 binding stoichiometry in DMSO.

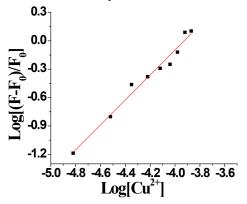
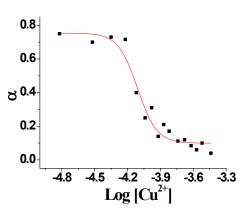




Figure S34: Plot of intensity of L2 (75 $\mu$ M) with respect to [Cu<sup>2+</sup>] (15-135  $\mu$ M).  $\lambda_{ex}$  was 345 nm.



**Figure S33:** Response parameter values ( $\alpha$ ) vs log [Cu<sup>2+</sup>] for L3 in DMSO.

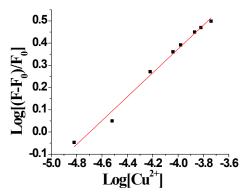
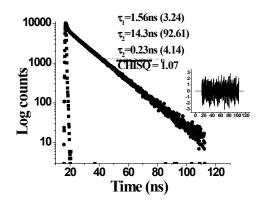
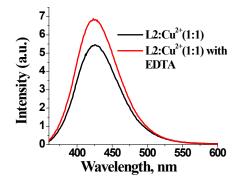





Figure S35: Plot of intensity of L3 (75 $\mu$ M) with respect to [Cu<sup>2+</sup>] (15-180  $\mu$ M) in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S36**: Excited state decay from L2 (75 $\mu$ M) in presence of Cu<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.



**Figure S37:** EDTA (5 equivalents) effect on L2- $Cu^{2+}$  system in DMSO.

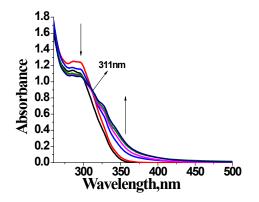
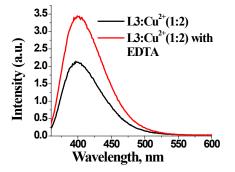
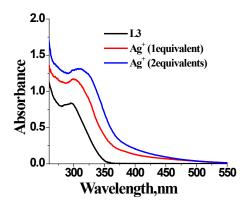
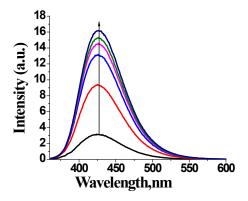
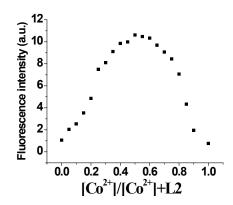
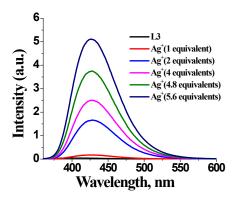



Figure S39: UV-visible absorption spectra of L2  $(75\mu M)$  upon addition of Co<sup>2+</sup> (1 equivalent) in DMSO.

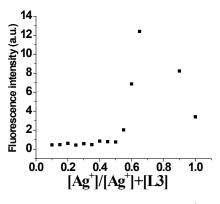






Figure S38: EDTA (5 equivalents) effect on L3- $Cu^{2+}$  system in DMSO.

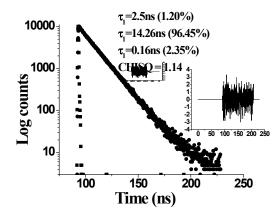



**Figure S40:** UV-visible absorption spectra of L3 (75 $\mu$ M) upon addition of Ag<sup>+</sup> (2 equivalents) in DMSO.

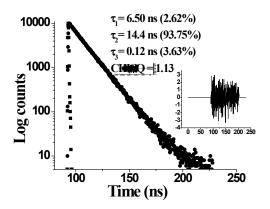



**Figure S41:** Steady state fluorescence spectra of L2 (75 $\mu$ M) upon addition of Co<sup>2+</sup> (1 equivalent) in DMSO.  $\lambda_{ex}$  was 345 nm.  $\lambda_{em}$  was 429 nm.




**Figure S43:** Job's plot between Co<sup>2+</sup> and L2 in DMSO. It confirms 1:1 binding mode.




**Figure S42:** Steady state fluorescence spectra of L3 (75 $\mu$ M) upon addition of Ag<sup>+</sup> (0-5.6 equivalents) in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S44:** Job's plot between Ag<sup>+</sup> and L3 in DMSO. It confirms 2:1 binding mode.



**Figure S45**: Excited state decay from L2 (75 $\mu$ M) in presence of Co<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.



**Figure S46**: Excited state decay from L3 (75 $\mu$ M) in presence of Ag<sup>+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.

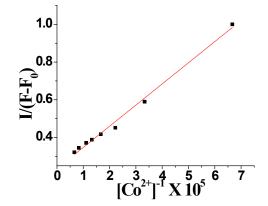



Figure S47: Benesi-Hildebrand plot of L2 with Co<sup>2+</sup> assuming 1:1 binding stoichiometry in DMSO.

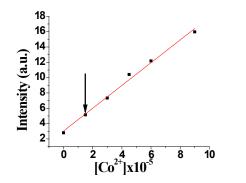
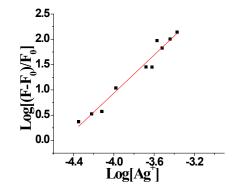
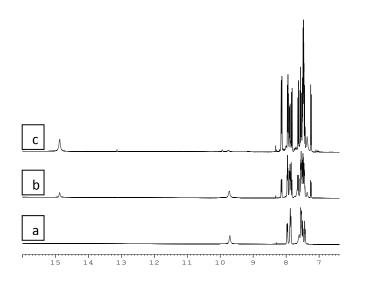
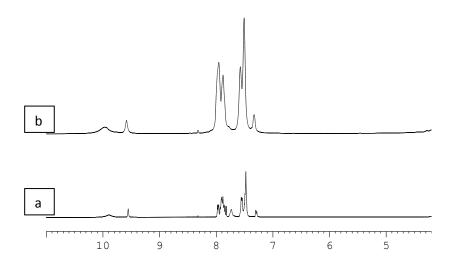
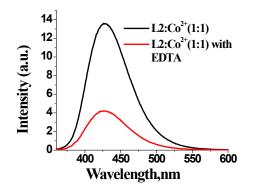



Figure S48: Plot of intensity of L2 (75 $\mu$ M) with respect to [Co<sup>2+</sup>] (30-180  $\mu$ M).  $\lambda_{ex}$  was 345 nm.



Figure S49: Plot of intensity of L3 (75 $\mu$ M) with respect to [Ag<sup>+</sup>] (45-420  $\mu$ M) in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S50:** <sup>1</sup>H NMR experiment of L3 in DMSO- $d_6$  in the absence of Ag<sup>+</sup> acetate (spectrum a) and after the addition of 1.0 equivalent (spectrum b) and 2.0 equivalents of silver (spectrum c).



**Figure S51:** <sup>1</sup>H NMR experiment of L2 in DMSO- $d_6$  in the absence of Co<sup>2+</sup> acetate (spectrum a) and after the addition of 1.0 equivalent (spectrum b).



**Figure S52:** EDTA (5 equivalents) effect on metal ligand complex in DMSO.

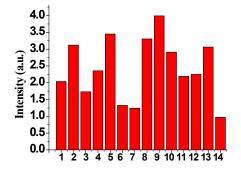
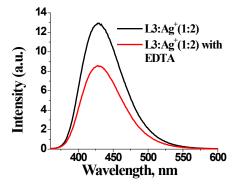




Figure S54: The fluorescence response from L1-Hg<sup>2+</sup> (75μM) upon addition of 3 equiv. cation of interest: 1, L1-Hg<sup>2+</sup>; 2, Hg<sup>2+</sup>-Yb<sup>3+</sup>; 3, Hg<sup>2+</sup>-Cu<sup>2+</sup>; 4, Hg<sup>2+</sup>-Sn<sup>2+</sup>; 5, Hg<sup>2+</sup>-Mn<sup>2+</sup>; 6, Hg<sup>2+</sup>-Cd<sup>2+</sup>; 7, Hg<sup>2+</sup>-Ag<sup>+</sup>; 8, Hg<sup>2+</sup>-Eu<sup>3+</sup>; 9, Hg<sup>2+</sup>-Co<sup>2+</sup>; 10, Hg<sup>2+</sup>-Ni<sup>2+</sup>; 11, Hg<sup>2+</sup>-Ca<sup>2+</sup>; 12, Hg<sup>2+</sup>-Fe<sup>2+</sup>; 13, Hg<sup>2+</sup>-Zn<sup>2+</sup>; 14, Hg<sup>2+</sup>-Pb<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm.



**Figure S53:** EDTA (5 equivalents) effect on metal ligand complex in DMSO.

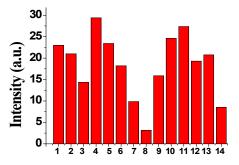
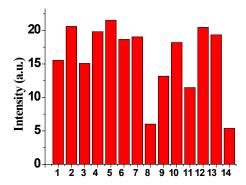
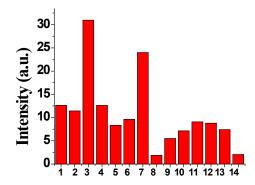
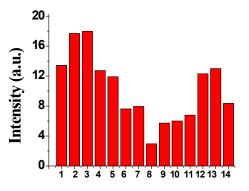
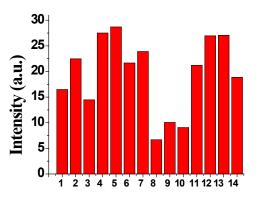
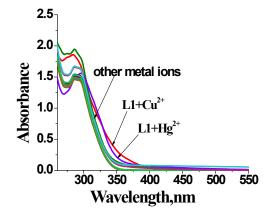



Figure S55: The fluorescence response from L2-Hg<sup>2+</sup> (75μM) upon addition of 8 equiv. cation of interest: 1, L2-Hg<sup>2+</sup>; 2,Hg<sup>2+</sup>-Ni<sup>2+</sup>; 3, Hg<sup>2+</sup>-Ag<sup>+</sup>; 4, Hg<sup>2+</sup>-Co<sup>2+</sup>; 5, Hg<sup>2+</sup>-Yb<sup>2+</sup>; 6, Hg<sup>2+</sup>-Ca<sup>2+</sup>; 7, Hg<sup>2+</sup>-Cu<sup>2+</sup>; 8, Hg<sup>2+</sup>-Pb<sup>2+</sup>; 9, Cu<sup>2+</sup>-Sn<sup>2+</sup>; 10, Cu<sup>2+</sup>-Cd<sup>2+</sup>; 11, Cu<sup>2+</sup>-Mn<sup>2+</sup>;12, Cu<sup>2+</sup>-Zn<sup>2+</sup>; 13,Cu<sup>2+</sup>-Eu<sup>3+</sup>;14, Cu<sup>2+</sup>-Fe<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm.

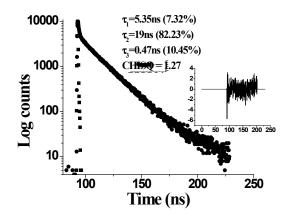






Figure S56: The fluorescence response from L2-Cu<sup>2+</sup> (75μM) upon addition of 8 equiv. cation of interest: 1, L2-Cu<sup>2+</sup>; 2, Cu<sup>2+</sup>-Ni<sup>2+</sup>; 3, Cu<sup>2+</sup>-Ag<sup>+</sup>; 4, Cu<sup>2+</sup>-Co<sup>2+</sup>; 5, Cu<sup>2+</sup>-Yb<sup>2+</sup>; 6, Cu<sup>2+</sup>-Ca<sup>2+</sup>; 7, Cu<sup>2+</sup>-Hg<sup>2+</sup>; 8, Cu<sup>2+</sup>-Pb<sup>2+</sup>; 9, Hg<sup>2+</sup>-Sn<sup>2+</sup>; 10, Hg<sup>2+</sup>-Cd<sup>2+</sup>; 11, Hg<sup>2+</sup>-Mn<sup>2+</sup>; 12, Hg<sup>2+</sup>-Zn<sup>2+</sup>; 13, Hg<sup>2+</sup>-Eu<sup>3+</sup>; 14, Hg<sup>2+</sup>-Fe<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm.

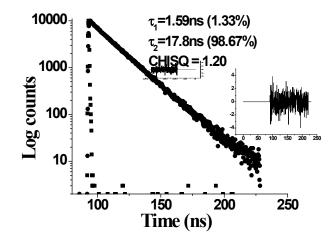



**Figure S59:** The fluorescence response from L2-Co<sup>2+</sup> (75μM) upon addition of 8 equiv. cation of interest: 1, L2-Co<sup>2+</sup>; 2, Co<sup>2+</sup>-Ni<sup>2+</sup>; 3, Co<sup>2+</sup>-Ag<sup>+</sup>; 4, Co<sup>2+</sup>-Cu<sup>2+</sup>; 5, Co<sup>2+</sup>-Yb<sup>2+</sup>; 6, Co<sup>2+</sup>-Ca<sup>2+</sup>; 7, Co<sup>2+</sup>-Hg<sup>2+</sup>; 8, Co<sup>2+</sup>-Pb<sup>3+</sup>; 9, Co<sup>2+</sup>-Sn<sup>2+</sup>; 10, Co<sup>2+</sup>-Cd<sup>2+</sup>; 11, Co<sup>2+</sup>-Mn<sup>2+</sup>; 12, Co<sup>2+</sup>-Zn<sup>2+</sup>; 13, Co<sup>2+</sup>-Eu<sup>3+</sup>; 14, Co<sup>2+</sup>-Fe<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm.

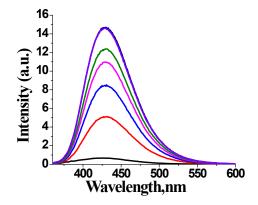


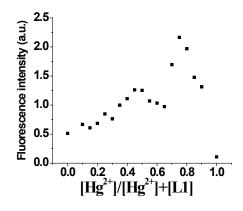

**Figure S57:** The fluorescence response from L3-Cu<sup>2+</sup> (75μM) upon addition of 2 equiv. cation of interest: 1, L1-Cu<sup>2+</sup>; 2,Cu<sup>2+</sup>-Ni<sup>2+</sup>; 3, Cu<sup>2+</sup>-Ag<sup>+</sup>; 4, Cu<sup>2+</sup>-Co<sup>2+</sup>; 5, Cu<sup>2+</sup>-Yb<sup>2+</sup>; 6, Cu<sup>2+</sup>-Ca<sup>2+</sup>; 7, Cu<sup>2+</sup>-Hg<sup>2+</sup>;8, Cu<sup>2+</sup>-Pb<sup>2+</sup>; 9, Cu<sup>2+</sup>-Sn<sup>2+</sup>; 10, Cu<sup>2+</sup>-Cd<sup>2+</sup>; 11, Cu<sup>2+</sup>-Mn<sup>2+</sup>;12, Cu<sup>2+</sup>-Zn<sup>2+</sup>; 13,Cu<sup>2+</sup>-Eu<sup>3+</sup>;14, Cu<sup>2+</sup>-Fe<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm.




**Figure S58:** The fluorescence response from L3-Ag<sup>+</sup> (75μM) upon addition of 2 equiv. cation of interest: 1, L1-Ag<sup>+</sup>; 2, Ag<sup>+</sup>-Ni<sup>2+</sup>; 3, Ag<sup>+</sup>-Cu<sup>2+</sup>; 4, Ag<sup>+</sup>-Co<sup>2+</sup>; 5, Ag<sup>+</sup>-Yb<sup>2+</sup>; 6, Ag<sup>+</sup>-Ca<sup>2+</sup>; 7, Ag<sup>+</sup>-Hg<sup>2+</sup>; 8, Ag<sup>+</sup>-Pb<sup>2+</sup>; 9, Ag<sup>+</sup>-Sn<sup>2+</sup>; 10, Ag<sup>+</sup>-Cd<sup>2+</sup>; 11, Ag<sup>+</sup>-Mn<sup>2+</sup>; 12, Ag<sup>+</sup>-Zn<sup>2+</sup>; 13, Ag<sup>+</sup>-Eu<sup>3+</sup>; 14, Ag<sup>+</sup>-Fe<sup>2+</sup> in DMSO.  $\lambda_{ex}$  was 345 nm.




**Figure S60:** UV-visible absorption spectra of L1 (75 $\mu$ M) upon addition of Ag<sup>+</sup>, Ca<sup>2+</sup>, Cd<sup>2+</sup>, Co<sup>2+</sup>, Fe<sup>2+</sup>, Hg<sup>2+</sup>, Mn<sup>2+</sup>, Ni<sup>2+</sup>, Pb<sup>2+</sup>, Cu<sup>2+</sup>, Sn<sup>2+</sup>, Zn<sup>2+</sup>, Yb<sup>3+</sup> and Eu<sup>3+</sup> (1 equivalent) in aqueous medium (10mM HEPES, 60% DMSO. pH=7.2).




**Figure S61**: Excited state decay from L1 (75 $\mu$ M) in aqueous medium (10mM HEPES, 60% DMSO, pH=7.2).  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.



**Figure S62**: Excited state decay from L1 upon treating with  $Hg^{2+}$  in aqueous medium (10mM HEPES, 60% DMSO, pH=7.2).  $\lambda_{ex}$  was 345 nm and emission was collected at 426 nm.





**Figure S63:** Steady state fluorescence spectra of L1 (75 $\mu$ M) upon addition of Hg<sup>2+</sup> (0-8 equivalents) in aqueous medium (10mM HEPES, 60% DMSO, pH=7.2).  $\lambda_{ex}$  was 345 nm.

**Figure S64:** Job's plot between  $Hg^{2+}$  and L1 in aqueous medium (10mM HEPES, 60% DMSO, pH=7.2). It confirms 3:1 binding mode.

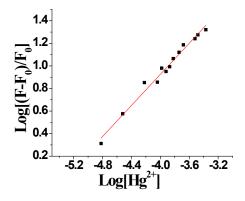
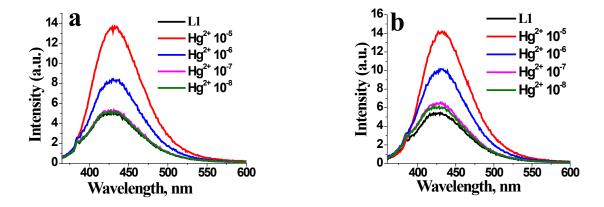




Figure S65: Plot of intensity of L1 (75 $\mu$ M) with respect to [Hg<sup>2+</sup>] (15-420  $\mu$ M) in aqueous medium (10mM HEPES, 60% DMSO, pH=7.2).  $\lambda_{ex}$  was 345 nm.



**Figure S66**: Steady state fluorescence spectra of L1 (75 $\mu$ M) upon addition of Hg<sup>2+</sup> (7.5x10<sup>-5</sup>-7.5x10<sup>-8</sup>M (a) at room temperature and (b) at 5 °C in aqueous medium (10mM HEPES, 60% DMSO, pH=7.2).  $\lambda_{ex}$  was 345 nm.