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ABSTRACT 

Metal Nanomaterials: Immune Effects and Implications of Physicochemical Properties on Sensitization, 
Elicitation, and Augmentation of Allergic Disease 

Katherine A. Roach 
 

The recent surge in incorporation of engineered metallic and metal oxide nanomaterials into consumer 
products and their corresponding use in occupational settings has raised concerns over their potential to induce 
material size-specific toxicological effects. Although metal nanomaterials have been shown to induce greater 
degrees of lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune 
system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals 
are common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy.  

Overall, more scientific knowledge exists regarding the potential for metal-containing nanomaterials to 
exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal 
nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential 
influence on dermal allergy. Despite the existence of such knowledge, specific correlations between metal 
nanomaterial physico-chemical properties and their allergic effects have yet to be consistently demonstrated. As 
the number of emerging nanomaterials continues to increase, the delineation of these relationships has the potential 
to advance risk assessment efforts by helping to identify specific agents that may present an elevated risk for allergic 
effects. 

Two sets of studies were designed to begin addressing some of the knowledge gaps associated with the 
immunotoxic potential of metal nanomaterials in the context of allergic disease. The hypothesis of these studies 
was that nanomaterials comprised of metal constituents with known immunomodulatory potential augment, induce, 
and elicit allergic disease more readily than larger forms of the materials. Moreover, the nature of the immune 
responses caused by exposure to these metal nanomaterials, as well as the magnitude of the effects, correlates 
best with the parameter of dose surface area. 

The first set of studies incorporated NiO particles with different physico-chemical properties into an in vivo 
time course study and OVA asthma model. Results from the time course study demonstrated that the smaller NiO 
particles caused more pronounced pulmonary injury and inflammation, a discrepancy that could be mitigated by 
normalizing the administered particle dose to the surface area of the larger material. In the OVA model, 
augmentation of the allergic response was largely conserved with respect to NiO surface area, wherein larger doses 
caused polarization of pulmonary immune reposes towards a Th1/17-dominant state and smaller doses induced 
Th2-skewed responses. Despite this association, several immune markers, including total IgE production, BAL 
eosinophil number, and Penh response correlated better with other metrics, such as particle size. 

The second set of studies employed Au particles and nanoparticles to assess size-specific differences in 
allergenic potential. Neither particle was associated with potential for skin sensitization, which contrasted with the 
potent allergenicity of soluble Au salts. Both particles were also associated with minimal potential for respiratory 
toxicity or alterations in pulmonary immune status. However, established contact sensitivity to Au conferred 
enhanced lung immune reactivity to the materials. Subsequent immune responses varied in nature, but were largely 
conserved with respect to Au surface area. General increases in several prototypical Th1 markers were seen in 
animals exposed to higher surface area-based doses of Au particles, whereas several Th2-associated allergic 
markers were increased following exposure to lower doses. Notably, higher doses caused the greatest influx of 
lymphocytes to the lung, in addition to a selective increase in BAL CD8+ T-cells. Many features of this response 
resembled characteristics associated with gold lung, a T-cell-mediated respiratory hypersensitivity response. This 
observation suggests the potential for Au inhalation to cause allergic elicitation responses in the airways when 
established populations of gold-reactive lymphocytes exist. 

Collectively, these two studies demonstrated that the magnitude of acute pulmonary inflammation caused 
by both NiO and Au nanoparticles, although differing greatly between the two materials, was exclusively conserved 
with respect to dose surface area. Although many immunological markers with relevance to allergic disease were 
also altered by these materials with respect to the administered surface area, several other parameters, including 
dose mass, also appeared influential. Overall, these findings suggest that the development of nanomaterial-specific 
exposure limits derived from surface area-based metrics may be more effective in protecting against metal 
nanomaterial-induced acute pulmonary inflammation than traditional mass-based metrics; however, this approach 
may not be equally protective with respect to pulmonary immune responses.  
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 1.1. INTRODUCTION 
 

1.1.1. Nanotechnology and Nanotoxicology 

Matter with dimensions measuring 1-100 nanometers in size (one billionth of a meter) have been 

generated by natural processes since the beginning of time. Nanoscale materials are produced as 

byproducts of photochemical reactions of plants, volcanic eruptions, forest fires, sea spray, and simple 

erosion (1). However, the exceptionally unique physical properties and chemical behaviors of materials 

with nanoscale dimensions has only recently been recognized. Over the past 20 years, advances in the 

understanding of nanomaterials and their novel characteristics have rendered them remarkably useful in 

numerous diverse applications. Accordingly, nanotechnology, the intentional design, manufacture, and 

functional application of materials with nanoscale dimensions for the benefit and advancement of society, 

has gained significant momentum (2). Subsequent progress in this field has already begun to 

revolutionize an extensive number of commercial markets and facilitate modern scientific advances. By 

some estimates, the impact of these developments is expected to exceed that of the Industrial Revolution 

(3). The far-reaching implications of nanotechnology are clearly visible with respect to global economics, 

with a reported compound annual growth rate of 18.1%, estimated to reach a value of US $173.95 billion 

by 2025 (4). 

The nanotechnology sector encompasses numerous unique fields, all of which involve 

manipulation of matter on an atomic and molecular scale. One of the most widespread applications of 

nanotechnology is the production of diverse types of materials exhibiting physical dimensions in the 1-

100 nm range. Thousands of different nanomaterials currently exist, and novel nanomaterials are 

continually being developed. The unifying characteristic of all nanomaterials is their size; however, 

various types of nanomaterials can exhibit expansive variations in their physical and chemical properties.  

Nanomaterials can be categorized by several different approaches. Generation source is often 

used to classify nanomaterials as engineered, incidental or natural nano-objects. The Occupational 

Safety and Health Administration (OSHA) defines ‘engineered nanomaterials’ as being purposefully 

manufactured, synthesized, or manipulated to have a size with at least one dimension in the range of 1-

100 nm for a specific purpose. ‘Incidental nanomaterials’ are generated as an unintentional by-product 
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of an industrial or environmental process (5). These nanomaterials can be generated from anthropogenic 

sources including combustion reactions from vehicle engines and incinerators, as well as from cigarette 

smoking. Some incidental nanomaterials comprise another category of nanomaterials, referred to as 

‘natural nanomaterials,’ which are of particular interest for some sectors. Natural nanomaterials include 

viruses and other biomolecules with nanoscale dimensions. 

Nano-objects can also be generally classified based on their physical properties and 

dimensionality. Diverse morphologies of nanomaterials exist wherein one, two, or all three of the 

material’s dimensions can measure 1-100 nm. Moreover, nanostructured materials or multicomponent 

nano-objects can consist of larger constituent structures measuring > 100 nm that exhibit distinct 

structural regions with nanoscale features or textures (6).  

Nanomaterials can also be categorized based on their elemental constituents. Common 

categories derived from this classification system include carbon-based nanomaterials, 

dendrimers/polymers, silicon-based nanomaterials, composites, and metal-containing nanomaterials. 

Examples of these categories, specific agents, corresponding industrial applications and production 

volumes are shown in table 1.1.  

Carbon-based nanomaterials include single and multiwall carbon nanotubes, fullerenes, carbon 

black, and graphenes. Dendrimers are nano-sized polymers with unique geometry comprised of 

branching units and internal crevices. Silicon-containing nanomaterials are unique, as they are comprised 

of silicon, which is considered a metalloid by most accounts. Silicon dioxide nanoparticles are 

manufactured in large quantities, but silicon is also frequently used in combination with other elements 

(such as metals) to form composite nanomaterials. Moreover, silicon is frequently used as a coating for 

other nanomaterials, as well.  

Metal-based nanomaterials can be comprised of diverse metal constituents ranging from Noble 

metals (e.g. gold, platinum) to transition metals (e.g., nickel, cobalt). A subcategory of metal-based 

nanomaterials frequently produced is metal oxide nanomaterials (e.g., titanium dioxide, cerium dioxide). 

Metal nanomaterials can also be comprised of multiple metallic elements, forming metal alloy 

nanomaterials.  
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Although nanomaterials can be generally categorized using these parameters, such schemes 

may have limited utility in identifying groups of nanomaterials with specific shared properties or behaviors. 

Accordingly, in 2010, the International Standardization Organization (ISO) developed a systematic 

approach by which to categorize nano-objects based on a hierarchy of several characteristics (7). The 

approach involves categorization of nano-objects using a nano-tree, based on four successive 

parameters referred to as ‘columns.’ Within each column, subsequent divisions exist to further categorize 

materials with greater specificity.  

A schematic of the ISO’s nano-tree is shown in figure 1.1. The first parameter (column 1, C1) is 

the number of dimensions the object possesses that fall into the 1-100 nanometer size range. Materials 

with one external nanoscale dimension are termed ‘nanoplates’ and include materials such as graphene 

sheets. Materials containing two nanoscale dimensions are termed ‘nanofibers.’ Nanofibers can be 

further classified based on additional properties- nanorods are solid nanofibers, nanotubes are hollow 

nanofibers, and nanowires are electrically-conducting or semi-conducting nanofibers. Lastly, materials 

possessing all three dimensions within the 1-100 nm range are termed ‘nanoparticles.’ Variations of 

nanoparticles can include unique shapes such as cubes, spheres, and stars (8).  

The second parameter (column 2, C2) categorizes materials with respect to similar dimensionality 

in the context of internal/external structures. This parameter allows for the discrimination of single- and 

multi-component nano-objects, as well as nanostructured materials. Categories of nano-objects 

discriminated at the C2 level include nanocomposites, nanoporous materials, and nano-films. 

The next parameter (column 3, C3) used to classify nano-objects is their elemental constituents 

and chemical identity. Accordingly, materials are differentiated into categories including metallics, semi-

metallics, ceramics, synthetic or natural polymers, and carbon-based materials. Nanomaterials can also 

be categorized as composites, which contain at least 2 or more components from different C3 categories. 

The final discriminating parameter presented in column 4 (C4) of the ISO’s nano-tree pertains to 

various functional characteristics of nanomaterials. Materials are grouped based on similar physical, 

mechanical, chemical, biological, or combined properties. Each of these parameters is extensively 

expanded into successive characteristics for further classification of nano-objects. For example, the 
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physical properties of nanomaterials constitute several subgroups including magnetic, electric, thermal, 

optical, and acoustic behavior. Each of these properties is expanded even further to allow for 

categorization of materials with exceptionally specific behaviors and properties.  

The ISO’s nano-tree approach was designed to address several challenges associated with the 

recent emergence of nanotechnology. It has been instrumental in facilitating scientific advancements by 

establishing logical classification schemes for nanomaterials that are relevant to diverse 

nanotechnological sectors, standardizing nanotechnological nomenclature between disciplines, and 

generating a framework by which relationships between nanomaterial properties and their behaviors can 

be delineated.  

Many of the properties and behaviors of nanomaterials identified in the ISO’s nano-tree underlie 

the increased utility of nanomaterials in their various commercial applications. Nanomaterials are being 

increasingly incorporated into various commercial goods as they confer advantageous properties 

including antimicrobial activity, corrosion protection, scratch resistance, diffusion barriers, flame 

retardancy, and thermal insulation. For example, carbon-based nanomaterials are often used in 

applications that exploit their momentous mechanical strength and lightweight nature. Accordingly, they 

are frequently used to produce sporting goods and equipment, in electronics, and for 

aerospace/automobile production (9).  

Industrial applications for nanomaterials continue to increase, leading to inevitable increases in 

exposures to these materials. As a result, their potential to cause adverse health effects has become an 

area of active scientific investigation. Subsequently, nanotoxicology studies have consistently 

demonstrated that the unique physical properties and chemical behaviors of nanomaterials that confer 

their enhanced industrial functionality also often implicate unique interactions with biological systems (3). 

The potential toxic effects of nanomaterials have been examined with respect to different classes of 

materials, target tissues, and routes of exposure. However, many of these effects have been specifically 

studied in the context of subpopulations with an elevated risk for exposure to nanomaterials.  

 

1.1.1.1. Occupational Exposures to Nanomaterials 
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Workplaces represent one of the major settings associated with increased potential for 

nanomaterial exposure. As the global demand for engineered nanomaterials increases, more individuals 

are becoming employed by occupations involved in the production, handling, and utilization of 

nanomaterials (10). The National Science Foundation has estimated that by 2020, at least 2 million 

workers in the United States alone will be employed by nanotechnology-related fields (11). Not only are 

these workers exposed to larger quantities of nanomaterials than consumers, they represent one of the 

first groups in society to encounter emerging materials with unknown health effects. Accordingly, workers 

represent a population particularly vulnerable to the potential toxic effects of nanomaterials.  

One of the major mechanisms by which workers are kept safe from adverse health effects is by 

the development, establishment, and enforcement of occupational exposure limits (OELs). Although 

many countries address these issues differently, in the United States, several government agencies are 

involved in OEL generation. The National Institute of Occupational Safety and Health (NIOSH) conducts 

research specific to the toxicity of particular agents and sets Recommended Exposure Limits (RELs) 

based on their findings. The American Conference of Governmental Industrial Hygienists (ACGIH) is a 

nonprofit scientific association that also researches and publishes OELs for specific agents which are 

expressed as Threshold Limit values (TLV ®). However, the instatement of legally-enforceable OELs falls 

under the authority of the Occupational Safety and Health Administration (OSHA), which establishes 

agency-specific OELs called Permissible Exposure Limits (PELs). These values constitute substance-

specific concentration-based doses, with which compliance is monitored as a time-weighted average 

(TWA) in workers. 

Currently, emerging nanomaterials are subject to existing OELs established for agents with similar 

chemical compositions. However, numerous studies have shown that these OELs, while effective in 

protecting against the toxic effects of larger materials, often exhibit a lack of utility in predicting safe levels 

of exposure for nanomaterials (12). This discrepancy is reflective of a distorted relationship between dose 

mass and toxic potential when materials possess nanoscale dimensions. This concept has become 

increasingly recognized, and in 2012, the NIOSH REL for titanium dioxide (TiO2) was modified to include 

exposure limits specific to particle size. Despite the proposed exposure limits of 2.4 mg/m3 for fine TiO2 



 

7 
 

and 0.3 mg/m3 for ultrafine and nanoscale TiO2, OSHA has not yet adopted size-specific OEL for TiO2 

(13).  

The toxic potential of many currently-produced nanomaterials remains largely unknown, which is 

concerning given the rapid emergence of new materials. The extensive amount of time, resources, and 

money required to thoroughly investigate each individual nanomaterial renders this risk assessment 

approach impractical. A proposed method to overcome this challenge involves the identification of toxic 

mechanisms and their correlation with specific nanomaterial physico-chemical properties (14). 

Subsequently, the toxic potential of emerging nanomaterials can be predicted, allowing for allocation of 

time and resources to investigate new materials suspected to present an elevated risk.  

In accordance with this approach, the impact of various physio-chemical properties on the toxic 

effects of nanomaterials has been studied, to differing degrees, following various routes of exposure. 

 

1.1.1.2. Inhalation Exposures to Nanomaterials  

The respiratory system has been frequently studied as a potential portal of entry for 

nanomaterials, as well as a target tissue of nanomaterial toxic effects. Several anatomical and 

physiological characteristics of the lungs, in addition to numerous physico-chemical properties of 

nanomaterials, render inhalation exposure to nanomaterials a growing concern. 

First, the respiratory tract is constantly exposed to substances in the external environment, many 

of which have potential to cause adverse health effects. At rest, a typical human inhales about 15 times 

per minute, whereupon each breath results in intake of about 500 mL of air; however, while exercising, 

air intake can increase 10-fold. As a result, the average human is exposed to 10,000 – 12,000 L of air 

each day (15). Inevitably, this air can serve as a vehicle facilitating the entry of nanomaterials, in addition 

to pathogens and chemicals, into the body where detrimental health effects can ensue.  

Additionally, the lungs constitute an epithelial surface with potential to promote extensive physical 

interactions with toxic agents, including nanomaterials. The total volume of the conducting airways and 

gas exchange region of a human is, on average, about 5 liters; however, the total respiratory surface 
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generated by alveolar structures averages between 75 and 140 m2, which is more than 60 times larger 

than the external body surface and larger than the surface area of a tennis court (16).  

In a similar respect, the respiratory tract exhibits barrier functions less effective than many of  

those provided by other tissues. The primary function of the lungs is not to serve as an impenetrable 

physical barrier between the body and the external environment, but to facilitate gas exchange between 

these two compartments. As a result, inhaled material possessing specific properties can readily pass 

through the epithelial surfaces of the respiratory tract, enter systemic circulation, and access distal sites 

of the body, following which, toxic responses may occur (17). 

These properties of the respiratory tract render it a particularly vulnerable tissue with respect to 

nanomaterials; however, nanomaterials also exhibit several features that further implicate the relevance 

of the respiratory tract in their toxic potential. For example, nanomaterials exhibit a size profile associated 

with a high level of ‘dustiness,’ a property defined as the propensity for a material to generate airborne 

dust following its physical disruption (18). The increased likelihood for aerosolization, and extended 

duration of suspension in the air, renders the bioaccessibility of nanomaterials much higher than that of 

larger materials in the context of inhalation.  

Nanomaterials also possess characteristics associated with unique patterns of deposition in the 

airways. Nanomaterials deposit efficiently along the entire respiratory tract, however, properties including 

morphology and surface charge can contribute to immobilization of these materials in preferential 

compartments of the respiratory tract (19). Moreover, the small size of nanomaterials facilitates their 

unique capacity to reach the alveolar spaces of the lung (20). The deposition behavior of nanomaterials 

is a feature of particular importance since the biological fate of inhaled agents is greatly dependent on its 

deposition location within the respiratory tract. Different anatomical compartments of the respiratory tract 

exhibit variations in predominant structural cell types, resident immune cell populations, physiological 

defense mechanisms, and anatomical proximity to the lymphatics and blood circulation, all of which can 

contribute to the toxic potential of inhaled agents (21).  

The respiratory tract is generally divided into three compartments: 1) the head region consisting 

of the nasal passages, mouth, pharynx, and larynx, 2) the conducting airways consisting of the trachea 
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and first 16 bifurcations encompassing the main bronchi, bronchus, large and small bronchi, and 

bronchioles, and 3) the gas exchange region consisting of terminal bronchioles, respiratory bronchioles, 

and alveoli (16). The fraction of an airborne agent that enters the nose or mouth is called the inhalable 

fraction. While larger materials can enter the airways when inhaled by mouth, nasal structures (including 

hairs and mucus) filter foreign materials and generally trap materials 10-15 µm in size from reaching 

lower into the airways (22). Likewise, materials smaller than 10 µm are generally considered to be 

‘respirable,’ meaning they are capable of depositing in the conducting airways. Materials 2-10 µm in size 

that escape the defenses of the upper airways can be biologically neutralized or physically trapped by 

mucus in the upper airways, trachea, bronchi, and bronchioles (23). Additionally, the sneezing reflex and 

mucociliary movement help to dispel inhaled material depositing in this region (24). Materials smaller 

than 2 µm are capable of depositing in the lowest segment of the airways- the alveolar, or gas-exchange 

region. Generally, insoluble and particulate materials capable of reaching the lowest regions of the lung, 

including nanomaterials, are associated with a greater potential for adverse health effects for several 

reasons. 

Unlike the upper airways, pulmonary mucus and ciliated epithelium are not present in the lower 

airways, and thus, cannot contribute the clearance of inhaled material that deposits in this region (25). 

As a result, the retention time of material reaching this compartment often far exceeds that of inhaled 

matter depositing in higher segments of the respiratory tract. Subsequent clearance of particulates from 

the gas exchange region of the lungs is primarily mediated by alveolar macrophages, a resident 

phagocytic immune cell of the lower airways (17). These cells internalize the deposited material, following 

which, its neutralization can entail intracellular chemical degradation or cell-mediated physical 

translocation out of the lungs. Dependence on innate immune cell activity for clearance of particulates 

localized in this pulmonary region confers the potential for significant inflammatory responses, illustrating 

another toxicological concern associated with the depth of material deposition in the lungs.  

Deposition of inhaled agents in the lower airways also increases the potential for their 

translocation to extra-pulmonary locations. The architecture of alveolar structures facilitates efficient gas 

exchange by optimizing the potential for passive diffusion of oxygen and carbon dioxide across its large 
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surface area. Accordingly, the distance between the membrane of an erythrocyte present in pulmonary 

capillaries and the air space of the alveolus is less than 1 um (26). This delicate physical barrier can be 

compromised by substances reaching the alveolar spaces, following which, they may enter the 

circulation, translocate to other tissues, and potentially cause systemic effects (27).  

Overall, the most well-characterized relationships between nanomaterial physico-chemical 

properties and their toxic potential pertain to their effects in the respiratory tract. Accordingly, 

nanomaterial properties including size, agglomeration, and morphology have all been correlated to their 

propensity for inhalation, as well as their depth of deposition in the respiratory tract (28, 29). Subsequent 

acute localized inflammatory responses have been correlated to properties including size, dispersion 

status, dose volume, and particle number (30-33). However, the nanomaterial properties and dose 

metrics that are most representative of the toxic potential of nanomaterials depend on the mechanism of 

action underlying the toxic response. For example, the inflammatory effects of many insoluble metal 

nanomaterials frequently implicate interactions between the particle surface and biological molecules, 

leading to perturbation of cellular structures and generation of oxidative stress. Accordingly, the surface 

area of the administered dose is often reported as the metric most closely-related to the toxic potential of 

these materials in the lungs (34). Contrarily, the propensity for long fiber-like materials such as carbon 

nanotubes to induce frustrated phagocytosis in pulmonary macrophages following inhalation exposure 

renders particle number a dose metric of particular relevance for this type of mechanism of toxicity (35, 

36).  

 

1.1.1.3. Dermal Exposures to Nanomaterials:  

Nanomaterials can also enter the body via the skin. As they become increasingly incorporated 

into products that are designed to come into contact with the skin, this route of exposure has also been 

frequently studied as a potential portal of entry and biological target of nanomaterials. 

The skin is composed of three major layers- the epidermis, dermis, and hypodermis- all of which 

exhibit different biochemical properties, resident cell types, and biological functions (37). The uppermost 

layer, the epidermis, constitutes the most notable defensive functions provided by the dermal epithelium. 
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This avascular layer of the skin is comprised predominantly of keratinocytes, which form five distinctive 

strata within the epidermis (38). The outermost layer, the stratum corneum, constitutes the major barrier 

functions of the epidermis as a collective layer since it is subjected to interactions with external agents. 

The stratum corneum is mainly comprised of layers of staggered corneocytes, forming a barrier with an 

approximate thickness of 10-20 µm in humans (38). This layer can be penetrated by lipophilic molecules, 

but it effectively blocks the passage of ionic and water-soluble compounds (39). The next strata of the 

epidermis are the struatum granulosum and stratum spinosum. The stratum spinosum is another 

epidermal layer with particular toxicological importance, since agents capable of penetrating to this depth 

have the capacity to interact with resident immune cells. Among these one of the most important is the 

resident dendritic cell (DC) of the epidermis, the Langerhans cell (LC) (40). The final epidermal layer is 

the stratum basale which is separated from the dermis layer by basement membrane. 

The dermis contains blood and lymph vessels, nerves, and other structures including follicles and 

glands. Likewise, potential cellular and molecular targets of toxicants are more abundant in this layer, 

rendering its protection by the epidermis paramount in preventing adverse local and peripheral biological 

effects following dermal exposures (41). However, appendages including sweat glands, hair follicles, and 

sebaceous glands may facilitate the penetration of some molecules into the dermis, irrespective of 

effective restriction by the epidermal barrier. 

It was initially suspected that the small size of nanomaterials would certainly facilitate enhanced 

potential for skin penetration. However, there is conflicting evidence regarding nanomaterial skin 

penetration potential. Although decreases in size have been shown in some instances to promote 

penetration of the skin, other studies have demonstrated that size is not a characteristic that confers a 

unified potential for skin penetration by nanomaterials (42). In addition to size, other properties including 

surface charge and hydrophobicity have also been shown to impact the propensity for nanomaterials to 

evade the barrier functions of the skin (43, 44). 

As a result of general handling practices, the hands and forearms are major sites of concern in 

the context of dermal exposure to nanomaterials (45). These sites are also frequently associated with 

compromised barrier functions resulting from various chemical and physical insults, highlighting a major 
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consideration for this portal of entry. Compromised skin barrier integrity resulting from injury, pre-existing 

conditions such as atopic dermatitis, and behaviors such as excessive skin washing may facilitate their 

entry into the body via the dermal route (46). Moreover, indiscriminate passage of these substances 

through the skin may cause local injury, but also systemic transport and toxic effects at sites peripheral 

to the initial site of contact (47).  

The most commonly-reported adverse effect of dermal exposure to nanomaterials is the 

development of local inflammatory reactions. Structural cells of the skin are potential targets of 

nanomaterial biological activity frequently responsible for such effects (48). For example, selective toxicity 

to keratinocytes has been associated with nanomaterial-induced increases in intracellular reactive 

oxygen species (ROS) production (49). These effects have been correlated to nanomaterials exhibiting 

properties including increased surface area and a high degree of surface reactivity (50). Although these 

inflammatory responses are often reported to be self-limiting, subsequent damage to cellular DNA has 

been proposed to have the capacity to result in cancerous transformations and tumor growth (51, 52).  

 

1.1.1.4. Other Routes of Exposure to Nanomaterials 

Although the respiratory tract and skin are frequently cited as the two most relevant routes of 

exposure to nanomaterials, ingestion is another potential portal of entry. Ingestion of nanomaterials can 

result from their intentional incorporation into items designed to be ingested, such as foods, beverages, 

and supplements (53). Nanomaterial ingestion can also occur by incidental mechanisms following 

contamination of consumables, or by passive transfer from the hands to the mouth or items bound for 

ingestion. Furthermore, inhalation exposure to nanomaterials can also facilitate the eventual ingestion of 

nanomaterials, as the normal physiological clearance mechanisms in the respiratory tract often implicate 

their translocation from the trachea to the esophagus, and subsequently into the digestive tract (54). 

As the most important site of macronutrient absorption in the body, the gastrointestinal (GI) tract 

can easily facilitate absorption and systemic distribution of ingested toxicants. Different regions of the GI 

tract exhibit unique physiological functions and anatomical features, which can impact the propensity for 

absorption and subsequent disposition of ingested materials (53, 55). In this regard, the size and surface 
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modification of nanomaterials has been correlated to preferential anatomical localization within the GI 

tract (56, 57). Nanomaterial surface charge has been shown to influence the potential for materials to 

penetrate the layer of mucus separating the materials from enterocytes of the small and large intestines 

(58). The absorptive surface of the intestines is comprised of epithelial cells that have been shown to be 

penetrated by nanomaterials exhibiting selective size profiles and surface charges (59). Subsequent 

translocation to other organs and tissues from the GI tract has been shown to be dependent on 

nanomaterial size, wherein accumulation within the liver, spleen, and adipose tissue occur, potentially 

leading to disruption of normal biological processes at peripheral sites (60). 

Exposure to nanomaterials by parenteral routes is the portal of entry least frequently studied with 

respect to nanomaterial toxicity. Few current applications for nanomaterials are likely to result in 

exposures by this route; however, the expanding uses for nanomaterials in biomedical applications often 

implicate their administration by intravenous and intramuscular routes, rendering parenteral exposures 

an increasingly relevant route of exposure (61-64). For example, iron nanoparticles are being increasingly 

used for biomedical imaging and gold nanoparticles have proposed utility as a drug delivery vehicle (65).  

Intravenously-injected nanoparticles have been shown to rapidly enter the circulation and 

translocate to various organs (66, 67). Contrarily, intradermal injection has been shown to result in 

nanoparticle accumulation in the lymph nodes, while intramuscular injection results in preferential uptake 

of particles by neuronal and lymphatic systems (68).The distribution of nanomaterials following parenteral 

administration has been shown to correlate to properties including size and surface characteristics (69). 

Similar properties have been implicated in other parameters of their pharmacokinetic profiles, impacting 

their rate of clearance from circulation and method of excretion (66, 70).  

 

1.1.1.5. Knowledge Gaps Regarding the Toxic Effects of Nanomaterials 

Overall, the skin and lungs represent the two portals of entry most likely to be implicated in 

exposure to nanomaterials. Accordingly, a substantial amount of information has been generated 

regarding the potential for nanomaterials to enter the body by these routes, in addition to the impact of 

physico-chemical properties on these processes. Similarly, the skin and respiratory tract represent the 
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tissues most commonly studied as potential targets of nanomaterial toxic effects. Relationships between 

physico-chemical properties and nanomaterial toxicity have been most frequently profiled with respect to 

dermal and pulmonary epithelial cells. Potential adverse effects involving cells and tissues distal to the 

site of exposure have been far less frequently examined, and the impact of physico-chemical properties 

on such responses remains largely unknown. 

 One of the biological compartments of major concern in this regard is the immune system. The 

lack existing knowledge pertaining to the nanomaterial immunotoxocity is particularly concerning since 

toxicants may impact various components of the immune system following any exposure route. Moreover, 

as a carefully-regulated, continually-renewing system in which cells are constantly undergoing 

differentiation, proliferation, and self-renewal, the immune system serves as a particularly vulnerable 

target of toxic effects (71). Given this knowledge, characterization of nanomaterial immunotoxic potential 

and investigations into the impact of physico-chemical properties in this context are needed. 

 

 

1.1.2. Immunotoxicology and Allergic Disease 

The immune system is comprised of an extensive combination of tissues, cell types, and 

molecular mediators that collectively orchestrate the complex task of protecting the host from both 

external threats, including many different types of pathogens, as well as internally-derived threats, such 

as cancerous cells (72). Optimal immune functioning requires precise selectivity and adequate regulation 

in order to effectively eliminate potential threats without inducing excessive injury to the host. The immune 

system is a critical regulator of health and disease, as inflammation is a critical component in the 

pathophysiology of nearly all chronic diseases states (73). Accordingly, deviations in optimal immune 

functioning can have resounding effects on host health. 

Deviations in optimal immune functioning can emerge as a result of numerous factors, including 

genetics. However, exposures to immunotoxic agents are also a major contributing factor (74). 

Subsequent disruptions in any of the numerous molecular and cellular constituents of the immune system 

can result in altered functionality and development of disease. Immune dysfunction can be generally 

classified as being suppressive or stimulatory in nature. Immune suppression can result in compromised 
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destruction of pathogens, increasing susceptibility to illness, as well as failure to identify internal threats 

such as cancerous cells, which can then progress into more advanced phases of disease. Disorders that 

involve inappropriate stimulation of the immune system are characterized by a pathological excess of 

immune activity that is often misdirected. This can result in immune-mediated destruction of host cells 

and tissues, effects which underlie the pathogenesis of autoimmune disorders such as lupus 

erythematosus and multiple sclerosis (75). Additionally, the development of immunological memory 

specific for innocuous external antigens can result in the development of various forms of allergic disease.  

Rates of allergic disease have been on the rise globally for decades. The American Academy of 

Allergy, Asthma, and Immunology reports that worldwide, sensitization rates to one or more common 

allergens are approaching 40-50% in school-aged children (76). In the United States, allergic diseases 

are the sixth leading cause of chronic illness with an annual cost exceeding US $18 billion (75, 77-79). 

The enormous global impact and public health burden of allergic disease is projected to remain a major 

concern in the coming years. It is anticipated that the prevalence of allergy will continue to grow, the age 

of allergy initiation will continue to decrease, and mortality from allergy-related causes will continue to 

increase (77). 

The term ‘allergic disease’ refers to a collective assortment of disorders triggered by diverse 

inciting agents, mediated by different effector cells and mechanisms, and manifesting in various clinical 

presentations. The unifying characteristic of all allergic diseases is the development of adaptive immune 

reactivity specific to an exogenous antigen that is not inherently dangerous (78). All allergic diseases also 

consist of two distinct phases. The first phase, the sensitization or induction phase, is often subclinical in 

nature and involves exposure to an allergen resulting in the generation of allergen-specific immunological 

memory (80). The second phase, the elicitation or challenge phase, is dependent on successful 

sensitization and re-exposure to the same allergen. Subsequently, activation of the adaptive immune 

system leads to immune-mediated destruction of the allergen, which results in the characteristic clinical 

presentations of allergic reactions. 

Although the development of allergy is dependent on a multitude of genetic, behavioral, and 

environmental factors, exposures to immunotoxic agents are also frequently implicated (81). Immunotoxic 
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agents with the capacity to impact allergic disorders generally exert one of two effects. First, the agent 

can act as an allergen or sensitizer. Following exposure to these agents, the resultant adaptive immune 

response is specific to this agent, and subsequent encounters trigger allergic reactions. Contrarily, agents 

can augment immunological processes involved in allergic disorders specific to  a different agent. These 

agents are often referred to as ‘adjuvants’ or ‘immunomodulators,’ and their effects can range from 

increasing host susceptibility to sensitization, decreasing the allergen dose required to induce 

sensitization or elicit allergic responses, or exacerbating the severity of allergic reactions (75). 

Among the diverse manifestations of hypersensitivity reactions, two of the most common forms 

of allergic disease are allergic contact dermatitis (ACD) and asthma. Accordingly, these disorders 

represent two notable conditions susceptible to the adverse effects of immunotoxicant exposure.  

 

1.1.2.1. Allergic contact dermatitis 

Immune-mediated reactions of the skin can occur following exposure to an assortment of diverse 

agents by many different underlying biological mechanisms. Many of these responses are non-specific 

irritant responses, wherein immune involvement is limited to that of cells and mediators of the innate 

immune system (82). However, the development of antigen-specific adaptive immune responses 

resulting in skin allergy are common, as well.  

One of the most common forms of contact allergy is ACD, a delayed-type (Type IV), T-cell-

mediated hypersensitivity response. Dermal sensitization and the subsequent generation of 

immunological memory for the inciting agent requires several key molecular and cellular events (83). 

These events have been outlined in an adverse outcome pathway (AOP) adopted by the Organization 

for Economic Co-operation and Development (OECD)- an organization that publishes guidelines for the 

testing methods used by government, industry, and independent laboratories to identify and characterize 

potential hazards of chemicals (84). The AOP steps associated with skin sensitization are shown in figure 

1.2. 

The preliminary requirement for skin sensitization is bioavailability of the sensitizing agent. Since 

a primary function of the skin is to serve as a selective barrier between the host and environment, the 
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sensitizing potential of many antigens is often limited by their capacity to evade this barrier (85). Agents 

that induce skin sensitization must penetrate the upper layers of the epidermis in order to reach immune 

cells that commence the cascade of events associated with the development of ACD. These substances 

must first penetrate the ~ 15 layers of interdigitated corneocytes comprising the stratum corneum (38, 

56). Next, antigens must pass through cellular junctions sealing the paracellular spaces between adjacent 

keratinocytes in the stratum granulosum (40, 86). Passage through these layers is heavily dependent on 

antigen physical and chemical properties, as illustrated by the fact that most dermal sensitizers tend to 

be low molecular weight (LMW, < 500 Daltons) chemicals with adequate lipophilicity (logP ~2) (87, 88).  

The next steps in the skin sensitization AOP involve the molecular initiating event- antigen 

formation. The small size required for passage through the stratum corneum is not conducive with cellular 

recognition (80). As a result, most dermal sensitizers require binding with host macromolecules to 

facilitate their immunological recognition, and are referred to as haptens. Haptens possess inherent 

chemical reactivity that promotes their covalent binding to proteins. These effects often involve 

electrophilic activity resulting in interactions with nucleophilic groups on proteins, such as thiols or amino 

and hydroxyl groups like those found on keratin (89). 

Some sensitizing agents are associated with the need for additional chemical modifications in 

order to assume a haptenic state. Such substances include prohaptens, which require host-mediated 

metabolic activation, and prehaptens, which require transformation by environmental processes such as 

UV exposure in order to become immunologically-active haptens (90).  

Conjugation of haptens with carrier molecules generates adequate size for recognition by antigen-

presenting cells (APC). The APC most frequently implicated in dermal sensitization is the resident 

dendritic cell (DC) of the epidermis, the Langerhans cell (LC) (91). LCs represent 2-5% of the total 

epidermal cell population and are present in the third layer of the epidermis, the stratum spinosum. The 

pivotal role of LCs in the initiating events of dermal sensitization is enabled by several unique cellular 

characteristics. For example, LC exhibit a high capacity for antigen-uptake, facilitated by 

micropinocytosis. Also, it has been demonstrated that LCs have the potential to extend dendrites through 
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the keratinocyte tight junctions of the stratum granulosum and sample antigens located just below the 

stratum corneum (92, 93).  

LC also exhibit unique morphology and increased expression of adhesion, costimulatory, and 

presentation-mediating molecules (85). These properties become integral after sensitizers trigger LC 

maturation, which requires two distinct signals. One signal is antigen-dependent and involves recognition 

of the hapten/carrier complex by LC, leading to its uptake (94). The second required signal is antigen-

nonspecific, generally signifying an elevated threat level (95). Some of the mediators commonly 

associated with allergen non-specific activation signals include interleukin (IL)-1α, an alarmin released 

by skin epithelial cells including keratinocytes in response to cellular damage, as well as pro-inflammatory 

cytokines released by innate immune cells in response to pathogen recognition receptor (PRR) activation 

(96).   

Subsequently, activated LC upregulate their expression of the chemokine receptor (CCR) 7 and 

release IL-1β. IL-1β triggers the release of tumor necrosis factor (TNF)-a and granulocyte-macrophage 

colony stimulating factor (GM-CSF) from keratinocytes, which facilitates LC exit from the skin and 

migration to the lymph nodes via the afferent lymphatics. During their migration, LC continue the 

maturation process, increasing expression of costimulatory and antigen-presentation molecules. 

Simultaneously, the internalized hapten/carrier complex is processed, generating fragments that are 

displayed on the cell surface by major histocompatibility complex (MHC) molecules (97). 

Inside the lymph nodes, LC interact with T-cells in the paracortical T-cell area. The characteristic 

morphology of activated DCs is optimal for simultaneous interaction with multiple cells. This behavior 

increases the chance of interaction with a naïve T-cell expressing a T-cell receptor (TCR) capable of 

recognizing the surface-expressed MHC-allergen peptide complex (98). Following recognition of the 

antigenic epitope by a T-cell and adequate co-stimulation by LC, the T-cell is activated. This results in 

proliferation, producing a pool of clonal antigen-specific effector T-cells. As a result, vast numbers of 

effector and memory T-cell clones with conserved antigen-specificity are generated, causing a drastic 

increase in lymph node size (87). 
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Within days, the once naïve T-cells with limited cytokine production capabilities polarize towards 

different phenotypic variations and exhibit a newly-acquired repertoire of cytokine production capabilities. 

This polarization is dependent on the local cytokine microenvironment, site of contact and molecular 

nature of the sensitizer, and various neuroendocrine factors (99). Acquisition of a Th1-dominant cytokine 

profile results in production of interferon (IFN)-γ and TNF-β, whereas a Th2-dominant profile results in 

release of cytokines including IL-4 and IL-10. The antigen-specific, Th1/Th2-polarized T-cells exit the 

nodes via the efferent lymphatics, entering the circulation, where many migrate into peripheral tissues.  

The completion of allergic sensitization, which requires 3 days to several weeks, is signified by the 

presence of newly-formed populations of allergen-reactive T-cells which can mediate the subsequent 

induction/challenge phase of ACD (100).  

Upon future exposures to the allergen, memory and effector T-cells are recruited to the site of 

exposure. In ACD, CD4+ Th1 cells primarily exhibit regulatory functions, including production of cytokines 

such as IL-2 and IFN-γ, which contribute to inflammatory cell recruitment (97, 101). By comparison, CD8+ 

T-cells are most often associated with immediate cytotoxic effector functions (102). These effector  

functions initiate and amplify local inflammatory reactions to destroy the antigen, which results in the 

clinical manifestations of ACD, including localized skin redness, swelling, and itching at the site of allergen 

contact. 

ACD can be clinically evaluated and diagnosed by the intentional elicitation of ACD reactions. 

Patch testing involves the placement of a disk containing the allergen on the skin for 48 hr to evoke the 

localized inflammation characteristic of ACD. The presence of inflammation confirms sensitivity to a 

specific agent, while the magnitude of the response can be measured, indicating the degree of reactivity 

towards the agent (103).  

Patch testing studies have revealed that ACD is relatively common in the general population, 

affecting an estimated 15-20% of individuals (104). Some of the most notable causative agents of ACD 

include nickel, thimerosal, and fragrance mix. Each year, the Allergic Contact Dermatitis Society declares 

an agent their ‘Allergen of the Year,’ identifying a newly-emerging contact allergen or allergen of growing 
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significance. The Society’s Allergens of the Year for the past two decades are shown in table 1.2, 

illustrating the diversity of agents associated with ACD. 

In addition to its notable prevalence in the general population, ACD also presents a significant 

concern in the workplace. Contact dermatitis is the second most commonly reported occupational illness 

in the United States, accounting for approximately 20% of all work-related health concerns (98). As a 

result, over $1 billion in lost wages, medical costs, and worker compensation are attributable to contact 

dermatitis each year (80). Although these figures take into account cases of dermatitis involving both 

irritant and allergic mechanisms, ACD is a specific concern in the workplace. Major causative agents and 

workplaces associated with increased prevalence of occupational ACD are listed in table 1.3 (105).  

The development of ACD in the workplace has been correlated to several exogenous risk factors. 

Exposure to irritants, which is common in many workplaces, is one such risk factor. Irritants are 

associated with the induction of localized inflammation in the skin, as well as disruption of skin barrier 

functions (101). As a result, these effects can act as an adjuvant to sensitization and increase potential 

for skin penetration by immunogenic agents. These effects are commonly seen in workers whose jobs 

require wet work. Wet work is defined by a new German regulation as “having skin exposed to liquids 

longer than two hours per day, use of occlusive gloves for longer than 2 hours per day, or frequent hand 

washing (20 times per day, or less if more vigorous scrubbing is required)” (106). Accordingly, 

occupations involving wet work have been associated with an increased risk for ACD development. 

Although case studies and human reports have led to the identification of many skin sensitizing-

agents, laboratory-based approaches can also help identify potential skin sensitizers. Numerous in vivo, 

in vitro, and in silico/in chemico assays have been developed to assess the potential for various agents 

to induce dermal sensitization. Commonly-used approaches and corresponding biomarkers of interest 

are summarized in table 1.4, in addition to their OECD-validation status (107-162).  

Traditional approaches for the identification of potential skin sensitizers have historically 

implicated the use of animal models. Accordingly, in vivo assays frequently used to assess the potential 

for compounds to induce dermal sensitization include the Mouse Ear Swelling Test (MEST), Guinea Pig 

Maximization Test (GPMT), and Local Lymph Node Assay (LLNA) (163). However, as animal welfare 
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has become an increasingly prevalent concern in the field of toxicology, the demand for alternative 

approaches has increased significantly. As a result, novel methods for the assessment of dermal 

sensitization potential have been proposed using in vitro and computational approaches.  

Currently, there are three OECD-validated alternative test methods for hazard identification efforts 

related to skin sensitizers, which do not require use of laboratory animals. These tests include the 

KeratinoSens and LuSens (ARE-Nrf2 Luciferase) methods, which evaluate the potential for test agents 

to induce activation of antioxidant/electrophile response element (ARE)-dependent signaling pathways 

in keratinocytes- a feature common to many skin sensitizers (143). The OECD has also validated the 

human Cell Line Activation Test (h-CLAT) and U937 cell line activation test (U-SENS), which are based 

on the shared capacity for sensitizing agents to induce activation of DC (164). Lastly, the Direct Peptide 

Reactivity Assay (DRPA) has been validated for use, wherein the unifying requirement of hapten/carrier 

complex formation by chemical sensitizers is assessed (161).  

 

1.1.2.2. Allergic Asthma 

Similar to immune-mediated reactions of the skin, immune responses in the respiratory tract can 

be limited to acute irritant effects primarily mediated by the innate immune system. However, adaptive 

immune reactions can also occur, wherein the development of immunological memory specific to an 

otherwise innocuous antigen can lead to the development of respiratory allergy. Allergic asthma is a 

common pulmonary hypersensitivity response, wherein inflammation of the airways with reversible airflow 

obstruction, and airway hyperreactivity triggered by a specific allergen occur (75). Allergic asthma is most 

often associated with IgE-mediated mechanisms, resembling other immediate-type (Type I) 

hypersensitivity responses. However, many of the immunological mechanisms involved in asthma remain 

unclear. As a result, an AOP specific for asthma has yet to be established and widely-accepted. 

Asthma can develop following skin exposure to some agents, but the induction phase of allergic 

asthma is more commonly associated with inhalation exposure to an adequate dose of a respiratory 

sensitizer by a susceptible individual (165, 166). The lungs are susceptible to inhalation of both LMW and 

high molecular weight (HWM) antigens with asthmatic potential, and these agents may be associated 
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with differential mechanisms along the pathway of events leading to sensitization. Asthma-inducing HMW 

allergens are often proteins from biological sources, such as pollens, animal dander, and wood dusts 

(167). Contrarily, LMW allergens associated with asthma include metals, dyes, and reactive chemicals 

such as isocyanates (168).  

Once deposited in the respiratory tract, HMW sensitizers are large enough to be identified and 

intercepted by APC. However, similar to the events required for dermal sensitization, LMW chemicals 

must bind with host proteins to form hapten-carrier complexes, facilitating their immunological 

recognition. The chemistry of haptens and their formation of antigenic complexes is far better studied 

with respect to skin sensitization than respiratory sensitization (89). However, the formation of haptens 

from prohaptenic compounds is known to occur in the lungs as a result of the presence of cells with high 

levels of phase I and II metabolizing properties. Alveolar macrophages, club cells, and bronchial epithelial 

cells all exhibit biological activities capable of promoting hapten formation (169).  

Similar to the events of dermal sensitization, the next requirement in respiratory sensitization is 

physical association between an immunologically-recognizable antigen and APC. Numerous cell types 

in the respiratory tract are capable of presenting antigen to lymphocytes. Several anatomically- and 

phenotypically-distinct populations of pulmonary macrophages with potential APC activity reside in the 

respiratory tract (170). Airway macrophages are present on the intraluminal surfaces of both the small 

and large conducting airways, suspended in or below the mucus layer. Alveolar macrophages are long-

lived tissue-resident macrophages restricted to the alveolar region of the lungs (171). Finally, pulmonary 

intravascular macrophages, which are a resident population of mature macrophages that remain 

localized in the lung capillaries, and interstitial macrophages found in the interstitial spaces of the lung 

parenchyma are capable of acquiring antigen following inhalation exposure (172). In addition to these 

macrophage subsets, B-cells of the respiratory tract are capable of internalizing antigen via B-cell 

receptors (BCR) and presenting antigen to naïve T-lymphocytes to induce sensitization (173). However, 

macrophages and B cells must be adequately stimulated in order to express the costimulatory molecules 

required for the progression of allergic sensitization, rendering them less effective APC than DC.  
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DC are the professional APC of the respiratory tract and present antigen with the greatest 

efficiency to lymphocytes. DCs are distributed throughout the entire respiratory tract within the epithelium 

of the upper airways and in intraseptal junctions of the gas exchange region (170). Many subtypes of 

DCs exist in the respiratory tract with corresponding variations in anatomical location and antigen 

presenting capacities. The two major populations of conventional DCs in the respiratory tract are 

associated with antigen presentation in asthma and are discriminated based on expression of surface 

markers CD103 and CD11b (172).  

CD103+ CD11blo DCs (CD103 DCs) reside in the epithelium in close proximity to the basal surface 

of bronchial epithelial cells. They also express a number of tight junction proteins allowing them to extend 

dendrites into the airway lumen to sample inhaled antigen (172). Findings from animal studies suggest 

that CD103 DCs preferentially interact with particulate material deposited in the lungs and are more likely 

to interact with CD8+ T-lymphocytes via MHC I molecules (174). Furthermore, CD103 DCs have been 

shown to exhibit a protective role in house dust mite-induced allergic airway inflammation through the 

production of IL-12 (175). 

The second major DC population of the respiratory tract is characterized by a CD103- CD11bhi 

(CD11b) expression profile. This population of DCs can be found in both the conducting airways and the 

lung parenchyma. CD11b DCs do not directly contact the epithelium, but reside in the layers of tissue 

directly below the epithelium (172). Although this anatomical location implies compromised potential for 

interception of inhaled material in the airway lumen, studies have observed prevalent transepithelial 

uptake of antigens by these DC in the lower airways (176). Animal studies demonstrate that CD11b DCs 

are more likely to acquire and transport soluble antigens compared to particulate material (174). 

Additionally, CD11b DCs are more likely to present antigen to CD4+ T-lymphocytes by MHC II molecules 

in the lymph nodes. 

Irrespective of DC phenotype, as in the skin, DC activation in the lungs requires both antigen-

specific and non-specific signals. In addition to antigen uptake, molecules in the airways capable of 

triggering maturation of DC include pathogen-associated molecular patterns (PAMP) and damage-

associated molecular patterns (DAMP), which are recognized by various PRR expressed by innate 
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immune cells. PAMPs include many structures unique to microorganisms that are recognized by an 

assortment of receptors expressed by DCs including toll-like receptors (TLR), c-type lectin receptors, and 

protease-activated receptors (177). DAMPs include intracellular proteins such as heat shock proteins 

and high motility group protein B1 (HMGB1), as well as extracellular elements including hyaluron 

fragments. These elements are released in response to cellular injury or death and are recognized by 

DC complement receptors, heat shock protein receptors, and neuropeptide receptors (178).  

Many aeroallergens associated with high rates of sensitivity in the population, such as house dust 

mite and cockroach, possess enzymatic activity known to trigger the release of these antigen non-specific 

signals. Airway epithelial cells are often targets of allergens with proteolytic activity, wherein their effects  

often involve epithelial cell cytotoxicity, leading to the release of alarmins and other DAMPs, as well as 

increasing epithelial permeability (179). Additionally, IL-33, thymic stromal lymphopoetin (TSLP), and 

GM-CSF are all produced by epithelial cells following injury and are known to stimulate DCs to induce 

Th2-dominant responses (180, 181). 

After antigen uptake and activation, DC travel via the afferent lymphatics to the T-cell area of the 

lung-draining lymph nodes. During migration, the antigen is internally processed and proteolyzed into 

small peptide fragments for presentation via MHC molecules on the cell surface. DC also upregulate 

expression of costimulatory molecules including CD80 and CD86 (182). Once DC reach the lymph node, 

they present antigen to naïve T-cells until recognition occurs, leading to activation and clonal expansion. 

Respiratory sensitizers are known to induce the preferential polarization of CD4+ T-cells towards a Th2-

dominant profile, cells which produce high levels of IL-4 to promote isotype switching of B-cells and 

production of IgE (183). Subsequent production of antigen-specific IgE molecules completes the 

sensitization process. 

The elicitation phase of allergic asthma generally consists of an early phase reaction and a late-

phase reaction. Upon exposure, the allergen is intercepted by allergen-specific IgE bound to FcεRI 

receptors on the surface of mast cells and basophils. Binding induces cross-linking of receptors and the 

subsequent release of preformed mediators, beginning the anaphylactic cascade responsible for the 

early asthmatic reaction, which is experienced minutes after antigen encounter (184). The release of 
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histamine, tryptase, leukotrienes, and prostaglandins from granulocytes cause bronchial smooth muscle 

constriction. Endothelium and epithelium involvement leads to edema in the airway walls and mucus 

hypersecretion. These effects manifest as clinical symptoms ranging from bronchoconstriction and rhinitis 

to anaphylactic shock (185, 186).  

The late phase asthmatic response occurs 4-6 hr later as a result of mast cell mediators and 

recruitment of inflammatory cells (187). Clinical presentations of the late phase asthmatic response tend 

to be more severe than early phase responses, and include excessive mucus production, increased 

vascular permeability, and airway obstruction.  

Chronic cycles of allergic airway inflammation and subsequent repair are associated with 

numerous structural alterations collectively referred to as airway remodeling. These alterations include 

bronchial smooth muscle hypertrophy, fibroblast accumulation, and epithelial thickening (188). Vascular 

remodeling also occurs, resulting in an increase in both the number of vessels and their diameter in the 

airways of asthmatics. Goblet cell hyperplasia is also frequently implicated in chronic asthmatic 

conditions, which can lead to accumulation of mucus in the airways and subsequent obstructions to 

airflow. These anatomical effects can manifest in physiological implications, such as declines in lung 

function over time (189).  

The gold standard for diagnosis of allergic asthma involves specific inhalation challenge tests, but 

these tests are time-consuming and potentially dangerous. As a result, skin prick testing is often used to 

confirm the presence of antigen-specific IgE (190, 191). However, this method of evaluation assumes 

the dependence of the asthmatic condition on IgE-mediated mechanisms. Some agents are known to 

induce allergic lung responses that present in a similar manner as prototypical asthmatic reactions, but 

involve T-cell-mediated mechanisms. Accordingly, prick testing would be ineffective in evaluating such 

cases. 

The prevalence of asthma varies worldwide, but the World Health Survey estimates that as many 

as 334 million individuals suffer from asthma (192). Incidence rates of asthma have been increasing since 

the 1980s, an effect that has been attributed to modern behavioral and lifestyle factors, many of which 

further implicate involvement from genetic factors. Genes linked with increased susceptibility for the 
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development of asthma include genes with involved in innate immunity and immunoregulation, epithelial 

immunity, Th2-cell differentiation and effector functions, or lung function and airway remodeling (184). 

The profound public health burden associated with the increasing frequency of asthma reflects its 

potential lethality, which is not a feature commonly associated with allergic diseases. While ACD and skin 

allergies can be managed by covering skin and avoiding contact with causative agents, control of asthma 

is generally much more difficult, and failure to do so is much more likely to result in mortality. Likewise, 

the World Health Organization estimates that asthma causes 250,000 deaths annually (78).  

Similar to ACD, asthma is another allergic disorder that can develop following workplace 

exposures. Occupational asthma is defined as a case of asthma wherein a causal relationship to some 

aspect of an individual’s workplace environment exists (193). It has been estimated that 9 to 15% of adult 

asthma cases are caused by the workplace environment and more than 350 agents have been 

associated with the capacity to cause occupational asthma (184). Whereas HMW allergens are often 

implicated in asthmatic responses in the general population, LMW asthmagens are more commonly 

associated with cases of occupational asthma. LMW and HMW agents frequently implicated in 

occupational asthma are listed in table 1.5 along with corresponding occupations of relevance.  

The identification of agents with potential to cause respiratory sensitization has proven to be a 

more complex endeavor than the identification of dermal sensitizers. There are currently no OECD-

validated approaches for use in identifying respiratory sensitizers. As a result, retrospective human data 

is often required to identify agents capable of inducing asthma. However, numerous in vivo, in vitro, and 

in silico approaches have been reported to be effective in identifying potential respiratory sensitizers. 

Some of these proposed assays and their corresponding endpoints of interest are summarized in table 

1.6 (111, 113, 132, 194-214). 

Although immunotoxic agents can act as respiratory sensitizers that cause asthma, they can also 

augment various aspects of asthmatic conditions specific to other allergens. Subsequent modulation of 

asthmatic conditions can manifest differentially depending on exposure occurrence with respect to 

sensitization and elicitation, as illustrated in figure 1.3. For example, in naïve individuals, exposure to 

immunotoxic agents with asthma-modulating potential can result in increased susceptibility to 
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sensitization, as well as a lower threshold of allergen exposure capable of inducing sensitization. 

Comparatively, in cases of established asthmatic conditions, exposure to immunomodulating agents can 

result in increased severity of symptoms, frequency of elicitation responses, and or accelerated 

progression of physiological alterations associated with chronic asthmatic pathogenesis (215). 

While the cellular events required to induce respiratory sensitization are largely conserved (e.g., 

DC activation, antigen presentation, lymphocyte activation), immunological mechanisms responsible for 

augmentation of asthma can be diverse. Likewise, many different agents including chemicals, proteins, 

viruses, bacteria, and particulate matter have been shown to exacerbate asthma via differing 

mechanisms (216). Epidemiological studies have repeatedly demonstrated a correlation between 

cigarette smoking and increased risk for asthma development, as well as increased response severity in 

existing conditions (217, 218). It has been shown that concomitant cigarette smoking and harmless 

antigen exposure results in inflammation of airways causing both enhanced epithelial permeability and 

induction of TSLP production by airway epithelial cells (219). As a result, antigen uptake and the presence 

of ‘danger signals’ in the respiratory tract cause subsequent activation of DC (220). Furthermore, 

cigarette smoking has been shown to lead to increased numbers of DC, in addition to many other 

inflammatory cells, in the respiratory tract, which can also contribute to sensitization (221). 

Viral infections represent another well-established source of immunomodulation with respect to 

asthma. Under normal conditions, airway epithelial cells are unresponsive to lipopolysaccharide (LPS), 

a prototypical PAMP, as they do not constitutively express the PRR associated with its recognition, TLR-

4 (222). However, respiratory syncytial virus (RSV) infection has been shown to cause increased TLR-4 

mRNA expression in these cells, facilitating their recognition of LPS, and subsequently priming the 

airways for sensitization (222). Similarly, infection with rhinoviruses is known to exacerbate asthmatic 

conditions by triggering increases in IL-25 production by bronchial epithelial cells (223). The role of IL-25 

in asthma involves activation of type 2 innate lymphoid cells (ILC2) and potentiation of Th2 responses, 

effects correlated to increased clinical response severity in late-phase asthmatic reactions (224, 225).  

Agents suspected of having the potential to augment asthmatic conditions are often evaluated 

using different allergy models. In these models, laboratory animals are sensitized to common 
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aeroallergens, including the chicken egg protein, ovalbumin (OVA) or house dust mite (HDM) (226). 

Exposures to test agents can be incorporated at various phases of the model to elucidate the effects on 

specific immunological processes (figure 1.3). Subsequently, asthmatic responses can be elicited by 

challenging the animal with the model antigen, and the severity of the immune response can be 

measured. Responses can be compared between groups exposed to the test agent and control animals 

and the potential for augmentation can be delineated as a function of various different immunological 

biomarkers (227).  

 

1.1.2.3. Metals and Allergic Disease 

Metals are a class of immunotoxic agents associated with expansively diverse immune effects 

ranging from immunosuppression to autoimmunity and allergy, the effects of which can manifest in 

various tissues including the kidneys, skin, and lungs (228, 229). However, the development of metal-

specific hypersensitivity responses is one of the most common immunotoxic effects associated with 

exposure to metals (91). 

Contact allergy to metals is very common in the general population. It has been estimated that 

10-20% of individuals worldwide suffer from metal-induced ACD (230). Data generated from thousands 

of patch test studies reveal that the most common inducers of metal ACD are nickel, gold, cobalt, and 

chromium. Interestingly, studies using geographically-distinct test populations have demonstrated that 

these four metals are consistently problematic with respect to ACD worldwide (table 1.7) (230-266). 

Though less frequently associated with ACD, copper, aluminum, and platinum group metals are also 

known to cause dermal allergy in some individuals (267-272).  

Metal-induced skin allergy also presents a notable concern in occupational settings. Individual 

metals, specific allergic skin conditions, frequency of occurrence, and corresponding industries of 

association are shown in table 1.8 (13, 101, 247, 267, 272-376).  

Respiratory allergy caused by metals is much less common than contact allergy to metals. The 

majority of reports describing the development of metal-specific respiratory allergy have implicated 

occupational exposures to airborne metals in workers (377). Although reports are far less common than 
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cases of dermal allergies to metals, diverse number of pulmonary immune reactions to metals in the 

workplace have been described and are summarized in table 1.9 (13, 283, 294, 295, 316, 340, 377-451).  

Many of the underlying immunological mechanisms involved in metal-induced respiratory allergy 

remain unclear. Cases are uncommon in the general population, limiting the majority of discernable 

knowledge to be yielded from occupational case reports, many of which utilize inconsistent approaches 

of clinical assessment and implicate confounding circumstances (452). Despite these limitations, a 

consistent finding within the existing collection of studies is that divergent immunological mechanisms 

are involved in metal-induced respiratory allergy. 

Among existing reports, metals associated with the development of asthma include nickel, 

chromium, cobalt, platinum, aluminum, zinc, and vanadium (168, 432, 453). Among these, metal-specific 

IgE has only been definitively implicated in cases of asthma caused by nickel, platinum, chromium, and 

cobalt (377, 389, 419, 454-456). However, the existence of IgE molecules specific for these metals does 

not always coincide with asthmatic symptoms. Numerous reports have described asymptomatic 

individuals with existing pools of metal-specific antibodies (286, 383). In addition to IgE molecules 

capable of mediating metal-induced asthmatic responses, metal-specific IgG molecules have also been 

reported in cases of cobalt and platinum-induced asthma (390, 420). Contrarily, several cases of metal-

induced asthma have been associated with the absence of metal-specific antibodies, but presence of 

metal-reactive T-lymphocyte populations (412). Collectively, these findings suggest the potential for both 

IgE-mediated mechanisms, as well as other underlying mechanisms to contribute to respiratory allergy 

caused by metals. 

Respiratory exposure to metals in the general population mostly occurs at low levels as a result 

of particulate air pollution. These exposures most commonly result in aggravation of asthmatic symptoms, 

as opposed to sensitization (457). Exposure to particulate matter and metal-rich ambient air pollution has 

been shown to both promote the development of and exacerbate the severity of existing asthmatic 

conditions (458-462). Mechanisms underlying these effects on asthma range from the induction of 

oxidative stress, alteration of TLR expression and activation state of airway DC, recruitment of 
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eosinophils and other inflammatory cells to the lung, and induction of Th2-skewed cytokine responses 

(463, 464). 

Unique Mechanisms of Metal Interactions with Immune Cells: Compared to the immunogenic 

activity of other types of allergens (proteins, reactive chemicals), metals are unique allergens for several 

reasons. First, the unique chemistry of metals is fundamental to their diverse immune effects. Expansive 

speciation of metals can include metallic and elemental forms, ions, salts, and organified compounds. 

Despite conservation of elemental constituents between these species, many exhibit divergent chemical 

properties and biological effects (465). Moreover, as illustrated by the transition metals, many metals 

exist in and transition between different oxidation states, all with distinctive biological activities (466, 467). 

Generally, metallic forms of metal elements are largely toxicologically inert, whereas ionic salts exhibit 

enhanced bioavailability and subsequently increased potential to cause adverse health effects. 

Organification of metal species often increases their lipophilicity, promoting their passage across 

biological barriers, as demonstrated with mercury and tin (465).  

This speciation-dependent chemical behavior of metals renders them unique allergens on a 

molecular level. These chemical properties of metals have been assocated with the potential to modulate 

the activities of various immune cells involved in the development, elicitation, and progression of allergic 

disease.  

With respect to sensitization, several metals are known to modulate activation of innate immune 

cells by PRRs. For example, some metal ions are known to produce functional mimicry of PAMP (468). 

Schmidt et al. (2010) demonstrated that nickel ions were capable of binding directly to human TLR-4, a 

receptor most commonly associated with the recognition of a common PAMP, LPS. The subsequent 

signaling cascade led to the release of pro-inflammatory mediators critical to the development of Ni 

hypersensitivity (469). It was later discovered that other transition metals, including cobalt and palladium, 

were also capable of binding TLR-4 and inducing similar effects (470). Similarly, gold ions have been 

demonstrated to bind and activate TLR-3 on keratinocytes (470, 471). Metal antigen presence and the 

simultaneous capacity to activate such signaling pathways fulfills the demand for both antigen-specific 

and non-specific signals to DC to induce their maturation. This type of ‘auto-adjuvant’ effect is likely 
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implicated in sensitization, as the metals associated with this effect correspond with metals with high 

rates of sensitivity in the general population (472).  

Metals are also known to modulate mechanisms of communication between innate and adaptive 

immune cells, which can have implications for both sensitization and elicitation of allergy. In the context 

of antigen presentation, Noble metals, beryllium, and nickel have been shown directly bind to cell surface 

MHC proteins resulting in altered interactions between APC and T-cells (473-477). These mechanisms 

have been suggested to result in bypassing of steps required for sensitization to other antigens, including 

intracellular processing. Some metal cations have also been associated with biochemical interference 

with DC antigen presentation to antigen-specific lymphocytes in the context of allergic elicitation (478).  

Immune cells can also modulate properties of metals implicated in their immunotoxic and 

allergenic effects. For example, gold (I)-based compounds are known to be immunologically inert, but 

their uptake by phagocytes can lead to oxidative metabolism and transformation into gold (III). The 

enhanced reactivity of gold in this oxidation state is associated with the potential to induce structural 

alterations in self-proteins, resulting in sensitization (479). 

Metal-specific T-cells have been shown to exhibit paradoxical behaviors with respect to metal 

specificity in the context of elicitation responses. Many allergenic metals, notably the transition metals, 

are known to exhibit immunological cross-reactivity. For example, CD4+ nickel-specific T-cell clones were 

shown to cross-react when presented with other transition meals including copper and palladium (480-

482). Similarly, promiscuous interactions between gold and lymphocytes has been observed, leading to 

activation of both CD4+ and CD8+ T-cells in a MHC-unrestricted manner (483). 

Contrarily, some metals have been associated with the generation of metal-specific T-cells that 

exhibit precise specificity. For example, following loading of DC with titanium ions in vitro, one study 

demonstrated that the subsequently-generated titanium-specific lymphocytes selectively reacted to 

titanium(IV), indicating that antigenic peptides formed by metal ions can exhibit oxidation state specificity 

(484). Furthermore, another study demonstrated that the antigens generated by ionic and nanoparticulate 

forms of titanium induced selective proliferation of CD4+ and CD8+ subtypes and correspondingly 

divergent release of cytokines (485). 
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Similar observations have been reported with respect to metal-specific antibodies. Antibodies for 

anti-metal chelates were shown, in one instance, to exhibit specificity for the antigen-conjugated metal 

ion (486). Antibodies have also been shown to have the capacity to discriminate between crystalline 

facets of gallium arsenide, suggesting the potential for variations in crystallinity to generate unique 

antibodies despite identical chemical constituents (487). Contrarily, aluminum-specific antibodies were 

demonstrated in another study to have the capacity to recognize free aluminum ions, various compounds 

containing the metal, as well as protein-bound aluminum (488). 

These diverse chemical properties of metals and their subsequent interactions with immune cells 

during all phases of allergic disease likely underlie their unique association with divergent hypersensitivity 

mechanisms. Whereas most protein and chemical allergens are exclusively associated with the induction 

of T-cell- or IgE-mediated allergic responses, many metals (i.e. nickel, cobalt, chromium) have the 

capacity to induce hypersensitivity responses via both IgE and T-cell-mediated mechanisms (489). 

Interestingly, concomitant IgE and T-cell-mediated hypersensitivities to the same metal have been 

occasionally reported in patients (414). By comparison, other reports have shown conflicting relationships 

between respiratory symptoms caused by metals, including rhinitis, and contact sensitivity to the same 

metal (490). 

 

1.1.3. Emerging Concern: Immunotoxic and Allergenic Potential of Nanomaterials 

The nanotechnology field is projected to continue expanding into the foreseeable future (2). 

Accordingly, exposures to nanomaterials are likely to increase in both occupational settings, as well as 

in the general public in the coming years. Simultaneous to the expansion of nanotechnology, the 

prevalence of allergic disease continues to increase globally (77). Accordingly, individuals with existing 

allergic conditions represent a population that may be particularly susceptible to adverse health effects 

following metal nanomaterials. Moreover, since it has been proposed that modern lifestyle and behavioral 

factors are responsible for the global increase in susceptibility to allergy development, nanomaterial 

exposures may also lead to increases in rates of allergic sensitization (491).  
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Profound knowledge gaps currently exist regarding the implications of nanotechnological 

expansion on the public health burden of allergic disease. However, established knowledge of allergic 

disease processes and nanotoxicological advancements have helped to identify several specific areas 

in need of active investigation to begin addressing this overarching concept. 

First, although many diverse types of nanomaterials exist, one major class may be exceedingly 

relevant in the context of allergy. Unique from carbon-based nanomaterials (e.g., carbon nanotubes, 

carbon black, graphenes) and other nanomaterial types (polymers, composites, clays, ceramics), metal-

based nanomaterials (e.g., metallic, oxidic, alloy, and salt forms) are one of the most highly-produced 

types of nanomaterials. Noteworthy metal nanomaterials, their applications, and corresponding rates of 

production are shown in table 1.10. Of the 1,829 nanomaterial-containing products listed in the Consumer 

Product Inventory in 2019, the vast majority contain metal-based nanomaterials (492). Some of these 

nanomaterials may present a particular threat to the immune system, since many of the constituent 

elements are metals known to induce and augment diverse types of allergic disease (254, 468). 

Several established toxicological paradigms constitute evidence suggestive of the potential for 

nanoscale metals to cause more pronounced immunotoxic effects with implications for allergic disease 

than larger forms of these metals. For example, the immunomodulatory effects of air pollution are known 

to be size-dependent. Metal-rich particulate matter has been shown to induce more pronounced 

asthmatic exacerbations when in the ultrafine range (461).  

A similar observation pertains to the development of allergic responses following implantation of 

metal-based medical prostheses (493). Metal-on-metal implants are associated with the release of both 

metal wear particles and ions over time, following which, these constituents exhibit different propensities 

for dissemination, PRR activation, immune cell recruitment, biological molecule interactions, and cellular 

responses (494, 495). Subsequently, the preferential release of ions from metal implants is often 

associated with the development of delayed-type metal hypersensitivity, whereas release of particulate 

debris is often preferentially associated with chronic inflammatory reactions and foreign body responses 

leading to aseptic loosening and rejection of implants (496). These discrepancies underlie the 

discernment between “ion” and “particle” diseases caused by metal constituents released from implanted 
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devices (497-500). Moreover, metal debris particles released from implants can assume a variety of 

sizes, morphologies, and surface textures, all of which have also been shown to impact their 

immunogenic potential (501).  

Another concern with respect to metal nanomaterials and allergic disease is that many of the 

properties associated with the allergenic effects of metals are known to be altered on the nanoscale. For 

example, the sensitizing potential of beryllium is known to be dependent on its physical form and 

dissolution potential (502). Allergic sensitization is preferentially associated with soluble beryllium 

compounds which readily dissociate into ionic constituents upon entry into the lung. The increased 

surface area characteristic of metal nanomaterials is known to enhance the propensity for ion release, a 

property which may render these materials more immunogenic than larger forms of the metals (503). 

Similarly, the spatial geometry of transition metal species has been correlated with their potential for 

cross-reactivity, representing another property with implications for nanoscale metals (479, 504). The 

enhanced catalytic activity, diverse morphologies, and modulated surface properties of metal 

nanomaterials may also facilitate novel mechanisms of interaction with components of the immune 

system leading to effects with potential implications for allergic disease.  

In a similar regard, it is plausible that metal nanomaterials may assume different antigenic forms 

capable of inducing sensitization. Soluble metal nanomaterials that rapidly dissociate into ionic 

constituents may generate antigenic determinants associated with haptenic metal ions. Insoluble metal 

nanomaterials may also release haptenic ions, but may also have the capacity to act as particulate 

antigens. Soluble and particulate antigens are processed differently by APC, which often results in the 

generation of different allergy effector mechanisms, and may be a discrepancy relevant to metal 

nanomaterials (505).  

Another major concern regarding metal nanomaterials and allergic disease is their enhanced 

bioaccessibility. The capacity for an agent to cause allergic disease, or any other general biological effect, 

is dependent on its passage through the anatomical and physiological barriers separating its presence 

in the external environment from components of the host’s immune system. Accordingly, the 

immunogenic potential of many larger materials is often limited as a result of an inability to penetrate 
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various epithelial barriers. However, the barrier functions of the skin and respiratory tract may be less 

effective in restricting passage of nanomaterials, increasing the immunogenic potential of metal 

nanomaterials. Furthermore, the two most common routes of exposure to  nanomaterials, dermal contact 

and inhalation, implicate the two tissues most commonly associated with allergic sensitization. 

Finally, evidence suggests that the acute inflammatory responses associated with metal 

nanomaterial exposure may prime the immune system for allergic sensitization. Similar adjuvant activity 

may also lead to aggravation of existing allergic conditions. Subsequent effects may include enhanced 

severity of allergic reactions and allergic responses occurring in higher frequency. 

The following sections summarize the current scientific knowledge regarding metal nanomaterial 

immune effects with respect to the aforementioned concerns. Nanomaterial bioaccessibility, sensitizing 

capacity, and allergy-augmenting potential are discussed separately with respect to dermal and 

respiratory allergy. In addition to studies that examine specific metal nanomaterial effects, studies 

designed to delineate the role of physical and chemical properties in these effects are emphasized. Other 

relevant in vivo and in vitro immunological studies are also discussed. Finally, considerations and 

knowledge gaps in the field are highlighted as potential directions for future research. 
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1.2. LITERATURE REVIEW 
 

1.2.1. Metal Nanomaterials and Dermal Allergy 

The potential for adverse immune effects following dermal exposure to metal nanomaterials is a 

growing concern due to their increasingly frequent incorporation into consumer goods intended to have 

prolonged contact with the skin (506). The unique optical properties of TiO2 nanoparticles (NP) and zinc 

oxide (ZnO)NP have led to their incorporation in sunscreens and cosmetics for their protective effects 

against ultraviolet radiation (UVR) (507, 508). Silver (Ag)NP are being incorporated into clothes, medical 

textiles, toys, and cleaning products due to their antimicrobial properties, and silica-based nanoparticles 

(SiNP) have been frequently used in cosmetics and as a coating material to alter the properties of other 

materials (509, 510). Likewise, the dermal effects of TiO2NP, ZnONP, AgNP, and SiNP are a particular 

concern with respect to the general public (511). These nanomaterials are also a concern for workers, 

but other metal nanomaterials with high rates of production (listed in table 1.10) are also associated with 

dermal exposures in the workplace.  

The potential for metal nanomaterials to penetrate the skin, induce dermal sensitization, and 

modulate skin allergy development/responses are the three main areas discussed in this section with 

respect to size and other physico-chemical properties. In correspondence with the review of the literature, 

table 1.11 summarizes studies characterizing effects of individual metal nanomaterials on skin allergy 

and table 1.12 summarizes studies designed to examine the effect of physico-chemical properties of 

metal nanomaterials on dermal allergy. Tables 1.13 and 1.14 highlight key events involved in dermal 

sensitization and elicitation, respectively, that have been shown to be subject to modulation by metal 

nanomaterials and their corresponding physico-chemical properties (46, 512-551). 

 

1.2.1.1. Skin Penetration and Translocation Studies 

Adverse immune effects following dermal exposure to an agent are heavily dependent on the 

degree to which the skin protects from their entry into the body. Likewise, one mechanism by which 
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dermal exposure to metal nanomaterials may lead to increased potential for adverse immune effects 

compared to larger-sized metals is by size-mediated evasion of skin barrier function. Although it seems 

logical that the small size of nanomaterials would inherently provide increased opportunity for absorption 

via the skin, there is currently no general consensus on the skin-penetrating capabilities of nanomaterials 

as a collective class of agents (38, 552, 553).  

Numerous studies have demonstrated that metal nanomaterials (< 100 nm) can penetrate the 

skin in various in vivo and in vitro models. Iron-containing (Fe)NP, gold (Au)NP, palladium (Pd)NP, nickel 

(Ni)NP, AgNP,  SiNP, aluminum (Al)NP, and metal-based quantum dots (QD) have all been shown to 

penetrate the skin (43, 46, 515, 554-561). Moreover, many of these studies have established a 

relationship between decreased particle size and increased potential for skin permeation (44, 562-564). 

Hydrophobicity, surface charge, and morphology are additional properties that have been shown to be 

influential in the capacity for these nanomaterials to pass through the stratum corneum (43, 565-570). 

AuNP, specifically, were shown to compromise keratinocyte tight junction integrity in a surface 

modification-dependent manner, following which paracellular penetration of nanoparticles was observed 

(512). This observation highlights that while some metal nanomaterials may not exhibit an inherent 

capacity to passively penetrate the upper layers of the epidermis, they may be capable of causing 

structural alterations in the skin that subsequently facilitate their penetration. 

The majority of studies investigating the skin-penetrating potential of metal nanomaterials have 

been conducted with ZnONP and TiO2NP, which have not generated equally consistent findings as 

studies with other metal nanomaterials Numerous studies have demonstrated that the stratum corneum 

effectively restricts passage of TiO2NP. Repeated application of different forms of TiO2NP did not lead to 

skin penetration in hairless rats, elevated levels of titanium in lymph nodes of minipigs, or penetration of 

human skin transplanted onto immunodeficient mice (571-573). Although TiO2NP were shown to 

accumulate in and around furrows of the skin, microscopic analysis was used to confirm that 20 – 100 

nm TiO2NP remained restricted to the uppermost 3 – 5 layers of corneocytes of the stratum corneum 

(574-577). Contrarily, a few studies using TiO2NP-containing sunscreens have reported penetration of 

particles into the viable epidermis of human skin (578-580). In many of these studies, TiO2NP exhibited 
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size profiles identical to other metal nanomaterials shown to penetrate the skin in other studies, 

suggesting that size alone is not a property capable of facilitating skin penetration.  

Similar observations have been reported regarding different forms of ZnONP. Despite physical 

associations with hair follicles, ZnONP were not capable of penetrating the stratum corneum in multiple 

models, irrespective of alterations in size, morphology, and surface characteristics (516, 581, 582). 

However, ion release from ZnONP and ZnONP-containing sunscreens has been observed, highlighting 

a potential risk uniquely associated with metal nanomaterials upon skin exposure (583).  

Adverse biological effects may emerge following dermal contact with metal nanomaterials as a 

result of skin penetration by either the particulate material, or ions released from the parent material. 

Accordingly, different physico-chemical properties may be implicated in the toxic potential of soluble and 

insoluble metal nanomaterials in this context.  

With respect to penetration of the skin by metal ions, physico-properties associated with 

nanomaterial dissolution potential have been correlated to the subsequent bioaccessibility of the metal 

constituents (91, 584, 585). The rate of ion release from metal nanomaterials has been shown to be 

proportional to the specific surface area (SSA; surface area per mass unit) of the material (586-588). 

Nanoscale dimensions are associated with exponential increases in SSA, explaining the observation that 

application of sunscreens containing ZnONP caused greater increases in blood, urine, and organ zinc 

ion levels than sunscreens containing larger-sized ZnO particles (589-591). Other properties of relevance 

to the dissolution potential of metal nanomaterials, such as particle coating, vehicle, and suspension pH 

have also been shown to influence metal ion release from nanomaterials following dermal exposure (516, 

583). 

Although physico-chemical properties of metal nanomaterials have been shown in some 

instances to impact skin penetration, an assortment of host factors can also impact this process. Gender- 

and ethnicity-specific physiological characteristics associated with variations in the skin’s defensive 

capabilities are known to exist, indicating that specific groups of individuals may exhibit an increased risk 

for adverse effects following skin exposures. Similarly, transient alterations in the anatomical integrity of 

the epidermis, skin pH, and degree of hydration can also influence penetration of materials through the 
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dermal barrier (592-594). Vast discrepancies in epidermal thickness also exist between different 

anatomical locations of the body, which renders some areas of exposure a greater concern than others. 

One of the most well-studied processes involving host-dependent alterations in the skin-

penetrating potential of metals in contact with the skin is the modulation of physico-chemical properties 

upon contact with sweat. Studies using biological fluids designed to simulate the biochemical 

environment of sweat have demonstrated that the dissolution behavior, zeta potential, and degree of 

agglomeration of various metal nanomaterials are subject to modulation upon interactions with the 

molecular components of sweat (587, 595). Since many of these properties have been previously 

correlated to the potential for metal nanomaterials to penetrate the skin, sweat-induced biochemical 

alterations in the skin present a notable contributing factor in the potential for dermal absorption. 

In addition to promoting the release of larger quantities of bioavailable metal ions from parent 

materials, the biochemical characteristics of sweat can also facilitate alterations in metal ion valence state 

(596). Since the passage of Cr ions through the epidermis is known to be dependent on oxidation state, 

these interactions may, therefore, greatly contribute to the biological activity of metal nanomaterials (597). 

Structural appendages of the skin represent another host-dependent variable with potential to 

facilitate or impede the passage of metal nanomaterials. The primary mechanism of skin penetration by 

topically-applied agents generally involves movement through the extracellular spaces between 

corneocytes in the stratum corneum. However, appendages including hair follicles, sebaceous glands, 

sweat glands, and skin folds can also mediate the penetration of epidermal layers. These pathways 

appear to be increasingly relevant in the context of metal nanomaterial exposure, as evidenced by the 

notable efficacy of nanoscale pharmaceutics and vaccines delivered transfollicularly (598).  

Compared to the thickness of the stratum corneum, which measures 10 – 20 µm, hair follicles 

can reach a tissue depth of 2,000 µm (599). Accordingly, hair follicles and other dermal appendages may 

enhance the capacity for metal nanomaterials to pass through the upper layers of the epidermis and 

reach deeper layers of the skin. Although transfollicular penetration routes can lead to increased 

bioaccessibility of metal nanomaterials, these mechanisms also present a particular concern with respect 

to dermal immune responses. The base of hair follicles can extends all the way into the dermis, where 
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the structure receives generous lymph and blood supply, which can facilitate translocation of 

nanomaterials into the circulation (56). Moreover, since hair follicles are surrounded by dense networks 

of LC and specialized keratinocyte subpopulations known to have critical roles in the early events of 

sensitization, this route of penetration may increase the likelihood for metal nanomaterials to cause 

adverse immune responses (553, 600, 601).  

Dermal structures such as hair follicles also present a potential risk for adverse effects caused by 

metal nanomaterials that remain effectively restricted by the stratum corneum to the outermost epidermal 

layer. Hair follicles and other appendages can serve as a reservoir for topically-applied agents, facilitating 

their accumulation within the epidermal layers (602). Retention of materials in hair follicles can extend 

the duration of exposure ten-fold, raising specific concerns for nanomaterials capable of releasing 

biologically-active metal ions (570, 603-606). Since frequent low dose exposure is known to promote 

sensitization of the skin by contact allergens, retention of metal nanomaterials in follicles of the skin may 

constitute a significant concern with respect to dermal allergy (607). 

The diameter of hair follicles can vary greatly in response to anatomical location, but the smallest 

follicles tend to be located on the forehead and forearm and measure between 66 and 78 µm (608). 

Interestingly, the optimal size for penetration of hair follicles is significantly larger than the < 100 nm size 

range associated with increased skin penetration of several metal nanomaterials. Particles with 600 - 700 

nm diameter have been shown to deposit in the deepest depths of hair follicles, suggesting that 

agglomerates of nanomaterials in this size range are potentially more hazardous than primary particles 

(603, 609). Furthermore, preferential accumulation within hair follicles and sweat ducts of the skin has 

been observed by nanomaterials with specific properties, such as hydrophobic and neutrally-charged 

surface chemistries (570, 610).  

The role of disrupted skin barrier integrity is another host factor that has been commonly studied 

in the context of metal nanomaterials and skin penetration. The potential impact of compromised dermal 

barrier functions also has notable relevance to allergic disease, specifically, since skin permeability can 

be increased 4 – 100 times in individuals with skin allergy (45). Scratching to alleviate itching associated 

with allergic skin lesions leads to mechanical damage in the upper layers of skin. Similar degrees of 
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barrier disruption have been shown to increase in vivo penetration of some metal nanomaterials in 

humans and rodents (611-614). In vitro simulations using a human skin model called the Franz Method 

have demonstrated increased capacity for passage through damaged skin by 25 nm AgNP, 6 nm 

platinum (Pt)NP, 5 nm rhodium NP (RhNP), 10 nm PdNP, 78 nm NiNP, 17 nm cerium oxide (CeO2)NP, 

and 80 nm cobalt (Co)NP (515, 555, 615-618). Contrarily, studies have shown that penetration by various 

sizes of TiO2NP and ZnONP was not increased when skin had been damaged by chemical irritants, tape-

stripping, hair removal, or mechanical force (575, 619-623).  

A few in vivo studies have also investigated the effects of skin barrier dysfunction resulting from 

existing skin allergy on the penetration of metal nanomaterials (45). In a mouse model of skin allergy, 

penetration of allergic skin by ZnO was size-dependently increased, wherein 240 nm ZnO particles did 

not penetrate the skin to a similar extent as 20 nm ZnONP (624). Studies using non-metal nanomaterials 

have also demonstrated that penetration of nanomaterials in allergic skin is size-dependent (552). 

ZnONP were also shown to penetrate allergic skin ex vivo using human skin samples (625). Contrarily, 

application of 35 nm ZnONP to skin of living human subjects with atopic dermatitis did not result in 

penetration of viable skin (623). Discrepancies between these studies may be reflective of varying 

exposure durations, as the study reporting penetration involved continuous exposure of up to 2 weeks, 

compared to the 4 hour exposure wherein no penetration was observed.  

Comparatively, equally prolonged exposure to AgNP-containing textiles did not lead to increased 

skin penetration in individuals suffering from atopic dermatitis compared to control subjects. Sleeves 

containing silver particles (30 – 500 nm) were worn by human subjects for 8 hr each day for 5 days, 

following which levels of AgNP and aggregates in the skin were quantified. Compromised skin barrier 

was not associated with increases in AgNP skin accumulation; moreover, no differences in urine silver 

ion levels were observed, indicating that atopic dermatitis did not impact the absorption of ions released 

from the textiles either (626, 627). 

Several factors may be responsible for the discrepancies in findings regarding the importance of 

skin barrier integrity on metal nanomaterial skin penetration. First, differing degrees of epidermal barrier 

function disruption likely exist between the different models, representing a potential source of variation 
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between studies. Complete ablation of epidermal function is only observed in response to severe burns 

and lacerations; likewise, the diverse mechanisms of experimentally-induced disruptions of the stratum 

corneum should be compared cautiously. In addition, many features of atopic dermatitis are likely to differ 

between experimentally-induced disease states in animal models and human subjects with established 

conditions. In human studies, individuals are likely to exhibit expansive variations in existing lesion 

severity, as well as differences in the degree of influence from chronic effects. Since chronic skin 

inflammation can result in epidermal thickening, enhanced barrier function is not uncommon in many skin 

disorders (628). All of these factors could have contributed to the divergent findings reported amongst 

the existing studies. 

The capacity for metal nanomaterials to penetrate the skin appears to be influenced by both 

nanomaterial properties and host factors in many instances. However, environmental factors may also 

impact this process. One environmental factor with particular relevance to metal nanomaterials and their 

use in sunscreens in UVR. UVR has been shown to augment the skin penetrating potential of 

nanomaterials as a result of modulatory effects on both host skin barrier functions and biological activity 

of metal nanomaterials. In the context of host-mediated factors influencing skin permeability, high levels 

of UV exposure and subsequent sunburn can significantly disrupt epidermal barrier function. However, 

low doses of UV exposure are also known to compromise the integrity of the epidermis (629-631). 

Accordingly, several studies have demonstrated that UV exposure prior to topical application of 

nanomaterials results in greater depth of penetration by ZnONP, TiO2NP, and QD (514, 632, 633).  

UVR can also induce alterations in physico-chemical properties of metal nanomaterials that may 

facilitate their passage through the stratum corneum. UVR has been shown to induce nanomaterial 

agglomerate disaggregation, as well as enhanced ion release, both of which are effects capable of 

enhancing the passage of nanomaterials through the upper layers of skin (634-637). Another effect of 

UVR capable of increasing the skin penetrating potential of metal nanomaterials is photoactivation. In 

vitro, UVR-induced ROS production by TiO2NP, QD, and ZnONP has been associated with DNA damage, 

lipid peroxidation, and mitochondrial permeability in skin cells (638-643). Subsequent cytotoxicity to 

dermal fibroblasts, keratinocytes, and melanocytes is another mechanism by which skin barrier integrity 
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can become compromised as a result of UVR. In vivo, UVR-induced photoactivation of TiO2NP has been 

associated with increased adherence to the skin, structural rearrangement of the lipid bilayer, and 

facilitation of large molecule transdermal penetration (634, 644-647). Since the degree of ROS produced 

in response to UVR has been associated with nanoparticle surface area and reactivity, other related 

properties such as size, degree of agglomeration, and surface modification may also contribute to skin 

penetration following UVR exposure (648-651). 

These observations demonstrate the potential for UVR to enhance skin penetration of metal 

nanomaterials following dermal exposure. While this effect can result in increased biological activity of 

metal nanomaterials, it also presents a unique concern with respect to skin allergy. Many signaling 

pathways and pro-inflammatory mediators involved in sensitization have been associated with UVR-

dependent photoactivation of metal nanomaterials (652, 653). UVR is also known to modulate the 

immune status of the skin by a number of mechanisms, which can impact allergic processes. For 

example, UVA and UVB are known to augment costimulatory molecule expression, compromise antigen 

presentation, and induce apoptosis of LC (654-656). These effects have been shown to impact the 

immunological activity of metal nanomaterials following skin exposure in a few studies. In one report, 

significant depletion of LC (~80%) following UVR exposure increased skin penetration of QD in vivo, but 

resulted in lower levels of metal ion constituents in the lymph nodes (633). Accordingly, UVR has been 

shown to enhance penetration of the skin by metal nanomaterials, alter the immune status of the skin, 

and modulate the transport of nanomaterials from the skin to lymphoid tissues, all of which are effects 

with potential implications for dermal allergy. 

 

1.2.1.2. Skin Sensitization Studies 

 The skin-sensitizing potential of metal nanomaterials has been investigated in a few studies using 

traditional in vivo approaches. SiO2NP, ZnONP, and TiO2NP have all been incorporated into studies 

employing the LLNA (657, 658). Accordingly, it was demonstrated that topical exposure to 100 nm 

mesoporous and colloidal SiO2NP, 7 nm SiO2NP, and ZnONP were not capable of inducing the three-
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fold increase in lymphocyte proliferation associated with classification as a dermal sensitizer (529, 659, 

660). Similarly, topical exposure to 25 nm TiO2NP did not induce dermal sensitization in multiple studies; 

however, subcutaneous injection of equal doses resulted in significant increases in lymphocyte 

proliferation, suggesting that the inability for TiO2NP to penetrate the skin might be a limiting factor in the 

potential to induce dermal sensitization (661, 662). 

The GPMT is another in vivo technique used to evaluate dermal sensitization potential that has 

been employed in the investigation of several metal-based nanomaterials. In one study, five UV-

absorbing materials containing SiO2NP, ZnONP, and TiO2NP were assessed. One out of 10 animals 

exhibited slight erythema following topical exposure to the ZnONP and TiO2NP-containing agents, 

leading to their classifications as mild skin sensitizers (664). In another study, 1 out of 20 animals 

exhibited discrete patchy erythema following intradermal injection with 10 nm AgNP, leading to its 

classification as a weak skin sensitizer (665). Similarly, AgNP were classified as a Grade II (mild 

sensitizer) after 2 out of 10 guinea pigs exhibited lesions 48 hr after application of AgNP-containing sterile 

gauze (666). However, similar AgNP-containing dressings were actually shown to improve the healing of 

burn wounds in rats over an 18 day period as compared to rats with dressings lacking AgNP, but the 

study only examined the localized effects (667). The GPMT has also been used to demonstrate that 

surface-modified FeNP, AlNP, and hydroxyapatite nanoparticles did not induce skin sensitization (668-

670).  

Using a different approach, the sensitizing potential of 5 and 10 nm AgNP was investigated by 

Hirai et al. (2016) in vivo. Mice were injected with AgNP or Ag ions and LPS once a week for four weeks, 

then intradermally challenged. Interestingly, mice administered Ag ions in the sensitization phase did not 

develop ear swelling following challenge with any form of silver. Contrarily, AgNP exposure induced 

sensitization, wherein the smaller AgNP appeared to have stronger sensitizing potential, which was 

dependent on CD4+ T-cells and IL-17a, but not IFN-γ. Moreover, ear swelling was observed in response 

to additional sizes of AgNP (50 and 100 nm) and silver ions, suggesting that the immune response was 

not nanoparticle-specific. Further examination revealed that 3 nm NiNP was also capable of inducing 

sensitization in the model, whereas minimally-ionizable 10 nm AuNP and 10 nm SiNP were not (671). 
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In one of the few existing studies that has examined metal nanomaterial effects with respect to 

existing metal allergy in vivo, Shibuya et al. (2019) used a mouse model of metal allergy to evaluate the 

potential for metal nanomaterials to elicit allergic responses in the skin. Following sensitization with LPS 

and Pd salts, allergic responses were differentially elicited in response to PdNP or Pd salt exposure. Pd 

salts were associated with more severe skin responses than those induced by PdNP. Subsequent testing 

of human subjects generated similar findings, wherein the soluble metal salt selectively triggered allergic 

skin reactions (672). 

In addition to in vivo approaches to assess skin sensitization, three non-animal alterative 

assessment methods based on different steps of the skin sensitization AOP are currently validated by 

the OECD. While metal nanomaterials have not been incorporated into any of the assays, studies with 

similar cell lines and endpoints have indicated that many metal nanomaterials can induce effects similar 

to those of other skin sensitizers. Studies generating findings with relevance to the DRPA and DC 

activation with be discussed in a future section, given the potential relevance of these findings for both 

ACD and asthma. However, keratinocyte-based assays exhibit specificity for the events of skin 

sensitization, and may represent an approach capable of predicting the potential for metal nanomaterials 

to sensitize the skin. 

Keratinocytes are a source of numerous mediators that facilitate LC migration, antigen 

presentation, and T-cell activation during sensitization (673). Since many of these mediators are released 

in response to sensitizer-induced activation of the antioxidant/electrophile sensing pathway 

Keap1/Nrf2/ARE, its activation is suggestive of potential for the test agent to contribute to the cellular 

response of the sensitization AOP (143, 144, 674). The human keratinocyte cell line associated with the  

assay, HaCaT, has been frequently used to investigate potential metal nanomaterial effects on the skin 

in vitro. Correspondingly, PdNP, AuNP, and PtNP have all been shown to activate the Nrf2 pathway in 

keratinocytes in vitro (675, 676). Similarly, Zn-containing QD, ZnONP, and CuONP have all been shown 

to alter expression of several specific genes associated with the Nrf2 pathway, including HMOX1 (677-

679). 
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Prior to the establishment of the Nrf2 pathway’s involvement in the keratinocyte response to skin 

sensitizers, in vitro cytokine release by keratinocytes was often evaluated as an indicator of sensitizing 

potential (680, 681). TNF-α is a keratinocyte-derived cytokine involved in sensitization that is critically 

involved in skin sensitization by chromium and nickel (682, 683). Dose-dependent TNF-α release has 

been observed following keratinocyte exposure to AgNP, QD, and ZnONP, indicating that high doses 

may promote LC maturation and dermal sensitization (679, 684, 685). IL-18 and IL-1β are also cytokines 

critical for LC activity that have been shown to be increased following exposure to QD, SiO2NP, TiO2NP, 

and AgNP (679, 684, 686-689).  

Another mediator involved in skin sensitization that is differentially-released by keratinocytes in 

response to irritants and sensitizers is IL-1α (680, 690). Although it can also be actively secreted following 

inflammasome activation, IL-1α is an intracellular molecule that functions as an alarmin (691). During 

programmed cell-death, IL-1α remains associated with chromatin and its sequestration prevents any 

effector functions; contrarily, under necrotic conditions, it is passively released and exhibits bioactive 

potential. Accordingly, the mechanism of metal nanomaterial-induced keratinocyte cytotoxicity may 

significantly impact the development of ACD as a result of differential IL-1α release. Although 

mechanisms associated the preferential induction of necrosis or apoptosis by nanomaterials have yet to 

be established, some properties have been correlated to these effects (692, 693). For example, surface 

charge of 1.5 nm AuNP was demonstrated to be responsible for the mechanism of cell death in HaCaT 

cells in vitro. Charged AuNP led to disruptions in mitochondrial membrane potential and intracellular 

calcium levels causing apoptosis, whereas neutral AuNP were associated with necrotic cell death (549). 

Preferential HaCaT apoptosis or necrosis has also been associated with AgNP surface coating and 

TiO2NP crystal phase (694, 695). Interestingly, cytotoxic effects of Ag nanowires on human primary 

keratinocytes was shown by one study to be dependent on particle number (696). Collectively, these 

findings assert that surface chemistry/reactivity of metal nanomaterials may be a critical property in 

determining whether dermal exposure results in irritation responses or allergic sensitization.  

Very few studies have been conducted that examine metal nanomaterial effects specifically on 

LC. However, topical exposure to < 100 nm AgNP in guinea pigs was shown to increase the number of 
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LC at the site of exposure in a dose- and time-dependent manner in one study (524). This observation is 

relevant to skin sensitization since the concentration of LC in the skin has been correlated with increased 

susceptibility to ACD development. In vitro, associations with LC have been shown to be influenced by 

SiNP size and surface functionalization (43, 553). Smaller SiNP size has also been correlated to 

increased uptake, ROS production, and cytotoxicity to LC in vitro (86, 525).  

Other in vivo studies have confirmed that metal nanomaterials including QD and AuNP are taken 

up by LC and subsequently transported to the regional lymph nodes (697, 698). In one study, Santini et 

al. (2015) demonstrated that the surface modification, and subsequent hydrophobicity, of FeNP was 

associated with preferential uptake of the particles by specific cell types within the skin. Following topical 

application, FeNP suspended in aqueous suspension were more commonly associated with local 

phagocytic cells, which subsequently translocated to the lymph nodes (699). Contrarily, FeNP applied in 

cream formulations were selectively internalized by epidermal and structural cells of the skin. These 

observations illustrate the capacity for a specific physio-chemical property to directly contribute to the 

early immunological processes involved in allergic sensitization. 

An observation regarding metal nanomaterial DC effects with specific implications for ACD and 

dermal sensitization is the finding that some metal nanomaterials can promote DC cross-presentation. 

Cross-presentation describes the uptake of exogenous antigens and their subsequent processing by 

pathways normally associated with endogenous antigens (700). As a result, the exogenous antigen is 

presented by MHC I molecules to CD8+ T-cells, following which, populations of cytotoxic effector cells 

characteristically seen in ACD are established.  

AlNP, AuNP, FeNP, and SiNP have all been shown to modify DC antigen cross-presentation 

capacity (517, 530, 531, 701-704). The mechanism of antigen uptake by DC is known to influence the 

preferential association of antigens with MHC I or II molecules. Small lipophilic haptens associated with 

skin sensitization often enter APC via passive diffusion and bind cytoplasmic proteins, favoring their 

processing by endogenous pathways and presentation by MHC I molecules (705). Accordingly, passive 

diffusion through cell membranes similar to that demonstrated by charged 15 nm AuNP may result in 

promotion of cross-presentation (706-708). Contrarily, receptor-mediated endocytosis of larger antigens 
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has been associated with cross-presentation when uptake occurs by Fc and mannose receptors (709). 

In this regard, the adsorption of macromolecules, including immunoglobulins, to the surface of 

nanomaterials and physico-chemical properties associated with the adsorption of proteins may be 

critically influential in determining the route of antigen processing. 

Another major determinant of preferential antigen association with MHC I or II is persistence 

inside DC. Antigens resistant to degradation in endosomes are more likely to be processed by MHC I 

pathways (710, 711). Likewise, metal nanomaterials with physico-chemical properties capable of 

compromising lysosomal acidification (dissolution rate, surface reactivity) may promote cross-

presentation (712, 713). Similarly, endosomal escape following uptake by DC can result in binding to 

cytosolic proteins and subsequent perception as an endogenous antigen (710). One of the major 

mechanisms of endosomal antigen release leading to cross-presentation is oxidative stress and lipid 

peroxidation causing antigen leakage from compromised endosome membranes (714-716). Oxidative 

stress induced by CuNP, FeNP, and TiO2NP have been shown to cause lipid peroxidation, and these 

metal nanomaterials have also been associated with enhancing DC cross-presentation (52, 717, 718). 

Metal nanomaterials have also been associated with the induction of autophagy and production of 

exosomes by DC, both of which have also been associated with antigen cross-presentation (531, 719-

722). 

 

1.2.1.3. Augmentation of Existing or Developing Skin Allergy 

 Since dermal exposure to metal nanomaterials nearly always occurs simultaneous to other 

exposures, their potential to augment skin allergy has been investigated using various allergy models. 

Metal nanomaterial effects on skin allergy have been studied with respect to both T-cell-mediated ACD 

and IgE-mediated atopic dermatitis.  

Incorporation of metal nanomaterials into ACD models has generated findings suggestive of their 

potential to modulate immunological processes involved in both allergic sensitization and elicitation. In 

one study, subcutaneous exposure to TiO2NP 1 hr prior to skin sensitization with dinitrochlorobenzene 
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(DNCB) increased susceptibility of mice to sensitization, as evidenced by a lower concentration of DNCB 

required to induce sensitization (535, 723). The authors noted that although DNCB is known to induce a 

Th1-dominant response characteristic of ACD, exposure to TiO2NP resulted in a Th2-dominant response 

in the regional lymph nodes. In a similar study, TiO2NP were applied topically 1 day prior to sensitization 

with DNCB, and the same effect on sensitization was observed (535). A diminished Th1 response was 

observed and TiO2NP were detectable in the lymph nodes. Contrarily, SiO2NP and AgNP did not induce 

alterations to DNCB sensitizer potency in the same model.  

In another study, a panel of metal nanomaterials with various physico-chemical properties was 

analyzed for effects on chemical-induced ACD both during sensitization and challenge. When mice were 

sensitized to dinitrofluorobenzene (DNFB), co-administration of QD did not impact the severity of the 

challenge response to DNFB, irrespective of particle charge. However, QD administration simultaneous 

to DNFB challenge did impact the allergic response, wherein the effect was dependent on the surface 

charge of the material. The negatively-charged particles suppressed allergic inflammation, whereas the 

positively-charged materials enhanced skin swelling following allergen challenge. The authors confirmed 

that sensitization to QD did not occur and suggested that variations in the skin penetrating capacity of 

the differently-charged materials was responsible for the observed effects. The conclusions regarding a 

critical role for nanomaterial size and charge on modulation of ACD elicitation responses is supported by 

other findings, as well. ACD reactions to DNFB and 2-deoxyurushiol were shown to be attenuated 

following topical application of 20 nm SiNP and cream containing < 50 nm AgNP (724). Contrarily, 

exposure to positively-charged, surface functionalized 56 nm SiNP did not augment the severity of 

oxazolone-induced elicitation responses when topically applied for 5 consecutive days in another study 

(725).  

As highlighted by Jatana et al. (2017), ACD responses may be subject to modulation as a result 

of allergen chemical modifications induced by interactions with metal nanomaterials. In their study, topical 

application of nanomaterials and subsequent removal prior to application of DNFB, implying that the 

modulation of allergic skin inflammation was not reflective of nanomaterial-induced blockage of adduct 

formation. Although metal nanomaterials exhibit characteristically increased surface reactivity and 
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catalytic potential, their capacity to alter the chemical properties of skin-sensitizing agents associated 

with triggering the molecular initiating events of dermal sensitization has not been extensively studied. 

However, a few studies have demonstrated the potential for such effects to impact both ACD sensitization 

and elicitation. For example, AlNP and AuNP have both been shown to act as non-protein carriers of 

haptens capable of facilitating the generation of hapten-specific adaptive immune responses in vivo (520, 

726). Similarly, topical application of ointment containing calcium-based nanoparticles has been shown 

to capture nickel ions by cation exchange, compromising bioavailability and subsequently preventing the 

elicitation of nickel-specific ACD (727). 

In addition to ACD, metal nanomaterial effects on IgE-mediated atopic dermatitis have also been 

examined using skin allergy models. Compared to the LMW reactive chemicals traditionally associated 

with ACD, atopic dermatitis generally involves protein allergens, which under normal circumstances are 

not able to penetrate the skin (728). However, 100 nm ZnONP and 5 nm AuNP have been shown to 

enhance skin penetration of albumin and protein drugs (729, 730). Likewise, increased permeability of 

the skin associated with some metal nanomaterials may represent a mechanism by which exposure may 

increase susceptibility to atopic dermatitis onset.  

Simultaneous exposure to TiO2NP, AgNP, and SiO2NP during sensitization to HDM in atopic 

dermatitis models has been associated with an amplification of Th2 responses. This effect was shown to 

be more pronounced with decreasing size with respect to AgNP and SiO2NP, but not for TiO2NP (534, 

550, 551). Exposure to 5 nm AgNP during sensitization was associated with augmentation of mast cell 

activity that resulted in more severe skin lesions that appeared earlier than those induced by 100 nm 

AgNP (544). Decreases in SiO2NP size were also associated with enhanced Th2 responses, as 

evidenced by increased TSLP and IL-18 production (550). Decreased particle size has been associated 

with increased aggravation of atopic dermatitis skin inflammation by non-metal nanoparticles, as well 

(731). 

Metal nanomaterial-induced modulation of allergic inflammation in the challenge phase of atopic 

dermatitis has also been demonstrated. In one report, topical application of both 240 and 20 nm ZnONP 

resulted in diminished local allergic inflammation caused by OVA. The smaller particle was associated 
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with more pronounced suppression of local skin inflammation, but simultaneous increases in systemic 

production of IgE (624).  

An interesting observation by Hirai et al. (2015) highlights a potentially critical variation between 

studies that may explain discordant immune effects induced by similar nanomaterials in atopic dermatitis. 

The authors demonstrated that, in their study, exacerbation of allergic sensitization was dependent on 

co-administration of HDM and SiO2NP. When SiO2NP agglomerates were administered at a peripheral 

site from the allergen, the altered antibody response was no longer observed. The dependence of 

nanomaterial/antigen physical associations on the subsequent adaptive immune response has been 

similarly demonstrated by FeNP. In multiple studies, intravenous administration of 58 nm FeNP 1 hr prior 

to subcutaneous OVA sensitization resulted in decreased levels of IgG1 and IgG2 and suppression of 

Th1 and Th17 responses in mice (732-734). Contrarily, when FeNP and OVA were co-administered 

intravenously or subcutaneously, enhanced antibody responses were seen in mice (735, 736). Similar 

immune-stimulating effects of FeNP have been demonstrated when used as an adjuvant by various 

exposure routes during immunization to various other antigens in the context of vaccine studies (737-

741).  

 

1.2.1.4. Mechanisms of Skin Allergy Augmentation by Metal Nanomaterials 

Allergy model studies have demonstrated the potential for various metal nanomaterials to 

augment various aspects of dermal hypersensitivity responses. Despite this, many of the molecular and 

cellular mechanisms responsible for these observations remain unclear. However, findings from other 

studies may help elucidate some of the potential mechanisms by which metal nanomaterials can 

exacerbate skin allergy and further clarify the role of physico-chemical properties in these effects. 

Most skin sensitizers exhibit inherent irritancy potential, an effect that can act as an adjuvant to 

promote sensitization. Accordingly, skin irritation may represent a mechanism by which metal 

nanomaterials can promote the development of metal-induced ACD or other dermal allergies. Although 
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metal nanomaterial-induced skin irritation has not been directly studied in this context, their general skin 

irritation potential has been extensively profiled. 

Historically, rabbits have been the preferential animal model for use in the assessment of acute 

skin irritation, as established by the OECD test guideline 404. Test materials are applied to the skin for 

up to 4 hr, following which, local responses are used to classify the irritation potential (742). A few studies 

been conducted with metal nanomaterials based on this assay. Accordingly, several nano-enabled UV 

absorbers (containing AgNP, SiO2NP, and TiO2NP) were shown to cause skin irritation in rabbits, 

although the effect was minimal in most cases (664). Smaller sizes of AgNP (10, 20 nm) were shown to 

induce more severe skin irritation following exposure when compared to larger particles (30 nm) (547). 

Comparatively, TiO2NP (< 25 nm, 20 – 40 nm), QD (18 nm), SiO2NP (7, 10 – 20 nm), ZnONP (20 – 100 

nm), and AgNP (10 nm) did not induce irritation of the skin in rabbits in other studies (660, 662, 665, 743-

746). A few studies have also examined the skin irritation potential of metal nanomaterials in other animal 

models. AgNP were shown to induce inflammatory effects in porcine skin following 14 days of exposure 

in a size- and surface modification-dependent manner, although the effects were minimally observed 

(684). Chronic skin exposure to ZnONP was shown to cause local irritant effects in rats, as well (747).  

As the use of animal models in toxicity testing is becoming increasingly unfavorable, numerous in 

vitro models have been developed to identify compounds with potential to cause skin irritation. Many of 

these approaches utilize various commercially-available 3D reconstructed models of human skin 

including EpiSkinTM, EpiDermTM and SkinEthnicTM. These and other human skin equivalent models 

(HSEM) are used to identify skin irritants based on their capacity to cause reductions in cell viability in 

these in vitro models. Generally, agents are classified as skin irritants if they produce a reduction in cell 

viability to below 50% after 3 minutes of exposure.  

These guidelines have been used to investigate the skin irritating potential of several metal 

nanomaterials in vitro; however, none have reported effects justifying their classification as irritants after 

3 minutes of exposure. After 1 hr of exposure, SiO2NP were shown to cause irritation in a size and surface 

charge-dependent manner (748). By comparison, exposure to AgNP (10-100 nm), TiO2NP (22-214 nm), 

and cerium dioxide (CeO2) NP (15-40 nm) for 1 hr did not cause irritant effects (662, 749). In similar 
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models, ZnONP (20, 50, 100 nm), AgNP (< 100 nm), Ag nanowires (2 µm x 40 nm, 20 µm x 50 nm), 

TiO2NP (21 nm), AlNP (30 – 60 nm), and FeNP (35 – 45 nm) were also determined to be non-irritating, 

even following exposure for longer durations of time (24 – 72 hours) (696, 742, 743, 750). It remains 

unclear if the same metal nanomaterials associated with irritant responses in the skin are also associated 

with sensitizing potential, however, this represents a potential mechanism that may contribute to the 

development of ACD. 

 

1.2.1.5. Knowledge Gaps in Metal Nanomaterial Effects on Skin Allergy 

Despite the large number of studies that have investigated the skin-penetrating potential of metal 

nanomaterials, there has yet to be a definitive conclusion regarding this capability. Discrepancies in 

findings test materials with identical size profiles suggest that the parameter of size, alone, may not confer 

skin penetrating capacity to materials. However, variations in test model, exposure duration, application 

techniques, test material formulation, methods of endpoint evaluation, and various external factors also 

exist between studies and represent sources of variability between findings that may account for 

discordant conclusions. As noted by Gulson et al. (2012), specific considerations should be given to the 

source of test materials used in different studies, since some studies used pristine metal nanomaterials, 

and others used commercially-available TiO2NP/ZnONP-containing sunscreens. The sunscreen used in 

their study contained isopropyl myristate, a chemical known to enhance the permeability of the skin, as 

well as EDTA, a chelating agent which may have influenced the release of ions from ZnONP (751). 

Accordingly, excipients of commercial sunscreens can greatly impact metal nanomaterial skin 

penetration. 

Also, most studies have overlooked potentially critical features of the skin, such as metabolic 

activity, ablation of which has been associated with enhanced penetration by AuNP (752). Overall, it 

appears that different mechanisms of penetration (e.g., paracellular, intracellular, follicular routes) may 

implicate different toxic responses, which should be investigated further. Irrespectively, it is evident that 
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metal nanomaterials possess many unique properties that render them unique hazards to the skin 

compared to carbon-based nanomaterials or nanoscale pharmaceuticals.  

Overall, knowledge of the effects of metal nanomaterials on skin allergy are largely limited to 

metals including TiO2NP, SiO2NP, and ZnONP. Although the selective investigation of the skin sensitizing 

potential of these metals is likely reflective of their significance to consumer skin exposures, titanium, 

silver, and zinc are not historically associated with clinically significant rates of ACD in the general 

population. However, the observation that some of these metals may have increased potential to induce 

skin sensitization when in nanoparticulate form raises concerns over the lack of investigations into 

nanomaterials comprised of metals commonly associated with ACD (nickel, gold, cobalt).  

While the adjuvant effects of metal nanomaterials have been studied to a greater degree than 

their sensitizing potential with respect to the skin, a definitive role for physico-chemical characteristics 

during the sensitization and elicitation phases of ACD remain unclear. However, there does appear to be 

an established connection between alterations in the early events of atopic dermatitis development and 

simultaneous exposure to metal nanomaterials. Moreover, the requirement for antigen and nanoparticle 

administration by the same exposure route indicates adjuvant effects that are dependent on physical 

interactions between the two.  

The skin microbiome is known to significantly influence many aspects of skin allergy. Many metal 

nanomaterials are being utilized for their antimicrobial properties, but it remains unclear if their capacity 

to alter normal microbial populations presents implications for ACD. Interestingly, the effects of SiNP on 

DC activation and inflammatory cytokine release were shown in one study to be altered in the presence 

of extracellular media from cultures of commensal bacteria. Moreover, the strain of bacteria was also 

implicated in various responses (753). This observation further highlights the impact metal nanomaterial-

induced alteration of normal flora may have on skin allergy. 

 

1.2.2. Metal Nanomaterials and Asthma 

With respect to the respiratory tract, metal nanomaterials of concern for consumers include many 

of the materials mentioned above, such as ZnONP, AgNP, TiO2NP, and SiO2NP. Their incorporation into 
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construction materials, sunscreen sprays, disinfectants, and cosmetic powders can facilitate their 

inhalation upon use. Workers may be exposed to these and other highly-produced metal-based 

nanomaterials (table 1.10), including FeONP, CeO2NP, and CuONP (754). 

Although it is unclear whether nanoscale dimensions of metals increase the likelihood for 

bioaccessibility following dermal contact, size is a critical parameter known to impact the propensity for 

inhalation of materials, their deposition in the respiratory tract, and subsequent potential for systemic 

distribution (755). Decreases in size contribute to the lightweight nature of metal-based nanomaterials 

and their characteristic ‘dustiness,’ which is correlated with the increased potential for inhalation exposure 

compared to larger particles (18, 756). The deceased size profile of nanomaterials results in efficient 

deposition along the entire respiratory tract, as well as the unique potential for deposition in the deepest 

regions of the lung (21). Deposition of nanomaterials in the alveolar region poses unique toxicological 

implications as increased time is required for clearance by normal pulmonary mechanisms, leading to 

prolonged retention (757). Moreover, deposition in the alveolar region increases potential for penetration 

of the blood-air barrier, facilitating entry into circulation, and translocation to distal tissues (758-761).  

Accordingly, the size profile of metal nanomaterials increases their potential for entry into the body 

via the respiratory tract, circumventing one of the major barriers responsible for limiting adverse 

pulmonary immune effects caused by larger metal particles (21). As a result, the effects of metal 

nanomaterials on pulmonary immunity and asthmatic conditions have been extensively studied. Table 

1.15 summarizes studies characterizing individual metal nanomaterial effects on pulmonary immunity 

and table 1.16 summarizes studies designed to examine specific effects of physico-chemical properties 

of metal nanomaterials on asthma. Tables 1.17 and 1.18 highlight processes involved in respiratory 

sensitization and elicitation, respectively, subject to modulation by metal nanomaterials and their physico-

chemical properties (18, 469, 518, 519, 521-523, 526, 527, 532, 539, 546, 726, 761-800).  
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1.2.2.1. Human Studies Demonstrating Pulmonary Immune Effects of Metal Nanomaterials 

A potential association between metal nanomaterial inhalation and subsequent allergic responses 

of the respiratory tract was notably illustrated in a 2014 case report describing a chemist who accidentally 

inhaled NiNP in the workplace. The subject subsequently developed clinical symptoms suggestive of 

metal-specific IgE-mediated respiratory allergy, which included throat irritation, nasal congestion, facial 

flushing, and respiratory distress upon future encounters with NiNP. The chemist also developed 

previously-nonexistent dermal eruptions upon contact with her earrings and belt buckle, indicative of 

development of T-cell-mediated nickel-specific ACD (801).  

This case report reinforces existing concerns over the increased potential for inhalation of metal 

nanomaterials and subsequent potential for allergic sensitization as a result of their decreased size. 

However, the case also emphasizes additional concerns reflective of the unique mechanisms of metal 

allergy. The report findings suggest that sensitization via one exposure route may not limit future 

elicitation reactions to the same tissue; moreover, sensitization by metal ions, irrespective of original 

parent material size, may result in elicitation reactions following exposure to both nano- and bulk-sized 

metal materials. 

Several studies have been conducted to evaluate potential adverse immune effects in human 

subjects at risk for inhalation exposure to metal nanomaterials in their workplaces. In one study, it was 

shown that workers employed by nanomaterial-handling facilities located in Taiwan exhibited an 

increased prevalence of sneezing, dry cough, and productive cough compared to workers with no 

nanomaterial exposures (802). Although the workers were employed by facilities handling SiO2NP, 

Fe2O3NP, AuNP, AgNP, and TiO2NP, it is unclear whether the observed respiratory effects were 

mediated by adaptive immune responses specific to the metals, or non-specific irritant mechanisms. 

Interestingly, increased rates of ACD were also observed in the workers of the nanomaterial-handling 

facilities, but the inciting agents were not determined. Accordingly, it is unknown if exposure to the 

nanomaterials induced sensitization or caused increased susceptibility to ACD development in workers. 
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Similar studies have also demonstrated that exposure to nanomaterials in the workplace can 

cause elevations in various immune-related biomarkers indicative of potential allergic effects (803-805). 

Elevations in breath condensate leukotriene levels have also been observed in subjects exposed to 

TiO2NP aerosol and welding-derived metal nanoparticles (<100 nm) in their workplaces (806, 807). The 

exposed workers had elevations in leukotriene B4, a lipid mediator associated with the recruitment, 

activation, and prolongation of survival of leukocytes in the lung, as well as multiple cysteinyl leukotrienes 

(C4, E4, D4), which are known to be potent mediators of bronchoconstriction (808, 809). Although no 

alterations in lung function were observed in the exposed workers, elevations in levels of lipid mediators 

involved in the pathogenesis of asthma suggest the potential for exposure to TiO2NP in the workplace to 

enhance the severity of asthmatic conditions.  

Collectively, these reports illustrate that inhalation exposure to metal nanomaterials has the 

potential to result in adverse immune effects with potential implications for allergic disease. However, it 

remains unclear if the observed responses were indicative of exposure leading to sensitization or 

exacerbation of respiratory allergy. Limitations of human studies arise from inconsistencies between 

exposure conditions, subject histories, and the requirement for non-invasive, measurable endpoints. 

Accordingly, the effects of metal nanomaterials on pulmonary immunity and underlying mechanisms have 

been assessed in animal models wherein controlled dosing, consistent environments, and additional 

endpoints have helped identify some of the potential underlying mechanisms of metal nanomaterial-

induced pulmonary immune effects. 

 

1.2.2.2. Evidence for Increased Potential for Respiratory Sensitization from Animal Studies 

 The identification of agents capable of causing respiratory allergy presents numerous challenges. 

Currently, there are no validated in vivo, in vitro, or in silico approaches for the identification of potential 

respiratory sensitizers. Moreover, there has yet to be an AOP adopted that highlights the key events 

associated with the development of respiratory allergy. The capacity for both HMW and LWM agents to 

induce asthma, in addition to these complicating factors, renders the identification of potential respiratory 
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sensitizers a historical challenge for immunotoxicologists. Accordingly, no studies have directly 

investigated the potential for any metal nanomaterials to sensitize they airways. Despite this, several 

studies have reported findings that, when compared to proposed methods of respiratory sensitization 

assessment, may provide insight into their potential hazards. 

Biomarkers with proposed utility for in vivo identification of potential respiratory sensitizers 

following pulmonary exposure include IgE and Th2 cytokines (169, 196). These markers have not been 

employed for direct evaluation of respiratory sensitization potential by metal nanomaterials; however, 

numerous studies have reported increased IgE levels following in vivo pulmonary exposure to TiO2NP, 

PtNP, FeNP, AgNP, and ZnONP (782, 791, 793, 810, 811). Many of the same nanomaterials have also 

been associated with increased Th2 cytokine levels (IL-4, IL-5, and IL-13) in the lungs and blood following 

pulmonary exposure (780, 812, 813). Although these findings are suggestive of the potential for metal 

nanomaterials to induce asthma, since the specificity of IgE molecules was not determined in any studies, 

the capacity for respiratory sensitization remains speculative. 

In vitro co-culture models have also been proposed to be effective tools for the evaluation of 

respiratory sensitization potential. Similar models have also been suggested to have utility in risk 

assessment efforts involving nanomaterials. In 2015, a 3D alveolo-capillary barrier model utilizing the 

NCI-H441 (epithelial) and ISO-HAS-1 (endothelial) cell lines was developed and tested with several 

different sensitizing compounds. Following exposure to subtoxic concentrations, all respiratory 

sensitizers were shown to induce a unique pattern of cytokine release in the basolateral compartment 

(209). Although the same model has not been employed to test the potential for any metal nanomaterials 

to induce sensitization of the respiratory tract, similar models have been used to test general toxic 

potential and reported similar responses. A model utilizing the same epithelial cell line and a different 

endothelial line supplemented with THP-1 cells reported activation of endothelial cells following exposure 

to ZnONP. Basolateral release of IL-8 and IL-6 was reported, mirroring similar effects as other known 

respiratory sensitizers in similar models (814). 
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Many steps of the AOP associated with dermal sensitization are likely to be conserved with 

respect to respiratory sensitization. Likewise, analysis of metal nanomaterial effects on these individual 

steps represents another potential mechanism of predicting their capacity to cause asthma. 

Similar to dermal sensitization, the induction of respiratory sensitization is ultimately dependent 

on the bioaccessibility and bioavailability of antigen. The respiratory tract presents a portal of entry known 

to be increasingly susceptible to absorbing materials of small sizes (755). Likewise, this step of respiratory 

sensitization, a frequent limitation of the immunogenic potential of larger-sized metal particles, may be 

readily overcome by metal nanomaterials and their unique physico-chemical properties. 

Sensitization via the respiratory tract also requires antigen interactions with APC. The respiratory 

tract is equipped with an expansive repertoire of defense mechanisms to prevent such interactions; 

however, many studies have demonstrated that metal nanomaterials with specific properties exhibit an 

increased capacity to evade many of these mechanisms, subsequently increasing their potential for 

interception by pulmonary DC or other APC.  

In the upper respiratory tract, a layer of mucus lining the airway walls functions to trap inhaled 

particulate antigens and facilitate their translocation out of the trachea via the mucociliary escalator (815). 

Evasion of the ~5 µm thick mucus layer has been associated with nanomaterial physico-chemical 

properties including size, surface modification, and surface charge (23, 762, 816, 817). Generally, 

hydrophilic, neutrally-charged nanomaterials with smaller diameters have been shown to penetrate 

mucus to a greater degree than counterparts with opposing properties (818). It has been shown in vivo 

that AuNP penetration of the mucus layer and subsequent adherence to the respiratory epithelium 

resulted in delayed clearance from the respiratory tract, an effect capable of increasing the potential for 

subsequent particle interactions with APC (819). 

Compared to insoluble metal nanomaterials, delayed clearance and extended retention within the 

respiratory tract are not likely to impact the biological fate of soluble metal nanomaterials to the same 

degree. Metal particles with high dissolution potential in the biochemical environment of the airway lumen 

are likely to dissociate into ionic constituents before the intact material is able to be neutralized by the 

normal clearance mechanisms implicated in the management of insoluble particulate materials (820). 
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The ensuing immunological effects triggered by the release of large quantities of metal ions have been 

associated with increased potential for sensitization by some metals. The propensity for allergic 

sensitization following pulmonary exposure to beryllium, palladium, nickel, and platinum has been 

correlated to the physical form and corresponding dissolution behavior of the inhaled material (503, 821, 

822). Some of the underlying mechanisms responsible for this association include cytotoxic ion-induced 

release of alarmins and Th2 cytokines by epithelial cells, increased haptenic metal ion concentration for 

conjugation with carrier proteins, and intracellular processing-independent antigenic determinant 

formation, all of which are preferentially associated with soluble forms of the metals (823, 824). 

Collectively, this knowledge suggests that soluble metal nanomaterials or nanomaterials possessing 

physico-chemical properties correlated to an enhanced propensity for ion release may constitute an 

increased risk for sensitization of the airways. 

Metal nanomaterials that deposit in the upper airways may exhibit enhanced sensitizing potential 

resulting from physico-chemical property-mediated evasion of clearance mechanisms (insoluble 

materials) and rapid dissolution and release of haptenic metal ions (soluble materials). Comparatively, 

inhaled nanomaterials that reach the lower airways may also trigger the generation of adaptive immune 

responses, although different immunological mechanisms may be implicated in this compartment of the 

respiratory tract.  

Selective deposition of sensitizing metal particles within the alveolar region of the lungs has been 

demonstrated in several studies to correlate with increased potential for allergic sensitization. Kent et al. 

(2001) showed that the propensity for inhaled airborne beryllium particles to induce sensitization was 

strongly correlated to particle number, surface area, and mass concentration of the particle dose 

measuring < 3.5 µm, an association that was concluded to be reflective of the metal alveolar-deposition 

dose concentration (825). It has been suggested that beryllium particles are more likely to induce 

sensitization following deposition in the lower airways, as opposed to the upper airways, because the 

alveolar region constitutes a greater potential for systemic absorption of the metal and subsequent 

translocation to lymphoid tissues (826). 
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In the lower airways, a similar mechanism of antigen neutralization associated with pulmonary 

mucus of the upper airways is facilitated by pulmonary surfactant (24). In addition to optimizing the 

mechanics of respiration, surfactant contains proteins capable of binding aeroallergens, accelerating their 

clearance, and preventing their uptake by APC, thereby inhibiting antigen-specific responses (827-830). 

Two of these proteins, SP-A and SP-D, have been shown to bind to various metal nanomaterials leading 

to accelerated clearance by phagocytic mechanisms (830). Accordingly, nanomaterials with properties 

that deter binding to surfactant proteins, such as surface charge, may exhibit increased potential for 

evasion of clearance by this mechanism, increasing potential for interception by pulmonary APC (831). 

Many of the physiological defenses and clearance mechanisms responsible for preventing 

antigen/APC interactions in the upper airways are not present in the alveolar region of the lungs. 

Clearance of deposited material in the lower airways largely involves uptake and sequestration by 

pulmonary macrophages, following which the material undergoes intracellular chemical degradation or 

physical translocation out of the lungs, preventing interception by DC (17). Nanomaterials in the lower 

airways can evade this clearance process by various mechanisms involving different physico-chemical 

properties, which may confer increased allergenic potential. 

First, since macrophages have been shown to selectively phagocytose nanomaterials according 

to size, charge, and surface modification, specific physico-chemical properties may contribute to metal 

nanomaterial persistence in the lower airways (832). Their clearance may also be compromised as a 

result of selective cytotoxic effects on pulmonary macrophages, resulting in fewer numbers of viable 

macrophages capable of neutralizing the nanoparticles. Pulmonary macrophage cytotoxicity has been 

associated with physico-chemical properties including morphology, surface charge, and rate of 

dissolution (763, 775, 833). Metal nanomaterial-induced alterations in phagocytic activity of pulmonary 

macrophages, as demonstrated by TiO2NP, ZnONP, and AlNP, may also contribute to evasion of 

clearance mechanisms (834-836). In addition to compromising the cell-mediated clearance capacity of 

the respiratory tract a cellular level, nanomaterials are also associated with an increased potential to 

exceed the maximum clearance capacity of the collective pulmonary phagocytic system. Volumetric 

loading of alveolar macrophages following inhalation of large doses of nanomaterials decreases the 
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likelihood for their clearance from the lungs. The extended biopersistence of nanomaterials in the airways 

increases the potential for interception by DC, and often results in inflammatory responses that further 

promote immune effects (837, 838).  

Metal nanomaterial-induced pulmonary macrophage cytotoxicity can also promote sensitization 

by additional mechanisms. Since alveolar macrophages are known to antagonize Th2 responses in the 

lung and downregulate APC functions, cytotoxic effects may disrupt the maintenance of an existing 

immunologically tolerant state (839). Moreover, the depletion of this cell population leads to significant 

increases in recruitment of DC and DC precursors to the lungs (840, 841). Numerous metal nanomaterials 

are also known to trigger the release of alarmins including IL-1β and IL-1α by alveolar macrophages, 

which can activate DC and facilitate sensitization (765, 772, 775, 788, 842, 843).  

Some metal nanomaterials have been shown to enhance antigen-presenting behaviors of 

pulmonary macrophages, an effect which could also promote sensitization by generating an additional 

population of cells capable of stimulating adaptive immune cells. FeNP and TiO2NP have been shown to 

increase expression levels of several activation markers by pulmonary macrophages that indicate 

enhanced antigen presenting capacity (773, 844). Several metal nanomaterials have also been shown 

to alter macrophage chemotactic ability, which may further impact their potential to act as APC in the 

lungs (845). 

Similar to their roles in the development of skin allergy, epithelial cells of the respiratory tract are 

integral contributors in the development of asthma, and their disruption by inhaled materials can have 

profound influence on the early events of sensitization (846). A major function of airway epithelial cells is 

to serve as a physical barrier between inhaled agents that deposit in the airway lumen and DC residing 

in the epithelium (847). The importance of barrier integrity in preventing the development of asthma is 

emphasized by the characteristic barrier-disrupting proteolytic activity shared by many aeroallergens with 

high rates of sensitivity in the population (848, 849). The frequent observation that metal nanomaterials 

are capable of inducing cytotoxicity to pulmonary epithelial cells suggests their potential to increase 

permeability and passage of antigens from the airway lumen to compartments associated with DC. 
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Airway epithelial cell cytotoxicity induced by some metal nanomaterials has also been associated 

with the release of alarmins that have potential to promote DC activation and sensitization. Similar to 

keratinocytes in the skin, the mechanism of cell death can critically influence the nature of the resultant 

immune response. For example, the necrotic cell death following pulmonary exposure to beryllium results 

in release of extracellular DNA, which is recognized as a DAMP by TLR-9, and promotes the unique Th1-

mediated effects associated with chronic beryllium disease (823). NiNP, AgNP, and CoNP have been 

shown to induce similar necrotic cell death of bronchial and alveolar epithelial cells (171, 841, 850-852). 

Contrarily, ZnONP, CuONP, TiO2NP, and CrNP have all been associated with induction of apoptotic cell 

death in pulmonary epithelial cells (853-857). This effect may further influence the development of 

respiratory allergy since uptake of apoptotic cells is a function exclusive to CD103+ DC, a subset of DC 

also associated with cross-presentation and the subsequent induction of CD8+ effector responses (858).  

Metal nanomaterials have also been shown to induce effects on airway epithelial cells that mirror 

one of the most well-established mechanisms implicated in increasing susceptibility to asthma 

development. RSV, cigarette smoke, and other environmental exposures are known to induce 

upregulation of TLR-4 expression by airway epithelial cells (859, 860). As a result, the cells are more 

responsive to immunologic stimuli, triggering the production of Th2 cytokines required to initiate DC 

maturation under conditions that would not normally result in stimulation of innate immune responses. 

TLR-4 and TLR-2 signaling has been shown to be augmented in airway epithelial cells in response to 

ZnONP, TiO2NP, and AuNP as a function of size (861-865). Based on this observation, these metal 

nanomaterials may promote sensitization and the development of asthma by mechanisms involving 

priming of airway epithelial cells. 

One of the Th2 cytokines released in response to airway epithelial cell TLR-4 activation is GM-

CSF. Although GM-CSF has numerous roles in initiating and potentiating asthmatic processes, it is also 

associated with the induction of an alveolar macrophage phenotype associated with enhanced antigen 

presenting capacity (866). Likewise, metal nanomaterials capable of enhancing GM-CSF production in 

the lungs, dependently or independently of TLR-4 signaling modulation, may promote sensitization by 

increasing the number of potential APC in the airways. TiO2NP, QD, and ZnONP have been shown to 
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increase surface expression of CD11c, CD80, CD86, and MHC II by pulmonary macrophages, as well 

as enhance their antigen presenting capacity in vitro (773, 867-869). 

Overall, there have yet to be any studies conducted that directly examine the potential for metal 

nanomaterials to induce respiratory sensitization; however, many of the biological effects of metal 

nanomaterials suggest the potential for the development of asthma following respiratory exposure. 

Several physico-chemical properties have been associated with evasion of clearance mechanisms, which 

increases the likelihood for interception by APC. Additionally, several Th2 cytokines and alarmins 

required in the early events of sensitization have been shown to be released by resident immune cells 

and epithelial cells following exposure to some metal nanomaterials.  

 

1.2.2.3. Incorporation of Metal Nanomaterials into Asthma Models 

 Many metal nanomaterials have been incorporated into asthma models to assess their potential 

to augment immunological processes involved in respiratory allergy. Many of these studies report similar 

conclusions regarding ‘allergy augmenting potential,’ yet report conflicting roles for physico-chemical 

properties in these effects. These divergent findings reflect the extensive potential for variations in allergy 

model study design, wherein a lack of consistency in any number of variables may result in discrepancies 

in the underlying immunological mechanisms involved in the observed effects. Accordingly, the results 

from all studies utilizing metal nanomaterials and asthma models should not be compared collectively. 

Studies should be discriminated based on similarities in specific underlying immunological mechanisms 

assessed in accordance with the model design, following which, study results can be compared 

categorically.  

In this context, one of the most important variables of the asthma model study design is 

nanomaterial exposure occurrence with respect to the different phases of allergy. Findings from existing 

studies have been similarly categorized based on this feature for collective analysis. 

Studies that have employed asthma models wherein nanomaterial exposure occurs prior to 

sensitization can uniquely evaluate if exposure has the capacity to enhance susceptibility to sensitization. 
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Currently, the impact of metal nanomaterial exposure prior to sensitization has only been addressed by 

a few studies. In one study, aspiration of ZnONP, TiO2NP, NiONP, CuONP, or SiO2NP occurred one day 

before inhalation sensitization to OVA, which was then followed by inhalation challenge and subsequent 

assessment of asthmatic severity. Soluble metal nanomaterials (NiONP, ZnONP, and CuONP) were 

associated with elevations in OVA-specific IgE, whereas insoluble particles (SiO2NP and TiO2NP) were 

not. Subsequent investigations confirmed the importance of metal ion release in the adjuvant effects on 

sensitization. The increase in OVA-specific IgE production associated with soluble NiONP was not 

conserved in response to insoluble NiO microparticles in the same model (781). However, ZnCl2 also did 

not exert the same increase in OVA-specific IgE caused by ZnONP. As a result, it was concluded that 

continuous ion release from nanoparticles was required for the induction of the observed effects (870). 

Exposure to residual oil fly ash particles prior to allergen sensitization has also been associated with 

adjuvant effects attributable to soluble metal constituents (871). Likewise, these properties appear to 

influence asthma, specifically with respect to the early phases of allergic disease. 

The most common exposure scheme used in existing asthma model studies involves concurrent 

exposure to metal nanomaterials during allergen sensitization. This approach has been explored 

extensively in order to evaluate the potential adjuvant effects of metal nanomaterials on sensitization, 

specifically with respect to the magnitude of the adaptive response generated. This concept has been 

explored with respect to both systemic and respiratory sensitization routes. Moreover, the effects of this 

exposure scheme have been evaluated independently of allergen challenge, as well as in a challenge-

dependent manner. 

Nanomaterial exposure simultaneous to allergen sensitization by intraperitoneal injection has 

been shown to enhance antigen-specific antibody production in several studies. Co-administration of 

AgNP and ZnONP with antigen during systemic sensitization has been associated with elevated levels 

of allergen-specific IgE, as well as increased levels of Th2 cytokines (872, 873). As demonstrated with 

SiO2NP, enhanced antibody production has been associated with both increasing dose and decreasing 

particle size (874). The impact of the most extensive number of physico-chemical properties with respect 

to adjuvant effects on systemic OVA sensitization use polystyrene nanoparticles (PSP). Nygaard et al. 
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(2004) used PSP ranging from 58 nm to 11.4 µm to evaluate the influence of particle size, mass, surface 

area, and particle number. Similarly, Granum et al. (2000) used six sizes of spherical PSP to administer 

doses with constant mass (12.25 mg), size (0.1 µm), particle number (8 x 1010), or surface area (1,300 

cm2). Both studies demonstrated that serum OVA-specific IgE levels best correlated with particle number 

and surface area (875, 876). 

The results from these studies demonstrate that metal nanomaterial exposure can enhance the 

magnitude of immune reactivity in response to systemic sensitization. However, the absence of an 

elicitation phase in these studies renders the relevance of these findings, specifically on asthmatic 

responses, somewhat speculative. Increases in systemic immune markers, such as circulating antigen-

specific IgE and serum Th2 cytokine levels, are generally correlated to enhanced asthmatic response 

severity. However, the lack of pulmonary-specific immune markers evaluated by these models requires 

consideration when interpreting the results in the context of asthmatic conditions (877, 878).  

Similar adjuvant activity has been observed following respiratory sensitization and co-exposure 

to TiO2NP, SiO2NP, CeO2NP, and ZnONP (811, 879-881). Increases in OVA-specific IgE and Th2 

cytokine levels were similarly associated with decreasing size of SiO2NP (882). Moreover, SiO2NP 

surface properties were shown to impact sensitization independent of allergen challenge. Intranasal 

exposure to three variations of SiO2NP (spherical, mesoporous, and PEGylated) simultaneous to OVA 

sensitization exacerbated pathological changes, inflammatory cell influx, and Th2 cytokine responses. 

These effects were specific to the unique surface chemistry of each type of SiO2NP, but the most severe 

responses were associated with the nanoparticle with the highest surface area (883).  

The absence of allergen challenge in these studies helps elucidate the direct effects of metal 

nanomaterials on immunological processes involved in sensitization. Metal nanomaterial exposure during 

both respiratory and systemic sensitization was shown to enhance the magnitude of antigen-specific IgE 

production. However, the direct implications of these effects on asthmatic response elicitation requires 

the incorporation of a challenge phase into the asthma model. Studies utilizing this approach have 

demonstrated amplification of pulmonary immune reactivity in OVA-challenged mice when systemic 

sensitization occurred simultaneous to TiO2NP and ZnONP exposure (868, 884-886).  
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Similar adjuvant effects on elicitation response severity have been observed following respiratory 

sensitization and simultaneous metal nanomaterial exposure. Simultaneous administration of SiO2NP, 

CeO2NP, Co3O4NP, QD, and TiO2NP with allergen during sensitization led to enhanced asthmatic 

response severity, as measured by antigen-specific antibody levels, inflammatory cell influx, and Th2 

cytokine levels after challenge (783, 887-890). Studies using similar sensitization procedures and 

endpoints have also implicated TiO2NP crystal structure in adjuvant effects on sensitization (879, 887). 

However, these observations should be interpreted cautiously as these responses may reflect residual 

local effects of prior metal nanomaterial lung exposure. 

Metal nanomaterial exposure has also been incorporated into the challenge phase of asthma 

models to evaluate the potential modulation of asthmatic elicitation responses in established asthmatic 

conditions. Although some metals, including CuONP, have been exclusively shown to induce significant 

aggravating effects on elicitation responses, others, including AuNP, appear to exert protective effects 

against asthmatic responses (798, 891-893). Contrarily, other metal nanomaterials, including TiO2NP, 

have been associated with divergent effects on asthmatic elicitation, effects which appear increasingly 

susceptible to variation during this phase of asthma. These responses have been differentially observed 

depending on the dose, duration of exposure, and endpoints of assessment (894-897).  

Similarly, following OVA sensitization via intraperitoneal injection, AgNP exposure during allergen 

challenge has been reported to induce various aggravating and attenuating effects on allergic 

inflammation. Inhalation exposure to 1.5 and 6 nm AgNP was shown in multiple studies to suppress 

inflammatory cell influx, airway hyperreactivity (AHR), mucus hypersecretion, and other measures of 

asthmatic response (898-900). Contrarily, in another study with very similar exposure conditions, 33 nm 

AgNP caused increased airway response, inflammatory cell influx, and OVA-IgE levels over control 

animals (901, 902). Discrepancies in the findings between these studies may be attributable to the AgNP 

size difference, as well as potential variations in particle coating, which have been associated with 

differential effects on asthmatic responses (903). Additionally, the first two studies utilized the Th1-

dominant C57BL/6 mouse strain, whereas the second study used the Th2-biased BALB/c strain (904). 
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Strain-specific immune responses following respiratory exposure to metal nanomaterials during allergen 

challenge have been demonstrated in other studies, as well (905).  

Studies using SiNP, CuONP, and zirconium oxide (ZrO)NP with variations in surface properties 

demonstrate that, when administered during allergen challenge, surface properties of nanomaterials can 

differentially aggravate allergic inflammation (789, 812, 906, 907). It has been suggested that particles 

with higher oxidant potential amplify asthmatic inflammation to a greater degree, which would implicate 

physico-chemical properties such as surface modification in these effects (908). 

Overall, studies that have employed asthma models to assess the modulatory effects of metal 

nanomaterial exposure on various phases of allergic disease have generated seemingly inconsistent 

findings. However, when studies are discriminated based on specific study design features, results that 

implicate similar underlying immunological mechanisms can be discerned. Accordingly, respiratory 

exposure to metal nanomaterials prior to pulmonary allergen exposure appears to increase susceptibility 

to allergic sensitization. Exposure to metal nanomaterials simultaneous to systemic sensitization has 

been consistently shown to result in enhanced humoral responses, the magnitude of which is dependent 

on properties including surface area. Similar effects have been repeated observed following respiratory 

sensitization and metal nanomaterial exposure. By comparison, the elicitation phase of asthma appears 

to be the phase most susceptible to variations in responses caused by metal nanomaterial exposure. 

While surface properties have been consistently implicated in metal nanomaterial-induced modulation of 

response severity following allergic challenge, additional studies are required to accurately delineate the 

relationship between these effects and various physico-chemical properties (907). 

 

1.2.2.4. Potential Mechanisms of Asthma Augmentation by Metal Nanomaterials 

Respiratory exposure to metal nanomaterials may increase susceptibility to sensitization by 

aeroallergens as a result of similar mechanisms previously proposed to contribute to their respiratory 

sensitization potential. Amplification of pulmonary oxidative stress, release of alarmins by airway 

epithelial cells and resident immune cells, and increased antigen presenting activity of immune cell 
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populations may all contribute to the development of asthma following metal nanomaterial exposure. 

Disruption of the Th1/Th2 balance in the lung is another effect commonly reported following respiratory 

exposure to metal nanomaterials, that may increase susceptibility to allergic sensitization. Polarization of 

the pulmonary immune state towards a Th2-dominant state, as observed following exposure to ZnONP 

and PtNP, suggests the potential for these metal nanomaterials to induce conditions in the lung conducive 

with sensitization (780, 868).  

In the context of established, pre-existing asthmatic conditions, several findings from existing in 

vivo studies suggest mechanisms by which metal nanomaterial exposure may exacerbate allergic 

pathophysiology. One such effect involves modulation of mast cell activity. As one of the major effector 

cells responsible for asthmatic symptoms, an increase in mast cell presence may facilitate enhanced 

symptom severity. Accordingly, several metal nanomaterials including SiNP, CeO2NP, and FeNP have 

been shown to recruit additional populations of mast cells to the respiratory tract following exposure (880, 

909, 910). Numerous metal nanomaterials have also been associated with inducing alterations in mast 

cell degranulation both in the presence of antigen, and independently of antigen (546, 784, 911-916). 

Moreover, several metal nanomaterials have been shown to alter the contents of mast cell granules and 

their kinetics of release. Mast cell granules contain numerous mediators responsible for many of the 

pathophysiological mechanisms involved in allergic responses, including vascular permeability, 

bronchoconstriction, and inflammatory cell recruitment, suggesting that modulation of granule contents 

by nanomaterials can greatly impact the severity of allergic elicitation responses (917, 918). Metal 

nanomaterial effects on mast cells will be discussed in the future in vitro section in detail, since mast cells 

also play critical roles in ACD. 

Extensive evidence also suggests that metal nanomaterial exposure can modulate the 

inflammatory phenotype of existing asthmatic conditions. Two major heterogeneous asthma phenotypes 

are differentiated based on the presence of neutrophil-(Th1/Th17) or eosinophil-(Th2) dominant 

inflammation (919, 920). These different disease phenotypes are associated with enhanced severity of 

different clinical symptoms, variations in the course of symptom resolution, and contrasting 

responsiveness to corticosteroid treatment (920). Particulate and soluble metals are known to 
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differentially impact the nature of existing allergic airway inflammation by skewing this balance (921). 

Likewise, dissolution kinetics appear influential in this regard, as CoNP, NiNP, ZnONP, and CuONP and 

their corresponding ions have been shown to differentially recruit eosinophils and neutrophils to the lungs 

of rats following exposure (787, 793).  Several metal nanomaterials have also been shown to skew the 

Th1/Th2 status of the pulmonary immune system following respiratory exposure. FeNP, SiO2NP, TiO2NP, 

NiONP, AlNP, and CeO2NP have all been associated with modulation of this balance, suggesting their 

potential to modulate the phenotype of established asthmatic conditions (922-927). 

In existing asthmatic conditions, exposure to metal nanomaterials may result in the exacerbation 

of symptoms as a result of particle-induced alterations in normal respiratory physiology and anatomy. For 

example, increased mucus production by epithelial cells is a hallmark symptom of the early and late 

phase asthmatic response (189). The observation that TiO2NP and CuONP both increased mucin 

secretion in human epithelial cells suggests potential to exacerbate asthmatic conditions by contributing 

to obstruction of airways (790, 798). Similarly, TiO2NP, AuNP, and AgNP have been shown interfere with 

optimal pulmonary surfactant functioning, which can cause AHR and increased resistance to airflow (799, 

827, 928-930).  

AHR may also be modulated by metal nanomaterials as a result of alteration of airway smooth 

muscle (ASM) contractility. ZnONP, CuONP, and TiO2NP have all been shown to alter human ASM 

mechanical function in vitro (931). Similarly, CoFe2O4 nanoparticles were shown to potentiate both 

histaminergic and cholinergic ASM contractility in vivo, which has the capacity to exacerbate the 

symptoms of asthma associated with bronchoconstriction (792). Promotion of neurogenic inflammation 

in asthmatic conditions, as demonstrated by TiO2NP, can also exacerbate allergic responses (932). 

Metal nanomaterial exposure may also exacerbate established asthmatic conditions by 

accelerating the progression of pathological alterations associated with chronic asthmatic conditions. 

Repetitive cycles of allergen-induced inflammation and subsequent resolution are responsible for 

numerous anatomical alterations collectively referred to as ‘airway remodeling’ (933). Thickening of the 

epithelial basement membrane, ASM cell hypertrophy, and increased vascularization of bronchial walls 

are examples of the anatomical changes associated with this complication commonly seen in cases of 
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chronic asthma (933). Many of these effects have also been reported following pulmonary exposure to 

various metal nanomaterials including SiNP (926). Similarly, cellular indicators of accelerated airway 

remodeling have also been observed following exposure to various metal nanomaterials. For example, 

fibroblast accumulation and increased extracellular matrix deposition has been observed in response to 

NiNP, SiO2NP, and CeO2NP exposure (188, 795, 926, 934, 935).  

 

1.2.2.5. Knowledge Gaps in Metal Nanomaterial Effects on Asthma 

Despite the known capacity for many metals to induce IgE-mediated asthma following inhalation, 

it remains unclear if nanoparticulate forms of these metals are also able to induce metal-specific asthma. 

However, studies suggest that metal nanomaterials may present an increased threat compared to larger 

metal particles in the context of respiratory sensitization. Their increased deposition efficiency in the 

respiratory tract, capacity to evade defense mechanisms, and innate immune stimulatory activity may 

facilitate allergic sensitization; however, these claims remain largely speculative, and future studies 

should directly investigate this potential effect.  

In a similar regard, it has been proposed that metal nanomaterials may have the capacity to act 

as both soluble/LMW or particulate/HMW antigens in the respiratory tract. Despite this, information on 

metal antigen formation with respect to asthma is currently non-existent. However, studies have 

demonstrated the generation of antibodies that selectively recognize ZnONP, CoONP, AlNP, AuNP, QD, 

TiO2NP, and several carbon-based nanomaterials in a protein conjugate-specific context (936-941). 

Moreover, antibodies exhibiting specificity for various crystalline facets of gallium semiconductor crystals 

has also been demonstrated (487). Given the diverse crystal structures associated with metal 

nanomaterials such as TiO2NP and SiO2NP, this observation suggests that despite similar elemental 

composition, the unique chemistries of metal nanomaterials may present expansive numbers of potential 

allergenic epitopes and a subsequently diverse repertoire of antigen-specific antibodies (487). However, 

this concern has yet to be confirmed by any existing investigations. 



 

72 
 

Numerous studies have investigated the potential effects of metal nanomaterials on asthmatic 

processes by incorporating exposures into allergy models. Subsequent findings have demonstrated that 

many metal nanomaterials can augment allergic processes involved in asthma. However, expansive 

variations in model designs implicate study conclusions that often reflect unrelated immunological 

mechanisms. Allergic conditions involve an endless number of systemic and local immunological 

processes subject to disruption by immunotoxicants, many of which are exclusive to the specific phases 

of allergy. These different immunological mechanisms are likely to be differentially impacted by various 

nanomaterial physico-chemical properties. In order to accurately correlate physico-chemical properties 

with the allergy-augmenting activity of metal nanomaterials, these relationships need to be established 

in a mechanism-dependent context. Accordingly, future studies should take into consideration the 

timeline of exposures in the allergy model, exposure techniques, routes of exposure, and dose 

parameters to accurately elucidate the immunomodulatory effects of metal nanomaterials. 

Several interesting aspects of pulmonary immunity have not yet been widely-addressed with 

respect to metal nanomaterials, and may have relevance to current observations regarding their effects 

on asthma. For example, the numerous metal nanomaterials being used for their antimicrobial activities 

have been shown to alter the microbiome of the skin, lungs, and GI tract (903, 942). The microbiome is 

known to significantly impact numerous aspects of allergic disorders, but the implications of such effects, 

specifically with respect to allergy, remain unknown (943). Additionally, the capacity for metal 

nanomaterials to disrupt or prevent the development of immunological tolerance has not been explored 

in any existing studies. This potential effect is likely relevant to both phases of asthma, but also likely to 

be implicated in other forms of allergic disease, as well.  

 

1.2.3. Metal Nanomaterials as Vaccine Adjuvants  

Numerous metal nanomaterials have been shown to augment allergic processes following their 

incorporation into allergy models. More specifically, many of these nanomaterials have been shown to 

enhance the magnitude of antigen-specific adaptive immune responses generated in response to 

sensitization. Many of the underlying mechanisms responsible for these observations remain unclear. 
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Vaccine studies represent a related area of active investigation that may provide some mechanistic 

insight with relevance to the adjuvant activity of metal nanomaterials observed in allergy models. Given 

the historical use of aluminum-based adjuvants, the emergence of metal nanomaterials quickly generated 

scientific interest regarding their potential utility as novel vaccine adjuvants. As a result, numerous studies 

have investigated the potential use of metal nanomaterials as vaccine platforms and demonstrated 

findings that may help explain findings from allergy studies. Select studies investigating metal 

nanomaterial adjuvant effects on the development of antigen-specific immune responses are 

summarized in table 1.19 (61, 517, 527, 533, 734-737, 739-741, 800, 872-874, 885, 944-971). 

The immune responses associated with allergic sensitization and vaccine administration involve 

nearly identical mechanisms. Innate immune stimulation is required to recruit adaptive immune cell 

involvement, following which, antigen-specific immunological memory is generated (972). Generally 

speaking, the discriminating feature of these two adaptive responses is the inherent pathogenicity of the 

antigen and corresponding intentionality of response induction. Allergic sensitization involves the 

unintentional generation of immunological memory specific for antigenic entities that exhibit an inherent 

lack of pathogenic potential. Contrarily, vaccines are used to induce an intentional immune response to 

an agent exhibiting inherent pathogenic potential in order to protect the host upon future encounters. 

Given these similarities, metal nanomaterials that have been shown to promote sensitization to allergens 

may involve mechanisms similar to those elucidated by studies employing metal nanomaterials as 

vaccine adjuvants. 

The capacity for vaccine adjuvants to enhance the development of antigen-specific immunity can 

be involve numerous mechanisms. Collectively, these mechanisms can be classified as effects that are 

immunostimulatory and or vehicle/delivery-based. The efficacy of some adjuvants results from a 

combination of these mechanisms. Adjuvants that exert immunostimulatory effects often bear structural 

resemblance to PAMP, illustrating similar mechanisms of innate immune activation that promote antigen-

specific adaptive responses. Since these adjuvants alter the systemic immune environment, their effects 

are not necessarily dependent on physical association with the antigen (973). More frequently, adjuvants 

employ mechanisms of immunopotentiation based on their capacity to modulate antigen delivery by 
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serving as a carrier or vehicle for the antigen. The strength and nature of the subsequent adaptive 

immune response is heavily dependent on the dose and duration of antigen presented to lymphocytes, 

so many adjuvants enhance adaptive immune responses by augmenting this process (974). Accordingly, 

physical association with antigen is required for these adjuvants. Based on these two different 

mechanisms of immunopotentiation, studies using metal nanomaterials as vaccine adjuvants have 

correlated some physico-chemical properties with specific mechanisms of adjuvant activity. 

Agents with adjuvant activity resulting from vehicle/delivery-based effects often facilitate the 

formation of an antigen depot at the site of deposition. This is a common mechanism associated with 

many subcutaneously-administered adjuvants that involves extending the duration of local antigen 

retention. Delayed diffusion of antigen from the depot results in prolonged stimulation of lymphocytes, 

resulting in higher antibody titers.  

Several nano-based vaccine adjuvants have been associated with adjuvant effects resulting from 

mechanisms involving depot formation (975). For example, nanoparticulate formulations of aluminum 

hydroxide have been shown to promote delayed diffusion of antigen by trapping antigen molecules in 

void spaces of agglomerated particles. Similarly, a cationic nanoparticulate adjuvant formulation has also 

showed promise as a result of enhancing depot formation via electrostatic interaction-mediated antigen 

retention (976). Subsequent inflammatory cell recruitment and cytokine production can further enhance 

the effects of nanomaterial adjuvants implicated in these effects. 

Adjuvants administered with antigen via intradermal, intramuscular, and intraperitoneal 

administration routes also involve alterations in antigen trafficking to the lymph nodes, although depot 

formation is not conducive with this route of administration. In this context, size is known to be a critical 

property associated with nanoparticle-mediated translocation of antigen to lymphoid tissue. Smaller 

particles can directly diffuse to the nodes via lymphatics, whereas the 200 nm pores in lymphatic walls 

render the transport of larger particles by cell-mediated active transport (977). This knowledge can be 

exploited to modulate the route of antigen delivery associated with vaccines. Moreover, similar modes of 

lymphatic transport are further subject to size-dependent drainage patterns, as demonstrated with AuNP. 
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When conjugated with OVA antigen, 22, and 33 nm AuNP were delivered more efficiently to the draining 

nodes than 10 nm AuNP, illustrating the potential impact of minor alterations in particle size (517).  

When adsorbed to nanoparticle surfaces, differential trafficking routes associated with particle 

size can also result in antigen deposition within selective compartments of the lymph nodes, which can 

also impact the development of immunological memory. Following injection, smaller nanomaterials and 

antigens that freely diffuse to the lymph nodes have been shown to accumulate at the boundary of the 

lymph node follicles and subscapular sinus where B-cells encounter antigen. Deposition in this area 

facilitates their unique association with CD8a+ lymph node-resident DC, which notably are capable of 

priming CD8+ T-cells (978). Contrarily, larger particles that enter lymph nodes via cell-mediated transport 

enter the lymph nodes in the T-cell zone (977). Likewise, nanoparticle properties can be modulated to 

alter vehicle-mediated transport of antigens and foster antigen interactions with specific populations of 

cells within the lymph nodes.  

Adsorption of antigen to nanoparticle carriers can also impact another parameter of the delivery 

kinetics- retention time in the lymph nodes. An inverse relationship between nanoparticle size and 

duration of lymph node retention has been established (979). Strong humoral responses are dependent 

on the persistence of antigen presence within the lymph nodes, indicating a role for size in the nature of 

the immune responses following co-administration of nanomaterials and antigen (977). 

Physical associations between nanomaterials and antigen can also modulate adaptive responses 

by concentration of antigen and display of epitopes in a manner that influences interactions with 

lymphocytes. The generation of antigen-neutralizing antibodies is dependent on efficient antigen 

recognition and cross-linking of B-cell receptors by antigenic epitopes. Accordingly, the spatial 

organization of antigens adsorbed to the nanomaterial surface can be modulated to facilitate these 

interactions. AuNP have been employed to demonstrate this effect, wherein spatial arrangement of 

various bacterial and viral antigens on the nanoparticle surface was optimized to generate higher 

antibody titers (980, 981). 

In addition to these demonstrations of nanomaterial-induced adjuvant effects involving 

carrier/delivery-based mechanisms, several studies have also demonstrated immunostimulatory effects 
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of metal nanomaterial adjuvants capable of potentiating immune responses. For example, Niikura et al. 

(2009) utilized Au nanorods, nanospheres, and nanocubes as a vaccine platform for West Nile Virus 

antigen. When the particles were adsorbed with normalized doses of viral antigen, immunization of mice 

resulted in variations in levels of antigen-specific antibodies. Additional in vitro studies were conducted, 

and it was determined that variations in resultant responses were attributable to morphology-dependent 

inflammasome activation. Au nanorods were the only material that activated IL-1β and IL-18 release by 

DC, which corresponded to the treatment associated with the highest level of antibody production in vivo 

(61). In addition to inflammasome activation, the immunostimulatory effects of nanomaterial adjuvants 

have also been suggested to include surface adsorption of antigen leading to enhanced uptake by APC, 

modulation of antigen processing routes, induction of cytokine release, and polarization of lymphocyte 

responses. 

Nanomaterials have also been suggested to have potential utility in the development of mucosal 

vaccines. Mucosally-administered vaccines represent an ideal formulation for many respiratory 

pathogens, since they should induce both systemic and local immunity in mucosa-associated lymphoid 

tissue (MALT). However, the efficacy of intranasal vaccines has been historically limited as a result of 

several unique characteristics of the respiratory tract. The mucosal immune system often effectively 

generates a state of immunological tolerance, and the development of antigen-specific responses is often 

impeded by numerous defense mechanisms responsible for physical translocation and biochemical 

degradation of antigen. Nanomaterials have been shown to have significant potential to overcome many 

of these barriers, and may represent an effective vaccine platform and adjuvant for successful mucosal 

immunization.  

Enhanced potential for penetration of the respiratory mucus layer has been shown to be 

dependent on the surface charge of nanomaterials, which can facilitate an increased potential for 

localization with APC and subsequent antigen delivery. Additionally, the capacity for nanomaterials to 

induce innate immune stimulation as a constituent of mucosal vaccines has been shown to promote the 

generation of immunological memory (982). Similar effects were proposed to be responsible for the 

findings reported in one study, where the surface charge of nanomaterial adjuvants was critically 
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influential in the nature of immune responses generated following pulmonary immunization. Fromen et 

al. (2016) demonstrated that conjugation of OVA to nanoparticles that varied only with respect to surface 

charge differentially stimulated antibody production in vivo. Cationic nanoparticles were associated with 

robust germinal center B-cell expansion and increased activation of CD4+ T-cells, which they attributed 

to charge-selective activation of DC (983). 

Another specific mechanism associated with the increased efficacy of nanomaterial-based 

mucosal vaccination platforms involves the preservation of epitope structure for APC sampling. Protease-

mediated degradation of antigen is a challenge associated with intranasal immunization that is 

traditionally overcome by administering significantly larger doses of antigen than those used for systemic 

immunization. Nanoparticle-based vaccines have been proposed as a mechanism to overcome this 

barrier since surface adsorption of antigen can protect against its degradation and preserve epitope 

structures (984). This mechanism has been suggested to be responsible for observations reported by 

several in vivo studies utilizing metal nanomaterials for intranasal immunization. Accordingly, when 

simultaneously administered intranasally, the size of nanoparticles has been correlated to the magnitude 

of the subsequent antigen-specific immune response. Stano et al. (2012) demonstrated that 30 nm 

particles were more effective inducers of systemic and mucosal humoral responses to OVA than 200 nm 

particles. They attributed this observation to the capacity for smaller particles with larger surface areas 

to bind more antigen, preserving the structural integrity of antigenic epitopes, and delivery of increased 

concentrations of antigen to the lymph nodes (985). 

These observations regarding the mechanisms responsible for metal nanomaterial adjuvant 

activity during vaccine-induced immunization appear consistent with many of the adjuvant effects 

reported by allergy models. In allergy models where sensitization is achieved by subcutaneous injection, 

the enhanced immune responses observed following simultaneous administration of metal nanomaterials 

may reflect effective depot formation by the nanomaterials. For example, Hirai et al. (2012) demonstrated 

that the intradermal co-administration of amorphous SiNP and HDM led to enhanced HDM humoral 

immunity in a size-dependent manner. Smaller particles were associated with enhanced adjuvant effects, 

which is conducive with a potential mechanism involving depot formation where smaller size/greater 
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surface area increases surface loading capacity, resulting in increased retention of antigen at the site of 

injection (550). 

Antigen adsorption to nanomaterial surfaces and facilitation of delivery to APC may also explain 

the observation that particle size was associated with enhanced immune responses following intranasal 

sensitization. Yoshida et al. (2011) showed that levels of OVA-specific IgE were inversely related to SiNP 

size (30, 70, 300, or 1000 nm) when exposure occurred simultaneously with sensitization. The increase 

in surface area associated with the smaller particles would have been associated with higher antigen 

loading, promoting larger degrees of antigen interception by APC (882). This conclusion is supported by 

another study that demonstrated the surface properties of SiNP were also responsible for variations in 

adjuvant effects following mucosal sensitization (883). 

Surface adsorption of antigen also appears responsible for the differential adjuvant activities of 

two different nanomaterials, as reported by de Haar et al. (2008) In their asthma model, mucosal 

sensitization to OVA was associated with different effects as a result of its co-administration with carbon 

black (CB) or TiO2NP. The authors proposed that different binding affinities for OVA by CB and TiO2NP 

surfaces during sensitization may have contributed to the different effects on asthmatic responses. CB-

bound OVA 100%, whereas TiO2NP only bound 10% of OVA. Subsequent differences in local and 

systemic presence of OVA were cited as potential contributing factors in the different adjuvant effects on 

asthmatic responses (879). 

In one of the few studies of its kind, Peng et al. (2018) examined the potential for a SiNP-based 

vaccine to mitigate allergic inflammation in the context of immunotherapy. In their study, mice were 

sensitized to HDM by intraperitoneal injection on days 0, 7, and 14. On days 28, 33, and 38, mice were 

subcutaneously administered mesoporous SiNP (100 nm) loaded with HDM antigen. 2 weeks later, mice 

were challenged with HDM by inhalation and mice that had been administered SiNP-HDM exhibited 

lowered levels of specific IgE, lung inflammatory cells, and BALF Th2 cytokines (986). The induction of 

immunological tolerance was associated with low dose, extended release of HDM antigen from SiNP 

pores. Allergic tolerance has rarely been investigated with respect to metal nanomaterials, but this study 
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demonstrates that metal nanomaterials with properties including porous surface structures may have 

utility in novel immunotherapy approaches.   

Overall, existing studies that have investigated the potential adjuvant effects of metal 

nanomaterials in the context of vaccine-mediated immunization suggest similar mechanisms of 

involvement during allergic sensitization. The two general mechanisms associated with adjuvant activity 

constitute different requirements for physical associations between antigen and nanoparticles. 

Nanomaterial-induced immunostimulatory effects do not require co-administration with antigen, as 

stimulation of innate immune responses can occur systemically or locally to potentiate sensitization. 

Surface charge has been consistently implicated in effects resulting from this mechanism. By 

comparison, adjuvant effects resulting from nanoparticle-mediated carrier/delivery effects require 

interactions between antigen and nanomaterials. Subsequent effects can involve altered kinetics of 

antigen delivery to the lymph nodes, localization in specific compartments on the nodes, and modulation 

of antigen interactions with lymphocytes. In accordance with these mechanisms, enhanced responses 

have been associated with decreases in particle size, increases in surface area, and surface 

characteristics with implications for surface loading capacity. 

 

1.2.4. Metal Nanomaterials and Immune Effects In Vitro  

Allergic sensitization, progression, and elicitation involve numerous complex molecular and 

cellular processes that manifest on the level of tissues and entire organisms. As a result, allergic disease  

is often studied in vivo, where animal models can account for the expansive number of cell types and 

tissues involved in these processes. Moreover, animal models can account for other variables involved 

in allergic disease, including exposure route-dependent effects, host metabolism, and clinical 

manifestations. However, these expansive sources of input associated with in vivo models often prevent 

the identification or analysis of specific molecular mechanisms involved in allergy. As a result, in vitro 

studies have become instrumental in helping to elucidate some of the underlying molecular mechanisms 

responsible for in vivo observations regarding allergy. In this section, selected studies examining the role 
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of metal nanomaterial physicochemical properties on specific immune cells and corresponding cellular 

processes involved in allergy are detailed.  

 

1.2.4.1. Molecular Alterations in Immunogenicity 

The immunotoxic effects of an agent are fundamentally dependent on the molecular and 

biochemical properties that mediate its interactions with components of the immune system. Many of 

these properties are subject to modulation prior to interactions with immune cells. For example, many 

potent dermal sensitizers are considered prehaptens, which are not capable of inducing sensitization 

until they are transformed by autoxidation or photoxidation into their haptenic forms. Similarly, prohaptens 

require bioactivation in order to induce sensitization (90). The chemical transformation of these chemicals 

prior to encounters with immune cells dictate their immunogenic potential. The immunogenic activity of 

metal nanomaterials is also subject to alteration following interactions with various chemicals and 

macromolecules, and in vitro studies have been utilized to study such effects. 

With regards to metal nanomaterials and their immunotoxic potential, one of the major sources of 

alterations in the biochemical and molecular properties that render them immunogenic is the formation 

of a biocorona. Following entry into biological media, macromolecules present in the media are attracted 

and adsorb to the surface of the nanomaterial within minutes, forming a layer that defines the bioidentity 

of the nanomaterial. Qualitative and quantitative properties of the biocorona are influenced by 

nanomaterial properties including size, charge, morphology, surface modification, and hydrophilicity, 

among other properties (987-993). Moreover, biocorona formation is also dependent on environmental 

factors such as pH and the quantitative and qualitative profile of proteins can vary greatly in response to 

host disease states, such as asthma (994).  

Metal nanomaterial interactions with macromolecules have been extensively studied using in vitro 

approaches. These interactions can impact the subsequent immunological response following exposure 

to metal nanomaterials by numerous mechanisms. However, these effects can be generally categorized 

based on whether altered immunogenicity emerges as a result of interactions leading to 1) altered 



 

81 
 

immunogenicity of the nanomaterial, 2) formation of complexes with novel immunological activity, or 3) 

alterations in immunogenicity of the interacting macromolecule. Studies demonstrating examples of these 

effects following metal nanomaterial biocorona formation and corresponding implications for allergic 

disease are summarized in figure 1.5. 

The first mechanism associated with alterations in immunogenic potential following nanomaterial 

interactions with biomolecules involves modulation of metal nanomaterial immune activity. An example 

of such an effect is the non-specific adsorption of biomolecules to nanomaterial surfaces, which results 

in alterations in physico-chemical properties implicated in the nanomaterial’s biologic activity. For 

example,  biocorona formation on 25 nm FeNP was shown to cause a five-fold increase in hydrodynamic 

diameter of the nanomaterials (995). Given the importance of particle size on cellular processes including 

internalization, this effect has the capacity to alter the potential for the material to induce an immunological 

response on the cellular level. Surface-adsorbed proteins have also been shown to modulate the degree 

of AuNP agglomeration, which can result in similar alterations in interactions with immune cells (996). 

The propensity for ion release from metal alloy nanoparticles was also shown to be altered depending 

on the amino acids present in solution (997). Given the allergenic potential associated with haptenic metal 

ions, this effect can greatly impact the allergenic potential of metal nanomaterials. In another study, the 

capacity for ZnONP to induce ROS production was mitigated as a result of protein corona formation 

(998). Surface-adsorbed molecules can mask reactive surfaces of metal nanomaterials, and as a major 

mechanism involved in alarmin release and activation of pro-inflammatory cell signaling, corona-induced 

alterations in surface reactivity can significantly impact the immunogenicity of metal nanomaterials.  

The immunological effects of metal nanomaterials can also be augmented as a result of surface 

adsorption of specific endogenous molecules. For example, immunoglobulins, cytokines, and 

complement proteins are all constituents of the serum and lung lining fluid capable of binding metal 

nanomaterial surfaces (987, 999). Since many of these proteins are involved in opsonization, their 

adsorption to the surface of metal nanomaterials can result in enhanced clearance of the nanomaterial 

by phagocytic cells (1000-1003). Contrarily, these proteins may also facilitate receptor-mediated uptake 

of the nanomaterial, as demonstrated by AuNP, Ni-containing nanowires, and CeNP in vitro (1003-1005). 
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Complement proteins that differentially adsorbed to gold nanomaterials as a function of their morphology 

were also shown to induce complement activation (1006). 

Specific exogenous macromolecules can also adsorb to the surface of metal nanomaterials 

leading to altered immunogenicity. One of the most notable examples is endotoxin, a frequent microbial 

contaminant of nanomaterial surfaces that is capable of activating innate immune cells and inducing pro-

inflammatory signaling via the TLR-4 pathway. Adsorption of LPS to nanomaterial surfaces has been 

shown to enhance inflammatory responses in lung epithelial cells and various immune cells (1007-1010). 

The chemical structure of LPS favors its adsorption to hydrophobic, positively-charged metal 

nanomaterial surfaces, indicating a role for physico-chemical properties such as surface modification in 

the propensity for associations with immunogenic exogenous molecules such as LPS (523, 1011). 

Intentional surface modification of metal nanomaterials with various functional groups may also 

implicate alterations for the immunogenic potential of the nanomaterial. Functionalization of metal 

nanomaterial surfaces with various inorganic or organic ligands is often employed to modulate their 

chemical and biological behavior and optimize their functionality for specific applications. For example, 

surface modification can be used to stabilize nanoparticles to prevent their agglomeration. Similarly, the 

attachment of biomolecules to nanomaterial surfaces has been employed in the selective targeting of 

cells for therapeutic purposes (1012). Although surface functionalization is often used to improve metal 

nanomaterial biocompatibility, the presence of some functional groups on nanomaterial surfaces has 

occasionally been associated with the generation of antibodies specific for the functionalized 

nanomaterial. For example, fullerene-specific IgG antibodies have been generated following in vivo 

exposure to surface functionalized particles (938). 

The second potential mechanism associated with altered immunogenic potential following 

nanomaterial interactions with biomolecules involves the formation of complexes with novel 

immunological activity. For example, as demonstrated by Deng et al. (2010), macrophages did not 

recognize AuNP or two biomedically-relevant peptides individually. However, their conjugation facilitated 

recognition via TLR-4 and the subsequent induction of pro-inflammatory cytokine production (521).  
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In addition to the formation of complexes exhibiting innate immune stimulatory effects, complexes 

of metal nanomaterials and molecules can also result in the generation of antigens capable of inducing 

specific immune responses. AlNP, GdNP, and AuNP have been shown to act as non-protein carriers of 

LMW haptens, which following injection into animal models, facilitated the generation of hapten-specific 

antibodies (1013). Similarly, the adsorption of protein antigens to metal nanomaterial surfaces can also 

augment their immunogenic potential as a result of complex formation resulting in modulated transport 

to lymphoid tissues, as previously discussed (1014).  

Nanomaterials can also form complexes with immunologically-active molecules wherein binding 

results in their sequestration and subsequent neutralization. Binding of immunoglobulins, complement 

proteins, cytokines, and alarmins to the surfaces of metal nanomaterials has been shown to effectively 

immobilize these proteins, subsequently inhibiting their immunological activities. For example, TiO2NP 

have been shown to adsorb the chemokine CXCL8, compromising its functional activity, and inhibiting 

the recruitment of neutrophils to the site of exposure (1015). 

Nanoparticles can also immobilize haptenic metal ions, compromising their allergenic potential. 

Co ions were shown to adsorb to the surface of nanodiamonds in one study, preventing the elicitation of 

ACD reactions to the metal (1016). Interactions between metal ions and nanoparticles have been shown 

to augment many other immunological processes including DC maturation and macrophage activation in 

vitro, as well as pulmonary inflammation and ACD elicitation in vivo (727, 769, 1017, 1018) Likewise, 

sequestration of haptenic or immunogenic metal ions as a result of adsorption to nanomaterials has the 

capacity to impede their capacity to induce or elicit allergic responses.  

The third mechanism associated with altered immunogenic effects following interactions between 

metal nanomaterials and biomolecules involves alterations in the immunogenic activity of the molecular 

constituent. Numerous studies have reported that following adsorption of proteins to metal nanomaterial 

surfaces, conformational changes in the secondary and tertiary structure can occur. AgNP, SiNP, and 

AuNP have been shown to bind and induce conformational changes of a diverse number of proteins 

including ribonuclease A, apolipoprotein A-I, heme, myoglobin, lysozyme, and albumin (1019-1026). 

Some of these conformational changes can manifest as compromised functionality, as binding to 
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nanomaterials has been shown to modulate the iron-binding capacity of transferrin, interfere with 

fibrinogen clotting activity, and alter catalytic activity of hydrolase enzymes (1027-1029). One of the 

critical properties association with such changes is nanomaterial morphology. The curved surfaces of 

spherical nanoparticles have been shown to compromise the secondary structure of adsorbed proteins 

to a greater degree than planar surfaces of nanosheets (1030). 

The potential immunological implications of such alterations has been demonstrated by Deng et 

al. (2010) in vitro. They showed that functionalized AuNP were capable of binding fibrinogen 

independently of nanoparticle size, but certain sizes of AuNP were associated with the induction of 

conformational changes in the protein. The normally non-immunogenic protein’s structure was altered, 

conferring immunogenic activity as a result of its recognition by and activation of the Mac-1 receptor, 

resulting in the subsequent induction of NF-κB signaling in innate immune cells (770). Similarly, 

interactions between AuNP and TGF-β1 were shown to cause conformational changes in the protein 

responsible for attenuation of the cytokine’s biological activity (1031). 

Conformational changes in protein structure following their interactions with metal nanomaterials 

can result in exposure of cryptic epitopes (1032). Some of these novel epitopes are recognized in a 

manner that results in responses limited to innate immune stimulation. However, cryptic epitopes are also 

associated with the generation of novel antigenic determinants capable of causing allergic sensitization. 

Collectively, the impact of the biocorona on the immunological response to metal nanomaterials 

has been demonstrated by numerous in vitro studies where different cellular effects have been reported 

in response to the same metal nanomaterial, depending on pre-exposure incubation with biological fluids 

enabling corona formation. Biocorona-dependent variations in metal nanomaterial interactions with 

cellular membranes, propensity for internalization, intracellular fate, and cytokine release have all been 

reported. Although the immune effects of the biocorona have been mostly studied with respect to innate 

immune cell effects, the potential for these effects to manifest as alterations in adaptive immunity in vivo 

have been demonstrated. In one such study, B-cells were able to be selectively targeted leading to 

enhanced antigen-specific antibody production in mice when FeNP corona formation was manipulated 

(736). 
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1.2.4.2. Metal Nanomaterial Effects on DC and Sensitization In Vitro 

 As the cell type most frequently associated with antigen presentation during allergic sensitization, 

the capacity for metal nanomaterials to modulate DC activity represents a prominent mechanism by which 

they can modulate the development of allergic disorders (1033). Metal nanomaterial effects on DC have 

been frequently investigated by in vitro studies and findings from these studies suggest several potential 

mechanisms of metal nanomaterial augmentation of DC activity that may have notable implications for 

allergic disease. However, considerations should be given to the diverse DC subtypes, which often 

express differing levels of TLRs and other PRR, which may implicate tissue-specific DC effects on allergic 

processes. 

In vitro approaches for the identification of potential skin sensitizers frequently employ DC or DC-

precursor cell lines. Two such approaches are currently validated for use by the OECD, and involve the 

assessment of the test agent’s capacity to induce upregulation of activation marker expression in 

surrogate DC cell lines. The first assay, the h-CLAT, method uses undifferentiated THP-1 human 

monocytic leukemia cells, which are exposed to an agent for 24 hr and their activation status is 

subsequently assessed by quantification of CD86 and CD54 activation marker expression (121, 164, 

1034).  

The h-CLAT assay has not been employed to evaluate the sensitizing potential of any metal 

nanomaterials; however, several studies have investigated metal nanomaterial effects on undifferentiated 

THP-1 cells following a 24 hr exposure and reported subsequent expression levels of activation markers. 

Accordingly, increased expression of CD86 was observed following exposure to surface-modified FeNP, 

SiO2NP, and mixed-metal alloy nanoparticles (1035). De Marzi et al. (2017) exposed THP-1 cells to a 

wide range of SiO2 particle sizes (10-1430 nm); while all particles promoted activation marker expression, 

the 240 nm SiO2 particles induced the greatest degree of CD80 expression. Similar findings were 

reported by an investigation that assessed the potential for metal debris released from orthopedic 

implants to trigger immune activation. Both ~ 2 µm cobalt-chromium-molybdenum alloy particles and 
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soluble metal ions induced elevations in THP-1 co-stimulatory molecule expression, suggesting that a 

wide range of metal particle sizes have the capacity to induce immune effects involved in allergic 

sensitization (497, 1036). Contrarily, no elevations in THP-1 expression of CD86 or CD54 were observed 

following exposure to 100 nm AgNP or 5/50 nm PtNP in vitro (1037, 1038). 

Though CD86 and CD54 are the validated biomarkers used to infer sensitization potential in the 

THP-1 line, a limited number of studies have evaluated these specific markers following metal 

nanomaterial exposure. However, other markers indicative of DC activation, such as MHC II, CD11b, 

CD14, CCR2, and CCR5 are often have been reported to be up-regulated in response to metal 

nanomaterials including ZnONP and FeNP, which may also be indicative of the potential for these 

materials to promote allergic sensitization (1039, 1040).  

The second validated in vitro assay for the identification of skin sensitizers based on DC-activating 

potential is the U-SENS assay. In this approach, the U937 human monocytic cell is exposed to the test 

agent for ~ 45 hr, following which the quantification of CD86 expression is measured and used to 

determine sensitizing potential. Similar to the h-CLAT assay, no metal nanomaterials have been tested 

using this assay. Although the U937 cell line has been used in many studies to evaluate responses to 

metal nanomaterials, CD86 expression has only been an endpoint of interest in a few studies. 

Accordingly, expression of CD86 by U937 cells was shown to be upregulated following in vitro exposure 

to CoCr microparticles and nanodiamonds (1041). 

The potential for metal nanomaterials to induce DC activation has been more extensively 

examined using human and murine primary DC than the THP-1 and U937 cell lines used in the validated 

assays (1042). Although the expression of activation markers in murine bone marrow-derived DC 

(BMDC) or human monocyte-derived DC (MDDC) has not been validated by OECD for use in determining 

sensitization potential in vitro, several studies have reported their capacity to accurately predict 

sensitizers (131, 134).  

In human MDDC, CD80, CD86, CD54, human leukocyte antigen- DR isotype (HLA-DR), and MHC 

II have all been reported to become upregulated in response to exposure to sensitizing metals (131, 

1043). Many metal nanomaterials, including AuNP, GdNP, SiNP, and a PtNP-containing agent have all 
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been reported to induce elevated expression of these molecules in MDDC following in vitro  exposure 

(538, 953, 1044, 1045). Moreover, several properties of metal nanomaterials have been shown to impact 

the degree to which DC activation markers are upregulated following exposure. TiO2NP crystal structure 

was shown to be influential in this response, wherein anatase forms were more immunogenic (887). 

Similarly, SiNP surface modification was shown to influence DC-activating potential in vitro (701). 

Numerous different SiNP with diverse surface modifications comprised of various chemical constituents 

were used to show that SiNP with more nitrogen or oxygen in the outermost backbone layer were less 

immunostimulatory to DC than those with carbon and hydrogen-based structures (532). 

Murine BMDC have also been studied as potential reporter cells for the identification of potential 

skin sensitizers. Studies have demonstrated that elevations in CD80, CD86, CD54, HLA-DR, and MHC 

II expression occur in response to exposure to sensitizing agents. Accordingly, increased expression of 

several of these markers has been shown following in vitro exposure to AlNP, TiO2NP, ZnONP, SiNP, 

and FeNP (771, 774, 867, 947, 1046-1049). The degree of activation has been further correlated to 

properties including size, surface modification, crystallinity, and morphology (527, 538, 1042, 1050, 

1051). Several studies have also reported increases in many of the same markers on DC isolated from 

animals exposed to metal nanomaterials in vivo (773, 844, 1052). 

A few studies have also reported upregulation of activation markers in DC cell lines including the 

DC2.4 and JAWS II lines. AuNP, AgNP, and SiNP were shown to activate these cells as a function of 

properties including crystal structure and surface modification (887, 1051). 

The only current endpoints validated by the OECD for the in vitro assessment of potential 

sensitizers using DC and DC-precursor cell lines are activation markers. However, as the molecular 

mechanisms involved in the early events of sensitization are becoming better understood, additional 

approaches and endpoints have been proposed to be effective indicators of sensitization potential. One 

of these approaches involves genetic analysis of various cell types involved in the sensitization process. 

Sensitizer-induced alterations in the expression of several specific genes have been profiled in various 

DC and DC-precursor cell types. Modulation in expression of 60 genes - several of which were correlated 

to monocyte differentiation and maturation - were observed in response to PtNP exposure (1053). 
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Another in vitro approach for identification of potential sensitizers involves analysis of ROS 

production following exposure. The THP-1 cell line has been used to identify potential skin sensitizers in 

vitro based on a unifying property of rapid increases in ROS production following exposure to skin 

sensitizing chemicals (1054). A similar response has been demonstrated in the cell line following 

exposure to < 100 nm Ag-Cu alloy nanoparticles, AgNP, CoO NP, PdNP, and NiNP (1055). The degree 

of ROS production by THP-1 cells has been correlated to properties including particle size and biocorona 

presence, as well as exposure dose and duration (1056-1058). Subsequent activation of the p38 MAPK 

signaling pathway, alterations in expression of HMOX1 and other oxidative stress genes have also been 

used as in vitro biomarkers suggestive of sensitizing potential. Numerous metal nanomaterials have been 

associated with these effects on THP-1 cells, which suggests their potential to activate DC and promote 

sensitization (1059-1062). 

Direct activation of DC is not the only potential mechanism by which metal nanomaterials may 

induce allergy-modulating effects. Some metal nanomaterials have been shown to have no impact on 

DC activation marker expression, but have demonstrated other effects with potential to augment allergic 

processes (702, 1063-1065). In vitro studies suggest that irrespective of their DC activating potential, 

metal nanomaterials can induce alterations in DC antigen processing efficacy, propensity for maturation, 

migratory capacity, and lymphocyte stimulation/polarization. 

It has been proposed that although uptake of metal nanomaterials may not augment DC 

maturation or phenotype, their accumulation in endocytic compartments may interfere with antigen 

processing (1066-1069). In this regard, CeNP have been used to demonstrate that following uptake, 

localization in different cellular compartments, such as the cytoplasm or lysosomes, is based on surface 

charge (1070). Moreover, following uptake by DC, the size and charge of nanomaterials has been shown 

to augment the biochemistry of the lysosomal compartment, also potentially interfering with antigen 

degradation (1071, 1072). These mechanisms may underlie the observation that exposure to some metal 

nanomaterials results in altered CD4+ or CD8+ T-cell presentation efficiency (1074). FeNP, SiNP, and 

TiO2NP have all been shown to alter antigen presentation, stimulation, and proliferation of T-cells by DC 

depending on size, shape, crystallinity, and surface modification (536, 702, 703). 
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Numerous metal nanomaterials have been shown to alter DC responses to maturation stimuli in 

vitro. QD comprised of Zn and Cd, AuNP, and SiNP were shown to decrease DC activation in response 

to LPS (774, 1042, 1075). Contrarily, uptake of AuNP and AgNP resulted in an enhanced capacity for 

DC maturation in response to other immune stimuli (1051). AuNP were shown to differentially affect DC 

response to LPS as a function of particle size (1076). This finding suggests that uptake of antigens 

normally incapable of activating DC may trigger their maturation in the presence of nanomaterials.  

DC migration is another mandatory step of sensitization that appears to be subject to modulation 

by metal nanomaterials. AlNP and FeNP have both been shown to augment DC responses to 

chemotactic mediators and subsequent migratory capacity (771, 1077). Similarly, Al-containing layered 

double hydroxide nanoparticles were shown to augment DC expression of CCR7 by DC as a function of 

the chemical constituent proportionality (771). 

Polarization of DC and the subsequent preferential generation of Th1/Th2 effector T-cells is 

another step in the development of allergy that has been shown to be susceptible to modulation by metal 

nanomaterials. GdNP, AuNP, TiO2NP, and FeNP have been shown to polarize DC towards Th1-dominant 

responses in vitro (739, 953, 1078). Contrarily, CeONP and SiNP have been implicated in promoting 

Th2-biased DC responses (536, 1049). 

Dermal and respiratory sensitizers are associated with divergent oxidative stress responses that 

induce selective alterations in three major signaling pathways responsible for DC polarization (1079, 

1080). Polarization of DC towards Th1-promoting functions has been associated with the propensity for 

skin sensitizers to react with cytoplasmic glutathione, following which, its rapid depletion leads to ROS 

accumulation. The immediate induction of oxidative stress induced by contact sensitizers is responsible 

for the selective activation of the p38 MAPK and JNK signaling pathways within minutes of encounter 

(1081). Contrarily, polarization of DC towards Th2-dominant functions has been associated with delayed 

induction of oxidative stress resulting from the preferential association of respiratory sensitizers with 

intracellular amine groups (113). Subsequently, selective activation of the NF-KB and ERK pathways 

occurs. 
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Knowledge of these pathways and their differential modes of activation explain the observation 

that metal nanomaterials with opposing catalytic properties induce different polarization profiles in DC in 

vitro. The oxidant effects of TiO2NP were shown to result in potentiation of DC maturation leading to Th1-

biased responses, whereas treatment with the antioxidant activity of CeO2NP resulted in secretion of 

anti-inflammatory IL-10 and a Th2-dominant T-cell profile (536). FeNP, AuNP, and gadolinium (Gd)NP 

have also been associated with modulation of DC polarization in vitro with respect to size and surface 

chemistry (739, 778, 953, 1076). 

Aside from conventional DC subsets in the context of antigen presentation, metal nanomaterials 

may also exert effects on other DC subsets with contributions to allergic processes. For example, 

plasmacytoid DC (pDC) circulate in the blood and are known for their production of high levels of type 1 

interferons (1082). This DC subset has been shown to selectively take up nanoparticles, but not 

microparticles, and modulation of particle nanostructures can result in their selective targeting in vivo 

(1083, 1084). Although depletion of pDC leads to sensitization and IgE-mediated responses to inhaled 

antigen, numbers of pDC are also elevated in asthmatics and are associated with enhanced Th2 allergic 

responses and exacerbations of asthma (1085-1089). pDC have also been shown to be involved in 

inflammatory skin diseases and have the capacity to cross-present antigen following nanoparticle-based 

targeting of specific surface receptors (1090, 1091). Likewise, the potential for metal nanomaterials to 

augment antigen-presentation and cytokine production by pDC may have implications for allergic disease 

(1092). 

 

1.2.4.3. Metal Nanomaterial Effects on Processes Involved in Allergic Elicitation In Vitro 

Several in vitro studies have directly demonstrated the potential for metal nanomaterials to 

influence cellular processes involved in allergic elicitation. Both IgE-mediated and T-cell-mediated 

responses appear subject to interference in the presence of nanomaterials. Moreover, similar 

observations have been shown in the context of allergic elicitation responses specific to both 

environmental proteins and metal allergens. 
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In asthma, mast cells are sources of many of the molecular mediators responsible for the 

pathogenesis of elicitation reactions. Upon activation, mast cells release granules containing 

prostaglandins, leukotrienes, pro-inflammatory cytokines, and numerous other effector molecules (1093).  

IgE-dependent degranulation by mast cells in the presence of allergen has been shown to be enhanced 

by some metal nanomaterials (AgNP), while unaffected (TiO2NP) or inhibited by others (ZnONP, 

Fe2O3NP) (546, 911, 912). Several divergent mechanisms involved in the modulation of mast cell 

degranulation have been elucidated and reveal why some metal nanomaterials and specific physico-

chemical properties may selectively facilitate modulation of degranulation. 

As demonstrated with AuNP, one major mechanism capable of impacting the propensity for 

allergen-induced degranulation of mast cells results from particle interactions with IgE molecules on the 

surface of mast cells. Mast cells have been reported to express an estimated 3.0 x 105 FcεRI receptors 

per cell with a distance of ~32.6 nm between receptors. The RBL-2H3 mast cell line was utilized to 

demonstrate that precise control of AuNP size and surface modification could selectively promote or 

inhibit nanoparticle-mediated IgE dimerization and subsequent degranulation in vitro (784). In the same 

cell line, another study demonstrated that the propensity for degranulation can be modulated when both 

allergen and cells are pre-exposed different types of nanomaterials. TiO2NP, CeO2NP, ZnONP, and 

FeNP interacted with immune structures depending on size, degree of agglomeration, and charge and 

were subsequently capable of modulating the degranulation process (916). This capacity for metal 

nanomaterials to interfere with IgE/receptor binding can result in modulations in mast cell propensity for 

degranulation upon exposure to antigens, independent of particle uptake by cells. 

Another mechanism associated with metal nanomaterial-induced modulation of mast cell 

activation is dependent on nanomaterial internalization, which subsequently disrupts the intracellular 

signaling cascades responsible for degranulation. Compared to negatively-charged particles of the same 

size (30 nm), positively-charged AuNP and AgNP were demonstrated to be taken up by mouse peritoneal 

mast cells more efficiently (914). QD with varying surface charges showed similar effects on mast cells 

in vitro. The electrostatic forces between positively-charged particles and the cell membrane facilitated 

particle adherence and passive penetration, whereas negatively-charged particles were internalized by 
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endocytosis (1094). Surface porosity has also been shown to be influential in nanomaterial uptake by 

primary culture mast cells, as variations in internalization of porous, nonporous, and mesoporous SiNP 

have also been observed in vitro (785). In addition to these physico-chemical properties, the profile of 

adsorbed constituent present on the surface of metal nanomaterials may also impact the propensity for 

uptake since mast cells express Fc receptors for IgA and IgG, TLRs, and various scavenger receptors, 

(1095, 1096). 

Following IgE dimerization, an increase in free cytosolic Ca2+ triggers the release of granules by 

mast cells. Accordingly, the internalization of materials with the capacity to interfere with the flux of ions 

may subsequently impact activation. In one study, TiO2NP were shown to disrupt membrane L-type Ca2+ 

channels in RBL-2H3 cells resulting in increases in cytosolic Ca2+ levels and subsequent degranulation 

in the absence of IgE or allergen (1097). A similar response has been noted in various mast cell lines 

following exposure to AgNP with different physico-chemical properties (915, 1098). In one study, 

selective modulation of mast cell Ca2+ levels was observed following exposure to 5 nm, but not 100 nm 

AgNP, resulting in granule release. This observation is not surprising given that the increased surface 

area of the smaller particle generates additional reactive surfaces capable of inducing more profound 

disruptions in cellular electrochemical balance (544). Zeta potential, morphology, and surface 

modification of metal nanomaterials have also been implicated in the potential for disruption of signaling 

leading to altered mast cell degranulation in vitro (546, 912, 913). Furthermore, variations in the 

propensity for ion release from fine, ultrafine, and soluble Zn compounds has been correlated to 

differential effects on OVA-induced mast cell degranulation in vitro (1099). These findings are conducive 

with a previously established relationship relating transition metal ions to interference with allergen-

induced mast cell degranulation with respect to air pollution (1100). Collectively, these studies 

demonstrate a clear mechanism associated with alterations in mast cell activity and identify several 

properties of metal nanomaterials that are likely to influence this effect. 

Basophils are another population of granulocytes with similar effector functions as mast cells in 

IgE-mediated allergic diseases. However, as a circulating cell population that is both shorter-lived and 

far outnumbered by tissue-resident mast cells, they are less frequently studied (1101). Very few studies 
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have investigated the potential effects of metal nanomaterials on basophils in vitro. However, one study 

has demonstrated that allergen-induced degranulation of basophils is susceptible to modulation by AuNP. 

Accordingly, basophils from subjects with established sensitivity to common environmental allergens 

including birch pollen, timothy grass pollen, and HDM were isolated and exposed to the corresponding 

allergens either in the presence or absence of AuNP. Although stable coronas were formed on AuNP by 

all three allergens, physical associations with 50 nm AuNP enhanced the activation of basophils following 

HDM challenge, as well as birch pollen in some individuals. The authors suggested that the enhanced 

propensity for basophil activation may have been reflective of AuNP-mediated epitope display in a 

manner more conducive with antigen-mediated IgE cross-linking and subsequent degranulation (522).  

Metal nanomaterials have also been demonstrated in a few studies to have potential to modulate 

elicitation responses mediated by antigen-specific T-cells. For example, when exposed to OVA, OVA-

specific T-cells produced significantly different levels of IFN-γ and IL-2 depending on the presence of 

surface-modified 51 nm SiNP. Interestingly, co-exposure to SiNP enhanced antigen specific responses 

exclusively in CD8+ cells (1074). A similar response was observed when OVA-specific T-cells were pre-

treated with FeNP prior to stimulation with OVA. FeNP exposure modulated lymphocyte production of IL-

2 and INF-γ, which was postulated to be associated with the depletion of cellular glutathione levels (1102). 

Nanomaterial effects on metal-specific T-cell-mediated allergic elicitation responses have also 

been investigated by a few in vitro studies. In one study, peripheral blood mononuclear cells (PBMC) 

isolated from Pd-sensitive women were challenged with either 5-10 nm PdNP or Pd salts in vitro. 

Subsequent production of TNF-α and IL-10 was shown to vary significantly between cells of the different 

treatment groups, indicating a potential role for metal solubility in T-cell-mediated metal allergy elicitation 

(545). Similar findings have been observed in lymphocytes from patients with metal sensitivity associated 

with metal-on-metal implant debris release. Metal-specific lymphocytes have been shown to react 

differently in response to particulate alloy particles and metal ions. Co-Cr-Mo alloy particles, Co-Cr wear 

debris, and metal constituent ions have also been shown to cause significantly different profiles of 

cytokine release by lymphocytes with respect to IL-1β, TNF-α, IL-2, IFN-γ, and IL-6 (497, 1103). 
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Although in vitro studies that directly demonstrate metal nanomaterial-induced modulation of 

allergic elicitation reactions are somewhat limited, numerous studies have been performed to evaluate 

metal nanomaterial effects on specific immune cells involved in elicitation responses. Metal 

nanomaterials have been shown to induce diverse effects on T- and B-lymphocytes, and granulocytes, 

many of which may have implications for their effector functions in elicitation reactions. 

In vivo, ZnONP, CuONP, CeONP, and many other metal nanomaterials administered by various 

exposure routes have been shown to alter T-cell population ratios, proliferative capacity, and cytokine 

responses to various stimuli (1104-1106). As the major effector cell of ACD and other Type IV 

hypersensitivity reactions, metal nanomaterial interference with T-lymphocyte activity represents a 

potential mechanism of augmentation with notable relevance to the elicitation phase of allergy. In vitro 

studies using T-lymphocytes have demonstrated that metal nanomaterials can directly impact several 

cellular processes that may correlate to in vivo observations. 

Exposure to ultrasmall SiNP (1.8-16 nm) was shown in one study to induce expression of 

activation markers in both CD4+ and CD8+ T-cells. It was proposed that the “ultrasmall” size range of 

these materials, which has not been frequently studied, may be somehow responsible for the observed 

effect; however, FeNP and AuNP of similar sizes did not induce the same response, indicating that size 

alone is does not confer T-lymphocyte activation potential (538, 1107). Other metal nanomaterials have 

also been shown to be ineffective activators of T-cells. Irrespectively, their presence has frequently been 

associated with modulation of reactivity upon stimulation. FeNP, TiO2NP, and CrCoNP, AgNP and AuNP 

have all been shown to augment T-cell cytokine production following stimulation by non-specific mitogens 

(1064, 1108-1112). Properties including surface modification have been further correlated to 

discrepancies in T-cell cytokine responses as a result of nanomaterial exposure (1113). 

Some metal nanomaterials have also been associated with the potential to polarize T-cell cytokine 

profiles, an effect which has notable relevance to allergic disease. PdNP, AuNP, CoNP, SiNP, and GdNP 

have all been shown to induce differential Th1/Th2-biased cytokine production by lymphocytes in vitro 

dependent on properties including size, solubility, and hydrophobicity (1107, 1114-1117). Some of the 

same physico-chemical properties have also been associated with disruptions in cell redox status and 
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ion homeostasis in T-cells, effects which may underlie observations reporting alterations in cell signaling 

patterns (1118, 1119). For example, FeNP have been shown to suppress the activity of Kv1.3 ion 

channels in murine T-lymphocytes, illustrating another potential effect of metal nanomaterials on T-cells 

capable of altering numerous cellular functions (1120). 

Although selective cytotoxic effects on lymphocytes is an immunotoxic effect most frequently 

associated with immunosuppressive responses, a similar effect could be associated with implications for 

allergic conditions, as well (1121). Accordingly, metal nanomaterial cytotoxic and genotoxic effects have 

been investigated in murine and human lymphocytes in vitro and correlated to properties including size 

and morphology (1122-1128). Interestingly, lymphocytes have been demonstrated to be more resistant 

to adverse effects of ZnONP compared to other immune cell types (1129). Susceptibility to cytotoxicity 

was also shown to be dependent on cell cycle status, explaining the observation that memory T-cells 

were more sensitive to metal nanomaterial effects compared to naïve T-cells (1129, 1130).  

The cytotoxic potential of FeNP on T-cells was characterized by one study wherein size, surface 

properties, surface area, and particle number were all considered. Accordingly, 10 and 50 nm FeNP did 

not induce dose-dependent cytotoxicity with respect to the mass administered, but the effects were 

dependent on surface area and particle number (1131). This finding is conducive with the observation 

that the cytotoxicity induced by ZnONP and PdNP was associated with the release of ions correlated to 

cytotoxicity and alteration in gene expression; however, one study reported that T-cell DNA damage 

induced by CoNP was more severe than that induced by cobalt ions (1132-1135).  

Alterations in mitogen-induced cytokine production and cell viability have been the most 

frequently-reported effects associated with in vitro exposure of T-lymphocytes to metal nanomaterials. 

However, other T-cell responses with potential to impact allergic elicitation have been occasionally 

reported following metal nanomaterial exposure. For example, human antigen-specific cytotoxic T-

lymphocytes maintained effective cytolytic activity following exposure to FeNP, but cells exhibited 

compromised proliferative capacity (1136). Interference with lymphocyte proliferation may not only impact 

allergic responses in the elicitation phase, but may also impact sensitization, as well. Findings from 

studies have also reported nanomaterial-induced alterations in adhesion molecule and chemokine 
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receptor expression, TLR singling, and morphological alterations in T-cells, all of which may also impact 

T-cell effector functions during allergic elicitation (540, 1137-1139). 

The majority of the existing studies pertaining to lymphocytes as potential targets of metal 

nanomaterial-induced biological effects have specifically investigated T-lymphocytes. B-lymphocyte 

responses to metal nanomaterials have been characterized by far fewer studies. In vivo, exposure to 

various metal nanomaterials has been associated with alterations in immune parameters indicative of 

alterations in B-cell activity. Alterations in circulating B-cell frequency, distribution within lymphoid organs, 

and proliferative capacity have all been reported following nanomaterial exposure (780, 782, 1140-1142). 

Modulation of antibody levels have also been frequently reported following metal nanomaterial exposure 

in vivo (527, 946, 951, 959, 1143-1145). However, whether these responses are reflective of the capacity 

for metal nanomaterials to directly impact B-cell functions remains unclear.  

In vitro evaluation of metal nanomaterial effects on B-cells are largely limited to studies that have 

employed AuNP. Accordingly, in a murine B-lymphocyte cell line (CH12.LX), 10 nm AuNP were shown 

to induce activation of the NF-κB signaling pathway, resulting in increased antibody production (1146). 

Similarly, AuNP ranging from 2 – 50 nm in size were associated with size-dependent enhancement of 

IgG secretion in B-cells isolated from mouse spleens. The 10 nm AuNP were associated with maximal 

responses, which were associated with modulation of the blimp1/pax5 signaling pathway (779). Contrary 

to these findings, ~15 nm AuNP with variations in surface modifications and 60 nm Au nanorods were all 

reported to interact poorly with B-cells isolated from humans. No decreases in cell viability, increases in 

activation marker expression, or inflammatory cytokine production was reported following 24 hr exposure 

to the highest dose. However, a decrease in IL-6 production was observed in activated lymphocytes 

exposed to the uncoated Au nanorods, which the authors noted to be suggestive of potential for functional 

impairment (1147). 

Despite their critical functions in asthmatic conditions and other Type I hypersensitivity responses, 

including IgE production, B-cells represent a cell type associated with expansive knowledge gaps 

pertaining to nanomaterial toxicity. This lack of investigation is surprising given that the vast majority of 

in vivo studies have examined metal nanomaterial effects on IgE-mediated allergic processes. Moreover, 
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while fewer allergy models have been employed to study dermal allergy, many of the existing studies 

have investigated atopic dermatitis as opposed to ACD, wherein the effector functions are IgE-mediated, 

and thus, dependent on B-cell functions. As a result of this discord, it remains largely unclear if in vivo 

observations reflect direct effects of metal nanomaterials on B-cell functions. The potential for metal 

nanomaterials to directly alter B-cell processes, such as antigen-specific interactions with T-cells, isotype 

switching, and affinity maturation, events critical to their effector functions in IgE-mediated allergic 

disorder such as asthma, remain largely unstudied (1148).  

In addition to B- and T-lymphocytes, granulocytes also execute critical effector functions in allergic 

elicitation responses, and have been frequently studied as potential targets of metal nanomaterials in 

vitro. Although the release of these mediators following degranulation is most frequently associated with 

antigen-induced dimerization of surface-bound IgE molecules, mast cell degranulation can be triggered 

by numerous other immunological and non-immunological mechanisms (1149). Likewise, in addition to 

the previously-mentioned studies demonstrating augmentation of allergen-dependent mast cell 

degranulation, additional studies have also demonstrated other implications of metal nanomaterial 

exposure on mast cells with the potential to impact allergic responses independent of allergen presence. 

IgE-independent mast cell degranulation has been observed in vitro following exposure of cells 

to AgNP, TiO2NP, and AuNP (546, 784, 915, 1097, 1150). Properties including size, morphology, and 

surface modification have been shown to impact this response (913). Metal nanomaterial-induced 

degranulation of mast cells has the potential to induce inflammatory responses resembling allergic 

inflammation in the absence of allergen exposure. This effect may further exacerbate allergic severity in 

existing conditions.  

Several metal nanomaterials have also been associated with potential to alter the qualitative 

profile of mast cell granule constituents in vitro. Positively-charged AuNP and negatively-charged AgNP 

have been shown to decrease the serotonin content in granules released by murine mast cells. Similarly, 

SiNP have been associated with a collective decrease in the number of molecules encapsulated within 

mast cell granules (785). Since granule contents regulate many of the pathomechanisms central to 

allergic responses including AHR, vascular permeability, and inflammatory cell recruitment, metal 
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nanomaterial-induced alterations in the contents of mast cell granules can greatly impact the severity of 

elicitation responses. The kinetics and efficiency of mast cell degranulation can also be impaired following 

metal nanomaterial exposure, as demonstrated by TiO2NP (785, 1151). 

Other occasional reports of metal nanomaterial-induced modulations in mast cell activity exist, 

suggesting additional mechanisms by which mast cells may be targeted by nanomaterials resulting in 

altered allergic processes. Interestingly, 10 nm SiNP and 26 nm AuNP were shown to be incorporated 

into mast cell granules prior to exocytosis (1152, 1153). Although the implications of these findings remain 

unknown, the sequestration of metal nanomaterials within mast cell granules suggests potential for their 

release upon subsequent cell activation, which may result in numerous implications for allergic 

responses. Additionally, ZnONP have been shown to suppress proliferative activity of mast cells and 

doping of ZnONP with Al has been shown to decrease the release of various Th2-promoting mediators 

by mast cells (1154, 1155). 

Most of the reported mast cell effects induced by metal nanomaterials seem largely relevant to 

the elicitation of IgE-mediated allergic responses such as asthma. However, mast cells have been 

increasingly recognized as critical regulators of sensitization and chronic allergic inflammation in both the 

skin and lungs. Mast cells are capable of releasing alarmins and cytokines known to promote DC 

maturation, migration to the lymph nodes, polarized lymphocyte responses, and inflammatory cell 

recruitment (98, 705, 1095, 1156-1159). With respect to ACD, mast cells are involved in allergic elicitation 

since they exhibit antigen presentation capabilities, enhance CD8+ T-cell effector functions, and release 

cytokines regulating the severity of chronic reactions (1096, 1160-1166). Likewise, observations of metal 

nanomaterial-induced endocytic antigen retention, alterations in cytokine production, and suppression of 

proliferation in mast cells suggests the potential for effects to impact more than just asthmatic elicitation 

(1154, 1155, 1167, 1168). 

The KU812 human basophil line was exposed to Au nanorods with varying surface modifications 

in vitro and subsequent release of allergic mediators was monitored. Within 20 min of exposure, release 

of granules containing histamine and β-hexosaminidase was detected, indicative of IgE-independent 

degranulation. Similar to the observations reported for mast cells, the gold nanorods modulated 



 

99 
 

intracellular Ca2+ levels in a surface coating-dependent manner, leading to discrepancies in cellular 

activation. Moreover, the different nanorods were associated with differential induction of apoptosis in 

basophils, as well (1169).  

The contributions of mast cells and basophils to allergic processes have often been historically 

described collectively. However, recent advances in basophil biology have led to identification of 

functionally-distinct subpopulations of basophils and recognition of their involvement in helminthic 

infections, autoimmune diseases, and allergy (1170). Although similar findings have been reported 

regarding metal nanomaterial effects on mast cells and basophils, several unique properties of basophils 

render the lack of metal nanomaterial studies specific to this cell type a concern.  

First, observations that AuNP can induce degranulation of basophils by allergen-independent 

mechanisms presents a unique concern given their presence in the circulation. Metal nanomaterials 

including AuNP and FeNP are being increasingly used in biomedical applications that involve their 

systemic administration (1171, 1172). This raises concerns over the potential for these metal 

nanomaterials to trigger degranulation of basophils, resulting in systemic immune responses such as 

anaphylaxis (1067).  

Additionally, in vitro studies using both mast cells and basophils have demonstrated a critical 

importance of surface-adsorbed proteins in the biological activity of metal nanomaterials. However, their 

interactions with metal nanomaterials are likely to occur in vastly different biological compartments, 

implicating different coronal profiles in subsequent effects. Basophils also exhibit unique humoral immune 

functions that differentiate their potential effects on allergic disease from those of mast cells (1173). 

Basophils have been associated with an alternative pathway of anaphylaxis mediated by IgG, as well as 

IgD-dependent mechanisms of activation (1174, 1175). Furthermore, basophils can participate in antigen 

presentation, implicating the effects of metal nanomaterials on basophils in both sensitization and 

elicitation of allergy (1176). Given the minimal number of existing studies that specifically investigate 

metal nanomaterial effects on basophils, future studies should address this knowledge gap, taking into 

consideration the different biological activities associated with mast cells and basophils. 

 



 

100 
 

1.2.4.4. Metal Nanomaterial Effects on Other Immune Cells In Vitro 

Monocytes: Monocytes are a short-lived circulating leukocyte that undergo differentiation into 

macrophages and DC upon extravasion into tissues (1177). Given these properties, monocytic cell lines 

have notable utility in the previously-mentioned in vitro approaches to identify potential sensitizers; 

however, they are not a commonly investigated cell type with respect to the toxic effects of nanomaterials. 

Monocytic cell lines and primary monocytes are often differentiated and used to study metal nanomaterial 

effects on macrophage and DC functions in vitro. However, a few studies have reported that metal 

nanomaterials can induce diverse effects on monocytes ranging from over cytotoxicity to augmentation 

of phagocytic activity and modulation of cytoskeletal function (1178, 1179). However, observations that 

metal nanomaterials can induce modulation of monocyte migratory capacity, inflammatory mediator 

release, and differentiation may have specific relevance in the context of allergic disease. 

Many macrophage and DC subtypes involved in allergic processes are monocyte-derived 

populations. Likewise, their effector functions at sites of inflammation are dependent on chemotaxis.  

Increased expression of adhesion molecules and subsequent alterations in endothelial adhesion by 

monocytes has been reported in vitro following exposure to  SiNP, ZnONP, and AgNP (1180-1182). 

SiO2NP size, TiO2NP crystallinity, and FeNP corona have all been associated with differential expression 

of adhesion molecules by monocytes in vitro, impacting subsequent adhesion strength to endothelial 

cells (1183-1185). Similarly, FeNP were shown to augment monocyte chemotaxis to monocyte 

chemotactic protein (MCP)-1 in a surface modification-dependent manner (1186). These effects may 

have implications for allergic disease, since monocyte migration into inflamed tissues are integral to 

inflammatory cell replenishment and they can be sources of allergy-promoting cytokines. 

Metal nanomaterials have also been shown to induce the release of numerous pro-inflammatory 

mediators by monocytes which may impact all phases of allergic disease (1187, 1188). Many of these 

mediators, including IL-1β, TNF-α, IL-6, and IL-8, have critical roles in sensitization and have been shown 

to be released following exposure to ZnONP, QD, AgNP, and SiO2NP in vitro (1178, 1181, 1189-1191). 

Matrix metalloprotease (MMP)-2 and MMP-9 production by monocytes has also been reported following 
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exposure to NiNP and CoNP (1192, 1193). Many of these mediators are released following activation of 

signaling pathways driven by elevated levels of oxidative stress. ROS-induced activation of NF-kB and 

MAPK signaling pathways in monocytes have been associated with ZnONP, AuNP, and QD exposure 

(1188, 1191, 1194). As demonstrated by FeNP, these effects can also result in augmented monocyte 

responses to immunological stimuli other than the nanomaterials. FeNP were shown to suppress NF-kB 

activation  in primary human monocytes in response to LPS (1195). 

In addition, SiO2NP and AgNP have also been associated with inflammasome activation in 

monocytes, an effect capable of further amplifying pro-inflammatory signaling (1196, 1197). Although 

ROS production has been implicated as an underlying mechanism, other effects may also be involved. 

For example, it was shown that SiONP-induced inflammasome activation was dependent on uptake by 

scavenger receptor A, which was dependent on particle size (1198). Lysosomal rupture has also been 

implicated in inflammasome activation, and Ag nanomaterials have been used to demonstrate the impact 

of morphology on this process (1199) Modulation of K+ ion channel function and ion efflux in monocytes 

is another mechanism related to inflammasome activation and has been observed in monocytes following 

exposure to AgNP and FeNP (1179, 1196). Similarly, AgNP have been shown to degrade the ATF-6 

sensor, promoting inflammasome activation (1200). 

Although many metal nanomaterials have been shown to induce detrimental cellular effects as a 

result of ROS production, some nanomaterials have demonstrated the capacity to mitigate monocyte 

oxidative stress. Accordingly, some of these same physico-chemical properties have been implicated in 

these effects. Size-dependent quenching of ROS observed by CeONP was attributed to increased crystal 

lattice defects in the smaller material (1201). A similar finding has been demonstrated using TiO2NP, 

wherein modulation of the surface nanostructure was employed to mitigate ROS production (1202).  

Many metal nanomaterials have been shown to induce dose-dependent cytotoxic effects on 

monocytes resulting in apoptotic, autophagic, or necrotic cell death (1203-1205). Several studies have 

correlated cytotoxic potential of ZnONP, NiONP, SiO2NP, AlNP, and AgNP to decreasing size (1036, 

1057, 1178, 1196, 1206, 1207). Furthermore, AuNP corona formation, ZnONP charge and surface 
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coating, and AgNP dissolution potential have been implicated in cytotoxic effects on monocytes (523, 

1039, 1058, 1206).  

Studies have also compared the susceptibility of monocytes to these cytotoxic effects with other 

immune cells, generating interesting findings. Due to their inherent functions in the innate immune 

system, phagocytic cells have been shown to be up to ten times more sensitive to uptake-dependent 

metal nanomaterial cytotoxicity compared to non-phagocytic cells. Accordingly, monocytes were shown 

to reach a ‘critical cellular load’ of 25-35 nm SiO2NP more readily than other non-phagocytic immune cell 

types, resulting in cell type-specific cytotoxic effects (1208). Simialrly, the cellular effects of FeNP were 

differentially induced in human monocyte subsets with known variations in phagocytic activity (1209). 

Similarly, the U937 monocytic cell line was used to demonstrate an increased sensitivity to metal 

nanomaterial effects following its differentiation into a macrophage-like phenotype, known to exhibit 

increased phagocytic potential (1201). 

In addition to phagocytic activity, another cell-specific characteristic shown to impact susceptibility 

to metal nanomaterial-induced cell death is cell cycle status and proliferative potential. ZnONP have been 

repeatedly shown to induce selective cytotoxic effects on immune cells with elevated proliferative 

potential, and monocytes were shown to be one of the immune cell types most susceptible to the 

production of cell death-inducing levels of ROS (1129, 1210). It has been suggested that the production 

of ROS following uptake is extensively greater in proliferating cells than differentiating cells, resulting in 

more pronounced toxic effects (1105, 1211). 

Macrophages: Macrophages are one of the most frequently studied immune cell targets of metal 

nanomaterial effects in vitro. However, the collective implications of these findings for metal nanomaterial 

effects on allergic disease are difficult to discern for several reasons. First, the majority of in vitro studies 

have used macrophage cell lines, which do not accurately represent the distinctive properties of tissue-

resident macrophages. The respiratory tract, spleen, skin, lymph nodes, adipose tissue, GI tract, and 

numerous other biological compartments harbor distinctive populations of tissue-resident macrophages 

that originate from different developmental pathways, exhibit specialized immunoregulatory functions, 

and display distinctive phenotypic profiles (1212, 1213). Accordingly, the biological fate of metal 
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nanomaterials following macrophage interaction can vary greatly depending on the specialized functions 

unique to each subpopulation. For example, the characteristically high levels of scavenger receptor 

expression by Kupffer cells, the resident macrophage population of the liver, has been associated with 

increased recognition and uptake of nanomaterials compared to other macrophage subsets (1214-1216). 

Similarly, the optimal particle size for uptake has been shown to differ significantly between alveolar 

macrophages and peritoneal macrophages (1000).  

Similar to the different biological activities of macrophages with respect to specialized phenotype, 

the activation status of macrophages has also been shown to impact interactions with metal 

nanomaterials (1217). Accordingly, in vitro studies using inconsistent protocols for differentiation of 

primary immune cells or cell lines into macrophages may generate different phenotypes of cells that may 

generate conflicting study results. Although the classification scheme of alternatively and classically-

activated macrophage activation scheme has received increasing criticism, it remains a frequently-used 

classification scheme for macrophage activation state. In accordance, in vitro studies using cell lines 

have demonstrated notable discrepancies in nanoparticle uptake by macrophages with respect to 

polarization status (1218).  

Lastly, the unique roles of macrophages with respect to ACD and asthma should be considered 

when interpreting the results of in vitro studies and the implications for allergy. Pulmonary macrophages 

are known to play critical roles in the regulation of DC activity that can promote or impede the early events 

of sensitization. Moreover, as reservoirs for inhaled antigens, their capacity to internalize foreign material 

is also critically important with respect to respiratory sensitization. In the skin, macrophages play critical 

roles in elicitation responses, contributing to the tissue destruction characteristic of ACD elicitation 

reactions. 

Metal nanomaterials have been shown to induce a variety of alterations in macrophage activity 

including altered podosome formation, gelatinase degradation, and antigen recognition/uptake (1219). 

Moreover, the impact of metal nanomaterial physico-chemical properties on cellular activity has been 

well-studied with respect to macrophages. However, given the vast amount existing literature and the 
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previously-mentioned limitations, only studies reporting metal nanomaterial effects on select macrophage 

functions will be discussed with regards to potential augmentation of allergic processes.   

One of the most notable effects of metal nanomaterials on macrophages with potential 

implications for allergic disorders is their capacity to induce phenotypical alterations associated with 

enhanced antigen presenting capacity. FeNP, QD, ZnONP, and AgNP have all been shown to increase 

the expression of antigen presenting molecules including CD80, CD86, and MHC II in several 

macrophage cell lines in vitro (844, 1219-1221). Many in vivo studies investigating metal nanomaterial-

induced immune effects have also reported increased expression of these markers by macrophages 

(1222, 1223). Furthermore, increased populations of macrophages with similar APC phenotypes have 

been reported in patients experiencing metal sensitivity as a result of metal wear debris from orthopedic 

implants (1224).  

Similarly, metal nanomaterial-induced polarization of macrophage activation status may represent 

a notable effect with implications for many phases of allergic disorders. The dynamic capacity of 

macrophages to both amplify immune responses and mitigate them is commonly described in terms of 

two polarized activation states reflective of their propensity to promote the destruction of intracellular 

pathogens (M1, classically-activated) or contribute to wound healing and elimination of helminthic 

infections (M2, alternatively-activated) (1225, 1226). Although the validity of the M1/M2 paradigm has 

recently come into question, the potential for metal nanomaterials to interfere with these opposing 

macrophage functions has notable implications for the elicitation of allergic reactions and their resolution 

(1226, 1227). The induction of a M1-like macrophage phenotype has been observed in response to FeNP 

and SiNP (1219, 1228-1230). Contrarily, M2-polarization of macrophages has been observed in response 

to  CeONP exposure in a shape-dependent manner (1231). Some metal nanomaterials have also been 

shown to modulate the capacity for macrophages to transition between activation states (777, 1230, 

1232). The preferential induction of M1 and M2 macrophage phenotypes may have critical implications 

for allergic disease given the association of these states with different levels of scavenger receptor 

expression, phagocytic activity, and potential for inflammatory mediator release (777, 832, 1217, 1218, 

1229-1233). 
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Several metal nanomaterials have been implicated in inducing alterations in PRR expression and 

TLR signaling in macrophages. TLR-3, TLR-7, TLR-9, and TLR-10 expression by macrophages have 

been demonstrated to be modulated following exposure to ZrONP, TiO2NP, SiNP, and CoNP (1229). 

AgNP and QD have also been shown to augment macrophage TLR signaling in a surface modification-

dependent manner (1234, 1235). A study using QD revealed that differences in surface modification of 

particles weas responsible for divergent mechanisms of internalization. The pro-inflammatory effects 

were associated with functional groups (-COOH, -NH2, -OH, and OCH3) that facilitated uptake by lipid 

raft and class A scavenger receptors, inducing NF-kB signaling (1236). TLRs and adaptor proteins have 

been implicated in the uptake and inflammatory response induced by many metal nanomaterials, but 

these signaling pathways are also critical mediators of the innate immune events involved in allergy and 

adjuvant effects. Likewise, the capacity for metal nanomaterials to modulate these signaling pathways 

may represent a notable mechanism of nanomaterial-induced immunological interference (862, 885, 

1008, 1237).  

One of the most commonly-investigated biological effects of macrophages investigated with 

respect to metal nanomaterials in vitro is inflammasome activation. Inflammasome activation is known to 

contribute to the effects of many adjuvants, including aluminum hydroxide. Moreover, NLR Family Pyrin 

Domain Containing 3 (NLRP3) inflammasome signaling is known to facilitate the transition to 

hypersensitive disposition from immunological tolerance in subjects exposed to metal implant debris 

(500). Activation of the NLRP3 inflammasome in macrophages has been observed following exposure to 

SiNP, TiO2NP, and AgNP (689, 1196, 1238, 1239). Inflammasome activation by some of these materials 

has been shown to involve mechanisms related to ROS production and endosomal rupture; likewise, 

activation has been correlated to properties including dissolution rate, crystal structure, and surface 

modification (775, 1240, 1241). Interestingly, smaller sizes of CeO2NP were associated with a lower 

incidence of inflammasome activation in one report. However, since smaller particles were shown to have 

more crystal lattice defects capable of scavenging of ROS, higher levels of ROS induced by larger CeO2 

particles explain this observation (1242). 
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In addition to inflammasome activation, alarmin release by macrophages is another mechanism 

by which metal nanomaterials can promote macrophage involvement in sensitization. Cytotoxic effects 

of metal nanomaterials on macrophages have been correlated to surface modification and size of AuNP, 

corona composition of SiNP, ion release from NiONP, and hydrophilicity of TiO2NP (1243-1246). 

However, differential mechanisms of cell death have been observed following macrophage exposure to 

various metal nanomaterials. SiNP have been shown to induce plasma membrane damage leading to 

necrotic cell death (1247). Contrarily, in a panel of metal oxide nanoparticles, transition metal oxides were 

shown to preferentially induce apoptotic macrophage cell death, whereas rare-earth oxide nanoparticles 

were associated with pyroptosis (1248). This distinction can have significant implications for the early 

events of sensitization, as necrotic cell death is associated with the passive release of many alarmins 

known to activate inflammasomes (1239). 

A few in vitro studies evaluating metal nanomaterial effects on macrophages have highlighted 

some important considerations for the correlation of physico-chemical properties with immunotoxic 

effects. In one of these studies, the J774.A1 macrophage cell line was used in one of the few studies that 

has investigated the immunotoxic effects of CrNP. The study used 60 or 700 nm CrNP and reported 

dose-dependent production of inflammatory cytokines and cytotoxicity, wherein the highest doses were 

associated with necrotic cell death. Interestingly, the authors reported that the observed effects were 

dependent on CrNP dose volume, which is not a dose metric that is frequently considered in other existing 

studies (764). Another study investigating the effects of clinically-relevant alumina ceramic wear particles 

(5-20 nm, 0.2->10 µm) reported a similar finding, wherein activation and TNF-α production by human 

blood mononuclear phagocytes was dependent on the particle dose with respect to volume (1249). 

Although particle volume may appear correlated to the cellular response induced by metal nanomaterials, 

Ingham et al. highlight a notable consideration regarding this metric. Their study showed that macrophage 

activation was not necessarily dependent on the volume of the entire administered dose, but on the 

volume of particles within the critical size range (0.2 – 0.8 µm) associated with macrophage activation 

(1250). This finding emphasizes that studies designed to correlate metal nanomaterial physico-chemical 
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properties with toxic effects should take into consideration that most samples likely contain particles 

exhibiting a range of values with respect to any physico-chemical characteristic.  

In the context of metal implant debris release, Reddy et al. (2014) investigated the impact of CrCo 

alloy particle size on the inflammatory response of macrophages in vitro. Using both the THP-1 cell line 

and primary human macrophages, the authors demonstrated a clear discrepancy in responses to 5 and 

70 µm particles. When the particles were incubated with serum proteins prior to exposure, discordant 

responses were also observed, irrespective of dose normalization for surface area. The authors 

subsequently highlighted a consideration with notable applicability for nanomaterial studies that is often 

overlooked. Although cells were exposed to similar surface area-based doses of the metal particles, the 

adsorbed constituent profile was not conserved between particles, as differences in surface chemistry 

were associated with the adsorption of different proteins. This consideration is importance since many 

studies have correlated nanomaterial toxic effects with surface area dose. However, biocorona formation 

has the capacity to compromise this dose-response relationship, as size (or other physico-chemical 

property)-mediated adsorbate profiles can influence toxic effects.  

Neutrophils: Neutrophils are innate immune cells recruited from the circulation to sites of 

inflammation where they play critical roles in the destruction of invading pathogens and antigens. 

Neutrophils can also exhibit significant promoting effects on allergic inflammation, rendering this 

population another potential target of metal nanomaterial effects with potential implications for allergy.  

Metal nanomaterials have been shown to both recruit neutrophils to exposure sites, as well as 

augment some of their functions. Many metal nanomaterials have been shown to be taken up by 

neutrophils in a size-dependent manner (1251, 1252). Neutrophils are capable of projecting cellular 

extensions, called neutrophil extracellular traps (NET), coated with neutralizing peptides and enzymes to 

intercept invading agents (1253). Upon adhesion, AgNP, FeNP, and AuNP have been shown to induce 

the release of NET by neutrophils, which was shown to be influenced slightly by shape, but significantly 

influenced by surface modification, biocorona presence, and charge (1254-1256). TiO2NP and ZnONP 

have been shown to increase both FcR-mediated (opsonized antigen) and complement-mediated 

phagocytosis in human neutrophils, as well (1257). 
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The capacity for metal nanomaterials to impact neutrophil activation and degranulation has also 

been examined in vitro. TiO2NP, CeO2NP, and ZnONP were all shown to alter different aspects of 

neutrophil degranulation in vitro, illustrating the potentially diverse effects capable of modulating 

neutrophil activity. Interestingly, TiO2NP exposure was shown to result in enhanced MMP-9 enzymatic 

activity and alterations in the enzymatic activity of myeloperoxidase released by neutrophils in vitro (1258, 

1259). Surface modification has also been shown to be critically important in the induction of neutrophil 

oxidative burst by GdNP and FeNP (1260, 1261). Alterations in these different aspects of neutrophil 

granule release may greatly impact allergic processes, especially in the context of tissue injury and 

chronic effects of allergic inflammation. 

A particularly interesting observation regarding metal nanomaterial effects on neutrophils with 

potential to impact allergic disease is their capacity to modulate apoptosis. Phagocytosis primes 

neutrophils for apoptosis, following which they are disposed of by macrophages. This process functions 

to prevent further translocation of pathogens or antigens internalized by neutrophils at the site of 

exposure (1262). Accordingly, the observation that FeNP was capable of modulating apoptotic signaling 

in human neutrophils raises concerns that metal nanomaterial exposure may compromise the effective 

sequestration of antigens by neutrophils (1261). Similarly, ZnONP were shown to delay apoptosis of 

neutrophils, suggesting another potential effect that may facilitate translocation of antigens (1263).  

Other studies have shown that metal nanomaterials can augment normal biology of neutrophils 

by mechanisms including modulation of cytoskeletal proteins, morphology, and de novo protein synthesis 

(1251, 1264). The implications of these effects on allergic disease remain speculative, but given the 

recent recognition of neutrophils on adaptive immunity, they represent another potential target of metal 

nanomaterial-induced alterations in allergic disease (1265). 

Eosinophils: Eosinophils are another immune cell that may be subject to modulation by metal 

nanomaterials leading to potential implications for allergic disease. Eosinophils are known to be one of 

the major cell types involved in the pathogenesis of asthma (182). Although an expansive number of 

studies have reported the capacity for metal nanomaterial exposure to recruit eosinophils to the lungs in 

vivo, the direct effects of metal nanomaterials on eosinophil functions has not been frequently examined 
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in vitro (663). However, the few existing studies have generated findings suggestive of the potential for 

metal nanomaterial to augment several biological functions of eosinophils implicated in their effector 

functions in asthma. 

One such finding is the observation that several metal nanomaterials can modulate components 

of the eosinophil cytoskeleton. PdNP and TiO2NP were shown to alter human eosinophil cytoskeleton 

dynamics, subsequently increasing adhesion to endothelial cells (1266, 1267). Contrarily, ZnONP and 

AgNP were shown to induce cytoskeletal breakdown in a human eosinophilic cell line in vitro. ZnONP 

and AgNP have been shown to increase the release of pro-inflammatory cytokines including IL-8 and IL-

1β by eosinophils in vitro, as well (1268). Similarly, ZnONP were shown to increase de novo protein 

synthesis and delay apoptosis of eosinophils (1269). Since the major effector functions of eosinophils in 

asthma are dependent on their chemotactic ability and release of inflammatory mediators, these findings 

suggest metal nanomaterials may have the potential to modulate eosinophil activity leading to alterations 

in asthmatic processes. 

NK Cells: One of the cell types least frequently studied with respect to metal nanomaterials is the 

NK cell. Historically, NK cell contributions to allergy have not been as highly regarded as those of other 

cell types; however, they have recently become recognized as critical contributors to allergic processes 

(1270, 1271). In the lungs, NK cells are involved in regulation of various immune responses, including 

DC maturation, T-cell priming, and Th2 cytokine production, implicating potential effects of these cells on 

both sensitization and elicitation (1272-1275). Similarly, dysregulation of NK cell function in the skin has 

been associated with the pathogenesis of both ACD and atopic dermatitis (1276, 1277).  

The potential impact of NK cells on allergic disease is further highlighted by numerous reports of 

altered peripheral NK cell populations in human subjects with allergic disorders (1278-1280). 

Interestingly, similar shifts in NK cell populations have been observed in animal models following 

exposure to TiO2NP, PtNP, AgNP, SiO2NP, and ZnONP by various exposure routes (1066, 1140, 1281-

1287). These findings highlight that NK cells are subject to modulation by metal nanomaterials, and they 

represent a target cell frequently overlooked in immunotoxicity studies.  
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In vitro studies examining the direct effects of metal nanomaterials on NK cells are limited. 

Although some metal nanomaterials including AgNP and FeNP have been shown to compromise NK cell 

viability, functional alterations in NK activity have also been reported (1288-1290). NK expression of Fc 

receptors and various other markers have been observed following metal nanomaterial exposure, 

mirroring characteristic alterations seen in allergic subjects (1291). Alterations in target cell killing 

capacity by NK cells and altered cytokine production have also been observed in vitro (1292). Moreover, 

these effects have been correlated to AuNP size and charge, AgNP ion release, and SiO2NP charge, 

highlighting the potential impact of nanomaterial physico-chemical properties on NK function (538, 1078, 

1285, 1290). The specific implications of these observations on allergic disorders remains unknown, but 

given the current knowledge of NK cell influence on allergy, this is an area in need of scientific attention. 

 

1.2.4.5. Knowledge Gaps in Metal Nanomaterial Effects on Immune Cells and Processes In Vitro 

In vitro studies present a notable opportunity to advance the understanding of the potential for 

metal nanomaterials to act as allergens. Although one study has demonstrated size-dependent formation 

of titanium antigens, the generation of antigenic determinants from nanomaterials comprised of 

sensitizing metals is a concept that could be addressed particularly well by in vitro studies.  

Another major knowledge gap particularly well-suited to be addressed by in vitro studies is the 

immunological effect of exposure to mixtures of metal nanomaterials, since a few studies have 

demonstrated that interactions between nanoparticles in vivo can modulate subsequent biological 

responses (1293). Co-exposure to cobalt and nickel during allergic sensitization has been shown to 

enhance the severity of elicitation responses to a single metal, indicating that interactions between the 

metals can greatly impact their immunogencitiy (1294). Similar to the activity of prehaptens and 

prohaptens, the immunogenicity, and even allergenicity, of some agents requires chemical modifications 

dependent on interactions with other agents. Given the enhanced reactivity of metal nanomaterials, their 

interactions other nanomaterials, sensitizing chemicals, and metal ions have the capacity to induce 

notable alterations in subsequent immune responses.  



 

111 
 

For example, titanium-induced IL-1β release from macrophages was shown to be mitigated when 

simultaneous exposure to cobalt ions occurred (1018). Similarly, ultrafine particles and metal ions were 

shown to interact and potentiate toxic responses when co-administered in vivo (1017). A similar potential 

impact of mixture toxicology on the immune effects of metal nanomaterials may also significantly impact 

allergic effects. In one study, DC maturation was shown to be altered when inclusion of both AuNP and 

NiSO4 in physiological media resulted in alterations in AuNP charge and subsequent corona formation 

(769). Furthermore, the elicitation of nickel skin allergy was abrogated in the presence of nanoparticles, 

which captured nickel ions by cation exchange, as previously mentioned (727). These findings suggest 

a notable potential for complex interactions between metal nanomaterials that may result in various types 

of combined toxicity responses. Moreover, exposures to a single agent are unrealistic under normal 

circumstances, highlighting the translational relevance of studies investigating the effects of exposure to 

combinations of materials.  

Another knowledge gap associated with the existing collection of in vitro studies involves the 

biocorona and specific molecular constituents. Nanomaterial biocorona formation has been almost 

exclusively investigated with respect to the adsorption of proteins. Nanomaterials are also subject to 

interactions with other macromolecules present in biological fluids, such as nucleic acids and lipids. 

Adsorption of these molecules may have notable impacts on the immune effects of nanomaterials since 

different nucleic acids are alarmins recognized by PRR and lipid mediators play critical roles in many 

aspects of allergic disorders (1295, 1296). Accordingly, more research should be directed towards 

investigating the biological implications of surface-adsorbed macromolecules other than proteins. 

Furthermore, corona constituents have been extensively studies with respect to lung lining fluid and 

serum, but the formation of coronas in lymph and other immunologically-relevant environments has not 

been addressed. 

Another critical aspect of toxicology risk assessment that has potential to be advanced by in vitro 

studies is the development of alternative approaches of safety assessment. As countless new agents 

emerge and require safety evaluation, the fields of immunotoxicology and nanotoxicology are both in 

demand of novel alternative testing methods to reduce the use of laboratory animals, maximize the 
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amount of data generated from studies, and expedite toxicity evaluations (1297). One such example, the 

establishment of quantitative structure activity relationships (QSAR) has been proposed as a statistical-

based approach for predicting the adverse effects of agents with respect to both nanotoxicity and allergic 

disease (1298).  

In vitro studies have been advantageous in the development of nanomaterial QSAR as they 

permit the simultaneous evaluation of numerous materials, physico-chemical properties, and cell types 

in order to delineate relationships between physico-chemical properties and mechanisms of toxicity 

(1299, 1300). Correspondingly, studies using expansive numbers of metal nanomaterial test agents have 

helped establish relationships between physico-chemical properties and toxic potential specific to human 

pulmonary epithelial cell lines, microorganisms, human keratinocytes, and murine macrophages (1301, 

1302) These studies have also helped identify additional descriptors associated with the toxic potential 

of metal nanomaterials, such as atomic number, element-specific catalytic activity, atomization energy, 

and band gap energy (1303-1305).  

Similar in vitro studies using dermal, pulmonary, and immune cell types involved in allergic 

sensitization have led to progress in the development and validation of alternative methods for 

identification of skin and respiratory sensitizers (212, 213, 1306-1310). Despite the shared potential utility 

of this approach for both niches of toxicology, QSAR pertaining to the immunogenic effects of metal 

nanomaterials have yet to be established, but represent an increasingly relevant area of interest for future 

studies. 

 

1.2.5. Collective Knowledge Gaps and Considerations for Future Studies 

Overall, the potential for metal nanomaterials to induce allergic sensitization and the subsequent 

development of metal-specific hypersensitivity responses has not been thoroughly investigated. A few 

studies have examined the potential for metal nanomaterials to cause dermal sensitization. However, 

these studies have all involved the selective investigation of a few specific agents. As a result, although 

TiO2NP, AgNP, and SiO2NP have all been shown to pose minimal risk for the induction of contact allergy, 

the skin sensitizing potential of most metal nanomaterials remains unknown.  
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While a small number of studies have evaluated the potential for select metal nanomaterials to 

induce skin sensitization and the development of ACD, no studies have been executed to determine the 

potential for metal nanomaterials to induce sensitization via the respiratory tract. Although the 

identification of agents with potential to induce respiratory sensitization has been historically problematic, 

many proposed approaches have been developed and shown to have predictive utility. Despite this, the 

lung-sensitizing potential of nanoscale allergenic metals has not been investigated.  

The majority of existing studies have examined metal nanomaterial effects on allergic disease in 

the context of a single tissue; however, since metals are known to cause both dermal and respiratory 

allergy, metal nanomaterial exposure may implicate the emergence of novel connections between allergic 

responses in the skin and lungs.  

Contact allergy to metals is common in the general population, but given the low frequency of 

high dose inhalation exposures to these metals, the pulmonary effects of allergenic metals in individuals 

with established contact sensitivity remain largely unknown. A few studies have been conducted wherein 

distinct pulmonary immune responses to cobalt and chromium were observed in guinea pigs who had 

been previously sensitized via the skin when compared to naïve animals (1311, 1312). As global 

production of metal nanomaterials continues to increase and they become more frequently encountered 

by the general public, these observations suggest that the large number of individuals with existing metal-

induced ACD may be particularly susceptible to pulmonary immune effects of nanoscale metals. This 

concept has only recently been recognized, and connections between metal-specific allergic responses 

of the skin and lung with respect to metal nanomaterials remains a significant knowledge gap (881). 

In addition to their potential to induce allergic sensitization, one of the most critical knowledge 

gaps regarding the immunotoxic potential of metal nanomaterials is the discord between metals that have 

been investigated by existing studies and metals with historical relevance to allergic disease. The majority 

of the immunological responses caused by respiratory and dermal exposure to metal nanomaterials have 

employed test agents including TiO2NP, AgNP, and SiO2NP. The existence of these studies reflects the 

increased demand for investigations into their safety, as they are some of the metal nanomaterials being 

produced in the largest quantities. Additionally, their commercial applications are associated with notable 
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potential for dermal and respiratory exposures in consumers following the use of nano-enabled 

sunscreens, cosmetics, and other goods. However, these three metals are some of the metals least 

commonly associated with allergenic effects. The most common inducers of metal ACD (nickel, cobalt, 

chromium, palladium, gold) have yet to be tested for their dermal sensitization potential in nanoparticulate 

forms. Moreover, the metals most commonly implicated in metal-induced asthma (nickel, cobalt, 

chromium, platinum) have also yet to be evaluated. 

Correspondingly, the vast majority of metal nanomaterials that have been incorporated into 

existing immunotoxicity studies are among the top 15 materials being produced in the highest volumes. 

However, hundreds of metal nanomaterials have been developed and manufactured globally. Many of 

the metal nanomaterials being produced in low volumes are overlooked by scientific efforts, despite 

evidence that they may pose a significant immunological hazard. Moreover, the demand for many of 

these nanomaterials is projected to increase in the upcoming years, increasing the relevance of their 

unknown immune effects. For example, the immune effects of CrNP and PtNP have rarely been studied, 

despite the known immunogenicity of their metal constituents. Similarly, mercury-containing 

nanoparticles, and nanoparticulate forms of indium tin oxide, vanadium oxide, beryllium, and manganese 

oxide have been associated with size-dependent inflammatory effects in vivo and in vitro, but their direct 

immune effects remain largely unstudied (1313-1317). 

In addition to the knowledge gaps constituted by specific nanomaterial entities, many specific cell 

types remain under-investigated as potential targets of metal nanomaterial-induced effects capable of 

impacting allergic disease processes. For example, the majority of in vitro studies that have characterized 

metal nanomaterial effects on immune cells have investigated target cells of the innate immune system, 

including macrophages and DC. As a result, the potential for metal nanomaterials to induce alterations 

in functionality and immunological activity of adaptive immune cells is not as well understood. 

Accordingly, the potential for metal nanomaterials to augment cellular processes specific to the elicitation 

phase of allergy constitutes a notable knowledge gap.  

Several specific immune cell subpopulations also constitute existing knowledge gaps with 

relevance to allergic disease (1318). For example, the effects of metal nanomaterials on regulatory T-cell 
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functions have rarely been investigated and, despite their known involvement in metal allergy, invariant 

natural killer T-cells (iNKT) have also rarely been studied in this context (1319). Similarly, plasmacytoid 

DC have rarely been studied in this context, despite their critical roles in the development of 

immunological tolerance, and the specialized functions of LC have not been frequently investigated as 

targets of metal nanomaterials (1320). 

Furthermore, the recent identification of novel immune cell populations involved in allergic 

disorders has resulted in additional knowledge gaps with potential to delineate many of the immunological 

mechanisms responsible for observations from in vivo studies. For example, innate lymphoid cells are a 

newly-identified subset of immune cells that exhibit notable effector functions in immune responses 

associated with mucosal tissues. Three phenotypically-distinct subsets of innate lymphoid cells have 

been currently described, each with unique roles in the regulation of allergic responses (1321). Despite 

this, metal nanomaterial-induced alterations in innate lymphoid cell activity have yet to be characterized. 

Additionally, respiratory M cells have been recently identified as a functionally-distinct population of 

immune cells populating MALT involved in sampling of antigens present in the airways (1322). This 

population of cells represents another cell type with unknown susceptibility to allergy modulating effects 

caused by metal nanomaterials. 

Although immune cells are considered to be the primary mediators of allergic processes, other 

cell types are also critically involved in immunological responses. These cells’ responses following metal 

nanomaterial exposure are often overlooked by immunotoxicity studies, despite notable potential for 

contributions to various allergic processes. In this respect, epithelial cells of the skin and airways have 

been frequently studied as potential targets of metal nanomaterial toxic effects. Subsequent findings have 

helped generate a more complete understanding of the immunotoxic potential of metal nanomaterials, 

as these cells produce large quantities of pro-inflammatory cytokines, release alarmins, and exhibit 

barrier functions that limit the bioaccessibility of many antigens. 

Disruptions in any of these activities following metal nanomaterial exposure can have profound 

effects on allergic responses, illustrating the importance of investigations into metal nanomaterial effects 

on non-immune cells. Although epithelial cells have been frequently studied in this regard, other cells 
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types with similar immune-mediating potential have not been equally investigated. For example, 

endothelial cells are critical mediators of immune responses, but are not a cell type commonly studied 

with respect to metal nanomaterials. Endothelial cells express various PRR, release numerous Th1/2 

cytokines, and facilitate effective migration/mobilization of immune cells, effects which are all critical in 

both allergic sensitization and elicitation responses. Accordingly, metal nanomaterial-induced alterations 

to any of these cellular functions can result in modulation of various allergic processes. Furthermore, 

endothelial cells also produce numerous molecular mediators involved in allergy-related vascular 

responses, such as angiogenic remodeling, which is a pathologic process characteristically observed in 

asthmatic airways. Since the number of blood vessels in the airway walls has been correlated to 

asthmatic response severity, this represents another process associated with the chronic progression of 

allergic disease that is mediated by endothelial cells, and may be subject to modulation following metal 

nanomaterial exposure (1323).     

Another major knowledge gap with respect to metal nanomaterials and allergic diseases is their 

potential to induce adverse immune effects following exposure routes other than inhalation or dermal 

contact. One of these routes, ingestion, is becoming increasingly relevant as the food industry is another 

sector adopting nanotechnological advances. Following oral administration, AuNP, AgNP, CeNP, and 

FeNP have all been shown to accumulate in lymph nodes and spleen, suggesting the potential for their 

ingestion to cause subsequent immune effects (57, 1324-1327). Ingestion of AlNP, AuNP, AgNP, CuNP, 

TiO2NP, and ZnONP has also been associated with effects ranging from increased B-cell distribution and 

activation, elevated IgE and IgG levels, modulations in TLR-4 signaling, suppressed innate immunity, 

activation of macrophages, and splenic toxicity in mice (1128, 1282, 1283, 1328-1334). The potential for 

such effects to specifically impact allergic disease processes has been illustrated by a few studies. For 

example, ingestion of SiNP and PtNP were associated with increases in antigen-specific antibody 

production following immunization of mice and rabbits (956, 958). Interestingly, oral administration of 

AgNP has been shown to block the development of oral tolerance to OVA in sensitized mice, directly 

demonstrating the potential for metal nanomaterials to augment allergic disease resulting from an often 

overlooked route of exposure (800). 
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In addition to ingestion, the potential for metal nanomaterials to induce sensitization or elicitation 

of allergic responses following systemic administration is another emerging knowledge gap. While most 

current applications of metal-based nanomaterials are not likely to result in large doses of systemic 

exposures, animal studies have demonstrated that systemic administration of many metal nanomaterials 

including AuNP, AgNP, AlNP, TiO2NP, SiNP, PdNP, and FeNP exhibit physico-chemical property-

dependent kinetics, accumulation in lymphoid organs, and adverse immune effects (768, 1142, 1287, 

1335-1344). These immune effects may have implications for allergic disease as systemic administration 

of GdNP, FeNP, SiNP, and AuNP have been shown to augment antigen-specific antibody production in 

mice (533, 734, 874, 953). Similarly, increased rates of T-cell-mediated metal hypersensitivity in patients 

with metal on metal joint replacements has been suggested to be related to the release of nanoscale 

metal debris (1345).These observations are concerning as the number of biomedical applications for 

nanotechnology continues to grow, and systemic exposures to some metal nanomaterials, including iron 

and gold are increasing (1171). 

The concerning lack of knowledge regarding systemic effects of metal nanomaterials is most 

profoundly illustrated by the numerous adverse effects in patients who were administered Feraheme 

(ferumoxytol). Feraheme is an intravenously-administered iron replacement product comprised of 17 – 

31 nm colloidal Fe3O4NP originally approved for the treatment of iron-deficiency anemia in patients with 

chronic kidney disease (1346). In the 5 years between its approval for use (June of 2009) and the Food 

and Drug Administration (FDA)’s publication of a safety announcement in 2014, 79 anaphylactic reactions 

were reported, of which 19 were fatal despite immediate medical intervention efforts. The underlying 

mechanisms of the reactions remain unclear, but more than half of the reactions occurred in patients with 

a history of drug allergy, suggesting a potential connection to atopic disposition and true adaptive 

immunity-mediated allergy (1347). Contrarily, the 2017 observation that iron nanomedicines are capable 

of activating TLR-3, -7, and -9 and activating the complement cascade suggests that innate immune-

mediated pseudoallergic reactions might have been involved (1348).  

Gold nanomaterials are also being used in biomedical applications including diagnostic imaging, 

drug delivery, and photothermal therapy, and have been proposed for use in various novel therapeutic 
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approaches including vaccine production (1172, 1349). Although gold nanomaterials have been generally 

regarded as toxicologically inert, the historical use of immunomodulatory gold-based pharmaceutics in 

the treatment of rheumatoid arthritis and gold’s increasing recognition as a dermal sensitizer raise 

concerns over potential for gold nanomaterials to induce adverse immune effects (1350). Studies have 

demonstrated that systemic administration of AuNP can cause immune effects ranging from enhanced 

lymphocyte proliferation, accumulation in the spleen, and enhanced allergen-specific antibody production 

in mice and rats (533, 1339, 1351). In addition to systemic exposures, the increase in use of gold 

nanomaterials in healthcare settings also results in increased risk for dermal contact or inhalation 

exposure by both patients and healthcare workers. Since rates of dermal sensitivity to gold are surpassing 

the historically prominent rates of nickel allergy by some estimates, the impact of existing sensitivity to 

gold on the immune response following exposure to gold nanomaterials remains unknown (255).  

The existing collection of knowledge regarding the immunotoxic potential of metal nanomaterials 

and corresponding knowledge gaps highlight several notable considerations for future studies. As 

continuous efforts are made to correlate physico-chemical properties with mechanisms of nanomaterial 

toxicity, many of these considerations pertain to the accurate measurement and reporting of nanomaterial 

characteristics of interest. One of the preliminary considerations should be the source of acquisition for 

the test materials. As highlighted by Casals et al. (2017), commercially-available nanomaterials and 

nanomaterials synthesized in laboratories by wet chemistry are often presented under the same name 

between studies. However, differences in their purity and storage conditions can manifest as 

discrepancies in properties such as aggregation, which can become a significant source of variation in 

biological effects reported between studies. It has been suggested that the expansive discrepancies in 

reports of CeO2NP toxicity and anti-inflammatory effects may be reflective of such an issue (1352). As a 

result, the source of test materials should be reported by studies and considered by readers when 

comparing results between studies. 

The delineation of relationships between nanomaterial physico-chemical properties and 

mechanisms of toxicity, irrespective of tissue of interest, is dependent on thorough material 

characterization and accurate reporting of subsequent findings. Methodology used for material 
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characterization is rarely conserved between studies, and the measurements generated by different 

techniques can often differentially represent parameters of interest. Despite this, properties of test 

materials are often similarly reported following variations in assessment. 

The surface area of test materials has become a standard metric reported in most toxicity studies. 

However, this parameter illustrates the potential complications associated with variations in metrology 

and subsequent conclusions regarding the impact of this property on the observed toxic response. 

Studies often report the SSA of test materials, generated from analysis by gas adsorption. While SSA 

has been correlated to the degree of nanomaterial-induced toxicity by some measures, other measures 

of surface area have been shown to be more representative. Sager et al. (2016) report that nanomaterial 

delivered structure surface area, derived from the hydrodynamic diameter acquired from dynamic light 

scattering, was a more accurate predictor of NiONP-induced pulmonary inflammation in vivo. Although 

many studies simply report material ‘surface area’ irrespective of measurement method, discrepancies 

in arise from the state of the material during measurement. Since SSA is measured on the dry powder, it 

is a property independent of suspension media, contrary to structure surface area, which takes into 

account alterations in material behavior upon introduction into suspension for in vivo or in vitro delivery. 

Variations in SSA measurements also arise from the multiple models of calculation from gas adsorption 

data (1353, 1354). The impact of alterations in material characteristics upon entry into suspension are 

illustrated by the differential toxic effects of the same NiONP suspended in four different delivery media 

(1355). Given the existence of additional variations of surface area, such as volume-specific and 

geometric surface area, studies should consider the use of multiple assessment methods and accurate 

reporting of such (1356, 1357).  

The existence of numerous approaches for the assessment of properties including surface area 

highlights another consideration for test materials used in future studies. Given the recent widespread 

emergence of nanomaterials, discrepancies in standard nomenclature and definitions in the field also 

have the capacity to complicate collective analysis of study results. Although the size of nanomaterials is 

their unifying characteristic, numerous organizations differentially define the size range for inclusivity. 

Similar discrepancies exist in the reporting of nanomaterial properties, as well, which can significantly 
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impede the establishment of relationships between physico-chemical properties and mechanisms of 

toxicity. A notable example is the tendency for non-discriminate reporting of aggregates and 

agglomerates of primary particles. The irreversible bonds of aggregates and reversible bonds of 

agglomerates can manifest as different biological effects in vivo as demonstrated by the administration 

of AuNP aggregates and agglomerates which differentially distributed to organs and within cells (1358-

1361). Variations in toxicity may arise from differences in the effective dose surface area and size of 

conserved aggregates compared to agglomerates subject to breakdown and release of primary particles 

(1362, 1363). Degree of agglomeration has been shown to influence metal nanomaterial cellular uptake, 

oxidative stress, cytokine response, indicating agglomerates and aggregates should be differentiated 

prior to in vivo studies and reported accordingly (1364, 1365). Despite the differential biological impact of 

nanomaterial aggregates and agglomerates, the two terms are often used interchangeably in studies.  

The correlation of physico-chemical properties and nanomaterial toxic potential is limited 

ultimately limited by the accuracy of characterization measurements. As our understanding of 

nanomaterials and their interactions with biological systems progresses, many properties have become 

recognized as dynamic and dependent on their compartment. Likewise, additional considerations for 

characterization have emerged, such as the potential need for characterization of nanomaterials in their 

primary (powder), secondary (delivery media), and tertiary (nano-bio interface) forms. Efforts by the ISO 

have helped standardize some of the methods used in these efforts, as well as accurate nomenclature. 

Likewise, these documents should be consulted, and multiple methods of material characterization are 

likely to help accurately relate properties of the nanomaterials to the subsequent study endpoints.  

Although reporting of some physico-chemical properties, including size, have become standard 

for nanotoxicology studies, an additional parameter of critical relevance to immunotoxicology studies is 

often overlooked. As a result of production and handling in non-sterile conditions, engineered 

nanomaterials are often carriers of impurities including bacterial LPS (1366). LPS is known to be a potent 

adjuvant inducing stimulation of immune cells via the TLR-4 signaling pathway, activating the NF-κB 

signaling pathway, and promoting DC maturation (837). In fact, LPS has been historically required as an 

adjuvant to induce sensitization to some metals in laboratory rodent models by facilitating antigen-non-
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specific activation signals (1367, 1368). Likewise, the presence of endotoxin on metal-based 

nanomaterials’ surfaces could induce a subsidiary but sufficient amount of immunostimulation required 

to induce allergic sensitization to the metal itself, or to other allergens. Accordingly, exposure to metal 

nanomaterials with negligible immunotoxic potential that are contaminated with endotoxin can result in 

misidentification of their potential to augment allergy. Recent recognition of the toxicological implications 

of LPS contamination has led to the addition of endotoxin assessment as a pivotal step in the material 

characterization phase conducted prior to the incorporation of nanomaterials into in vivo studies (1368-

1370). However, many of the studies published prior to this development do not report the presence or 

absence of endotoxin in samples, and results should be interpreted with caution. 

The critical roles of TLR-4 activation in allergic sensitization not only highlight the importance of 

assessing test materials for endotoxin contamination, but also highlight another major consideration for 

animal model selection in future studies. In 2010, Schmidt et al. eloquently demonstrated that the capacity 

for nickel ions to bind and activate TLR-4 on human monocytes was not conserved between species. A 

structural variation in rodent TLR-4 prevents activation by nickel ions, explaining the historical 

discrepancy in susceptibility to nickel sensitization between humans and laboratory rodents. A similar 

finding regarding cobalt ions was also demonstrated. This finding has notable implications for both past 

and future studies using rodents to investigate immunotoxic potential of transition metals. Since the 

release of nickel and cobalt ions and subsequent TLR-4 activation is critically influential in the 

immunogenicity of these metals in humans, the absence of this mechanism in mice and rats may limit 

the translational capacity of study results using nanomaterials comprised of nickel and cobalt.  

A mouse model expressing humanized TLR-4 previously developed by an investigator has 

recently become available for purchase from laboratory animal vendors in 2018. Based on existing 

information, this model might represent an approach for studies to address the confounding variability of 

metal immunogenicity between species, but it has yet to be utilized for any large-scale studies. 

In addition to TLR-4 activation susceptibility, other considerations for animal model selection exist. 

As previously eluded to, use of various mouse strains in many of the previously-mentioned studies likely 

contribute to discrepancies in findings despite similar test materials, exposure conditions, and assessed 
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endpoints. The use of Th1- or Th2-dominant mouse strains, such as C57BL/6 and BALB/c, strains 

respectively, not only has critical influence on preferential immune responses, but is also known to affect 

nanomaterial disposition following exposure (904, 1371). Moreover, mouse age is also known to have 

critical influence on immune responses, and should be considered during study design, but also when 

comparing results from studies (1372). 
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1.3. SPECIFIC METALS OF INTEREST 
 

1.3.1. Nickel 

1.3.1.1. Toxic Potential of Nickel and Nickel-Containing Compounds 

Nickel is a naturally-occurring metal found in the earth’s crust and is the 5th most abundant 

element by weight after iron, oxygen, magnesium, and silicon (1373). Nickel is a silvery-white metal with 

a high melting point (1453°C), is resistant to corrosion and oxidation, and is magnetic at room 

temperature. These properties make nickel optimal for combination with other metals including iron, 

copper, chromium, and zinc to form over 3,000 nickel-containing alloys. One of the most common alloys 

comprised of nickel is stainless steel, whose other metal constituents generally include chromium and 

iron. Nickel, stainless steel, and other nickel-containing alloys are fundamental to many diverse industries 

including transportation and aerospace engineering, architecture and construction, power generation, 

and biomedical technology (1374).  

The expansive applications for nickel implicate frequent exposures to the metal in the general 

population, as well as in workers. As a result, the biological effects of nickel have been extensively 

studied. Nickel is known to induce numerous diverse toxic effects, all of which are fundamentally 

dependent on its speciation (1375). As a member of the transition metal series, nickel exists in five 

oxidation states: -1, 0, +2, +3, and +4. The most common valence state of nickel is nickel (II). Nickel can 

form complexes with diverse elements including oxygen, nitrogen, chlorine, and various other metals. 

Despite this diverse potential for speciation, the toxic potential of nickel compounds is generally 

conserved between agents similarly classified as organic/inorganic or water soluble/insoluble (1376). 

Dermal Exposure to Nickel: The toxic potential of nickel is also dependent on the route of 

exposure.  In the general population, dermal contact is the most common type of encounter with nickel 

and nickel-containing items. Nickel is incorporated into over 300,000 different products that most 

individuals use daily including cooking utensils, currency, and electronics (1377). However, jewelry is one 

of the most commonly-encountered sources of nickel that facilitates dermal exposure. Interactions 



 

124 
 

between nickel and the skin can result in both acute or chronic effects which can both remain localized 

to the skin or induce peripheral/systemic responses. Dermal exposure to nickel is most frequently 

associated with irritant responses, allergic contact dermatitis, and urticarial reactions of the skin (1378).  

Inhalation Exposure to Nickel: Inhalation exposures to nickel are also common. Given its 

abundance in the earth’s crust, the presence of atmospheric nickel often results from natural processes 

(1379). Disruption of dust and soil by wind and other environmental forces, as well as processes such as 

volcanic eruptions can lead to the release of nickel into the air. However, anthropomorphic processes 

generally constitute the release of larger amounts of nickel into the atmosphere. Nickel refining, steel 

production, combustion of fossil fuels, and incineration of nickel-containing goods all result in the 

generation of ambient nickel (1374). Metallic nickel, nickel oxides, nickel sulfate, and numerous other 

nickel-containing compounds are released by these processes, facilitating their potential for inhalation by 

humans. Although concentrations of nickel in ambient air can vary greatly as a function of geographical 

location, the EPA has reported that average atmospheric nickel concentrations range between 7 and 12 

ng/m3 in the USA (1380). However, point sources can be responsible for airborne nickel concentrations 

of up to 150 ng/m3. 

Nickel is a known respiratory toxicant capable of causing lung inflammation, fibrosis, asthma, and 

many other adverse effects in the lungs. The toxic potential of nickel compounds in the respiratory tract 

tends to be conserved with respect to material solubility (1380). Generally, soluble nickel compounds are 

associated with more severe toxic effects in the lungs resulting from their propensity for rapid dissolution 

and subsequent release of large quantities of cytotoxic ions. One of the most toxic soluble nickel 

compounds is nickel carbonyl. Comparatively, insoluble nickel compounds are generally regarded as less 

toxic following inhalation exposure, but are more frequently associated with the development of lung 

cancers than soluble nickel compounds (1381).  

Oral Exposure to Nickel: As a major constituent of soil, nickel is also present in many foods and 

beverages, implicating ingestion as another potential route of exposure to nickel. Legumes, whole grains, 

cocoa, tea, and soy products are some of the foods known to contain the largest amounts of nickel (415). 

Furthermore, preparation of food using nickel-containing utensils and cookware can also increase dietary 
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intake of nickel (1382). Collectively, the average diet results in a daily ingestion of approximately 300-

600 µg nickel (1383). Average levels of nickel in the drinking water supply of the United States average 

between 2 and 4.3 µg/L and represent another source of nickel ingestion. Although its roles in the human 

body remain unclear, nickel is considered an essential micronutrient required for normal physiological 

processes (1384). 

The toxic effects of nickel following ingestion have been studied less frequently than effects 

following skin contact and inhalation. A small number of reports have suggested that ingestion of large 

doses of nickel can induce gastrointestinal upset, reproductive effects, and kidney damage (1385). 

Moreover, ingestion of large doses of nickel have been shown to trigger allergic responses in some 

sensitized individuals (328). 

Parenteral Exposure to Nickel: Systemic exposures represent the route of exposure least 

commonly associated with nickel. However, in some instances, nickel ions are capable of entering the 

circulation and inducing adverse health effects. For example, orthopedic implants comprised of stainless 

steel or other nickel-containing alloys can release nickel ions systemically (374). Both mechanical wear 

and biochemical corrosion of these implants has been associated with dissemination of nickel particles 

and ions systemically (493). Systemic exposures to nickel are also known to occur as a result of frequent 

use of the metal in dentistry. Orthodontic appliances and dental implants can present a significant source 

of exposure to nickel ions, as the release of ions tends to be accelerated in the unique biochemical 

conditions of the mouth. Subsequent ion release can result in localized dermal exposures, as well as 

systemic absorption leading to their circulation (327). One of the most common adverse effects 

associated with the release of nickel ions into the body from both scenarios is the development of allergic 

sensitivity (1386).  

 

1.3.1.2. Occupational Exposures to Nickel 

Millions of jobs worldwide are involved in the acquisition, purification, transformation, recycling,  

and disposal of nickel and nickel-containing agents (1387). Workers involved in these processes are 
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known to be exposed to much larger doses of nickel than the general public, and accordingly, are a 

population particularly vulnerable to toxic effects resulting from nickel exposure.  

Occupations associated with increased risk for exposure to nickel and nickel-containing 

compounds are generally grouped by nickel-producing industries and nickel-using industries, wherein 

distinct exposure risks exist (1374). Nickel-producing industries include mining, milling, concentrating, 

smelting, and refining. Ores containing nickel are mined in more than 23 countries and are smelted or 

refined in more than 25 countries including Russia, Canada, Brazil, and South Africa. Annual world 

production of nickel averages in excess of 1.4 million tons, 65% of which contributes to the yearly global 

production of 800 million tons of steel. Generally, exposures to nickel in these settings involve insoluble 

and moderately soluble species of nickel, and often particulate forms of the metal (1387). 

Contrarily, nickel-using industries include more diverse processes ranging from alloy production 

and catalytics to welding and construction. These settings are associated with exposures to nickel in 

diverse forms including soluble and insoluble compounds (1388). For example, soluble nickel compounds 

are likely to be encountered in operations including hydrometallurgy. These workplaces are more likely 

to generate nickel-containing vapors and fumes, increasing the risk for aerosolization and inhalation of 

nickel compounds (1389). 

Similar to trends present in the general population, one of the most common adverse health 

effects associated with nickel exposure in the workplace is the development of allergy. Nickel is one of 

the most frequently-cited causative agents of occupational ACD (1378). Occupations associated with 

increased rates of contact allergy to nickel share commonalities including increased presence of nickel 

in the workplace. Jobs requiring frequent handling of nickel-containing objects and destruction of 

materials resulting in increased release and bioavailability of nickel can result in conditions conducive to 

the development of allergic sensitization. Accordingly, increased prevalence of nickel contact allergy is 

commonly reported in specific worker populations including retail clerks, metalworkers, hairdressers, and 

domestic cleaners (290). Several other occupational risk factors have been correlated to the increased 

likelihood for dermal sensitization by nickel in the workplace. One such factor is frequent concomitant 

exposures to skin irritants. Many of the reactive chemicals used in cosmetology are irritants and have 
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been shown to promote the development of contact allergy to nickel (1390). Similarly, compromised skin 

barrier functions are common in workers that perform frequent wet work, which can increase susceptibility 

to skin sensitization. ACD caused by nickel in the workplace most often manifests as hand dermatitis as 

a result of these risk factors. 

Nickel-induced respiratory allergy is far less common than nickel-induced contact allergy, but 

nearly all cases of asthma caused by nickel have been reported to originate from workplace exposures 

(416, 1391, 1392). Existing reports of nickel-induced asthma and rhinitis have been almost exclusively 

observed in workers involved in occupations including welding, electroplating, and other forms of metal 

work. Moreover, most cases have detailed the development of symptoms in response to the inhalation 

of soluble nickel compounds (413, 1393). 

Overall, the development of nickel-induced asthma is uncommon. Inhalation of nickel in the 

workplace is far more likely to result in adverse pulmonary effects that do not involve the development of 

adaptive immune responses. The toxic effects of major concern with respect to nickel inhalation include 

hard metal disease, reactive airways dysfunction syndrome, bronchitis, metal fume fever, pneumonitis, 

and cancer (1391). Accordingly, OELs specific for nickel compounds are established with the primary 

objective of protecting workers from these adverse pulmonary effects, which are far more likely to impact 

workers than nickel-induced respiratory sensitization.  

In the United States, NIOSH and OSHA recognize distinct occupational exposure limits for nickel-

based compounds based on their classification into one of three groups- nickel carbonyl, insoluble nickel 

compounds, or soluble nickel compounds (1394). ACGIH also recognizes nickel carbonyl, but further 

distinguishes between respirable fractions of elemental nickel, soluble inorganic compounds, insoluble 

inorganic compounds, and nickel subsulfide (1395). US agency-specific exposure limits for each category 

of nickel compounds are shown in table 1.20.  
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1.3.1.3 Immune Responses and Nickel Allergy  

Although nickel exposure can induce a diverse array of adverse health effects, many of the toxic 

responses triggered by nickel involve selective targeting of the immune system. One of the most common 

manifestations of nickel-induced immunotoxicity is the development of allergic disease. Exposure to 

nickel by dermal contact, inhalation, ingestion, and systemic ion release have all been associated with 

the development of nickel-specific hypersensitivity responses (1396). However, these responses can 

involve diverse cellular mechanisms and manifest in various tissues of the body. 

Nickel has been associated with many different adverse immune reactions in the skin. Although 

nickel has been associated with irritant contact dermatitis, contact urticaria, and atopic dermatitis, the 

most common nickel-induced allergic response seen in the general population is ACD (286, 330). The 

development of nickel-specific T-cells following skin exposure results in a delayed-type hypersensitivity 

reaction mediated by both CD4+ and CD8+ subsets of effector T-cells (1397-1399). Nickel-induced ACD 

is a chronic allergic skin disorder that more commonly affects women than men, affecting an estimated 

10-20 % of the general population (1400). Among the vast number of dermal sensitizers and contact 

allergens, nickel is consistently reported as the most common inducer of ACD worldwide. Because of the 

high frequency of sensitivity to nickel in the general population, the metal was named Contact Allergen 

of the Year by the American Contact Dermatitis Society in 2008. It remains unclear why nickel is such a 

universally immunogenic agent, however, several ideas have been proposed.  

The high frequency of nickel-induced ACD has been suggested to be at least partially fueled by 

both frequent interactions with the metal and prolonged durations of contact with the skin (474). Dermal 

sensitization by nickel has been most commonly associated with the release of adequate concentrations 

of haptenic nickel ions from objects such as watches and rings. The release of nickel ions is known to be 

accelerated by biochemical mediators including sweat, which can contribute to accumulated exposures 

to the metal (1378). Ions subsequently penetrate the upper layers of skin, bind host dermal proteins, and 

are then capable of being recognized by innate immune cells to facilitate allergic sensitization. 



 

129 
 

Another mechanism proposed to be responsible for the high frequency of dermal sensitivity to 

nickel is its capacity to bind and activate PRR expressed by structural cells of the skin and dermal immune 

cells. The innate immune stimulation triggered by the binding of nickel ions to human TLR-4 mimics a 

well-established mechanism of sensitization adjuvancy (469). Likewise, the capacity for nickel ions to 

induce both antigen-specific and non-specific signals required to facilitate allergic sensitization has been 

suggested to be a contributing factor to the global prevalence of nickel contact allergy. 

Nickel-induced respiratory allergy is also known to occur, although far less frequently than nickel-

induced ACD. Nickel-induced rhinitis and asthma have been most commonly associated with workplace 

exposures leading to the generation of immediate, IgE-mediated immune responses (414). Occupational 

settings where dusts, fumes, and vapors containing nickel are routinely generated have been associated 

with an increased risk of nickel-specific asthma development in workers. Likewise, occupations such as 

electroplating and welding are often implicated in cases of nickel-induced asthma (383, 397, 416). NiSO4 

and NiCl are compounds that have been specifically associated with sensitization of the airways by nickel. 

Nickel ions released from these and other soluble nickel salts have been shown to bind host 

macromolecules including human serum albumin, generating antigenic determinants responsible for 

nickel sensitivity (453, 456, 1401, 1402).  

Although the vast majority of nickel-induced asthma cases have demonstrated an existence of 

nickel-specific IgE antibodies in subjects, a few cases have reported asthmatic responses to nickel in the 

absence of specific antibodies. Inhalation challenge was shown in one study to induce a late asthmatic 

reaction to nickel in a worker with asthma who did not possess nickel-reactive antibodies (413). 

Identification of nickel-specific T-cells in the respiratory tract of individuals with nickel-induced asthma 

also suggests that nickel-specific lymphocytes may contribute to the pathogenesis of nickel-induced 

asthmatic reactions in some individuals (412). 

Ingestion of nickel has not been associated with any cases of subsequent allergic sensitization. 

However, ingestion of nickel has been reported to trigger allergic elicitation reactions in subjects with 

established sensitivity to nickel. Ingestion of foods containing high nickel content have been reported in 

occasional cases to induce both systemic ACD and asthmatic reactions (1403).  
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Systemic nickel exposure caused by the release of ions from orthopedic implants and dental 

materials is one of the exposures most frequently associated with the development of adverse allergic 

effects (1404). Patents with metal on metal implants consistently exhibit higher incidences of sensitivity 

to nickel than subjects without such implants. With respect to metal arthroplasty, the development of 

nickel sensitivity often results in rejection and implant failure (1405). Nickel-containing dental materials 

are also frequently associated with allergic sensitization and subsequent elicitation reactions that 

manifest locally in the oral mucosa. 

Interestingly, concomitant Type I and Type IV hypersensitivity responses to nickel have been 

reported in several subjects (1392, 1406). The existence of both nickel-specific antibodies and T-cells 

has been shown in several studies (412). In one subject, this condition was associated with chronic 

systemic effects of nickel allergy that could be triggered by nickel ingestion (415). In another case, an 

individual exhibiting both immediate and delayed nickel allergy experienced simultaneous symptoms of 

ACD, allergic contact urticaria, and rhinitis (414). 

 

1.3.1.4. Nickel Nanomaterials  

Among the vast number of metals being manufactured in nanoparticulate form, nickel is also being 

utilized for numerous nanotechnological applications. Although metallic nickel nanoparticles (NiNP) are 

occasionally utilized for industrial applications, nickel oxide nanoparticles (NiONP) are one of the most 

commonly produced forms of nickel nanomaterials (1407). Compared to larger particles, nanoscale nickel 

exhibits a higher level of surface energy, enhanced magnetism, and altered thermokinetic properties, all 

of which contribute to the novel uses for nanoparticulate forms of the metal. Nickel nanomaterials have 

notable utility in applications ranging from optimization of fuel cells, solar energy absorption, magnetic 

fluids, propellants, optical displays, and catalytics (754). Accordingly, major consumer markets for nickel 

nanomaterials include industries involved in energy generation and electronics, as well as academia and 

research. 
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Compared to other metal nanomaterials, such as TiO2NP and AgNP, the toxic effects of nickel 

nanomaterials have been less frequently investigated. However, a few studies have examined the toxic 

potential of nanoscale nickel with respect to the skin and lungs. Several studies have also established a 

correlation between some of the physico-chemical properties of nickel nanomaterials, subsequent 

molecular behavior, cellular effects, and toxic potential in vitro and in vivo. 

The toxic potential of nickel is known to be critically related to species’ propensity to release toxic 

ions. Likewise, the dissolution behavior of nickel nanomaterials have been examined in vitro in order to 

help explain potential toxic effects observed following exposure in vitro and in vivo. Accordingly, NiNP 

have been shown to release significantly more ions when in the presence of amino acids (1408). Cysteine 

has been shown to cause almost complete dissolution of nickel alloy nanoparticles in solution, resulting 

in cysteine complexes with nickel ions (997). The release of ions from NiNP is also known to be increased 

when parent particles have higher surface oxide content (1409).  

Many in vitro studies have investigated the biological activity of nickel nanomaterials and 

characterized subsequent cellular responses following exposure. NiNP and NiONP have been shown to 

induce diverse cellular effects ranging from DNA damage and morphology changes to cytokine release 

and cell death (1410). The magnitude of these cellular responses has been correlated to the degree of 

nickel particle uptake in cell types including macrophage cell lines, other innate immune cells, and various 

epithelial cell types (51, 851, 1411). Consistent with reports using other metal nanomaterials, physico-

chemical properties including size, solubility, and surface charge have been correlated to the uptake of 

nickel nanomaterials by cells. The similar insoluble nature of the two most commonly studied forms of 

nanoscale nickel (NiNP and NiONP) has led to a general consensus that micropinocytosis is most 

frequently implicated in their uptake by cells.  

Following uptake by cells, nickel nanomaterials have been observed to accumulate in the cytosol, 

become sequestered in vacuoles, and or bind macromolecules. A commonly-reported observation is that 

nickel can induce lysosomal acidification and ion release within 48 hr of uptake (1057, 1412). 

Subsequently, cells experience elevations in oxidative stress and free Ni ions can penetrate the nuclear 

envelope- both of which are effects that have been associated with the induction of DNA damage by 
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nickel nanomaterials in vitro (1410). As a result, cell death by apoptosis, necrosis, and autophagy have 

all been reported when cells are exposed to nanoscale nickel materials (1408). 

Nickel nanomaterials’ toxic potential with respect to the skin has been examined in a few in vivo 

studies. In one study, 77 nm NiNP were shown to penetrate and permeate through the skin in an in vitro 

model. Moreover, damaged skin was more susceptible to penetration than intact skin (555). This 

observation may be critically relevant, as nickel nanomaterials have been shown to induce cytotoxic 

effects on many structural cells of the skin, including human epidermal cells and keratinocytes (51). 

Nanoscale nickel-induced destruction of skin cells may, thus, result in increased penetration of particles, 

as well as localized irritant responses in the skin. However, nickel’s potential to cause local adverse 

effects on the skin have been far more frequently-investigated than their potential to cause other toxic 

responses following skin exposure. Accordingly, the potential for nickel nanomaterials to cause adverse 

health effects systemically or in peripheral tissues as a result of skin contact remain largely unknown. 

Compared to the skin, more scientific investigations have been conducted to determine nickel 

nanomaterial toxic potential following pulmonary exposure in vivo (1413, 1414). Accordingly, these 

materials have been shown to induce various physiological alterations and toxic responses in the lungs 

including compromised surfactant protein function, lung fibrosis, and carcinogenic responses (1415-

1418). Generally, smaller particles have been associated with more pronounced toxic effects in the 

respiratory tract than larger particles of the same chemical composition (1419-1421). Solubility of 

nanoscale nickel, similar to knowledge regarding bulk nickel, has been shown to be critical in the toxic 

potential of nickel nanomaterials in the lung (1422). Other properties related to the rate of ion release 

from nickel nanomaterials, such as surface modification and morphology, have also been shown to 

modulate lung toxicity (1423, 1424). The lack of ion release from insoluble nickel nanomaterials, such as 

NiO, results in increased biopersistence in the lungs by insoluble species of nanoscale nickel (1424-

1426).  

In addition to localized adverse effects in the respiratory tract, inhalation of nanoscale nickel has 

also been associated with toxic responses in peripheral locations. For example, pulmonary NiNP 
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exposure has been shown to induce adverse vascular responses and compromised hematopoiesis 

(1427-1429).  

Immune Effects of Nickel Nanomaterials: Despite numerous findings that the smaller size profile 

of nickel nanomaterials is correlated with more pronounced toxic responses in the skin and lungs, it 

remains unclear if these materials are capable of inducing more severe immunotoxic responses than bulk 

nickel. This knowledge gap is concerning given then known immunogenic properties of nickel. The 

increasing relevance of this knowledge gap was emphasized by a 2014 publication entitled Occupational 

Handling of Nickel Nanoparticles: A Case Report. The article depicts a chemist who inhales a dose of 

nickel nanoparticles during handling. Subsequently, the worker developed “throat irritation, nasal 

congestion, post nasal drip, facial flushing, and new skin reactions to her earrings and belt buckle” (801).  

This case report highlights several considerations with respect to the unknown immunogenic 

potential of nickel nanomaterials. First, the report suggests that the subject had regular routine 

encounters with nickel and nickel-containing objects, but the development of nickel allergy was triggered 

by an exposure to NiNP. This suggests that nanoscale nickel may exhibit increased sensitizing potential 

compared to other forms of nickel. Moreover, the inhalation of NiNP resulted in the development of 

hypersensitivity responses that were not limited to reactions caused by NiNP. Subsequent allergic 

responses were incited by various forms of nickel. Additionally, the elicitation of hypersensitivity reactions 

were not restricted to the lungs. The subject experience both allergic reactions in the skin and lungs 

following encounters with nickel. 

Another major concern emphasized by this case report is that established metal-specific OELs 

may be ineffective in protecting workers from nanoscale materials. Despite demonstrations that the 

decreased size profile of nickel nanomaterials is associated with more pronounced toxic effects than 

larger particles, nickel, like most other metal nanomaterials, are subject to size non-discriminatory OELS. 

Nickel-specific OELs may protect workers from potential toxic responses following inhalation of larger 

forms of particulate nickel, but equal doses of nanoscale nickel may induce significant adverse effects. 

Moreover, these exposure limits may not be protective with respect to toxic responses in tissues other 

than the lungs, such as immune responses.  
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Lastly, this case highlights a potential population of individuals who may be particularly vulnerable 

to the adverse health effects of nanomaterials. As the prevalence of allergic asthma continues to 

increase, asthmatic or atopic individuals represent a subpopulation that may be particularly susceptible 

to the adverse immune effects of metal nanomaterial exposure (1430).  

The potential for respiratory exposure to metal nanomaterials to exacerbate asthmatic conditions 

has become an area of active investigation. Several metal nanomaterials have been incorporated into 

asthma models and have been shown to augment numerous processes involved in the development and 

progression of allergic conditions, but nanoscale nickel has not been frequently studied (1431). Moreover, 

there are relatively few studies that examine the relationship between physico-chemical properties and 

these effects (550, 624, 882, 887). Subsequently, the capacity to identify emerging nanomaterials that 

present a particular risk with respect to asthma remains largely unaddressed.  

 

1.3.2. Gold 

Gold is a Nobel metal with many desirable properties including malleability, chemical stability, and 

exceptional resistance to corrosion. Gold is also an excellent conductor of heat and electricity and exhibits 

a distinctive lustrous appearance (271). These properties have rendered gold one of the most widely-

recognized metals extensively utilized by humans throughout history in various applications. In addition 

to uses for ornamental and decorative purposes, gold has been a fundamental constituent of jewelry, 

currency, and other valuables since ancient times. The biological activity of gold has also been harnessed 

for medicinal purposes in some civilizations, dating back thousands of years (1432).  

Currently, gold is still used in many of the same applications. Gold therapy remains one of the 

most common therapeutic options for the treatment of rheumatoid arthritis in the 21st century. However, 

gold has also become increasingly utilized in other modern biomedical applications. The metal has 

exhibited notable potential utility as a vehicle for gene therapy, as a platform for vaccine development, 

and an agent capable of optimizing the efficacy of photothermal ablation and radiation therapy (1433). 

Gold is also frequently used as a major constituent of various prosthetic devices including orthopedic 
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implants, pacemakers, and endovascular stents. Gold is also a metal that is frequently used in dentistry 

for crowns and fillings, restorative implants, and orthodontic appliances.  

In addition to these modern biomedical applications, gold is also frequently used in various other 

sectors including aerospace, currency and finance, transportation, and electronics. However, the use of 

gold in the production of jewelry remains one of its most common applications (1434). Given its wide-

spread use for such diverse applications, gold is a metal that most individuals encounter on a daily basis. 

Likewise, the potential for gold and gold-containing compounds to induce adverse health effects is a topic 

of notable scientific interest. 

 

1.3.2.1. Toxic Potential of Gold and Gold-Containing Compounds 

Fundamentally, the biological activity of gold is tremendously dependent on its chemical 

speciation. Metallic gold (0) is one of the least reactive metals, even withstanding acid challenge (1432). 

In addition to its ground valence state, gold can exist in numerous other oxidation states including -1, +1, 

+2, +3, +4, and +5. The most biologically-relevant oxidation states of gold are +1 and +3. Gold (III) is 

very reactive and is a strong oxidizing agent reduced by biological molecules such as thiols. Contrarily, 

gold (I) preferentially reacts with S-donors, is water soluble, and is more chemically stable than gold (III) 

(1435). These oxidation state-dependent characteristics of gold are associated with differences in 

bioavailability, molecular and cellular interactions, pharmacokinetic profiles, and ultimately, potential to 

induce toxic effects. In addition to its chemical speciation, the toxicity of gold and gold-containing 

compounds is also dependent on the exposure route associated with its encounter and the subsequent 

target tissues subject to interactions with gold (1432).  

Dermal Exposure to Gold: In the general population, dermal contact with gold-containing items is 

the most common route of exposure associated with gold (1436). Accordingly, the skin represents a 

notable potential portal of entry associated with gold, as well as a tissue potentially susceptible to gold-

induced adverse health effects. The skin is generally considered to be an effective physical barrier that 

prevents the passage of many materials from the external environment into the body. With respect to 
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gold, the dermal barrier effectively restricts larger particulate forms of gold to the outermost layers of the 

epidermis (1437). However, gold ions are small enough to penetrate the upper layers of skin and enter 

deeper layers of tissue. As a result, the propensity for gold-containing materials to cause toxic effects 

following skin contact is critically dependent on their propensity to release gold ions.  

Jewelry is one of the most common sources of dermal exposure to gold. Although gold is 

commonly incorporated into metals used to make jewelry, the amount of gold comprising these metals 

can differ greatly. The proportion of gold comprising jewelry items is denoted by a measurement referred 

to as a ‘karat,’ wherein 24 karats indicates a composition comprised exclusively of gold. The 

proportionality of gold constituting the metal used to make jewelry items is correlated to the propensity 

for gold ions to be released from the materials (1438). Pure, 24 karat gold is chemically stable and not 

often associated with skin reactivity resulting in any notable biological effects (1439, 1440). 

Comparatively, lower karat gold jewelry is generated by alloying gold with other metals including copper, 

zinc, nickel, and silver (281). This process significantly alters the chemical behavior of gold present in the 

material, often resulting in compromised chemical stability and an enhanced propensity for dissolution. 

Accordingly, increased copper content in jewelry items has been associated with increased dissolution 

of the gold constituents and the release of larger quantities of gold ions (271). As a result, jewelry 

containing a lower content of gold has been more commonly implicated in adverse biological effects 

following skin contact.  

In addition to the chemical behavior of gold and gold-containing agents, host factors can also 

contribute to the propensity for gold to enter the body via the skin. For example, metallic gold is known 

to release more ions under acidic conditions and upon interaction with thiol-containing molecules, 

including cysteine and glutathione (1441). Likewise, interactions with skin proteins and biochemical 

alterations, such as those caused by increased presence of sweat, can influence the release of gold ions 

from gold-containing materials in contact with the skin. Gold jewelry has also been associated with an 

increased potential for biological effects depending on the nature of contact with the skin. For example, 

jewelry such as rings, which remain on the external surface of the skin are less frequently associated 

with adverse skin reactions. Comparatively, the majority of skin reactions resulting from gold jewelry have 
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been exclusively related to jewelry associated with piercings (309, 1442). The invasive nature of piercings 

facilitates increased access to internal tissues, compromising the protective barrier functions of the skin 

(1443). These types of exposures are also often associated with extended durations of contact, which 

facilitate the release of higher cumulative doses of gold ions over time. As a result, lymphomatoid contact 

dermatitis, granulomatous dermatitis, lymphomatoid eosinophilia, and nodular dermatitis have all been 

reported in subjects following piercing of ears with gold earrings(1444, 1445). Similar reactions have been 

reported to emerge on the eyelids and face, as well (1446). Removal of the jewelry typically promotes 

cessation of the localized inflammatory reactions and subsequent resolution of symptoms.  

Although dermal exposure to gold is very common in the general population, gold-induced skin 

toxicity is uncommon (281). The chemical stability of the metal results in minimal risk for adverse 

biological effects following skin contact, unless significant amounts of ions are generated. Under such 

conditions, the most common adverse response caused by skin exposure to gold is the development of 

contact allergy specific to the metal. 

Respiratory Exposure to Gold: Gold is rarely associated with respiratory exposures, as few 

scenarios present the potential for aerosolization of gold, facilitating its inhalation. Since the generation 

of airborne gold particles, fumes, or vapors is rare, even in specialized settings such as the workplace 

which are discussed in more detail below, the effects of gold on the respiratory tract remain largely 

unknown (424). However, in one of the few published reports describing a case of respiratory exposure 

to gold, two subjects working as restorers were reportedly exposed to gold leaf and gold dust. The 

inhalation of these materials was not associated with any local adverse effects in the lungs, but the 

exposure did lead to dermal eruptions, a response termed ‘airborne ACD’ (304).  

Oral Exposure to Gold: Similarly, ingestion of gold is also uncommon. However, occasional uses 

of gold in consumable items can facilitate ingestion of small amounts of the metal. For example, gold has 

been used for decoration of baked goods, and gold flakes have been incorporated into some novelty 

liquor beverages (1436). Additionally, some gold-based therapeutics are orally-administered, resulting in 

the ingestion of gold-containing compounds with potential to cause biologic effects. Aurofin, a gold salt-

based drug used in the treatment of rheumatoid arthritis has been associated with adverse effects ranging 
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from GI upset and skin rashes to alterations in blood profiles (1447). Although these reports illustrate the 

potential for various toxic responses following ingestion of gold, the overall frequency of exposures to 

gold by these routes is exceptionally low.  

Parenteral Exposure to Gold: The majority of the toxic effects associated with gold exposure 

involve systemic exposures. Systemic exposure to gold occurs less frequently than dermal contact in the 

general population, but several uses of gold are associated with these types of exposures in specific 

subsets of the population. Gold-based therapeutics, dental gold, and endovascular implants containing 

gold are all potential sources of systemic gold exposure, many of which can induce notable toxic effects 

(1435, 1437, 1448).  

In 1890, gold salts were shown to be cytotoxic to bacteria, leading to its use as an anti-tuberculosis 

agent until the 1930s (1449). In 1935, gold was shown to be beneficial in the treatment of rheumatoid 

arthritis, and numerous gold-based drugs were subsequently developed (1435). In the 1970s, recognition 

of the antitumor activity of the platinum-containing agent, cisplatin, led to similar uses for gold as an 

anticancer agent (1450). There are also occasional reports suggesting potential efficacy of gold-based 

compounds in treating other diseases such as bronchial asthma (1451, 1452). However, the most 

common use of gold-based therapeutics in modern times is for the treatment of rheumatoid arthritis and 

other autoimmune disorders. Gold therapy most often involves intramuscular or intravenous 

administration of various formulations of gold salts, however, use of these drugs has recently declined 

as high rates of adverse reactions limit their utility in many patients.  

Adverse effects associated with gold therapy can manifest in various tissues, leading to 

nephrotoxicity, liver dysfunction, alveolitis, and hematological abnormalities (1453, 1454). However, the 

most common adverse effects caused by systemic administration of gold-based drugs involve 

immunotoxic responses. Although gold salts are often used to treat autoimmune conditions, they have 

also been implicated in the development of autoimmunity. Most gold-based therapeutics are formulations 

comprised of gold (I) salts, but its transformation to gold (III) in the body has been associated with 

increased potential for toxic effects. Gold (III) is inherently more reactive that gold (I) and can undergo 

redox cycling in lysosomes of immune cells, leading to oxidation and denaturation of proteins (1432, 
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1436, 1455, 1456). Gold (III) has been subsequently shown to induce conformational changes in 

molecules such as HLA, leading to their recognition by immune cells as foreign antigens. Subsequent 

reactivity to self-proteins results in adaptive immune responses to endogenous entities and chronic 

inflammatory responses associated with autoimmune reactions (1457).  

Systemic administration of gold-based drugs has also been associated with the development of 

hypersensitivity reactions. Sensitivity to gold has been reported to impact up to 50% of patients receiving 

gold therapy (280, 1458). Allergic responses caused by gold often present in the skin and mucus 

membranes, resembling prototypical ACD reactions. Other dermal reactions including popular eruptions, 

rosea, eosinophilia, and chelitis are also frequently reported following treatment with gold salts (1459). 

Less often, hypersensitivity reactions to gold have been reported to occur in the respiratory tract following 

gold therapy (305, 1172). 

Another notable source of systemic gold exposure occurs as a result of intraoral appliances and 

medical implants that contain gold (293). Gold is a metal frequently used in dentistry for fillings, 

restorations, and orthodontic appliances due to its resistance to corrosion. However, the biochemical 

environment of the oral cavity facilitates the release of ions from these metals, which can be absorbed 

systemically (1437). As a result, some patients with intraoral metals experience mucosal and cutaneous 

lesions, stomatitis, lichenoid reactions as well as gingival hyperplasia (1460, 1461). Dental metals have 

also been frequently implicated in the development of hypersensitivity responses specific to gold. A 

positive correlation has been established between the surface area of gold-containing dental implants 

and the risk of developing contact sensitivity to gold (1462). Subsequent allergic elicitation reactions often 

resemble the clinical manifestations of prototypical ACD reactions. Responses can remain localized 

around the mouth and mucus membranes, whereas peripheral skin eruptions have been reported in 

others (284).  

Gold-containing stents and endovascular implants have also been shown to release gold ions 

systemically, potentially leading to adverse reactions. The presence of gold in stent materials has been 

associated with a significantly increased risk of endothelial complications, restenosis, and major cardiac 
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events (1463-1466). However, similar to the exposures associated with gold therapy and dental gold, the 

most common adverse reaction associated with gold stents is the development of contact allergy to gold.  

Gold Toxicity Summary: Overall, gold is considered to be relatively toxicologically inert. Although 

it is a metal that is frequently encountered by the general population, most exposures are limited to dermal 

contact from jewelry items. Skin exhibiting normal barrier functions is largely protective from any adverse 

toxic effects, although invasive exposures, such as those presented by ear piercings, can induce 

localized inflammatory effects or the development of contact allergy. Inhalation and ingestion of gold are 

uncommon, so the toxic effects of gold in the lung and GI tract have rarely been reported, and likewise, 

rarely investigated. Comparatively, systemic exposures to gold may occur in particular conditions, such 

as following implantation of gold-containing medical devices or dental gold. The majority of the adverse 

health effects associated with these exposures have implicated the development of hypersensitivity 

responses specific to gold. However, the most pronounced toxic effects caused by gold have been 

associated with the parenteral administration of therapeutic gold salts. These exposures have been 

correlated to many adverse effects, the most common of which is the development of gold allergy.  

 

1.3.2.2. Occupational Exposures to Gold  

Industrial uses for gold have been estimated to generate an annual demand of approximately 400 

tons (1434). Accordingly, the acquisition of gold from mining implicates potential for workplace exposures 

to gold. Similarly, workers employed in processes including the purification, smelting, and recycling of 

the metal are also subject to occupational settings in which exposure to gold can occur. The highest 

demand for gold is associated with electronics and dentistry, constituting additional sectors with potential 

risk for gold exposures in the workplace. Workers are also exposed to numerous gold-based compounds 

as a result of involvement in gold plating processes, glass etching, photography, and jewelry handling 

(1467). Chemists and laboratory researchers are also workers with increased potential for occupational 

exposures to gold and gold compounds. 
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Similar to the general population, skin contact is the most frequently-cited exposure route 

associated with gold in occupational settings. Among the potential skin responses to gold in the 

workplace, ACD is frequently reported. Many of the previously-mentioned occupations have been 

associated with increased rates of dermal sensitivity to gold (1468, 1469). Notably, many occupations 

associated with increased risk for the development of gold-induced ACD involve simultaneous exposures 

to gold in conditions of elevated temperatures. Both heat and acidity of sweat are known to increase the 

corrosion of gold, resulting in the release of soluble gold ions and salts capable of being absorbed by the 

skin. As a result, workers involved in processes such as gold smelting and electroplating have been 

shown to have an increased risk for the development of gold ACD (303, 1470). 

Respiratory exposure to gold particles, fumes, and vapors in the workplace is far less common 

than dermal contact with the metal. Although it would seem to be one of the settings wherein notable 

respiratory exposures to aerosolized gold would occur, inhalation of gold during its mining has been a 

negligible occupational concern historically. The adverse health effects most commonly associated with 

gold miners rarely implicate toxic effects associated with exposure to gold. Although the USA, Canada, 

and Brazil have been historical exporters of gold, South Africa is the modern leader in mining and export 

of gold, and the majority of occupational health and safety information pertaining to gold miners currently 

originates from this region (1471). Epidemiological studies of South African gold miners report increased 

risk for numerous diverse injuries and illnesses. Gold mining is associated with increased prevalence of 

various bacterial and viral diseases, noise-induced hearing loss, lung cancers, and carbon monoxide 

poisoning. Some of these health effects are reflective of increased prevalence of comorbidities in 

workers, such as human immunodeficiency virus (HIV) infection and tuberculosis, as well as increased 

prevalence of behavioral factors, such as smoking (1472). However, some of these effects are also 

associated with exposure conditions associated with the mining of gold. Mining operations generate 

complex exposure scenarios. The toxic metal presenting the most immediate threat to gold miners is 

mercury, which is frequently used in the extraction of gold. The most commonly-cited respiratory threat 

for gold miners is the inhalation of silica particles. Gold is rarely cited as a notable occupational respiratory 

hazard to gold miners. 



 

142 
 

As a result, minimal scientific attention has been directed towards characterizing the potential 

toxic effects of gold on the lung. Since gold is not often cited as a notable toxicological threat, specific 

OEL for gold do not currently exist. Inhalation exposures to gold are currently subject to values applied 

non-specifically to agents associated with a minimal threat level. Accordingly, inhalation exposure limits 

for gold are regulated by OSHA as a ‘particulate not otherwise regulated,’ or ‘nuisance/inert dust’ with a 

PEL of 5 mg/m3 for the respirable fraction and 15 mg/m3 of total dust.  

Despite the absence of substantial evidence suggesting any overt pulmonary toxic potential of 

gold, a few reports have described adverse skin responses following respiratory exposure to gold. For 

example, one case study reported a chemist who was routinely exposed to aerosolized gold salts and 

subsequently developed ACD (346). Inhalation of gold has been also been associated with a few cases 

of airborne ACD in workers. ACD eruptions were reported following the inhalation of gold dust by 

individuals working as restorers and glass etchers (304, 1473). These findings emphasize that although 

gold appears to exert minimal toxic effects in the lungs, inhalation can lead to adverse effects that 

manifest in other tissues.  

Overall, gold does not currently present a notable occupational threat for many workers. The 

majority of workplace-related health issues caused by gold involve exposures leading to the development 

of contact allergy. Because of the low frequency of situations involving inhalation of gold and lack of 

knowledge regarding the pulmonary effects of gold, respiratory exposures limits specific for gold are non-

existent. Although its regulation under non-specific nuisance dust OELs may have been adequate in 

protecting workers from gold in the past, the recent emergence and widespread use of gold nanomaterials 

may challenge this paradigm. 

 

1.3.2.3. Immune Responses and Gold Allergy 

Collectively, irrespective of the route of exposure, the immune system is the most frequent target 

of adverse effects caused by gold. A summary of the various adverse immune effects reported in 

response to gold exposure is presented in table 1.21 (304, 305, 309, 404, 406, 408, 409, 1439, 1442, 
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1444, 1445, 1459, 1470, 1473-1502). Although the propensity for selective alteration of immunological 

processes by gold has been exploited to develop gold-based therapeutics to treat many immune-

mediated disorders, gold-induced immunomodulation is also associated with many of its aforementioned 

diverse pathologic effects. The most common manifestation of gold-induced immunotoxicity is the 

development of hypersensitivity responses specific to the metal, and gold allergy has recently become a 

notable public health concern and a concern for exposures in occupational settings (271). 

Historically, the allergenic potential of gold was largely disregarded until the early 1990s, when 

increasing numbers of patients with intraoral metals began reporting skin sensitivity to gold. As reported 

by a 1994 study conducted in Sweden, 832 consecutive patients were patch tested with gold sodium 

thiosulfate, wherein 8.6% patch test positivity was observed (1438). Subsequently, many countries 

adopted gold into the standard series of ACD patch test agents, and significant rates of positivity to gold 

compounds began being reported (280). Populations of subjects from the United States, Japan, 

Singapore, Korea, Lithuania, and Israel were shown in several studies to exhibit incidence rates of gold 

contact sensitivity that were comparable to the frequency of nickel sensitivity (236, 240, 248, 255, 256, 

1503, 1504). Among these studies, the prevalence of dermal sensitivity to gold has been consistently 

reported to be higher in women than in men, as with many other allergic conditions (1437). In accordance 

with these findings, gold was named the 2001 Contact Allergen of the Year by the American Contact 

Dermatitis Society, demonstrating its recent emergence as an allergen of concern. 

Gold has been associated with many unique molecular and cellular effects that have been 

proposed to contribute to its allergenic potential. Innate immune stimulation by gold is a mechanism 

suggested to promote the early events of sensitization. Similar to the capacity for nickel and cobalt to 

activate TLR-4 signaling in innate immune cells, gold has also been associated with PAMP functional 

mimicry. TLR-3 is traditionally associated with the recognition of viral dsRNA by cells, but ionized gold 

has the capacity to activate this pathway in keratinocytes. The subsequent innate immune stimulation by 

PRR recognition has been proposed as a mechanism responsible for the high rates of sensitivity to 

intraoral gold (471). 
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Antigen presentation is another step of allergic sensitization that has been shown to be subject to 

modulation by gold as a result of modulation of APC and lymphocyte interactions. Accordingly, gold (III) 

has been shown to bind MHC II molecules on APC, interfering with peptide presentation both in vivo and 

in vitro (476). The spatial geometry of gold compounds has been implicated in these interactions (1505). 

The alteration of MHC-peptide complexes by gold ions has also been associated with the generation of 

gold-specific T-cells independent of antigen processing (1506). 

In addition to the capacity to modulate cellular processes during allergic sensitization, similar 

interactions between gold and immune cell surface receptors have been shown to impact allergic 

elicitation reactions. Using T-cells isolated from gold-sensitive patients, it was shown that recognition of 

gold occurred by both conventional MHC-restricted, as well as MHC-unrestricted pathways (483). 

Subsequent simultaneous activation of CD4+ and CD8+ T-cells was observed, leading to diverse 

cytokine production profiles characteristic of Th0, Th2, and Tc1, cells. It was suggested that these 

promiscuous interactions between gold and lymphocytes may contribute to the metal’s allergenic 

potential. Similar responses were observed when PBMC of patients with gold contact allergy were 

stimulated with gold salts in vitro, resulting in mixed Th1/Th2 cytokine responses (1507). 

Gold has also been associated with various molecular and cellular effects with the potential to 

impact both gold-specific hypersensitivity responses, as well as allergic responses specific to other 

antigens. For example, gold has been shown to induce oxidation state-specific conformational changes 

in host protein structures. The subsequent exposure of cryptic epitopes has been associated with the 

generation of novel antigenic determinants leading to allergic sensitization (1508, 1509). The majority of 

the immunotoxic effects associated with gold implicate gold (III) species. Skin sensitization potential, host 

protein conformational changes, and many cell receptor interactions associated with gold have been 

correlated to this specific oxidation state (479, 1510). Interestingly, it has been shown that internalization 

of gold compounds by mononuclear phagocytes can facilitate the oxidation of gold (I) to gold (III), 

conferring these immunogenic effects (1508). Likewise, biological transformation of gold species by host 

processes can significantly contribute the allergic potential of gold.  
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Gold-induced alterations in innate immune cell activity have been commonly reported. Various 

gold compounds have been demonstrated to induce modulation of cell signaling processes in monocytes, 

macrophages, and DC (1511-1513). Alterations in cytokine production profiles are often observed as a 

result of these effects, but altered release of other immune-mediating molecules by innate immune cells, 

such as prostaglandins, is also frequently observed (1514). Other immunomodulatory effects of gold 

include the allosteric inhibition of APC MHC II functionality, alterations in alarmin biological activity, and 

differentiation/maturation capacity of various innate immune cells (476, 1515-1517). Furthermore, gold 

has been shown to accumulate in macrophage lysosomal compartments, forming aureosomes, where 

gold interferes with antigen processing (1515). Gold has also been shown to modulate mast cell activity. 

One study demonstrated that gold salts can trigger the induction of calcium-dependent degranulation, 

independent of allergen, which can lead to pseudo-allergic reactions (1518, 1519).  

The normal cellular processes of adaptive immune cells have also been shown to be particularly 

susceptible to disruption by gold. For example, auranofin has been shown to enhance the rapid flux of 

ROS in activated T-cells, resulting in alterations in intracellular signaling, and subsequent inhibition of 

proliferation and cytokine release (1520). Polarization of lymphocyte populations is a potential 

consequence of these effects, as mixed responses to gold have been demonstrated. Upregulated 

production of Th2 cytokines including IL-4, as well as prototypical Th1 cytokines, such as IFN-γ have 

been observed by T-cells following exposure to gold (1515, 1521). The modulation of T-cell activity by 

gold often results in deviations in the immunoregulatory balance between helper and suppressor 

functions, an effect consistently reported in subjects undergoing gold therapy (1522). 

Interestingly, it has been reported that B-cells are significantly more sensitive to the suppressive 

activity of gold compounds than T-cells. Significantly lower concentrations of sodium thiomalate were 

required to compromise human B-cell activation and inhibit the expression of activation molecules than 

concentrations associated with similar effects in T-cells (1523). Combinations of gold salts have been 

shown to synergistically inhibit the initial activation of B-cells (1524). This compromised B-cell maturation 

capacity caused by gold explains the prevalence of hypogammaglobulinemia (low production of 

immunoglobulins) as a complication of gold therapy (1525).  
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Collectively, the selective effects of gold on T-cells and B-cells likely contribute to the 

predominance of T-cell-mediated mechanisms reported to be involved in gold allergy. Gold-specific IgE 

has not been implicated in any cases of gold allergy, and several studies have conducted gold prick tests 

with no reports of positivity (303). Similarly, the development of gold allergy has been shown to exhibit 

no relationship to atopy and serum IgE concentrations were shown not to be predictive of gold toxicity 

following gold therapy (1526, 1527). The suppressive effects of gold on B-cells may prevent their 

maturation and subsequent immunoglobulin producing capacity, impeding the development of humoral 

immune responses. 

Moreover, the differential modulatory effects of gold on lymphocyte subpopulations is likely 

responsible for the frequent resurgence of cutaneous hypersensitivity responses in patients undergoing 

gold therapy (1528). Impaired lymphocyte recall responses to various antigens associated with T-cell 

reactivity are often observed in patients with rheumatoid arthritis; however, following the commencement 

of gold therapy, delayed-type responses to antigens including DNCB and tuberculin are often restored 

(1502, 1529). It has been suggested that anergic status is abolished following the commencement of 

gold therapy as a result of gold-induced T-cell stimulation (1530). 

The selective promotion of cell-mediated immunity by gold is also apparent given the similar 

characteristics of allergic reactions triggered by gold, irrespective of exposure route. As previously 

mentioned, the development of gold hypersensitivity in humans has been reported following exposure to 

gold by various routes. Dermal contact with gold can induce sensitization, and the likelihood for ACD 

development has been correlated to increasing number of ear piercings (280). The presence of intraoral 

metals also constitutes an elevated risk for sensitization to gold (1531). Both dermal exposure to gold 

ions released from dental metals and their systemic absorption can facilitate sensitization. In addition, 

gold therapy administered by intravenous and intramuscular injections or oral formulations can lead to 

sensitization. Interestingly, the elicitation of gold allergy in individuals sensitized by these various 

mechanisms has been most frequently reported to selectively manifest as dermal eruptions, irrespective 

of exposure route (1498). Outbreaks of systemic ACD have been reported following systemic or oral 

administration of gold-based therapeutics (293, 305). Similarly, inhalation of gold dust has been 
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associated, albeit rarely, with airborne ACD (303, 304). These responses have been associated with 

gold-reactive T-cells bearing both CD4+ and CD8+ phenotypes (483, 1532). 

Given the shared propensity for gold hypersensitivity responses to be mediated by T-cell-driven 

mechanisms, lymphocyte reactivity assays and patch testing have been frequently used to assess 

contact sensitivity. However, gold presents several challenges that limit the utility of these traditional 

approaches for clinical assessment (1533). For example, there has yet to be a standard, widely-accepted 

formulation for use in gold patch testing. Existing formulations of gold that have been used in patch tests 

include gold trichloride, sodium aurothiosulfate, potassium dicyanoaurate, gold leaf, gold sodium 

thiomalate, and many others, all in varying concentrations (1534, 1535). Despite conservation of gold 

oxidation state, different monovalent and trivalent gold salts have been known to induce skin reactions 

of varying severities (1536). Some of these formulations are also capable of inducing irritant responses 

or immunological cross-reactivity, complicating the interpretation of test results. Furthermore, many gold 

compounds used for patch testing fail to induce dose-dependent skin responses in patients, further 

complicating the establishment of an effective test agent (255, 1537).  

The time course of skin reactions induced by gold patch testing has also been demonstrated to 

be inconsistent with those induced by other prototypical dermal allergens. Delayed development of 

reactions (up to 3 weeks) has been reported, and some reactions have been shown to persist for 

extended durations of up to 2 months (1473, 1536). As a result, false negative patch tests to gold have 

been problematic for the accurate assessment of gold allergy. However, lymphocyte reactivity tests have 

been shown to be reliable in diagnosing sensitivity to gold (1538). Irrespective of the challenges 

associated with the clinical assessment of gold ACD, as of 2014, gold chloride has been categorized as 

a Group 2 sensitizer. These substances are not in the highest sensitizer potency category, but still 

possess “strong intrinsic potency” (1539). This category of sensitizers is classified as “likely to sensitize 

1 to 10% of those with regular exposures to moderate concentrations. 

Although several notable challenges complicate the clinical evaluation of gold allergy, the use of 

laboratory animals to study gold allergy has proven useful. Unlike several other metal allergens (i.e., 

nickel, cobalt), studies using rodent models have generated translationally accurate results with respect 
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to gold allergy. In the LLNA, GPMT, and MEST, gold salts have been demonstrated to be potent inducers 

of skin sensitization  (657, 1540). Many other immune effects of gold reported by animal studies mirror 

findings from clinical studies. For example, gold salts have been shown to alter antigen-specific IgE 

responses, lymphocyte gene expression, cytokine production, and mast cell degranulation in vivo (1521, 

1541). Development of autoimmune responses and antinuclear antibodies have also been reported 

following administration of gold drugs in rats and mice (479, 1457, 1542). Additionally, animal and human 

studies have consistently demonstrated the existence of genetic susceptibility for gold immunotoxic 

effects, many of which are associated with MHC genotype (1457, 1542, 1543). 

Despite neighboring platinum on the periodic table being a potent metal asthmagen, gold has not 

been associated with any cases of IgE-mediated asthma in humans. Gold has also not been tested in 

any animal studies for its potential to sensitize the respiratory tract. The absence of evidence suggesting 

the potential for gold to induce adverse pulmonary immune effects, however, does not necessarily 

indicate that gold is immunologically inert with respect to the respiratory tract. The lack of existing cases 

reporting pulmonary immune effects caused by gold maty simply reflect the exceptionally uncommon 

frequency of gold inhalation. Since inhalation of gold is less common route of exposure, even in the 

workplace, no case reports currently exist. Likewise, the lack of scenarios associated with gold inhalation 

have rendered the demand for scientific investigations into the metal’s pulmonary immunotoxicity 

negligible. 

Despite a lack of evidence suggesting the potential for gold to cause asthmatic reactions, a few 

reports of gold-induced pulmonary immune responses exist. Nearly all of these cases have been 

associated with a unique complication of gold-therapy. In some patients receiving gold therapy, the 

systemic administration of these agents has resulted in a disorder commonly referred to as ‘gold lung’. 

This condition is mediated by T-cells, and the underlying immunological mechanisms more closely 

resemble the pulmonary hypersensitivity responses associated with beryllium than typical cases of metal-

induced asthma. However, beryllium lung disease is primarily mediated by metal-specific CD4+ T-cells, 

whereas CD8+ T-cells appear more influential in cases of gold lung (406-408). Despite this immunological 
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discrepancy, both conditions have been similarly associated with specific MHC genotypes that confer an 

increased susceptibility for the development these reactions (1544, 1545). 

It remains largely unclear why systemic gold exposure in these instances results in adaptive 

immune reactions in the respiratory tract. However, numerous studies have demonstrated wide-spread 

distribution of gold particles following gold therapy, wherein particles were detected in the dermis, bone 

marrow, conjunctiva, and liver (1546-1549). Similarly, among a group of patients undergoing systemic 

gold therapy for rheumatoid arthritis, gold particles were detectable in alveolar macrophages retrieved 

from 90% of the subjects (1550, 1551). Gold has also been detected in the lung tissue of all subjects 

undergoing gold therapy, irrespective of gold lung symptom presentation (407). Gold has been shown to 

persist in synovial fluid and other tissues for up to 23 years following cessation of gold therapy, further 

implying that retention of gold in tissues such as the respiratory tract may persist for extended durations, 

promoting local immune responses (1552).  

 

1.3.2.4. Gold Nanomaterials 

The increase in use and manufacture of gold nanomaterials has led to expansive investigations 

into their biological activity and toxic potential. Accordingly, gold nanomaterials are one of the most 

frequently-studied nanomaterials in nanotoxicity studies. As a result, numerous physico-chemical 

properties of gold nanomaterials have been correlated to their biological effects on a molecular, cellular, 

and organismal level. 

Gold nanomaterials are easily synthesized, exhibit unique optical properties, and their surfaces 

can be easily modified and conjugated with endless chemical functional groups or biomolecules. Gold 

nanomaterials also exemplify the diversity of potential nanomaterial morphologies, as they can be 

produced as nanospheres, nanorods, nanocubes, nanoclusters, nanoshells, and nanostars (1172). 

Among the expansive number of metals being manufactured in nanoparticulate form, gold represents 

one of the metals being used in the most novel and diverse applications. In addition to uses in electronics, 

decorations, and catalytics, biomedical applications represent one of the highest volume applications for 
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gold nanoparticles (AuNP). Although they are not one of the most highly-produced nanomaterials by 

mass, AuNP had a 2014 demand of 1-3 tons with significant potential to translate into higher volume 

production within 5-10 years (754).  

As a proposed platform for drug delivery applications, diagnostic imaging, vaccine delivery, and 

photothermal therapy, AuNP interactions with biological molecules have been commonly studied in vitro 

(63, 1433). Many different macromolecules have been shown to adsorb to the surfaces of AuNP (990). 

Glycine was shown in one study to bind AuNP facets in a selective manner depending on the size of the 

particles (1553). The kinetics and affinity of protein adsorption to AuNP surfaces have also been 

correlated to properties including size, shape, and surface charge (1554, 1555).  

Interactions between AuNP and various biomolecules can result in alterations in physico-chemical 

properties of AuNP, leading to implications for subsequent interactions with cells. For example, 

adsorption of biomolecules to AuNP surfaces can increase particle hydrodynamic diameter and modulate 

surface charge (1556). Alterations in these properties are known to impact the nature of interactions with 

cell surface membranes and propensity for internalization by cells. The dissolution potential of AuNP is 

also known to be influenced by interactions with macromolecules. For example, cysteine and glutathione 

are known to enhance the release of ions from metallic gold nanoparticles upon physical interactions 

(1441, 1557). 

AuNP/biomolecule interactions can also result in alterations in the biological activity of the 

interacting molecule. For example, the adsorption of certain proteins to AuNP surfaces can induce 

conformational changes resulting in compromised functional activity of the protein (1558). Subsequent 

alterations in enzymatic activity, ineffective substrate binding, and compromised ligand interactions are 

commonly reported effects of such interactions. Accordingly, although AuNP may exhibit negligible toxic 

potential in some instances, their potential to alter the biological activities of other molecules may 

generate toxic potential. 

In addition to the molecular behavior of AuNP in biological systems, their effects on various cell 

types have also been studied in vitro. AuNP internalization by cells can be influenced by numerous 

properties. In some instances, AuNP can passively enter cells following penetration of the cell membrane 
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in a size- and surface charge density-dependent manner. Electrostatic interactions between cationic 

AuNP and negatively charged cell membranes can result in structural disruptions in the membrane, 

subsequently facilitating the entry of AuNP into cells (707, 1358, 1556). By comparison, AuNP surface 

protein adsorption can facilitate particle internalization by receptor-mediated uptake. Size and 

morphology are known to be critically influential in the receptor-independent internalization of AuNP by 

cells. As demonstrated with various gold-based nanomaterials, shape is an important determinant in this 

process, as the energy required for membrane wrapping and endocytosis can vary significantly between 

gold nanomaterials with different aspect ratios. Overall, size, morphology, and surface chemistry have 

been demonstrated to be critically important in determining both the propensity for cellular uptake of 

AuNP, as well as the route and dynamics of their internalization by cells (1559-1561). 

Following internalization, AuNP have been most frequently reported to remain localized in 

endosomes. Free dispersion of AuNP in the cytoplasm has been observed less frequently (1562). AuNP 

have been shown to interact with various intracellular structures including the nucleus, mitochondria, and 

lysosomes, generating a potential source of adverse cellular effects (1563). While some studies have 

demonstrated an inability for AuNP to penetrate the nuclear envelope, other studies have demonstrated 

divergent findings. The capacity for AuNP (3-50 nm), to enter the nucleus of cells was been shown to be 

dependent on their size (1564). 1.4 nm AuNP were shown to bind DNA in melanoma cells with high 

efficiency, wherein 24.5% of the internalized particles subsequently bound DNA (1565). Correspondingly, 

the mutagenic potential of AuNP has also been correlated to size. These in vitro observations also explain 

the dependence of AuNP size in the efficacy of nano-gold-based cancer therapeutics (1566).  

AuNP can interact with organelles, interfere with intracellular signaling processes, and induce 

numerous functional alterations in cellular activity. However, the most commonly studied effect of AuNP 

on cells is their capacity to cause cell death. Accordingly, variations in AuNP cytotoxic potential have 

been reported. Some studies have shown that uptake of AuNP does not result in any notable adverse 

cellular effects, whereas others have reported notable cytotoxic potential of AuNP (1567). In addition to 

disruption of organelle function, cytotoxic effects of AuNP have been associated with mechanisms 

involving DNA damage, intracellular ROS accumulation, catastrophic membrane damage, as well as 
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impedance of proliferation. Subsequently, cell death by apoptosis, autophagy, and necrosis have all been 

reported following AuNP uptake (549, 1244). Size, surface modification, and charge are all properties 

that have been correlated to both the cytotoxic potential and mechanism of cell death caused by AuNP 

(1078, 1562).  

In addition to the physico-chemical properties of AuNP, cellular characteristics have also been 

shown to be critical in determining the cytotoxic potential of AuNP in vitro. AuNP cytotoxicity has been 

examined in various cell types including DC, keratinocytes, endothelial cells, epithelial cells, and many 

others (1568). As a result, susceptibility to AuNP toxic effects has been shown to differ depending on cell 

cycle status, phagocytic activity, and phenotype with respect to wild type and cancerous cells (1244, 

1569). 

The biological activity and toxic potential of AuNP has also been extensively examined in vivo. 

AuNP have been incorporated into numerous animal models to evaluate the responses implicated in 

different routes of exposure and with relevance to various target tissues. Accordingly, AuNP have been 

shown to be absorbed by the GI tract in size-dependent manner following ingestion (1556). After systemic 

administration, AuNP biodistribution, primary site of accumulation, and duration of retention in circulation 

are all parameters shown to differ depending on physico-properties including size and surface 

modification (67). However, the effects of AuNP following dermal contact and inhalation exposure have 

been most frequently studied. 

It remains unclear if gold nanomaterials have the capacity to penetrate the skin. Some studies 

have reported penetration of the skin by AuNP < 100 nm, whereas other studies have reported 

contradictory findings (560, 1570). However, several AuNP properties have been implicated in the nature 

of interactions between gold nanomaterials and the skin that may influence their potential to penetrate 

the skin. For example, surface charge and hydrophobicity of gold nanomaterials has been associated 

with the potential for accumulation in hair follicles, as well as the modulation of interactions with skin 

proteins (570, 1571). AuNP have also been shown to have the capacity to compromise epithelial cell 

junctions, an effect which may further enhance their potential to penetrate the skin. Surface charge was 

particularly influential in this observation as disruption of keratinocyte tight junction barriers was 
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associated with negatively-charged AuNP (512). Similarly, citrate-coated AuNP were shown to inhibit 

extracellular matrix protein synthesis and compromise stress fibers in fibroblasts, causing similar 

structural alterations in the dermal barrier capable of enhancing the penetrating capacity of AuNP with 

specific characteristics (1558). Metabolic processes of the skin have also been shown to impact AuNP 

penetration, as ablation of activity by toluene resulted in enhanced penetration by 15 nm in one study 

(752). Despite these observations, few studies have investigated the potential for AuNP to cause adverse 

effects in other tissues following dermal exposure.  

AuNP have been consistently shown to exhibit general biocompatibility within the respiratory tract. 

Exposure to AuNP in a diverse range of sizes has not frequently been associated with notable pulmonary 

injury, increases in oxidative stress, or release of significant levels of pro-inflammatory cytokines in vivo 

(1559, 1572, 1573). Following deposition in the airways, AuNP are rapidly internalized by airway-resident 

phagocytes in a size, surface modification, protein corona, and surface charge-dependent manner (1574-

1576). The intracellular fate of AuNP has been shown to differ with respect to size and morphology, but 

sequestration of AuNP inside pulmonary phagocytes has rarely been associated with overt cytotoxic 

effects (1559, 1577-1580). AuNP can also be internalized by bronchial epithelial cells in the upper 

airways, and to lesser extent, alveolar type I epithelial cells in the lower airways. The efficiency of AuNP 

uptake by these cells following particle deposition in the airways has been correlated properties including 

agglomeration state (1581). AuNP are subsequently retained in the lung tissue until cleared or neutralized 

by other mechanisms (1582). Occasionally, studies have reported AuNP-induced histological alterations 

in lung tissue, minor alterations in lung function parameters, and changes in the lipidomic profile of the 

lungs  (1583-1585). However, existing studies consistently demonstrate a lack of significant toxic 

potential of AuNP following pulmonary exposure. 

AuNP have also been extensively studied with respect to potential for systemic translocation 

following respiratory exposure. Generally, the clearance of AuNP from the lungs occurs in a size-

dependent manner, wherein the elimination half-life of smaller particles is shorter than that of larger 

particles (1586). Decreases in AuNP size have been associated with more efficient deposition in the 

alveolar region of the lungs, increased potential for active uptake by alveolar epithelial cells, as well as 



 

154 
 

enhanced potential for passive penetration of the air-blood barrier (757, 1587, 1588). In some instances, 

AuNP have been shown to contribute to compromised epithelial barrier integrity in the alveolar spaces, 

further promoting their entry into circulation and relocation to distal tissues (1589). AuNP surface 

modification and charge have been established as properties with significant potential to impact these 

processes (1590).  

In addition to particle-specific characteristics, several host factors are also known to be influential 

in determining the biological fate of AuNP in the lungs. For example, the species and age of animal 

models have been shown to impact AuNP deposition in the airways, while the translocation potential of 

particles can be gender-dependent (1591, 1592). Prior inflammatory responses in the airways, in addition 

to pre-existing disease states such as asthma and chronic obstructive pulmonary disease (COPD), have 

also been shown to impact the translocation potential of inhaled AuNP (819, 892, 1593, 1594). 

Subsequent accumulation of AuNP following their escape from the respiratory tract has been reported to 

occur primarily in the liver, spleen, and kidneys (1595). 

Immune Effects of Gold Nanomaterials: Many types of immune cells have been shown to be 

susceptible to AuNP-induced alterations in biological activity and functionality. One of the cell types most 

commonly investigated with respect to AuNP are DC. Morphology, surface properties, and aspect ratio 

have all been shown to impact AuNP interactions with DC, resulting in modulation of various cellular 

processes (533, 769, 1596). In addition to DC migratory capacity, DC activation and polarization are also 

known to be susceptible to modulation by AuNP as a function of properties including size (538, 1068, 

1076, 1078). Morphology and surface modification have also been shown to be properties critically 

involved in the release of pro-inflammatory cytokines by DC (61, 1069). 

Other innate immune cells have also been studied as potential targets of AuNP in vitro. AuNP 

have been shown to augment inflammatory signaling by monocytes, as well as disrupt neutrophil 

cytoskeletal structure (1188, 1251). Modulation of macrophage phagocytic activity and LPS stimulation 

responses are also known to be subject to interference following AuNP exposure (1578). Additionally, 

AuNP are capable of interacting with both cell surface receptors and ligands involved in the 

immunological responses of granulocytes, ultimately leading to alterations in mast cell and basophil 
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reactivity to antigen (1169). Size and surface properties are known to be critically influential in this regard 

(784). In addition to changes in granulocyte reactivity, several studies have also shown that AuNP can 

modify the molecular contents of granules secreted by activated granulocytes as a function of the 

particles’ zeta potential (914). 

Adaptive immune cells also appear to be susceptible to modulation upon interactions with AuNP. 

< 50 nm AuNP have been shown to alter splenocyte responses to immunological stimuli, as well as alter 

activity of B and T-cells isolated from mice and humans (1111, 1597). T-cell-specific effects associated 

with AuNP exposure have been largely associated with alterations in cytokine production profiles, effects 

which have been correlated to AuNP size and surface modification (1598). By comparison, interactions 

with B-cells have been shown to be dependent on AuNP morphology and surface modification, following 

which the modulation of intracellular signaling pathways can induce functional alterations in antibody 

secretion (1113, 1146, 1147, 1599). AuNP have also been shown to enhance NK cytotoxic activity in a 

size-dependent manner in vitro (1292). 

The immunomodulatory effects of AuNP have been far more frequently examined in vitro than in 

vivo. However, some of the observations reported by in vitro studies have been similarly demonstrated 

by studies employing animal models. Various systemic immune effects and alterations in immune 

markers have been reported following AuNP exposure in vivo. Many of these effects are dependent on 

the site of AuNP localization and accumulation following systemic exposure. Surface functionalization 

has been shown to influence this propensity, wherein neutrally-charged 15 nm AuNP were associated 

with preferential accumulation in the lymph nodes, and positively-charged AuNP localized primarily in the 

spleen (66). Subsequent alterations in lymphocyte proliferation capacity, cytokine release, and antibody 

production have been observed following AuNP administration as a function of material size, 

hydrophobicity, and morphology (950, 1115, 1335). The implications of these effects on adaptive immune 

responses has been an area of active investigation, as AuNP have been proposed to have utility for 

optimization of newly-developed vaccines. Accordingly, AuNP have been shown to alter the kinetics of 

antigen delivery to lymphoid tissue, selectively promote the stimulation of a particular effector cell 

phenotype, and polarize the nature of the subsequent immune responses in a physico-chemical property-
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dependent manner. Particle size has been identified as an important property in the modulation of antigen 

delivery kinetics to the lymph nodes, leading to the generation of different effector cells (517). Similarly, 

AuNP morphology has been correlated to discrepancies in levels of antigen-specific antibody titers 

produced following immunization in vivo (61). 

The immunological effects of AuNP, specifically in the respiratory tract, have been occasionally 

characterized. In one study, pulmonary APC were shown to preferentially take up positively-charged 

AuNP, resulting in increased activation marker expression (776). Subsequent translocation of AuNP from 

the airways to the lymph nodes involved cell-mediated mechanisms, however, cell-independent 

translocation of AuNP to the lymph nodes has also been observed. Translocation of AuNP to the lymph 

nodes can facilitate interactions with APC and lymphocytes, an effect that has been proposed to be 

responsible for observations of AuNP-induced adjuvant activity following mucosal immunization (1351, 

1600). AuNP can also augment pulmonary immune responses in established states of hypersensitivity, 

as demonstrated in other studies. AuNP have been shown to attenuate some asthmatic processes, 

including mucus hypersecretion and inflammatory cell recruitment by some reports. Comparatively, AuNP 

have also been shown to exacerbate asthmatic symptoms in some cases, resulting in responses 

including enhanced airway hyeprresponsiveness (891, 892, 894).   

Although AuNP-induced effects on pulmonary immunity often implicate particle interactions with 

immune cells, structural cells of the airways may also be targets of AuNP that are responsible for altered 

immune responses in the lungs. Their expression of PRR, recognition of PAMP/DAMP, release of 

alarmins, and production of immunomodulatory cytokines renders airway epithelial cells critical mediators 

of innate immune cell reactivity (179). In this regard, AuNP have been shown to alter transcriptional 

activity of many pro-inflammatory signaling pathways, including NF-kB, in airway epithelial cells. Similarly, 

upregulation of TLR-2/4 expression by epithelial cells in the lungs has been observed in response to 

AuNP exposure (865). These effects can promote a diverse assortment of immune responses in the 

respiratory tract, including activation of APC and other innate immune cells, illustrating another potential 

mechanism of AuNP-induced alterations in pulmonary immunity (861). 
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Compared to the pulmonary studies, fewer studies have profiled the immune effects of AuNP in 

the skin. Despite this, there are several existing studies that have demonstrated immunological effects of 

skin exposure to AuNP that may facilitate local immune reactivity, as well as the development of systemic 

immune responses. In one study, exposure to 20 nm AuNP simultaneous to DNFB in previously-

sensitized mice was not associated with any alterations in skin reactivity (724). Although dermal exposure 

to AuNP was not associated with the augmentation of ACD elicitation in this study, many other studies 

have shown that dermal AuNP exposure can result in translocation of particles to lymphoid tissues, 

constituting far more potential interactions with immune cells. For example, 5 nm AuNP covalently 

conjugated to autoantigen were shown to be readily internalized by LC in another study. However, the 

subsequent T-cell activating potential of LC was diminished in response to AuNP uptake (698). This 

response is suggestive of suppressive activity induced by AuNP, an effect which may impede the 

likelihood for skin sensitization, but implicating immunomodulatory effects, nonetheless. In addition to 

LC, AuNP have also been shown to be taken up by dermal macrophages and transported to the lymph 

nodes. Although this study did not characterize the immunological implications of this process, cell-

mediated transport of AuNP by macrophages following subcutaneous injection suggests another 

potential mechanism of immunomodulation by AuNP. Interception of AuNP by these cell populations 

requires access to lower layers of the epidermis populated with resident immune cells, indicating that 

properties implicated in the skin penetrating potential of AuNP may also be implicated in their potential 

to translocate from the skin to the lymph nodes (1601).  

Similar to their involvement in immune reactions of the respiratory tract, dermal epithelial cells are 

also critically influential in immune reactions originating in the skin. Accordingly, several AuNP physico-

chemical properties have been correlated to skin epithelial cell responses capable of promoting immune 

reactions following exposure. For example, 1.5 nm AuNP surface charge was correlated in one study to 

the mechanism of keratinocyte cell death (549). Since many alarmins are released following necrotic cell 

death, AuNP surface charge has the potential to amplify the early events of dermal sensitization by 

inducing preferential mechanism of cell death in epithelial cells (693). Similarly, inflammasome activation 

and subsequent release of IL-1β by dermal fibroblasts has been shown to occur in a AuNP size and 
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surface modification-dependent manner (1602, 1603). As a result, these properties of AuNP may be 

associated with an increased potential for exposure to result in dermal immune responses. 

Despite ample evidence demonstrating AuNP immunomodulatory potential in vivo and in vitro, 

the functional implications of such effects, specifically on allergic disease, remain largely unclear. All 

existing studies that have investigated the potential for AuNP to impact allergic processes have examined 

their effects on allergic processes involved in responses to environmental allergens. For example, AuNP 

have been shown to act as non-protein carriers of haptens, facilitating the generation of adaptive immune 

responses specific to small molecules in vivo (520). The potential for interactions between AuNP and 

small molecules to generate antigenic epitopes is a mechanism with significant potential to promote 

allergic sensitization following exposure to AuNP. AuNP have also been shown to modulate interactions 

between antigens and effector cells in vitro, demonstrating a mechanism by which AuNP exposure may 

modulate elicitation responses in established allergic conditions. In one such study, interactions between 

protein allergens and AuNP resulted in both enhanced allergen protease activity, as well as increased 

basophil responsiveness to antigen. As a result, activation of granulocytes was associated with a higher 

maximal activation response in the presence of AuNP, demonstrating an effect with potential to 

exacerbate the severity of allergic elicitation responses to aeroallergens (522). Similarly, a few studies 

have incorporated AuNP into in vivo asthma models, subsequently demonstrating the potential for 

exposure to augment asthmatic responses to TDI and OVA in animal models (891, 892, 894). 

Although AuNP have been shown to have potential to confer allergenicity to small molecules, 

enhance allergen-mediated degranulation of granulocytes, and augment asthmatic responses to different 

allergens, the capacity for AuNP to induce gold-specific hypersensitivity has yet to be investigated. 

Established knowledge regarding the potent skin sensitizing potential of gold compounds emphasizes 

the importance of addressing this knowledge gap. Among the vast number of emerging metal 

nanomaterials, many have been suggested to have the potential to induce alterations in many allergic 

processes. However, gold nanomaterials present a particularly unique concern for several reasons. 

First, unlike most metals, the pulmonary effects of gold are largely unknown. Although gold has 

not been historically associated with overt respiratory toxicity, this may simply reflect the exceptionally 
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low incidence of respiratory exposures to gold. Inhalation of gold particles, vapors, or fumes is rare, even 

in specialized occupational settings. Accordingly, no agencies have currently endorsed gold-specific 

OELs and inhalation exposure limits for gold fall under those set for nuisance dusts, which constitute the 

highest doses among all agents. While the lack of knowledge regarding gold’s pulmonary effects and 

absence of a gold-specific OEL has not yet proven problematic, the recent emergence of gold 

nanomaterials may challenge this paradigm. Since nanomaterials exhibit a significantly increased 

propensity for aerosolization, their size profiles constitute an elevated risk for inhalation exposure to the 

constituent elements. Accordingly, the increasing use of gold nanomaterials is likely to result in a novel 

exposure route of concern for gold.  

Secondly, the unique biomedical applications of gold nanomaterials are likely to result in unique 

exposure conditions with potential to cause adverse immune effects. AuNP have enabled many novel 

medical advancements with respect to drug delivery, gene therapy, vaccinology, and diagnostic imaging 

(1172). However, these uses present risks for AuNP exposure in both healthcare workers and patients 

by inhalation and skin contact. Given the high rates of patch test positivity to gold in the general 

population, the impact of these exposures on individuals with existing sensitivity to gold are unclear. 

However, in patients with existing skin sensitivity to cobalt and nickel, pulmonary exposure to these 

metals was been shown to result in the recruitment of metal-specific T-cells to the respiratory tract, 

following which, delayed asthmatic-like responses were observed (391, 412). Likewise, evidence 

suggests that established skin sensitivity to the metal may predispose individuals for the development of 

pulmonary immune responses following inhalation of AuNP. 

Lastly, some biomedical applications for gold nanomaterials may implicate their systemic 

administration to patients. Numerous animal studies have correlated systemic AuNP exposure with 

various adverse immune effects, but it remains unknown if systemic administration may result in the 

development or elicitation of allergic responses. The development of contact allergy to gold is one of the 

most common complications of systemic gold therapy for rheumatoid arthritis, suggesting that systemic 

administration of AuNP may present a risk for allergic sensitization. Moreover, in the increasing number 
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of individuals with existing sensitivity to gold, systemic AuNP may trigger allergic reactions leading to an 

assortment of detrimental effects that have yet to be investigated. 
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1.4. HYPOTHESIS AND SPECIFIC AIMS 
 

Many metals known to induce allergic sensitization and augment allergic disease are being 

manufactured in nanoparticulate forms. While many of these materials have been consistently associated 

with increased potential to induce acute pulmonary inflammation, it remains largely unclear if metal 

nanomaterials exhibit a similar size-dependent increase in immunotoxic potential. Some metal 

nanomaterials have been shown to augment various allergic processes; however, few studies have been 

able to establish relationships between specific physico-chemical properties and these effects. 

Successful correlation of physico-chemical properties with immunological activities of metal 

nanomaterials represents a novel risk assessment approach with proposed utility in identifying emerging 

nanomaterials that pose an increased risk of causing adverse immune responses.  

The central hypothesis of these studies is that metal nanoparticles cause more pronounced 

immunomodulatory effects on allergic processes when compared to larger forms of the respective metals, 

and that the magnitude of these immunotoxic effects correlates better with the surface area of the 

administered dose than with mass.  

In order to address this concept, two commonly-produced metal nanomaterials, NiO and Au, and 

larger particulate forms of each metal were acquired and thoroughly characterized prior to in vivo studies. 

The first aim is presented in chapter 2, and was designed to evaluate the potential for fine and ultrafine 

NiO particles to cause pulmonary injury and inflammation and to augment allergic responses in an OVA 

asthma model, as well as compare the impact of various physico-chemical properties on these effects. 

The second aim is presented in chapter 3 and was designed to investigate the following: (1) determine 

the potential for fine and ultrafine gold particles to induce skin sensitization following dermal exposure, 

(2) characterize immune responses in the lung following pulmonary exposure, and (3) delineate the 

impact of existing dermal contact sensitivity to gold on immune responses following pulmonary exposure 

with respect to different dose metrics.
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CHAPTER 1 TABLES 
 
 
 

 
 
 
Table 1.1. Major classes of nanomaterials, specific agents currently being produced, along with corresponding 
applications and global production volume in tons. Adapted from The Global Market for Nanomaterials, 2010-2030, 
Future Markets. 

Table 1.1: Classes of Nanomaterials Being Produced, Applications, and Production Volume 

Nanomaterial Class Nanomaterial Applications Prod. Vol. (tons) 

Metal-
Based 

Metallic 

AuNP Drug delivery, electronics, biosensors 1-5 

AgNP Antimicrobial, cosmetics, water purification, food packaging 185-500 

FeNP Biomedical imaging, magnetic separations, env. remediation 15-85 

NiNP Catalytics, conductive coatings, fuel cells 5-35 

Metal  
Oxide 

TiO2NP UV filter, cosmetics, coatings and paints, catalytics 74,000-190,000 

SiO2NP Adhesives, automotive, catalytics, biomedicine 280,000-2.2 million 

Al2O3NP Wear-resistant coating, thermal barrier, electronics 5,750-12,500 

ZnONP Adhesives, automotive, UV filter, textiles, electronics 31,000-40,000 

CeO2NP Electronics, catalytics, UV absorber 900-1600 

Alloys Pd alloy NP Catalytics, hydrogen storage <1 ton 

Quantum Dots Cd Electronics displays, lighting, biomedicine, batteries <50 

Nanoclays Composites Packing barrier, automotive, flame retardant 28,000-60,000 

Carbon-Based 

Fullerenes Lubricant additive, cosmetics, energy generation 70-150 

Graphene Batteries, anti-corrosion coatings, aerospace <350 

C-Nanotubes Sporting goods, aerospace composites, plastic additives 2,000-3,150 

Nanopolymers and 
Dendrimers 

Nanocellulose Building insulation, aerospace, automotive, cosmetics <2200 

Dendrimers Cosmetics, plastics additive, hydrophobic coating <1 ton 
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Table 1.2. The American Contact Dermatitis Society’s Allergen of the Year from 2000-2020. 

 

 

AMERICAN CONTACT  
DERMATITIS SOCIETY 

 

ALLERGEN OF THE YEAR 
2000-2020 

2020 Isobornyl Acrylate 
2019 Parabens 
2018 Propylene glycol 
2017 Alkyl glucosides 
2016 Cobalt 
2015 Formaldehyde 
2014 Benzophenones 
2013 Methylisothiazolinone 
2012 Acrylate 
2011 Dimethyl fumarate 
2010 Neomycin  
2009 Mixed dialkyl thiourea 
2008 Nickel 
2007 Fragrance 
2006 p-Phenylenediamine 
2005 Corticosteroids 
2004 Cocamidopropyl betaine 
2003 Bacitracin 
2002 Thimerosal 
2001 Gold 
2000 Disperse Blue Dyes 

http://contactderm.org/
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Table 1.3. Examples of Common Contact Allergens Associated 
with Occupational Skin Allergy 

Agent Job/Industry 

Rubber additives: 

Rubber manufacturing, 
healthcare, housekeepers, 
beauticians, construction 

 Mercaptobenzothiazole 
 Carbamates 
 Thiurams 
 Thioureas  
Biocides: 

Healthcare, professional 
cleaning, water treatment 

 Formaldehyde  
 Glutaraldehyde  
 Isothiazolinones  
Cosmetics: 

Cosmetology manufacturing, 
beauticians, dermatology  

 Paraphenylenediamine 
 Glyceryl thioglycolate 
 Parabens and other preservatives 
 Fragrances and essential oils 
Metals: 

Metal working, jewelry, 
dentistry, electronics, 

transportation 

 Nickel 
 Chromium 
 Cobalt 
 Mercury 
 Platinum 
 Gold 
Plastics and Resins: 

Manufacturing, painters, 
aerospace 

 Epoxy  
 Peroxide catalysts  
 Colophony  
Plants: 

Farmers, gardeners, 
florists, food handlers 

 Sesquiterpene lactones  
 Penta and heptadecylcatehols  

 

 
Table 1.3. Common allergens associated with occupational allergic contact dermatitis and corresponding industries 
and jobs associated with increased rates of sensitivity. Adapted from Occupational Contact Dermatitis, 2008.
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Table 1.4. Approaches for the Identification of Potential Dermal Sensitizers 

IN VIVO APPROACHES 

Model/Approach Biomarker 
OECD 
Valid? Cit. 

 Local Lymph Node Assay (LLNA) Draining lymph node lymphocyte expansion Yes (107) 

 Guinea Pig Maximization Test (GPMT) Local skin inflammatory responses Yes (108) 

 Mouse Ear Swelling Test (MEST) Ear swelling following allergen challenge Yes (109) 

 Buehler Test Local skin inflammatory responses Yes (110) 

 Dermal Exposure in BALB/c mouse TH1 cytokine production No (111) 

IN VITRO APPROACHES 

Model/Cell Type 
Biomarker OECD 

Valid? Cit. 
Surface Marker Expression Cytokine Release Gene Expression Other Marker 

Antigen Presenting Cells 

 THP-1 Monocytic Cell Line CD80, CD40, CD83 TNF-α, IL-8, MIP-1β p38 MAPK, hmox1, 
nqo1, CXCR4 

Rapid GSH depl, ROS  
Phospholipidomic profile No (112-120)  

  Human cell line activation test (h-CLAT) CD54, CD86    Yes (121) 

 U937 Monocytic Cell Line  IL-1b, IL-8   No (122) 

  Myeloid U937 Skin Sensitization test (U-SENS) CD86    Yes (123) 

 MUTZ-3 CD86 CXCL8, IL-8, MIP-1α AHR, Nrf2 Migration to CXCL12 No (124-128)  

 Human Monocyte-Derived DC CD86, CD54, HLA-DR, PD-L1, DCIR TNF-a, CXCL10, IL-12p70, 
MIP-1α, NAP-2, IL-16 

CREB1, TNFa, CCR2, 
COX2, IL-1β 

 No (127, 129-132) 

 Primary Human Plasmacytoid DC (CD123+/CD11c-) CD86    No (133) 

 Murine Bone Marrow-Derived DC MHC II, CD40, CD54, CD86    No (134) 

 XS52 Immature DC Cell Line MHC II    No (135) 

 Fetal Skin-Derived DC Cell Line CXCR4, CD40, IL-12R, CCR6    No (136-138) 

 Mature Primary Murine Langerhans Cells 33D1    No (139) 

Keratinocytes 

 HaCaT Cell Line  IL-1α HMOX1 Phospholipidomic profile No (140-142) 

  KeratinoSens   Nrf2  Yes (143) 

  LuSens   ARE  Yes (144) 

  HaCaSens  IL-1α, IL-6   No (145) 

 NCTC2455 Cell Line  IL-18 NF-Kβ, p38 MPK  No (146, 147) 

 HEL-30 Murine Epidermal Keratinocyte Cell Line  IL-1α, MIP-2   No (148) 

Other Cell Types 

 NCTC 2544 Epithelial-Like Cell Line  IL-18   No (149) 

Co-Culture Models 

 THP-1 + HaCaT  CD86, CD54    No (150) 

 THP-1 + Primary Keratinocytes (LCSA) THP-1 CD86, CD54    No (151) 

 LCSA + Human PBMC (LCSA-ly) Lymph CD124, CD44    No (152) 

 HaCaT + Peripheral Blood Mononuclear Cells DC CD86    No (153) 
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 Human MDDC + Lymphocytes  TNF-α, IFN-γ   No (154) 

Reconstructed Epidermis Models 

 Reconstructed Human Epidermis (RHE) (EpiSensA)  ATF3, DNAJB4, GCLM, HSPA6, HSPH1 No (155) 

  RHE + MUTZ-3 or monocyte-derived LC-like cells  IL-6, IL-8 CD83, PD-L1, CXCR4 No (156) 

  RHE + THP-1 CD86, CD40, CD54, HLA-DR    No (157) 

  RHE + Dermal Fibroblasts CD86 IL-8   No (158) 

 EpiSkin Model (SENS-IS)  REDOX, SENS-IS genes No (159) 

 Epidermal Skin Model EST/AST-1000   p38, JNK1/2  No (160) 

IN SILICO AND IN CHEMICO APPROACHES 

Model/Approach Biomarker 
OECD 
Valid? Cit. 

 Direct Peptide Reactivity Assay Cysteine/lysine depletion Yes (161) 

 Amino Acid Derivative Reactivity Assay Amino acid depletion  No (162) 

  

 
Table 1.4. Proposed approaches for the identification of potential skin sensitizers are summarized. Model/assay and corresponding biomarker of interest are 
grouped by in vivo, in vitro, and in silico/in chemico-based approaches. Assays validated by the OECD for use in identification of dermal sensitizers are also 
denoted.  
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Table 1.5. Common allergens associated with occupational asthma and corresponding industries/occupations 
associated with increased rates of sensitivity. Adapted from Immunotoxicity and Immunopharmacology Third 
Edition, 2007. 

Table 1.5. Examples of High and Low Molecular Weight Agents 
Associated with Immune-Mediated Occupational Asthma 

Agent Job/Industry 

Low Molecular Weight (LMW) Agents 
Isocyanates:  

• Toluene diisocyanate (TDI) 
• Diphenylmethane diisocyanate 

Plastics, adhesives, 
foams, automotive 

Anhydrides: 
• Phthalic anhydride 
• Trimellic anhydride 

Plastics, resins, 
paints, polymers 

Amines: 
• Ethylenediamine 
• Piperazine 

Rubber, photography, 
paint, dyes 

Metals: 
• Hexachloroplatinate 
• Chromium salts 

Mining, 
welding 

Dyes: 
• Remazol black B 
• Paraphenylaminediamine 

Textile, 
hairdressers 

Drugs: 
• Chlorhexidine 
• Ampicillin 

Medical, 
pharmaceuticals 

High Molecular Weight (HMW) Agents 
Microbial Sources: 

• Bacillus enzymes 
• Aspergillus amylase 

Baking, 
detergents industry 

Insect Sources: 
• Spider mites 
• Mealworms 

Farmers, 
greenhouse workers 

Animal Sources: 
• Rodent urinary proteins 
• Pancreatin extract 

Laboratory animal handlers, 
pharmaceuticals 

Plant sources: 
• Latex 
• Papain 

Medical, dental, 
meat processing 
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Table 1.6. Approaches for the Identification of Potential Respiratory Sensitizers 
IN VIVO APPROACHES 

Model/Approach Biomarker Cit. 
Respiratory exposure 

 Respiratory LLNA Lung-draining lymph node lymphocyte expansion  (194) 

 Mouse intranasal test (MINT) Allergen-IgE and IgG (195) 

 Ex Vivo lymphocyte stimulation IL-4, IL10 (196) 

 BALF and serum cytokine analysis BALF G-CSF (197) 

Dermal exposure 

 Serum cytokine profile Th2 cytokine production (111) 

 Serum antibody response Serum IgE (198) 

 Dermal sensitization, dermal challenge Lymph node cells- # IgE+, IL-4 production (199) 

 Dermal sensitization, respiratory challenge  Serum IgE, BALF cellular profile (200) 

IN VITRO APPROACHES 

Model/Cell Type Biomarker Cit. 

Antigen Presenting Cells 

 THP-1 Delayed GSH depletion (113) 

 Human MDDC IL8, CCL17, TNFRSF1A, CCR7, CCL22, CD86, CXCR4, PPIA expression; IL-10 prod. (132, 201)  

 MUTZ-3  Altered expression of 389 genes (202) 

Other Immune Cells 

 THP-1 differentiated macrophages EIF4E, PDGFRB, SEMA7A, ZFP36L2 (203) 

Respiratory Epithelial Cells 

 BEAS-2B 
PTEN pathway- BC042064, A_24_P229834, DOCK11, THC2544911, DLGAP4, NINJ1, PFKM, FLJ10986, IL28RA, CASP9 (204) 

DNAJB4, HSPA5, AKIRIN2-AS1, ARVCF, PIGQ, SEC61A2, SERPINE1, SERPINE1, SLITRK5, STC2, UPP1 (205) 

 A549  CTLA4  (206) 

 16HBE14o-  PPP1R12A, SIS1, AKAP9  (207) 

Co-Culture Systems 

 BEAS-2B, immat. DC (CD14+ mono), MCR-5 fibroblast DC OX40L expression (208) 

 NCIH441 epithelial, ISO-HAS-1 capillary endothelial  Basolateral CCL5 release (209) 

 A549, EA.hy926 (endo),THP-1 (PMA-diff. mac + undiff. DC)  GM-CSF, IL-10, IL-1R1 production (210) 

 MucilAir RANTES, IL-6, MCP-1, Gro-1α production (211) 

IN SILICO AND IN CHEMICO APPROACHES 

Model/Approach Biomarker Cit. 

 QSAR- Compound physico-chemical properties  Molecular orbital (212) 

 QSAR- Compound 2D/3D structure properties 12 chemical properties (213) 

 QSAR- Compound protein binding Electrophilic index (214) 

 
 
Table 1.6. Proposed approaches for the identification of potential respiratory sensitizers are summarized. Model/assay and corresponding biomarker of 
interest are grouped by in vivo, in vitro, and in silico/in chemico-based approaches.  
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Table 1.7. Global Epidemiology of Metal-Induced ACD 

Location Years Sub # Inclusion criteria 
Metal 

Ag Al Au Be Co Cr Cu Fe Hg Mn Ni Pd Ti Zn 

Taiwan (231) 1978-2003 3,559 Suspected ACD     7.18 + +  5.2  17.7    
Japan (232) 1990-2009 931 Suspected ACD 5.3    9.3    11.5  27.2 7.2   
Japan (233) 2000-2005 212 Suspected ACD to intraoral metals     15.9 16.7     25.0 24.4   
Japan (234) 2006-2016 1,225 Suspected ACD           22.5 14.8 + 11.5 

Thailand (235) 2003-2004 129 Suspected ACD     17.1      18.6    
Singapore (236) 2001-2003 3,407 Diagnosed with ACD   8.3  8.2 +     19.9    

China (237) 1990-2009 1,858 Diagnosed with ACD      +   20.5  25.7    
China (238) 2004-2009 2,758 Suspected ACD      13.5     39.5    

Hong Kong (239) 1995-1999 2,585 Suspected ACD     8.7 4.3     24.4    
Korea (240) 2004-2011 44 Patients with oral symptoms   25.0  15.9 22.7 4.5  4.5  25.0 6.8   

Europe (230) 2002-2010 6,708 11 countries, patients 1-16 y.o.     7.5 5.2     16.7    
Europe (241) 2011-2012 906 6 countries, suspected intraoral metal ACD           25.2 24.3   
Europe (242) 2010 3.119 5 countries, general pop. random sample     2.1 0.8     14.5    

Denmark (243) 1977-2009 22,506 Patients with dermatitis     3.8 2.7     10.4    
Norway (244) 2006 1,236 Randomly selected subjects     2.8 0.8     17.6    

Germany (245) 2010-2012 38,878 Tested for all standard patch agents     5.1 2.97     15.3    
Germany (246) 2003-2008 206 Suspected ACD to intraoral metals   4.9  1.9    1.9  4.9 4.9   
Finland (247) 1991-1997 2,543 Cases from occupational disease registry     1.6 5.6     6.9    

Lithuania (248) 2014-2016 546 Suspected ACD   35.6  8.7 6.6     29.6 +   
Lithuania (249) 2010-2012 214 Suspected ACD     7.5 6.1     25.7    
Sweden (249) 2010-2012 428 Suspected ACD     6.3 2.8     18.9    

Italy (250) 1996-2010 19,966 Suspected ACD     9.9 8.1     25.4    
Spain (251) 2000-2005 1,092 Patients from allergic unit     10.8 7.5     29.3 11.7   
Spain (252) 2005-2010 839 Suspected ACD     4.5 7.6     25.9    

Czech Republic (253) 1997-2001 12,058 Suspected ACD     2.0 4.0     13.8    

North America (254) 2009-2010 4,308 Non-metal allergens tested also     6.2 2.3     15.5    
USA (255) 2000-2009 1,112 Suspected of having metal allergy + - 23.3 + + + + + + 20.2 22.5  - + 

Israel (256) 2000-2004 134 Suspected ACD to intraoral metals   14.0  5.0    9.9  13.2 7.4   
Turkey (257) 1996-1999 542 Suspected ACD     8.5 11.8     19.1 9.4   
Turkey (258) 1992-2004 1,038 Clinical diagnosis of ACD     5.3 4.6     17.6    

UAE (259) 1989-1996 373 Presenting with cutaneous allergy     6.4 7.2     15.0    
Kuwait (260) 2014-2015 2,461 Clinical diagnosis of ACD   0.7  9.1 6.3     23.9    

Iran (261) 2004-2008 1,137 Clinical diagnosis of ACD     8.0 6.2     20.0    
India (262) 2015-2016 358 Clinical diagnosis of ACD      32.5     28.7    
India (263) 1997 200 Suspected ACD     8.0 20.5     16.5    

Ethiopia (264) 2007-2008 514 Diagnosed with ACD     8.0 6.4     17.7    
Nigeria (265) 1997-2003 375 Suspected ACD     3.2 16.0     7.7    
Uganda (266) 2013-2014 34 Clinical diagnosis of ACD           29.4    

 Ag Al Au Be Co Cr Cu Fe Hg Mn Ni Pd Ti Zn 

 
 
Table 1.7. Patch test studies investigating the prevalence of metal-induced ACD in various countries are summarized. Study years, subject number, study 
inclusion criteria, and percent patch test positivity are reported for each metal. Columns denoting +/- indicate study results where metal-specific positivity 
rate was not reported, but the presence or absence of subjects exhibiting positivity to the corresponding metal was noted. 
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Table 1.8. Metals Associated with Occupational Skin Allergy 

Metal ACD aACD sACD ICD AD URT sURT LICH STO GRA MIX Frequency Industry/Occupation 

Aluminum (267)     (273)    (274) (275) Rare Machine construction plant (276), alloy production (277) 

Beryllium (278) (279)  (280)        Occasional Aerospace, dentistry (281) 

Cadmium (282)           Rare Mining, welding (283) 

Cobalt (284) (279) (285) (286)    (287)   (288) Common Cement workers, brick layer (289), cleaning (290, 291) 

Chromium (292) (279) (293) (101)   (294) (287)   (295) Common Brick layers, cement workers (296), leather workers (247) 

Copper (297)  (298)   (299) (300) (301) (280)  (302) Occasional Laundry, electrical, plumbing (281, 297)  

Gold (303) (304) (305)   (306)  (307) (308) (309)  Common Electroplating (303), photographers (306), dentistry (272) 

Indium (310)       (287)    Occasional Electronics, semiconductors, medical imaging (311) 

Iron (312)     (313) (314)     Rare Welding, steelwork, toolmaker (312) 

Iridium (315)     (316)     (316) Rare Electrochemical manufacture (316) 

Lead (317)           Rare Painter, construction, automotive (317, 318) 

Manganese (319)   (320)        Rare Welding, alloy production, automotive (321) 

Mercury (322) (279)    (323)  (324)  (325) (326) Occasional Healthcare, dental (327) 

Nickel (286) (279) (328) (329) (286) (330) (331) (332) (333) (334) (335) Common Electroplating (336), banking (337), hairdressers (338) 

Palladium (339)  (298)   (340)  (341) (342) (343)  Common Jewelry, telecommunications (289), dental (344) 

Platinum (345) (346)  (101)  (347)  (341) (341) (334) (348) Occasional Catalytics, automobile manufacture, jewelry (280, 349) 

Rhodium (350)           Occasional Jewelry, automotive, electrochemical (350, 351)  

Silver (352) (279) (293)         Rare Jewelry, sanitation, electronics (353) 

Tin (354) (355)      (356)    Occasional  Electrical soldering (355), smelting (356) 

Titanium (357)  (358)      (359) (360)  Rare Alloy production, welding, food industry (13) 

Vanadium (315)  (361)  (362)       Occasional  Toolmakers, machinery production, aerospace (363) 

Zinc (364)   (365)  (366)     (367) Rare Welding, galvanizing, electroplating (368) 

Zirconium (369)         (370) (371) Occasional Handfinishers of metal reactor components (372) 

Mixed metal/alloys (373)  (374)     (375) (376)   Occasional Dentistry (375) 

  

 
Table 1.8. Metals associated with various manfiestations of dermal allergy, frequency of reports, and corresponding industries/occupations associated with 
responses are summarized. ACD = allergic contact dermatitis, aACD = airborne allergic contact dermatitis, sACD = systemic allergic contact dermatitis, ICD 
= irritant contact dermatitis, AD = atopic dermatiits, URT = urticaria, sURT = systemic urticaria, LICH = lichenoid allergic contact dermatitis, STO = allergic 
contact stomatitis, GRA = granulomatous skin hypersensivitiy, MIX = mixed responses involving multiple allergic manifestations.
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Table 1.9. Metals Associated with Occupational Respiratory Allergy 

Metal 
ASTH- 

IgE 
ASTH- 

IgG 
ASTH- 
T-cell 

ASTH- 
UNKN RHIN BHR IHL HP GRAN MIX Frequency Industry/Occupation 

Aluminum    (378) (379) (380)   (381)  Occasional  Smelting (378, 382), welding (383, 384) 

Beryllium        (385) (386)  Common Aerospace, nuclear energy (387) 

Cadmium        (388)   Rare Mining, welding (283) 

Cobalt (389) (390) (391) (392) (393) (394)    (395) Common Tools (377), automotive (396), welding (397), jewelry (398) 

Chromium (399)  (294) (400) (401)     (295) Common Aerospace (393), welding (397), construction (402, 403) 

Copper          (383) Rare Welding (383) 

Gold   (404)   (405)  (406)  (407) Rare No occupational cases- all involving gold therapy (408, 409) 

Iron    (410)       Rare Welding (383, 410) 

Iridium    (316) (316)      Rare Electrochemical manufacturing (316) 

Manganese    (383)  (411)     Rare Welding (383, 397) 

Nickel (399)  (412) (413) (414)     (415) Common Welding (397) electroplating (416) 

Palladium (417)    (340)     (418) Occasional Electroplating (417), catalyst laboratory work (340) 

Platinum (419) (420)   (421) (422)    (423) Common Refinery work (424) 

Rhodium    (425) (425)      Occasional Electroplating (425) 

Titanium     (426)    (427)  Rare Alloy production, welding, food industry (13) 

Tungsten   (428) (429)    (430)  (428) Rare Hard metal production, sintering (431) 

Vanadium    (432)  (433)     Occasional Oil tank cleaning (434) 

Zinc    (435)  (436)  (437)  (438) Occasional Welding (383, 439), metal jointing (440) 

Zirconium        (441) (442)  Rare Ceramics, construction (441) 

Mixed metal dusts    (443)  (444)  (445)   Occasional Dentistry (445), welding (446) 

Stainless steel    (447) (448)  (449)   (450) Occasional Welding (447, 449, 451) 

 

 

Table 1.9. Metals associated with various manfiestations of occupational respiratory allergy and corresponding industries associated with these responses 
are summarized. ASTH-IgE = IgE-mediated asthma, ASTH-IgG = IgG-mediated asthma, ASTH-T = T-cell-mediated asthma, ASTH-UNKN = asthma caused 
by unknown immunological mechanisms, RHIN = rhinitis, BHR = bronchial hyperreactivity, IHL = immediate hypersensitivity laryngitis, HP = hyeprsensviity 
pneumonitis, GRAN = granulomatous lung hypersensitivity repsonses, MIX = mixed-mechanisms of pulmonary hypersensitivity resposnes. 
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Table 1.10. Most commonly-produced metal nanomaterials, 2017 global production in tons, and applications for each 
material are summarized. Adapted from The Global Market for Nanomaterials 2010-2030. 
 
 

 

Table 1.10. 2017 Global Market for Metal-Based Nanomaterials Reported in Tons 

Scale of 
Production 

Nanomaterial Global Production 
(tons) Applications 

Medium-
High 

Volume 

Silicon dioxide 280,000 – 2.2 million Nanocomposite filler, cement additive, drug delivery, cosmetics 

Titanium dioxide 74,000 – 190,000 Ceramics, sunscreens, construction, energy, cosmetics 

Zinc oxide 31,000 – 40,000 Sunscreen, LED and LCD displays, antimicrobial, water filtration 

Aluminum oxide 5,750 – 12,500 Drilling equipment, energetic fuels and additives, filtration 

Low 
Volume 

Cerium oxide 900 – 1,600 Catalysts, slurry polishing, UV absorption, anti-corrosion additive 

Copper oxide 385 - 790 Heat transfer, batteries, antimicrobials, sensors, semiconduction 

Silver 185 - 500 Biomedicine, antimicrobial textiles, cosmetics, conductive inks 

Antimony tin oxide 150 - 320 Electronics, composites, coatings, research 

Quantum dots < 50 Photovoltaic devices, photodetecting devices, electronics 

Iron oxide 15 - 85 Ground and wastewater cleanup, color imaging, drug delivery 

Cobalt oxide 5 – 10 Electronics, catalysts, drug delivery, solar energy absorption 

Nickel 5 - 35 Ceramic additive, catalyst, energy absorption, electronics 

Manganese oxide 2 - 6 Bleaching agent, biomedical diagnostics, plastics additive 

Gold  1 - 5 Data storage, gene therapy, biosensors, fuel cell additive 

Adapted from: The Global Market for Nanomaterials 2010-2030 
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Table 1.11. Summary of Major Findings from Studies Characterizing the Effect of Metal Nanomaterials on  
Biological Processes Involved in Dermal Allergy Grouped by Metal  

Met
al Author/Year Material Size Animal or Cell Type Model Exposure 

Route Dose Major Findings 

A
L

U
M

IN
U

M
 

Varlamova et al. 
2015 Al2O3 - M/F BALB/c, CBA/CaLac, outbred 

mice and guinea pig LLNA sq, im, iv, 
id   

No intensification of anaphylaxis systemic reaction, no 
inflammatory reaction to ConA, no delayed allergic reaction, no 
redness or edema at site of application 

Varlamova et al. 
2015 

Tc-
Al2O3 52-77 nm 

BALB/c mouse DTH sq 10 mM No induction of delayed-type hypersensitivity  

Guinea pig APHX iv 0.12 – 1.2 mL/kg No induction of anaphylaxis  

Brown et al. 
2008 Al2O3 50 – 120 nm HaCaT human keratinocytes In vitro 

10 – 10,000 
µg/mL 

24 hr exposure resulted in IL-8 expression, IL-1α release, indicating 
potential for irritation or sensitization  

C
O

B
A

L
T

 Cho et al.      
 2012  Co3O4 18.4 ± 5.0 nm F C57BL/6 mouse OVA sq  25 µg Balanced Th1/Th2 response when used as adjuvant, causing 

higher specific IgG2c and IgG1 and lower IgE 

Prokhorenkov  
et al. 2014 Co - Guinea pig - Dermal - Nanodiamonds adsorbed Co ions, but not Cr ions, inhibiting their 

capacity to induce dermatitis reactions 

C
H

R
O

M
IU

M
 

Brown et al. 
2013 CoCr 32 nm Mouse PLNA 

Injection 
into knee 

joint 
0.0005-0.1 mg  

Mice exposed to the micron sized, but not nanoparticles became 
immunologically sensitized to Cr(III), Cr (VI) and Ni(II). The 
response was Th1 driven, indicative of DTH 

Horie et al. 
2013 Cr2O3 26.5 nm HaCaT keratinocytes In vitro 0.1-10 mg/mL Smaller size particles released more Cr ions, causing ROS 

production, caspase-3 activation and compromised viability 

G
O

L
D

 Ishi et al. 
2008 Au 5.2 ± 1.3 nm F Japan White Rabbit - id 1 mg Azobenzene hapten conjugation to AuNP led to high yield of 

specific IgG indicating capacity to act as carrier and adjuvant  

Hirai et al. 
2016 Au 10 nm F BALB/c, BALB/c nu/nu, 

C57BL/6, C.B-17 SCID mouse - sq 0.8 mg No induction of sensitization, even in the presence of LPS 

IR
O

N
 

Shen et al.        
2012  Fe3O4 58.7 nm M BALB/c mouse OVA iv 0.2-10 mg/kg Decreased footpad swelling, infiltration of macrophages and T-

cells, and IFN-y, IL-6, TNF-α levels 

Mohanan et al. 
2014 Fe3O4 < 25 nm Albino rat, guinea pig - Dermal 80 mg No irritation or sensitizing effects 

Hsiao et al. 
2018 Fe3O4 58.7 nm M BALB/c mouse OVA iv 1 – 100 µg Attenuation of Th17 responses 

N
IC

K
E

L
 

Vemula et al. 
2011 Ni - F C3H/HeJ mouse - Dermal 20% Ni sln. CaCO3/CaPO4 NP captured nickel ions by cation exchange, 

preventing the elicitation of skin allergy 

Sugiyama et al. 
2014 Ni/NiO 40-50 nm C57BL/6 mouse - Dermal 20 mL 5% w/v High surface area of NiNP triggered allergic response by releasing 

more ions than Ni salts  

Hirai et al. 
2016 Ni 3 nm F BALB/c, BALB/c nu/nu, 

C57BL/6, C.B-17 SCID mouse - sq 0.8 mg NiNP plus LPS induced allergic sensitization  

S
IL

IC
A

 Choi et al. 
2011 SiO2 7 nm CBA/N mouse HSEM 

LLNA 
Dermal  10 – 1,000 µg No phototoxicity or skin sensitization 

Hirai et al. 
2015  SiO2 30 nm F NC/Nga slc mouse HDM Dermal  20 µL @ 12.5 

mg/mL 
Concurrent exposure to allergen/Si resulted in low-level production 
of specific IgG subtypes and increased sensitivity to anaphylaxis 
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Ostrowski et al. 
2014 SiO2 55 ± 6 nm M SKH1 mouse OXA Dermal - Functionalized nanoparticles had no impact on allergic response to 

oxazolone in an ACD model 

Hirai et al. 
2016 SiNP 10 nm F BALB/c, BALB/c nu/nu, 

C57BL/6, C.B-17 SCID mouse - sq  0.8 mg No induction of sensitization, even in the presence of LPS 

Smulders et al. 
2015  SiO2 19 nm M BALB/c mouse DNCB Dermal  0.4, 4.0, or 40 

mg/mL x 3 d 
SiO2NP exposure prior to sensitization with DNCB did not alter the 
stimulation index 

S
IL

V
E

R
 

Kim et al. 
2013 Ag 10 nm 

M SPF guinea pig GPMT id 0.1 mL @ 1:1 
(v/v) 

No eye/skin irritation or corrosion, 1/20 animals developed 
erythema after sq. injection, classified as weak sensitizer 

M New Zealand White rabbit - Occular 
application 100 mg No eye irritation effects 1-72 hr after exposure 

Bhol et al. 
2005 Ag < 50 nm F BALB/c mouse DNFB Dermal 100 mg 1% 

nanocrystaline  
Reductions in ear swelling, erythema, and inflammation seen after 
4 days of treatment with nanoparticle-containing cream 

Smulders et al. 
2015  Ag 25 - 85 nm M BALB/c mouse DNCB Dermal  0.4, 4.0, or 40 

mg/mL x 3 d 
Exposure prior to sensitization with DNCB did not alter stimulation 
index 

Zelga et al. 
2016  Ag  -  Guinea pig GPMT Dermal  2% 2/10 animals developed slight erythema that resolved after 72 hr, 

leading to classification as a mild sensitizer 

Korani et al. 
2011 Ag < 100 nm M Harley Albino guinea pig - Dermal 100 – 10,000 

µg/ml 
Dose-dependent increase in number of Langerhans cells recruited 
to skin 

T
IT

A
N

IU
M

 

Park et al.          
2011  TiO2 < 25 nm 

F CBA/N mouse LLNA Dermal 10 – 1000 µg/mL No skin sensitization 

F Hartley Albino guinea pig - Dermal 50 µg No phototoxicity or acute cutaneous irritation 

Hussain et al.       
2012  TiO2 12 ± 2 nm M BALB/c mouse DNCB sq 

0.004 - 0.4 
mg/mL Th2 adjuvancy, increased DNCB dermal sensitizer potency 

Auttachoat et al.    
2014  TiO2 < 25 nm F BCC3F1 mouse - Dermal, sq 1.25-250 mg/kg 

Dermal exposure did not induce lymph node expansion, despite 
irritancy response at 5% and 10%, no ear swelling, but lymph node 
cell proliferation resulted following sqs injection 

Smulders et al. 
2015  TiO2 15 nm M BALB/c mouse DNCB Dermal  0.4, 4.0, or 40 

mg/mL x 3 d 
Exposure to 4.0 mg/mL of TiO2 prior to sensitization with DNCB 
resulted in increased stimulation index 

Jafari et al. 
2018 TiO2 20 – 40 nm 

Rabbit Dermal 
Irritation 

Dermal  0.5mL  
10-20% NP No skin irritation in acute dermal irritation test 

Mouse DNCB Dermal 10-20% NP No alterations in skin sensitization 

Zelga et al. 
2015  TiO2 - 

New Zealand albino rabbit Dermal 
Irritation 

Dermal  0.5 g 5 UV-absorbers containing nano-sized particles were assessed for 
irritation and sensitization potential. Anatase TiO2 – containing 

agent did not induce irritation, but caused mild sensitization  Dunkin-Hartley guinea pig GPMT Dermal  0.1 mL/site 

Z
IN

C
 

Zelga et al. 
2015 ZnO 

APS 396 nm, 
containing 

nanoparticles 

New Zealand albino rabbit Dermal 
Irritation 

Dermal  0.5 g 5 UV-absorbers containing nano-sized particles were assessed for 
irritation and sensitization potential. Z11 modifier caused minor 
dermal irritation and mild sensitization Dunkin-Hartley guinea pig GPMT Dermal  0.1 mL/site 

Kim et al. 
2016 ZnO 20 – 50 nm, 

13.1 m2/g 
M Sprague-Dawley Rat, M New 

Zealand White rabbit, M guinea pig GPMT Dermal  50% No dermal sensitization, acute dermal toxicity, irritation, or 
corrosion  
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Table 1.11. Summary of studies investigating metal nanomaterial immune effects in the skin and select in vitro studies using dermal immune cells, grouped 
by metal. Exposure routes are denoted as id (intradermal injection), im (intramuscular injection), iv (intravenous injection), sq (subcutaneous injection). 
Abbreviations: APHX anaphylaxis, APS average particle size, DNCB dinitrochlorobenzene, DTH delayed type hypersensitivity, GPMT guinea pig 
maximization test, HDM house dust mite, HSEM Human Skin Equivalent Model, LLNA Local Lymph Node Assay, OVA ovalbumin, OXA oxazolone, PLNA 
popliteal lymph node assay, ROS reactive oxygen species, UV ultraviolet. 
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Table 1.12. Summary of Major Findings from Studies Comparing the Effects of Various Physico-Chemical Properties of Metal Nanomaterials 
on Processes Involved in Dermal Allergy Grouped by Property of Interest 

Property 
Investigated Author/Year Metal Study Design Property Variations Major Findings 

S
iz

e
 

 Kang et al. 
2017 

Ag 
RBL-2H3 mast cells 

F NC/Nga mouse, HDM AD: 40 µg  
5, 100 nm AgNP 

5nm AgNP induced increases in ROS levels, intracellular calcium, 
and granule release in mast cells in vitro and earlier and more 
severe lesions in an AD model in vivo 

Nabeshi et al. 
2010 

Si 
XS52 mouse epidermal  

Langerhans cell, 0.1 – 1,000 µg/mL 
70, 300, 1000 nm SiNP Cellular uptake and cytotoxicity increased with reductions in 

particle size  

Yoshida et al. 
2010  

Si 
XS52 mouse epidermal  

Langerhans cell, 0 – 100 µg/mL 
70, 300, 1000 nm SiNP ROS generation by LC was higher following exposure to the 

smaller amorphous SiNP 

Hirai et al. 
2012  

Si 
M NC/Nga mouse, HDM ACD 
Intradermal injection: 250 µg 

1136 nm SiO2NP: -33.2 mV, 264 nm SiO2NP: -
25.8 mV, 106 nm SiO2NP: -24.3 mV, 76 nm 
SiO2NP: -19.5 mV, 39 nm SiO2NP: -14.0 mV 

Reduction in SiO2NP size enhanced IL-18 and TSLP production, 
leading to an enhanced systemic Th2 response and aggravation 
of skin lesions following challenge with house dust mite 

Palmer et al. 
2019 

Si 
M hairless C57BL/6 mouse 

DNFB ACD 
20, 400 nm SiNP Topical exposure resulted in suppressed ACD responses 

Kang et al.  
2017 

Au 
Mouse footpad injection 

OVA 
7, 14, 28 nm AuNP 

Size-dependent increase in cellular uptake by DC, T-cell cross-
priming, and activation. After injection into footpad, higher delivery 
efficiency to lymph nodes was associated larger NPs 

Yanagisawa  
et al. 2009  

Ti 
M NC/Nga mouse, HDM 

Intradermal injection: 20 µg 

15 nm TiO2NP – 110 m2/g 
50 nm TiO2NP – 20-25 m2/g 
100 nm TiO2NP – 10-15 m2/g 

TiO2NP aggravated AD skin lesions, caused increased IL-4 
production, IgE levels, and histamine levels, but decreased IFN-γ 
expression. Effects were not dependent on size 

Ilves et al. 
2014  

Zn 
F BALB/c mice, OVA ACD 

Dermal application: 16.67 mg/mL 
20, 240 nm ZnONP 

Smaller ZnONPs were able to penetrate the skin, larger particles 
were not. Both particles diminished local skin inflammation, but 
ZnONP has higher suppressive activity and increased IgE  

#
 

 Lehmann et al. 
2018 

Ag Human primary keratinocytes, 
human reconstructed epidermis 

2 µm x 40 nm, 
20 µm x 50 nm Ag nanowires 

Intact epidermis was effective barrier preventing penetration of Ag 
nanowires, but keratinocyte cytotoxicity was related to particle # 

Palmer et al. 
2019 

Si 
M hairless C57BL/6 mouse,  

DNFB DTH, topical NP exposure 
20 or 400 nm SiNP SiNP exposure had preferential effect on the late phase swelling 

response, which was size-dependent 

S
O

L
 

Hirai et al. 
2016 

Ag BALB/c mouse 10, 50, 100 nm AgNP AgNP with LPS caused the development of allergic inflammation, 
whereas the ions did not cause the same effect 

Shibuya et al. 
2019 

Pd 
Mouse allergy model 

Human subjects 
PtNP, PdNP, PdCl2, PtNP-containing topical 

cream 
PdNP only caused slight skin inflammation, which was minimal 
compared to that induced by Pd salts.  

C
R

G
 

Jang et al. 
2012  

Zn 
CBA/N Mouse LLNA: 25, 50, or 100 

µg/mL ; HSEM EpiDerm and 
Draize skin irritation- 50 µg/mL 

20 nm, 29 mV or -40 mV ZnONP 
100 nm, 24 mV or -29 mV ZnONP 

ZnO are not dermal sensitizers and do not induce skin irritation 
irrespective of size and zeta potential, but may induce 
phototoxicity 

Jatana et al. 
2017  

Si 
M/F hairless C57BL6 mouse 

DNFB ACD 
Dermal application 

32.7 nm SiO2 nanosphere: -25.4 mV 
66.5 nm SiO2 nanosphere: -45.7 mV 
69.3 nm SiO2 nanosphere: 17.7 mV 
184.9 SiO2 nanosphere: -33.5 mV 

440.0 nm SiO2 nanosphere: -66.0 mV 

Small negative and neutral-charged nanoparticles exhibited an 
immunosuppressive effect, whereas positively-charged particles 
did not. Positively-charged nanoparticles penetrated skin to a 
lesser extent. Studies also included 100nm TiO2NP, 20 nm AgNP, 
and 20 nm AuNP 
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Schaeublin et al. 
2010  

Au 
HaCaT human keratinocyte cells 

10 µg/mL – 25 µg/mL 
1.5 nm AuNP  

Positive, neutral, or negatively-charged  

Cell morphology was disrupted by all AuNP in a dose-dependent 
manner. Charged AuNPs caused dose-dependent cytotoxicity and 
mitochondrial stress, causing alarmin release  

C
R

Y
 

S
A

 Lee et al. 
2011 

Si 
J774A.1 mouse macrophages:  

0 – 1,000 µg/mL, 1 or 3 d 
LLNA: F BALB/c, 1 mg/ear x 3 tx  

100 nm spherical: 
 mesoporous SiO2 - 1150 m2/g 

colloidal SiO2 – 40 m2/g 

Higher surface area caused decreased cytotoxic and apoptotic 
cell death. Similarly, higher surface area induced lower 
expression of pro-inflammatory cytokines. Lower surface area Si 
particles acted as an immunogenic sensitizer in the LLNA 

S
iz

e
 

 
Maquieira et al. 

2012 
Al 

Mice and rabbits 
Intradermal injection  

40, 3000 nm amorphous Al2O3, 
300 nm crystalline Al2O3 

AlNP served as both carrier and adjuvant leading to hapten-
specific antibody production dependent on size and crystallinity  

Stolle et al. 
2009  

Ti 
HEL-30 mouse keratinocytes 

0 – 150 µg/mL 
24 h exposure  

100% anatase TiO2: 6.3, 10, 40, 50, 100 nm 
61% anatase, 39% rutile TiO2: 39 nm 
40% anatase, 60% rutile TiO2: 39 nm 
75% anatase, 25% rutile TiO2: 26 nm 

Amorphous TiO2: 40 nm 
100% rutile TiO2: 51 nm 

Both size and crystal structure contributed to toxicity in vitro. 
Smaller size and less agglomeration increased cytotoxicity. 100% 
anatase TiO2 particles, regardless of size, induced cell necrosis, 
whereas the rutile TiO2 nanoparticles initiated apoptosis through 
formation of ROS. Differential release of alarmins can impact 
sensitization 

M
O

R
 

M
O

D
 

Guo et al. 
2017 

Gd 
F New Zealand white rabbits 
Keyhole limpet hemocyanin 

22 nm 
Gd@C82, GD@C82(OH) 

Metallofullerenol conjugated to the immunogen resulted in 
antibody production to the hapten, but the hydroxyl groups and 
size and shape of the carbon cage did not impact the specificity of 
the antibody generated 

 
Orlowski et al.  

2013 
Ag 

291.03C mouse keratinocyte 
1 – 10 µg/mL 

24 hr exposure 

Tannic acid-modified AgNP: 13, 33, and 46 nm 
Unmodified AgNP: 10 -65 nm 

Unmodified, but not modified, AgNP increased production of 
MCP-1 by keratinocytes and upregulation of TNF-α, attributable to 
increased ROS production, with potential to promote sensitization 

 
Li et al. 
2016 

Si 
F C57BL/6 mouse 

5 mg injection 
Unmodified mesoporous SiNP 

PEG, PEG-RGD, PEG-RDG- modified SiNP 

PEG modification significantly enhanced DC activation in vitro and 
innate immune cell infiltration in vivo. PEG-modification resulted in 
less recruitment of DC to area of injection 

 

 
Table 1.12. Summary of study design and major findings from studies comparing the effects of various physico-chemical properties of metal nanomaterials 
on dermal allergy grouped by study property of interest. Properties of interest: size, CRY (crystallinity), CRG (surface charge), SA (surface area), # (particle 
number), and MOD (surface modification). Reported particle size (nm), specific surface area (m2/g), zeta potential (mV), pore volume (cm3/g), in vitro dose 
concentration (µg/mL). Abbreviations: DC dendritic cell, DNFB dinitrofluorobenzene, HDM house dust mite, LC Langerhans cell, LLNA Local Lymph Node 
Assay, HSEM Human Skin Equivalent Model, OVA ovalbumin, PEG poly(ethylene glycol) modification, PEG-RDG/RGD, ROS reactive oxygen species, 
TSLP thymic stromal lymphopoietin.
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Table 1.13. Adverse Outcome Pathway (AOP) steps involved in skin sensitization, metal nanomaterials shown to 
impact individual steps and cells involved, and physico-chemical properties associated with effects are shown. 
Physico-chemical properties of interest include size, surface modification (mod), surface area (SA), solubility (sol), 
surface charge (crg), morphology (mor), crystallinity (cry), hydrophobicity (hyd), and surface chemistry (SC). 

Table 1.13. Metal Nanomaterials and Corresponding Physico-Chemical Properties Shown to Influence 
Immunological Processes Involved in Skin Sensitization 

AOP Step Metal Nanomaterial Effect Metal Property Citation 

S
E
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Increased potential for nanomaterial penetration of intact skin Au size, crg (46) 
      Keratinocyte tight junction compromisation Au mod (512) 
      Epithelial cell cytotoxicity  Ti cry (513) 
Increased potential for nanomaterial penetration of damaged skin Ti size, cry (514) 
Increased release of ions from parent nanomaterials Pd size (515) 
Accumulation of nanomaterial in follicles and skin folds Zn mod (516) 
Cell-independent transport to lymph nodes Au size (517) 

M
o

le
c
u

la
r 

In
it

a
ti

n
g

 E
v
e
n

t Metal antigen formation Ti size (518) 
Antigen formation:    
     Cryptic epitope exposure Au size (519) 
     Conjugation with hapten Au  - (520) 
Altered immunogenicity of antigens:    
     Adsorbed protein conformational changes > PRR recognition Au size (521) 
     Increased protease activity of antigen Au - (522) 
     Altered immunogenicity from adsorption of LPS to surface Au size, mod, hyd (523) 

C
e
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u
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r 

R
e

s
p

o
n

s
e

 Increased recruitment of Langerhans cells Ag size (524) 
Selective uptake by Langerhans cells Si size (525) 
Activation of DC: Ti size, cry, mor (526) 
      Inflammasome activation Al cry, mor (527) 
      Release of DAMPs from skin epithelial cells  Fe size (528) 
      Release of DAMPs from dermal immune cells  Si size, SA (529) 
Enhanced cross-presentation by DC:    
      Increased endosomal escape of antigen Fe crg (530) 
      Autophagy-dependent cross-presentation Al - (531) 
      Accumlation in endocytic compartments > altered antigen processing Si mod, crg (532) 
Enhanced DC migratory capacity Au size (533) 

O
rg

a
n

  
R

e
s
p

o
n

s
e

 Altered delivery kinetics of antigen to lymph nodes:     
     Depot formation Si agg (534) 
     Nanomaterial antigen vehicle  Ti - (535) 
Polarization of DC cytokine production Ti/Ce SC (536) 
     Increased TH1 signaling Co - (794) 
Enhanced presentation effiiency to lymphocytes Au size (538) 
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Table 1.14. Metal Nanomaterials and Corresponding Physico-Chemical Properties Shown to Influence 
Immunological Processes Involved in Dermal Allergy Elicitation 

AOP Step Metal Nanomaterial Effect Metal Property Citation 

E
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Increased recruitment of inflammatory cells:    

       Increased permeability of endothelial cells QD mod (1604) 
       Increased effector T-cell recruitment many -  (540) 
       Increased number of DC for T-cell activation Si mod (541) 
       Increased number of skin macrophages Fe - (542) 
       Increased neutrophil influx  Ti - (543) 
       Increased number of skin mast cells Ag size (544) 
Altered T-cell response to mitogens/allergens  Pd size, sol (545) 
Increased IgE-independent mast cell degranulation many size, SA, crg (546) 

C
h

ro
n

ic
 

E
ff

e
c
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Compromised barrier inegrity > increased penetration of HMW allergens Ag size, sol (547) 
Compromised skin repair mechanisms > enhanced skin permeability  Ag - (548) 
     Keratinocyte cytotoxicity  Au crg (549) 
Aggravation of allergic lesion severity:    
     Increased TSLP release/production Si size (550) 
     Increased histamine release/production Ti - (551) 
     Increased activation of mast cells Ag size (544) 

 

 
 
Table 1.14. Adverse Outcome Pathway (AOP) steps in the elicitation phase of allergic contact dermatitis, metal 
nanomaterials shown to impact individual steps and cells involved, and physico-chemical properties associated with 
effects are shown. Physico-chemical properties of interest include size, surface modification (mod), surface area 
(SA), solubility (sol), and surface charge (crg).
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Table 1.15. Summary of Major Findings from Studies Characterizing the Effect of Metal Nanomaterials on  
Processes Involved in Respiratory Allergy Grouped by Metal  

Metal Author/Year Material Size Animal or Cell Type Model Exposure 
Route Dose Major Findings 

A
L

U
M

IN
U

M
 

Braydich-Stolle  
et al. 2010  

Al 48.08 ± 21.0 nm A549, U937  
3:1 co-culture  In vitro 5-500 µg/mL 

24 h 

Exposure impaired bacterial phagocytic function, induction of NFκB 
pathway, and release of cytokines with potential to promote 
sensitization Al2O3 32.71 ± 28.3 nm 

Cui et al. 
2019 Al2O3 < 50 nm M BALB/c mouse OVA it 0.5, 5.0, or 50 

mg/kg/day for 3w 
NP exposure caused Th1/2 imbalance, exacerbated AHR, airway 
remodeling, and inflammation 

C
E

R
IU

M
 

Park et al. 
2010 CeO2 130 nm M ICR mouse - it 50, 100, 200, 400 

mg/kg 
Differentiation of naïve T-cells and TH1 cytokine production 

Meldrum et al. 
2018  CeO2 

< 25 nm APS, 166.5 
nm agglomerates F BALB/c mouse HDM in 75 or 750 µg/kg 

Repeated exposure to CeO2NP in the presence of HDM caused 
increased lung eosinophils, mast cells, plasma IgE, IL-4, and goblet 
cell metaplasia 

Meldrum et al. 
2019 CeO2 25 nm F BALB/c mouse HDM in 2.5 or 75 µg/kg 

HDM sensitization was altered upon simultaneous to diesel exhaust 
particulate exposure, an effect further enhanced when CeNP 
exposure also occurred 

C
O

B
A

L
T

 Cho et al.        
2012  Co3O4 18.4 ± 5.0 nm F Wistar rat - it 150 cm2 SA Exposure caused pulmonary alveolar proteinosis and Th1/Th17 

dominant response 

Verstaelen et al. 
2014 CoO 7.1 nm BEAS-2B, A549 

epithelial cells In vitro 1 – 60 µg/mL Alterations in expression of genes associated with innate immunity, 
T-cell activation, and leukocyte adhesion 

C
O

P
P

E
R

 

Cho et al.         
2012  CuO 23.1 ± 7.2 nm F Wistar rat - it 150 cm2 SA No immunoinflammatory reaction 

Park et al.         
2015  CuO < 50 nm F BALB/c mouse OVA it 25, 50, 100 µg/kg Increased AHR, IgE and mucus production 

Lai et al. 
2018  CuO 46.5 nm C57BL/6 mouse - in  1, 2.5, 5, 10 mg/kg Aggravated pulmonary inflammation, collagen accumulation and 

expression of progressive fibrosis markers in lungs 

IR
O

N
 

Park et al. 
2015  Fe2O3 101.3 ± 4.2 nm M ICR mouse - it 0.5, 1, or 2 mg/kg 

Th1-polarized inflammatory response, GM-CSF, MCP-1, and MIP-1 
increase, and increased expression of CD80, CD86, and MHC II 
expression on lung APCs 

Park et al.  
2010 Fe3O4 5.3 ± 3.6 nm M ICR mouse - it 250, 500, 1,000 µg/kg Increases in TH1/TH2 cytokines, B cells, and IgE levels 

Gustafsson et al. 
2015 α-Fe2O3 30 nm F BALB/c mouse OVA it 5 mg/kg LN and BAL cell death was observed in sensitized mice exposed to 

AlNP 

G
O

L
D

 

Hussain et al.        
2011  Au 40 nm M BALB/c mouse TDI asp 40 µL @ 0.8 mg/kg 3x AHR increase 

Peng et al. 
2019 Au - F BALB/c mouse OVA in - AuNP exposure reduced nasal symptoms of rhinitis, decreased IL-4 

production and inflammatory cell influx 

Baretto et al.      
2015  Au 6.3 nm Swiss Webster and 

A/J mouse OVA in 6, 60 µg/kg 
Inhibited allergen-induced accumulation of inflammatory cells, pro-
inflammatory cytokine production. In A/J mice, AuNPs prevented 
mucus production and AHR 

N
IC

K
E

L
 Cho et al.        

2012  NiO  5.3 nm F Wistar rat - it 150 cm2 SA Exposure caused pulmonary alveolar proteinosis and Th1/Th17 
dominant responses 

Baker et al.     
2016  Ni 20 nm M C57BL/6 WT or 

T-bet-/- mouse - asp 4 mg/kg Increased airway remodeling in T-bet knockout mice with 
susceptibility to Th2 responses 
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Lee et al.           
2016  NiO 5.3 ± 0.4 nm F Wistar rat - it 50, 100, 200 cm2 Acute neutrophilic inflammation, and eosinophils recruited at days 3 

and 4 via eotaxin release 

Chang et al. 
2017 NiO - M Wistar rat - it 0.015 – 0.24 mg/kg Alterations in Th1/Th2 balance were indicative of nitrative stress 

and NFk-B activation 

P
L

A
T

IN
U

M
 

Park et al. 
2010  Pt 20.9 ± 11.4 nm M ICR mouse  -  it - Increase in serum IgE, lung TH2 cytokines, and  decrease in CD4/8 

ratio  

Onizawa et al. 
2009 Pt 2 ± 0.4 nm DBA/2 mouse - in x 3d PtNP  exerted protective effects from cigarette smoke, prevented 

NFk-B activation, and neutrophilic inflammation  

Q
D

 Scoville et al. 
2019 QD 12.7 nm M A/J, C57BL/6J 

mouse HDM asp 140 nm Increased lung ILC number, IL-33 release, and MHC II hi 
macrophages depending on strain  

S
IL

IC
A

 

Brandenberger  
et al. 2013  Si 90 nm F BALB/c mouse OVA in  0, 10, 100, 400 µg 

Co-exposure during sensitization caused dose-dependent 
enhancement of OVA-specific IgE, lung eosinophils, mucus cell 
metaplasia, and Th2/Th17 cytokine production 

Han et al. 
2011 SiO2 10-20 nm M Wistar rat OVA it 40 or 80 µg SiNP exposure resulted in exacerbation of Th2 responses in OVA-

sensitized rats 

S
IL

V
E

R
 

Park et al.      
 2010  Ag 6 ± 0.29 nm F C57BL/6 mouse OVA ih 5x 20 ppm,  

40 mg/kg 
Decreased AHR, Th2 cytokines, and ROS levels 

Jang et al.          
2012  Ag 6.0  ± 0.29 nm F BALB/c mouse OVA ih 20 ppm/40 mg/kg 5x 

for 24h 
Suppressed mucus production via VEGF signaling alterations 

Su et al.           
 2013  Ag 33 nm F BALB/c mouse OVA ih 3.3 ± 0.7 mg/m3 6h/7 x 

7d 
Increased OVA IgE, proteins associated with immune processes 
were altered 

Chuang et al.     
2013  Ag 33 nm F BALB/c mouse OVA ih 3.3 mg/m3 6h/d x 7d Increased Penh, recruitment of neutrophils, lymphocytes, and 

eosinophils to the airways 

Xu et al.           
2013  Ag 141 nm F BALB/c mouse OVA ip 0.4, 2, 10 mg/kg Increased OVA-IgG and Th2 responses, local activation and 

recruitment of leukocytes 

Shin et al. 
2012 Ag 1.5 nm F BALB/c mouse OVA ih 0.1, 1, 10 ppm AgNP attenuated nasal symptoms of OVA-induced rhinitis, OVA-

specific IgE, IL-4, and IL-10 levels 

T
IT

A
N

IU
M

 

Ahn et al. 
2005  TiO2 0.29 µm M Sprague-Dawley 

rat - it 4 mg/kg Increased BAL IL-13 levels, IL-13-producing mast cells, and goblet 
cell hyperplasia 

Park et al. 
2009  TiO2 20 nm ICR mouse - it 5, 20, or 50 mg/kg Increased BAL and serum IgE levels, altered Th1/Th2 cytokines, 

increased B cell distribution    

Larsen et al.         
2009  TiO2 28 nm F BALB/c mouse OVA ip 2-250 µg Th2 adjuvancy, increased IgE, IgG1, and eosinophil levels 

Rossi et al.        
2010  TiO2 10x40 nm F BALC/c/Sca 

mouse OVA ih 2h/d, 3d/w, x4w @ 10 
mg/m3 

Allergic pulmonary inflammation suppressed by TiO2NP 

Gustafsson et al. 
2011  TiO2 21 nm M Dark Agouti rat - it 5 mg/kg 

Increased eosinophil, DC numbers in lungs, lymphocytes recruited 
mostly CD4+, also included CD8+ T-cells, B-cells, and CD25+ T-
cells  

Hussain et al.        
2011  TiO2 15 nm M BALB/c mouse TDI asp 40 µL @ 0.8 mg/kg 2x increase AHR 
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Scarino et al. 
2012  TiO2 

5 nm APS, 
168/171 nm agg. 

M Brown Norway 
rat OVA ih 9.4 or 15.7 mg/m3 Significantly decreased lung leukocytes and plasma/BAL IL-4, IL-6, 

and IFN-γ over OVA controls  

Jonasson et al. 
2013  TiO2 21 nm F BALB/c  

mouse OVA ih  32 ± 1 µg Aggravated allergic response dependent on dose and timing  

Fu et al.         
 2014  TiO2 21 nm M Sprague-Dawley 

rat - it 0.5, 4.0, 32 mg/kg  
2x/w x 4w 

Deposition in lymph nodes, increased T and B-cell proliferation 
following mitogen stimulation, enhanced NK activity in spleen, 
increased B-cells in the blood 

Choi et al.        
2014  TiO2 P25 M New Zealand 

White Rabbit - it 10, 50, 250 µg Dose-dependent eosinophil influx and inflammation in the lung, but 
not neutrophil or lymphocyte influx 

Gustafsson et al.    
2014  TiO2 21 nm 

M Dark Agouti rat  
M Brown Norway 

rat 
OVA ih 168 – 159 µg/d x 10d Exposure decreased eosinophilia in OVA-sensitized DA and BN 

rats, but neutrophils/lymphocyte increase in DA rats 

Mishra et al. 
2016  TiO2 4 – 8 nm BALB/c mouse OVA ip 200 µg Augmented AHR, biochemical markers of damage, and induced a 

mixed Th1/Th2 response 

Harfoush et al. 
2019 TiO2 - F BALB/c mouse OVA in 0.0125-0.025 mg Th2 adjuvant effect on OVA-induced asthma 

Kim et al. 
2020 TiO2 19-37 nm F BALB/c mouse OVA ih 200 µg/m3 NP inhalation 2hr prior to OVA challenge caused increased airway 

inflammation and AHR, effects associated with neuroinflammation 

Kim et al. 
2017  TiO2 75 nm F BALB/c mouse OVA ih  50 µg/m3  

X 3d 
Exposure exacerbated AHR and inflammation, increases in IL-1, IL-
18 

Z
IN

C
 

Roy et al. 
2014  ZnO < 50 nm F BALB/c mouse OVA ip 0.25, 0.5, 1, 3 mg Administration with OVA caused increased OVA-IgG1, IgE, 

eosinophil and mast cell numbers in lungs and spleen  

Roy et al. 
2014  ZnO < 50 nm F BALB/c mouse OVA ip 1, 2, 4, and 12 mg/mL Adjuvant effect on OVA allergy by signaling through TLRs and Src 

kinase leading to inflammatory responses 

Huang et al. 
2019 ZnO 60 nm F BALB/c, C57BL/6 

mouse OVA asp, 
dermal 

Asp: 2.5 mg/m3 

Dermal: hi, lo doses 
Aspiration of NP enhanced asthmatic responses to OVA, but 
topical exposure did not contribute to allergic airway inflammation 

Huang et al.         
2015  ZnO 181.5 nm low dose 

360.0 nm high dose F BALB/c mouse OVA asp 0.1 / 0.5 mg/kg Exposure simultaneous to OVA sensitization resulted in eosinophil 
recruitment and Th2 adjuvancy 

 

 

Table 1.15. Summary of findings from in vivo studies investigating immune effects of metal nanomaterials in the lung and select in vitro studies in pulmonary 
cells, grouped by metal. Exposure routes are noted as in (intranasal), asp (aspiration), ih (inhalation), in (intranasal), ip (intraperitoneal injection). 
Abbreviations: AHR airway hyperreactivity, APC antigen presenting cell, APS average particle size, DC dendritic cell, HDM house dust mite, IP 
intraperitoneal, LPS lipopolysaccharide, MHC major histocompatibility complex, OVA ovalbumin, ROS reactive oxygen species, RSV respiratory syncytial 
virus, TLR Toll-like receptor, WT wild-type. 
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Table 1.16. Summary of Major Findings from Studies Comparing the Effects of Various Physico-Chemical Properties of Metal Nanomaterials on 
Processes Involved in Respiratory Allergy Grouped by Property of Interest 

Property 
Investigated Author/Year Metal Study Design Property Variations Major Findings 

S
iz

e
  

 de Haar et al. 
2006  

Ti 
F BALB/cANNCrl mouse 
OVA, 200µg intranasal  

Fine TiO2: 250 nm, 6.6 m2/g 
Ultrafine TiO2: 29.0 nm, 49.8 m2/g 

Exposure to equal mass doses of fine and ultrafine TiO2 resulted 
in increased Th2 cytokines and serum OVA-specific IgE and IgG1 
only in animals exposed to ultrafine TiO2 

Yoshida et al. 
2011  

Si 
F BALB/c mouse, OVA 

Intranasal: 10, 50, or 250 µg/ 
mouse x3 

Amorphous silica  
30, 70, 300, or 1,000 nm 

Smaller particles induced higher levels of OVA-specific IgE, IgG, 
and IgG1. Splenocytes from mice exposed to the smallest particle 
produced higher levels of Th2 cytokines than other groups.  

Liu et al. 
2010  

Ti 
Rats, Intratracheal instillation 

0.5, 5, or 50 µg/mL 
5 or 200 nm TiO2 

Decreased chemotactic ability, expression of Fc receptors/MHC II 
by alveolar macrophages. Phagocytic function was increased at 
low doses and decreased at high doses 

Chang et al. 
2014 

Ti 
M Sprague Dawley rat  

Intratracheal instillation: x2, x 4 w 
0.5, 4, 32 mg/kg 

21 nm TiO2NP: 80% anatase, 20% rutile,  
1-2 µm TiO2: anatase 

Increased macrophage accumulation and alteration of Th1/Th2 
status  

Ban et al. 
2013 

Fe 
F BALB/c mouse, OVA 
Intratracheal instillation: 

 4x (100, 250, or 500 µg/mouse) 

Submicron Fe2O3: 147 ± 48 nm, 6 m2/g 
Fe2O3NP: 35 ± 14 nm, 39 m2/g 

High and medium doses of both Fe particles caused decreases in 
eosinophil influx and OVA-specific IgE levels but at low dose, 
submicron particles had no effect on allergy, whereas NP had an 
adjuvant effect on the Th2 response to OVA 

S
A

 

 

Rossi et al. 
2010 

Ti 
F BALB/c/Sca mouse, OVA 

Inhalation: 10 ± 2 mg/m3 x 12 
Rutile TiO2NP: < 5 µm, 2 m2/g 

Rutile TiO2NP: 10 x 40 nm, 132 m2/g 

Allergic pulmonary inflammation was suppressed in asthmatic 
mice exposed to either size TiO2. Leukocyte number, cytokines, 
chemokines, and antibodies were significantly decreased. 

 

Park et al. 
2015 

Si 
F BALB/c mouse, OVA 
Intranasal inoculation 

Spherical SiNP: 12.7 m2/g 
Mesoporous SiNP: 70.6 m2/g 
PEGylated SiNP: 12.7 m2/g 

Acute SiNP exposure induced significant airway inflammation and 
AHR. Spherical SiNPs induced the greatest degree of 
exacerbation of allergic effects in the OVA model 

Han et al. 
2016 

Si  
F BALB/c mouse, OVA 

Intranasal inoculation: 10 mg/kg 6x 

Spherical SiNP: 12.7 m2/g, 119.6 nm 
Mesoporous SiNP: 70.6 m2/g, 100.5 nm 
PEGylated SiNP: 12.7 m2/g, 439.1 nm 

Sensitized mice exposed to S-SiNP and M-SiNP exhibited 
elevated AHR over controls. M-SiNPs induced the greatest 
degree adjuvanticity, whereas PEG-SiNP caused the least toxic 
effects 

S
C

 

C
R
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Dekkers et al.  
2019 

Ce 
Co 
Ti 

F BALB/c mouse, OVA 
Intranasal instillation: 200 µg NP 

All 4.7 – 18.7 nm: TiO2NP, 
CeO2NP, Zr-doped CeO2NP, 

Co3O4NP, Fe2O3 or Fe3O4-doped Co3O4NP 

Administration of NP simultaneous to intranasal OVA sensitization 
caused Th2 adjuvancy, but effects were not dependent on 
acellular redox activity 

M
O

D
 

 

Seydoux et al. 
2016 

Au 
F BALB/c mouse 

AuNP intranasal instillation: 10 µg 
90 nm AuNP:  

NH2-PVA, 7.2 mV or COOH-PVA -8.2 mV 

APCs preferentially took up cationic AuNPs, causing upregulation 
of co-stimulatory molecules. Positive AuNPs enhanced OVA-
specific CD4+ T-cell stimulation in lung LN 

Marzaioli et al. 
2014  

Si 
F BALB/c mouse, OVA 

Intratracheal instillation: 50 µg 

Amorphous SiO2NP 15 nm: 
Uncoated -38 mV, PEGylated -26 mV, Phosphate -

43 mV, Amino-coated 0 mV 

Uncoated SiO2NPs induced proinflammatory and 
immunomodulatory effects with increases in lung inflammatory 
cells, Th2 cytokines. Amino and phosphate surface mod. 
mitigated these effects, whereas PEG coating did not. 

 

Omlor et al. 
2017 

Au 
F BALB/c mouse, OVA 
Intranasal instillation 

5 nm AuNP, PEGylated or citrated 

Asthmatic condition increased nanoparticle uptake. Systemic 
uptake higher for PEGylated AuNP compared to citrated AuNPs, 
but both inhibited inflammatory infiltrates and AHR, inhibition was 
more significant following exposure to citrated AuNP 

Ilves et al. 
2019 

Cu 
F BALB/c mouse, OVA 

Aspiration: 2.5, 10, or 40 µg 
6.5 – 12.0 nm CuO: 

Uncoated, COOH-, NH3-, or PEG modification 

PEGylation of CuONP mitigated allergic inflammation 
exacerbated by other CuONP when administered during 
challenge 
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Vennemann et al. 
2017 

Zr 
F Wistar rat 

Intratracheal instillation 
APTS, TODS, PGA, or acrylic acid coated 

9-10 nm ZrO2NPs 
Surface coating had minimal effects on inflammation in the lungs 
of rats, but had significant effects on allergic response.  

S
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M
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Alessandrini  
et al. 2017 

Ag 
F BALB/c mice, OVA 

Intratracheal instillation: 1-50 µg 

PVP-coated AgNP: 97 nm, 6.2 m2/g, -7 mV 
PVP-coated AgNP: 134 nm, 4.5 m2/g, -7 mV 

Citrate-AgNP: 20 nm, 30 m2/g, -45 mV 

Ag50-PVP significantly reduced OVA-induced inflammatory 
infiltrate in sensitized mice. Lung microbiome was altered 
dependent on coating. 

Seiffert et al. 
2015 

Ag 
Brown Norway and Sprague-

Dawley rats  
Intratracheal instillation: 0.1 mg/kg 

PVP-coated AgNP: 20 or 110 nm 
Citrate-capped AgNP: 20 or 110 nm 

Smaller AgNPs increased AHR on d 1, which persisted to d 7 for 
the citrate AgNPs only. 20 nm AgNP was more pro-inflammatory 
but little difference between different  surface coatings 

C
R

Y
 

Horie et al. 
2015 

Zn 
Ti 
Si 

F C57BL/6N mouse, OVA 
Pharyngeal aspiration: 50 µg 

Rutile TiO2, Al(OH)3 surf: 30-50 nm 37.1 m2/g 
ZnO: 21 nm, 49.6 m2/g 

ZnO, SiO2 surface: 25 nm, unkn. SA, ZnCl2 
Amor. SiO2: 7 nm 300 m2/g, 34 nm 80 m2/g 

Serum total and OVA IgE, IgG1 increased in mice treated with the 
uncoated ZnO particle. However, ZnCl2 did not produce similar 
exacerbations. TiO2 and SiO2 did not affect OVA-IgE or IgG levels. 

S
A

 

Sandberg et al. 
2012 

Si 

LPS-primed RAW264.7 mouse 
macrophages, primary rat lung 

macrophages 
0, 50, 100, 250, 500 µg/mL, 6 h 

64 nm Si, 650 cm2/mg 
369 nm Si, 90 cm2/mg 

~20 nm Fumed Si (aerosol), 1880 cm2/mg 
500 nm – 10 µm Fused Si (suprasil), 23 cm2/mg 

Non-crystalline SiO2 particles in both nano and micron size 
ranges induced IL-1β release from LPS-primed macrophages 
following uptake, phagosomal leakage, and activation of the 
NALP3 inflammasome. Particle surface area, reactivity, and 
uptake all influenced the degree of mediator release by cells 

  

Vandebriel et al. 
2018 

Ti 
F BALB/c mouse, OVA 
Intranasal: 120 µg TiO2 

Uncoated TiO2NP: 
10 – 30 nm rutile or 10 – 25 nm anatase 

Rutile TiO2NP caused the greatest increase in OVA-specific 
serum IgE and IgG1. Neutrophils recruited by rutile, but not 
anatase  

S
O

L
 

Jeong et al.      
2015  

Co 
F Rat, Intratracheal Instillation 
80, 200, 800 µg/mL @ 0.5 mL 

CoO: 65.4 ± 2.8 nm, 92.65% solubility 

Co3O4: 20.2 ± 0.4 nm, 11.46% solubility 
Soluble CoNP induced eosinophilic inflammation, whereas 
insoluble CoONP induced neutrophilic inflammation 

Horie et al. 
2016 

Ni 
Zn 
Cu 

F C57BL/6 mouse, OVA 
Aspiration 

NiO <100, 600-1400 nm 
Zn 21 nm, Cu 48 nm 

Solubility of metal NP greatly impacted OVA allergy exacerbation  

Cho et al. 
2011 

Zn 
F Wistar rat 

Intratracheal instillation 
10.7 ± 0.7 nm ZnONP- 50 or 150 cm2/rat 

Zn2+ ions- 92.5 µg/rat 

ZnONP induced eosinophilia, proliferation of airway epithelial 
cells, goblet cell hyperplasia, and increased IgE levels, and 
decreased IgA- findings which were also seen following instillation 
of Zn ions 

 

 
Table 1.16. Summary of study design and major findings from studies comparing the effects of various physico-chemical properties of metal nanomaterials 
on respiratory allergy grouped by study property of interest. Properties of interest: size, CRY (crystallinity), MOR (morphology), SC (surface chemistry), MOD 
(surface modification), CRG (surface charge), and SA (surface area), and SOL (solubility). Reported particle size (nm), specific surface area (m2/g), zeta 
potential (mV), pore volume (cm3/g), in vitro dose concentration (µg/mL). Abbreviations: AHR airway hyperreactivity, APC antigen presenting cell, APTS- 
aminopropilsilane modification, DC-SIGN dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin, MDDC monocyte-derived dendritic 
cell, MHC major histocompatibility complex, OVA ovalbumin, PDI polydispersity index, PEG poly(ethylene glycol) modification, PGA poly(lactic-co-glycolic 
acid) modification, PVA,  PVP polyvinylpyrrolidone modification, ROS reactive oxygen species, TODS- tetraoxidecanoic acid modification.
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Table 1.17. Metal Nanomaterials and Corresponding Physico-Chemical Properties Shown to Influence 
Immunological Processes Involved in Respiratory Sensitization 

AOP Step Metal Nanomaterial Effect Metal Property Citation 

S
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Increased potential for inhalation many dustiness (18) 
Evasion of clearance/neutralization mechanisms:    
       Evasion of entrapment by pulmonary mucus ND size, crg (762) 
       Evasion of clearance by pulmonary macrophages:    
              Selective uptake by macrophages  Si size, crg, mod (763)  
              Macrophage cytotoxicity Cr vol (764) 
              Altered phagocytic activity of macrophages Al spec (765) 
Enhanced potential for interception by APC:    
      Anatomical location of deposition many size, agg (766) 
      Disruption of epithelial barrier integrity > access to intraepithelial APC Zn sol (767) 
      Prolonged retention in airways Al spec, mor (768) 
Direct translocation across lung epithelial tissue to lymphatics Au size, crg (761) 

M
o

le
c
u

la
r 

In
it

a
ti

n
g

 
E

v
e
n

t 

Release of metal ions from parent particle:    
        Metal antigen formation Ti size (518) 
        TLR-4 agonist > enhanced immunogenicity Ni sol (469) 
Metal nanomaterial interactions with macromolecules:    
       Mixture effects > alterations in metal surface reactivity and immunogenicity  Au/Ni crg (769) 
       Antigen formation by crytpic epitope exposure Au size (519) 
       Enhanced immunogenicitiyby PRR recognition Au size (770) 
       Metal nanomaterial conjugation with hapten > antigen formation  Al - (726) 
       Conjugation with protein allergen > increased protease activity Au - (522) 
       Metal nanomaterial conjugation with proteins > recognition by PRR Au size (521) 

C
e
ll
u

la
r 

R
e

s
p

o
n

s
e

 Recruitment of increased APC and precursor cells to the lung Al mod (771) 
       Pulmonary macrophage activation:    
              Inflammasome activation  Si size, cry, SA (772) 
              Inudction of enhanced APC phenotype in macrophages Ti size (773) 
       Pulmonary DC activation: Ti size, cry (774) 
              Inflammasome activation Al mor, size, cry (527) 
              Enhanced activation marker expression Si mod (532) 
       Release of DAMPs and alarmins from immune cells Cr size, vol (764) 
       Release of DAMPs and alarmins from airway epithelial cells  Ag size, mod, SA, sol (775) 
       Adsorption of LPS to nanomaterial surface > TLR-4 activation Au size, hyd, mod (523) 

O
rg

a
n

 R
e
s
p

o
n

s
e

 Enhanced migration of DC to lymph nodes Au mod, crg (776) 
Altered migration of pulmonary macrophages to lymph nodes Fe mod (777) 
Increased DC presentation efficiency to CD4+ T-cells Ti size, mor, cry (526) 
Increased polarization of CD4+ T-cells to TH2 phenotype Si size, mod, SA (778) 
Alterations in B-cell activity:    
      Alteration in B-cell expansion and maturation Au size (779) 
      Increased production of total IgE Pt - (780) 
      Increased production of allergen-specific IgE Zn size, sol, cry (781) 
      Increased populations of B-cells Ti - (782) 

 

 
 
 
Table 1.17. Adverse Outcome Pathway (AOP) steps involved in the sensitization phase of asthma, metal 
nanomaterials shown to impact individual steps, and physico-chemical properties associated with effects are shown. 
Physico-chemical properties of interest include size, metal speciation (spec), agglomeration (agg), surface modification 
(mod), surface area (SA), solubility (sol), surface charge (crg), morphology (mor), crystallinity (cry), volume (vol), and 
hydrophobicity (hyd). ND (not determined) notation in metal column indicates a study demonstrating a critical role for 
a specific nanomaterial physico-chemical property on the cellular event, but was demonstrated using non-metal 
nanomaterials. Findings may be applicable to metals, but have not been demonstrated with individual metal 
nanomaterials.  
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Table 1.18. Metal Nanomaterials and Corresponding Physico-Chemical Properties Shown to  
Influence Immunological Processes Involved in Asthma Elicitation  

AOP Step Metal Nanomaterial Effect Metal Property Citation 

E
L

IC
IT

A
T

IO
N

 

O
rg

an
is

m
 R

es
po
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e 

E
ar
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P
ha
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Recruitment of increased numbers of lung mast cells Ce  - (783) 
Alterations in mast cell degranulation:    
       Enhanced IgE-independent activation many size, SA, crg (546) 
       Enhanced IgE-dependent activation  Au size, mod (784) 
       Altered exocytic function, granule contents Si SA (785) 
Altered expression of Fc receptors on immune cells Ti size (786) 

La
te

 P
ha

se
 

Increased recruitment of inflammatory cells to the lung:    
      Increased endothelial adhesion molecule expression Al - (539) 
      Increased eosinophil recruitment Co sol (787) 
      Increased neutrophil recruitment Ag size, sol (788) 
      Increased lymphocyte recruitment Zr mod (789)  
Mucus hypersecretion and mucus cell metaplasia Ti - (790) 
Increased AHR Ag size, mod (791) 
       Increased airway smooth muscle contractility Co/Fe - (792) 

C
hr

on
ic

 E
ffe

ct
s 

Enhanced airway remodeling:    
      Bronchial smooth muscle cell hypertrophy Zn sol (793) 
      Airway epithelial cell proliferation Ni - (794) 
      Increased fibroblast MMP activity extracellular matrix remodeling Ti size, cry, mor (795)  
      Myofibroblast accumulation Cu - (796) 
      Angiogenesis WC/Co - (797) 
AHR exacerbation  Cu - (798) 
      Disruption of pulmonary surfactant function  Au - (799) 
Prevention of immunological tolerance induction Ag sol, mod, size (800) 

  

 
Table 1.18. Adverse Outcome Pathway (AOP) steps involved in the elicitation phase of asthma, metal nanomaterials 
shown to impact individual steps, and physico-chemical properties associated with effects are shown. Physico-
chemical properties of interest include size, surface modification (mod), surface area (SA), solubility (sol), surface 
charge (crg), morphology (mor), and crystallinity (cry).  
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Table 1.19. Summary of Studies Utilizing Metal Nanomaterials as Vaccine Adjuvants and Primary Findings  

Metal 
NM Properties Antigen Model NP/Immunization 

Route Immune Response Citation 

Ag 

60 nm Rabies virus Mouse ip ↑ Ab response (944) 
141 nm OVA, BSA Mouse ip, sq ↑ Ab/cellular response (872) 

Nanorod, nanosphere HIV Mouse ip ↑ Ab/cellular response (945) 
25 – 100 nm OVA Mouse oral Blocked oral tolerance (800) 

Al 

112 nm, 9.3 µm OVA, Bacillus Mouse sq ↑ Ab response (946) 
281 nm Hepatitis B Mouse sq ↑ Ab response (947) 

30-100 nm OVA Mouse ip ↑ Ab response (948) 
Rod, crystallinity OVA Mouse ip ↑ Ab response (527) 

Au 

7-28 nm OVA, tumor cells Mouse sq ↑ cellular response (517) 
Sphere, rod, cube West Nile virus Mouse ip ↑ Ab response (61) 

- B. mallei Monkey sq ↑ Ab response (949) 
Sphere, rod, shell, star BSA Mouse ip ↑ Ab response (950) 

22-77 nm OVA Mouse iv ↑ cellular response (533) 

Co 18 nm OVA Mouse sq ↑ Ab response (951) 

Fe 

< 20 nm rMSP1 malarial protein Mouse, Monkey ip, im, sq ↑ Ab response (740) 
Corona variations OVA Mouse iv ↑ Ab response (736) 

15 nm CMX mycobacterial protein Mouse sq, in ↑ cellular response (737) 
- OVA Mouse sq ↑ Ab/cellular response (741) 
- Tumor antigen Mouse sq ↑ cellular response (952) 

50 nm OVA Mouse sq ↑ Ab response (735) 
59 nm OVA Mouse iv + ip ↓ Ab response (734) 

- Tumor antigen In vitro in vitro ↑ cellular response (739) 

Gd 2 nm OVA Mouse ip ↑ cellular response (953) 

QD < 15 nm rMSP1 malarial protein Mouse ip, im, sq ↑ Ab response (954) 

Ni 23 nm West Nile virus Mouse sq ↑ Ab response (955) 

Pt 13 nm BSA Rabbit oral ↑ Ab response (956) 

Se 5.2 nm Hepatitis B Mouse oral + sq ↑ Ab response (957) 

Si 

10-20 nm OVA Mouse oral +im ↑ Ab/cellular response (958) 
400 nm OVA Mouse sq ↑ cellular response (959) 
12 nm Int1β venom protein Mouse sq ↑ Ab response (960) 
39 nm Schistosoma Mouse ip ↑ Ab response (961) 

33-1,074 nm OVA Mouse ip ↑ Ab/cellular response (874) 
SBA-15 BSA Mouse im, oral ↑ Ab response (962) 
90 nm OVA Mouse sq ↑ Ab response (963) 
50 nm Bovine viral diarrhea virus Mouse sq ↑ Ab/cellular response (964) 

130 nm – 2 µm BSA Mouse ip, oral ↑ Ab/cellular response (965) 
SBA-15/16 Mycoplasma Mouse ip ↑ Ab response (966) 
10-20nm Hepatitis B viral core Mouse ip, sq ↑ Ab response (967) 
400 nm Foot-and-mouth virus Guinea pig im ↑ Ab/cellular response (968) 
cationic BSA Mouse sq ↑ cellular response (969) 
39 nm OVA Mouse oral + sq Blocked oral tolerance (970) 

Zn 
21 nm OVA Mouse ip ↑ Ab response (873) 

< 50 nm OVA Mouse ip ↑ Ab response (885) 
< 5µm, 21 nm OVA Mouse oral No effect on oral tolerance (971) 

 

 
Table 1.19. Studies evaluating the potential adjuvant activity of different metal nanomaterials with respect to 
vaccines are summarized. Physico-chemical properties of test materials, antigen of interest, animal model, 
administration route, and study results are shown. sq = subcutaneous injection, ip = intraperitoneal injections, im = 
intramuscular injection, in = intranasal, iv = intravenous injection. 
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Table 1.20. 2019 OSHA, NIOSH, and ACGIH 2016 Occupational Exposure 
Limits for Nickel-Based Compounds (TWA) 

  Nickel  
Carbonyl 

Insoluble  
Nickel Compounds 

Soluble  
Nickel Compounds 

OSHA 
Permissible Exposure Limit 

(General Industry) 

0.001 ppm 
0.007 mg/m3 1.0 mg/m3 1.0 mg/m3 

NIOSH 
Recommended Exposure 

Limit 

0.001 ppm 
0.007 mg/m3 0.15 mg/m3 0.15 mg/m3 

ACGIH 
Threshold Limit Value® 

0.05 ppm 
0.12 mg/m3 

Elemental Ni: 1.5 mg/m3 
Soluble Inorganic Ni Compounds: 0.1mg/m3 
Insoluble Inorganic Compounds: 0.2 mg/m3 

Nickel Subsulfide: 0.1 mg/m3 

 

 

 

Table 1.20. OSHA, NIOSH, and ACGIH-specific occupational exposure limits for nickel compounds. 
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Table 1.21. Summary of cases reporting adverse immune effects caused by exposure to gold grouped by primary 
tissue of repsonse, inciting agent, and corresponding route of exposure associated with each immune effect. 

Table 1.21. Cases Reporting Adverse Immune Reactions Following Exposure to Gold 

Reaction Immune Effect Inciting Agent Exposure  Citation 

S
y

s
te

m
ic

 
Alterations in hematopoiesis: 

+ Red cell anemia Sodium aurothiomalate Parenteral  (1474) 

+ Aplastic anemia Gold sodium thiomalate Parenteral (1475) 

+ Neutropenia Sodium aurothiomalate Parenteral (1476) 

+ Pancytopenia Gold salt therapy Parenteral (1477) 

+ Thrombocytopenia 
Sodium aurothiomalate, auranofin Parenteral (1478-1480) 
Auranofin Oral (1481) 

Alterations in immune cell populations/activity: 

+ Eosinophilia 
Aureothiomalate Parenteral  (1459, 1478) 
Auranofin Parenteral (1482) 

+ Peripheral T-cell gold reactivity Sodium aurothiomalate Parenteral (1483) 

Alterations in immunoglobulin levels/activity: 

+ Elevated total IgE levels Gold salt therapy Parenteral  (1459) 

+ Au-specific IgE development Sodium aurothiomalate Parenteral (1479) 

+ Decreased IgA levels Gold salt therapy Parenteral (1484) 

+ Panhypogammaglobulinaemia Sodium aurothiomalate Parenteral (1485) 

Other: 

+ Cutaneous lupus erythematosus Gold salt therapy Parenteral (1486) 

+ Anaphylaxis Aurothiomalate Parenteral (1487) 

R
e
s

p
ir

a
to

ry
 

T
ra

c
t 

Fibrotic alveolitis Aureothiomalate Parenteral (1478) 
CD4 alveolitis Gold salt therapy Parenteral (409) 
BAL T-cell gold reactivity Shiosol Parenteral (404) 
Hypersensitivity pneumonitis Gold salt therapy Parenteral (406, 408) 

Interstitial pneumonitis 
Auranofin Parenteral (1488) 
Gold salt therapy Oral (1489) 

Bronchiolitis Auroanofin Oral (1490) 

S
k

in
 

Localized reactions: 

+ Localized ACD 
Gold sodium thiomalate Dermal (1470, 1491) 
Metallic gold Dermal  (1439) 

+ Mucocutaneous lesions Sodium aurothiomalate Parenteral (1479) 

+ Lichen planus, acne Gold salt therapy Parenteral (1492) 

+ Lichenoid seborrheic dermatitis, alopecia Gold sodium thiomalate Parenteral (1493) 

+ Lichenoid dermal reactions Dental gold Dermal/parenteral (1494) 

+ Pruritic papular dermatitis Gold sodium thiomalate Dermal (1473) 

+ Granulomatous contact dermatitis Gold jewelry Dermal (309) 

+ Lymphoid contact dermatitis Gold jewelry Dermal (1444) 

+ Lymphomatoid eosinophil skin reaction Gold jewelry Dermal (1442) 

+ Contact gingivostomatitis Dental gold Dermal (1495) 

+ Pityriasis rosea, discoid eczema 
Sodium aurothiomalate Dermal (1496) 
Auranofin Dermal (1496) 

+ Persistent nodular contact dermatitis Gold jewelry Dermal  (1445) 

Peripheral responses: 

+ Systemic ACD 
Gold endovascular stents Parenteral (1497) 
Myocrisin Parenteral (1498) 
Aurocad (homeopathic drug) Oral (305) 

+ Airborne ACD Gold dust Inhalation (304) 

+ Systemic lichenoid eruption gold sodium propanol sulfonate Parenteral (1499) 

+ Stomatitis 
Myocrisin Parenteral (1500) 
Auranofin Oral (1501) 

Other: 

+ Enhanced DTH sensitivity  Sodium aurothiomalate Parenteral (1502) 
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CHAPTER 1 FIGURES 
 

 

 

 

 

Figure 1.1. Schematic for the categorization of nanomaterials based on the International Standardization  
Organization (ISO) Technical Report 11360: Nanotechnologies- Methodology for the Classification and 
Categorization of Nanomaterials. Four major parameters allow for classification of materials based on 1) number of 
nanoscale dimensions, 2) internal and external structures, 3) chemical identity, and 4) properties and behavior. 
Each category can be extensively broken into additional subcategories. Examples of nano-objects and properties 
corresponding to each category are shown. 
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Figure 1.2. Steps of the Adverse Outcome Pathway (AOP) for dermal sensitization proposed by the Organization 
for Economic Co-operation and Development (OECD). 
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Figure 1.3. Potential adverse outcomes with respect to the sensitization and elicitation phases of allergy following 
exposure to immunotoxic agents. Adjuvant effects resulting from exposure prior to allergen sensitization can 
manifest as increased susceptibility to sensitization. Exposure concurrent to sensitization may lower the threshold 
of allergen exposure required to induce sensitization. Following sensitization to allergen, exposure to an 
immunotoxic agent either in the absence or presence of allergen may result in a lower threshold of exposure 
required to induce elicitation reactions or increased severity of elicitation symptoms. These effects may further 
increase susceptibility to elicitation reactions as result of physiological alterations such as compromised skin barrier 
integrity. Furthermore, isolated exposure to immunotoxic agents or concurrent to allergens in established allergic 
disease conditions may also contribute to the progression of chronic effects, such as airway remodeling, which can 
also further contribute to elicitation reactions.  
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Figure 1.4. Different morphologies of metal nanomaterials are shown: graphene sheets (A), silver nanoparticles (B), 
silver nanowires (C), gold nanorods (D), gold nanoparticles (E), nickel oxide nanoparticles (F), and copper oxide 
nanoparticles (G). 
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Figure 1.5. Metal nanomaterial/biological molecule interactions associated with different mechanisms of altered 

immunological activity are summarized. 
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CHAPTER 2: 

Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and 

augmentation of allergic response in an ovalbumin asthma model 

 

 

 

 

 

 

 

 

 

 

Adapted from Roach et al. (2019): 

Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and 

augmentation of allergic response in an ovalbumin asthma model 

Published in Inhalation Toxicology on October 4, 2019 

DOI: 10.1080/08958378.2019.1680775



 

196 
 

2.1. Abstract 

Various metal nanomaterials have been shown to cause inflammatory responses in the lung and 
subsequent injury to local tissue following respiratory exposure. Response severity has been consistently 
demonstrated to be dependent on particle size, as exposure to mass-equivalent doses of larger forms of 
the respective metal often lead to far less pronounced inflammatory effects. This discrepancy is reflective 
of the exponential increase in surface area characteristically seen in materials with nanoscale 
dimensions. Accordingly, exposure to surface area-normalized doses of metal nanomaterials and their 
larger-scale counterparts has been shown to mitigate differences in the subsequent magnitude of 
pulmonary inflammation. Although surface area has been established as a parameter critically involved 
in acute lung inflammation caused by some metal nanomaterials, less information exists regarding the 
impact of various dose parameters on other pulmonary responses. For example, it remains unclear if 
metal nanomaterial-induced alterations in pulmonary adaptive immune responses are similarly correlated 
to particle surface area, or if these effects are driven by other properties.   

 

In this study, the role of nickel oxide (NiO) mass and surface area in the induction of pulmonary 
inflammation and exacerbation of respiratory allergy was explored. To address this concept, 181 nm fine 
(NiO-F) and 42 nm ultrafine (NiO-UF) particles were thoroughly characterized and incorporated into an 
in vivo time course study and ovalbumin (OVA) asthma model. Particle toxicity was compared at equal 
masses of 40 µg and at equal surface areas of 192 mm2. For the time course study, female BALB/c mice 
were exposed once to particles or vehicle control by oropharyngeal aspiration and euthanized 1, 10, 19, 
or 29 d post-exposure, which represent critical time points in the OVA model. For the OVA model, mice 
were aspirated with particles on 0 d, sensitized to OVA via intraperitoneal injection on 1 and 10 d, 
challenged with OVA by aspiration on 19 and 28 d, and euthanized on 29 d.  

 

In the time course study, exposure to mass-normalized doses of NiO particles resulted in 
significantly elevated lactate dehydrogenase (LDH) levels, BAL neutrophil number, and mediastinal 
lymph node size in mice exposed to NiO-UF, which persisted to 29 d. However, normalization of NiO-UF 
dose for NiO-F dose surface area mitigated all differences between particles, suggesting that NiO surface 
area is correlated to the magnitude of pulmonary inflammation following exposure. In the OVA model, 
exposure to NiO, irrespective of particle size, dose mass, and dose surface area resulted in elevations 
in total IgE levels. NiO-induced alterations in the Penh response and number of BAL eosinophils appeared 
to correlate with particle size. Accordingly, NiO-F exposure was associated with enhanced Penh 
responses, whereas animals exposed to NiO-UF exhibited increases in BAL eosinophil burden. 
Mediastinal lymph node size, BAL neutrophil number, and BALF/serum cytokine profiles were largely 
conserved with respect to NiO dose surface area. Animals exposed to the higher surface area-based 
dose of NiO-UF exhibited cytokine profiles consistent with polarization towards a Th1/17-dominant state, 
whereas lower doses were associated with enhanced Th2 cytokine responses. These findings were 
consistent with the OVA-specific IgE responses in the corresponding groups, as increased levels were 
only observed in animals exposed to lower surface area-based doses of NiO-F and NiO-UF. 

 

Overall, these findings demonstrate that surface area is the primary property responsible for 
pulmonary injury and inflammation caused by NiO. Although many immune parameters involved in 
asthmatic responses also correlate with NiO dose surface area, exposure-induced alterations in some 
immune markers correlate better with other dose metrics. Collectively, these findings imply that surface 
area-based exposure limits may be effective in protecting against acute pulmonary inflammation following 
exposure to NiO nanoparticles, but may not be equally protective against immunomodulatory effects in 
the context of asthma. 
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2.2. Introduction 

The demand for nickel nanoparticles is expected to continue increasing in the coming decade, 

with potential to reach a global demand of 300 tons by 2030, according to some estimates (4). 

Applications for nickel nanoparticles underlying this demand include their use as additives in ceramics, 

lubricants, and magnetic coatings, as well as their incorporation into electronics and use as a catalyst 

(1407). Production of nickel nanoparticles and their subsequent uses render inhalation one of the major 

exposure routes of relevance for both workers and consumers. Likewise, the pulmonary toxicity of nickel 

nanomaterials has been examined in numerous studies. The decreased size profile of nickel 

nanomaterials has been consistently correlated with an increased magnitude of acute pulmonary injury 

and inflammation; however, it remains unclear if nanoscale nickel also induces size-specific pulmonary 

immune responses (1419, 1605). 

This lack of knowledge is concerning, given nickel’s notable immunotoxic potential (1606). Nickel 

is one of the metals most commonly associated with contact allergies, including ACD, as well as 

respiratory hypersensitivity responses leading to asthmatic symptoms and rhinitis (414, 1391, 1400). 

Similarly, inhalation exposure to nickel-containing materials is known to exacerbate existing asthmatic 

conditions (871, 1607). The magnitude of these effects has been correlated to various physico-chemical 

properties of nickel species including size, solubility, and oxidative potential (458, 1608-1610). These 

observations suggest that nickel nanomaterials, which exhibit many unique physico-chemical 

characteristics, may constitute novel immunotoxic agents capable of causing more detrimental allergic 

effects than larger forms of nickel particles. 

Characterization of nickel nanoparticles’ immunotoxic potential in the context of allergic disease 

will contribute to a notable knowledge gap and help effectively protect workers and consumers from these 

effects. Moreover, nickel nanoparticles also represent a material with the capacity to help delineate the 

relationships between nanomaterial physico-chemical properties and immunotoxic potential. Although 

several properties have been correlated to the magnitude of pulmonary inflammation caused by 

nanomaterials, far less information exists pertaining to similar relationships in the context of respiratory 

allergy. As a result, it remains unclear if the physico-chemical properties of metal nanomaterials 
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responsible for acute pulmonary inflammation are also implicated in the induction and modulation of 

pulmonary immune responses. 

The goal of these studies was to characterize the pulmonary immune effects of nanoscale nickel 

with respect to different dose metrics. Accordingly, two sizes of NiO particles were used in doses 

normalized for mass and surface area. First, a time course study was performed to evaluate differences 

in pulmonary injury and inflammation induced by the materials at time points critical to the following study. 

In the second study, the materials were incorporated into an OVA asthma model to determine if exposure 

to the particles prior to sensitization and elicitation, as may occur in an occupational setting, alters the 

severity of OVA-induced asthmatic response. Subsequently, the impact of NiO dose surface area and 

mass on both responses could be established and compared.  

 

2.3. Materials and Methods 

Material Characterization: 

Two different sizes of nickel (II) oxide (NiO) particles were obtained from Sigma-Aldrich (St. Louis, 

MO). The primary particle sizes were reported by the manufacturer as 50 nm (ultrafine, NiO-UF) and -

325 mesh (< 44 µm, fine, NiO-F). Both materials were thoroughly characterized prior to incorporation into 

in vivo studies. Specific surface area and surface chemistry were assessed on the powder form of the 

particles. After suspension in delivery vehicle, size, morphology, agglomeration, zeta potential, surface 

reactivity, and presence of endotoxin were assessed.  

Surface Area: Surface area of the NiO particles was measured on the powder form by gas 

adsorption using a Micromeritics ASAP2020 surface area analyzer and ultra-high purity nitrogen 

adsorbate. Specific surface area was determined by using the multipoint Brunauer, Emmett, and Teller 

(BET) method (1611).  

XPS Analysis: Surface elemental composition was analyzed via X-ray Photoelectron 

Spectroscopy (XPS; Rocky Mountain Laboratories Inc., Golden, CO). XPS was performed both before 

and after sputter etching with a 2.0 keV Ar+ ion beam, from which approximately 500 Å of material was 

removed from the surface. Analyses were performed with an Al ka x-ray source and charge neutralization 
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of the sample surface was achieved with the use of a low-energy electron flood gun. Results were 

reported as relative surface elemental composition of C, O, Na, Cl, Si, Ni, and Br for each sample. 

Particle Preparation in Dispersion Medium: For in vivo studies, NiO particles were suspended in 

a physiologically compatible vehicle for delivery to mice. Concentrated stock solutions of NiO particles 

were prepared in USP-grade phosphate buffered saline (PSB) and sonicated for 10 seconds at 10 W 

with a probe sonicator. Stock suspensions were then diluted into dispersion media (DM, 0.6 mg/ml mouse 

serum albumin + 0.01 mg/ml dipalmitoyl phosphatidyl choline in phosphate buffered saline), designed to 

mimic the biochemistry of the fluid lining the lung, prepared as described by Porter et al. (1612). Dosing 

solutions were prepared at concentrations of 0.8 mg/ml for both the fine and ultrafine particles, and 0.06 

mg/ml for the ultrafine particle, for delivery of a 40 µg and 3 µg dose, respectively. The 3 g dose of the 

NiO-UF was calculated by normalizing the ultrafine surface area to that of the 40 g dose of the fine 

particle. The samples were then sonicated at 10 W for 20 minutes on ice to dissipate heat generated 

from the sonication procedure. 

Primary Particle Size, Agglomerate Size, and Particle Morphology: Field emission scanning 

electron microscopy (FESEM, Hitachi Model S-4800) was employed to assess primary particle size and 

morphology of the particles. NiO particles were prepared in DM for microscopic analysis. Images were 

collected for both particles and the diameters of 250 particles from each sample were recorded using 

point count methods. Image J Software (Version X; National Institutes of Health; Bethesda, MD) was 

used for analysis of mean diameter and degree of polydispersity for each particle. Additionally, NiO 

particle sizes were assessed in DM using a (Nanosight NS300, Malvern Panalytical, United Kingdom). 

For further analysis of average agglomerate size in delivery vehicle, samples were evaluated by dynamic 

light scattering (DLS, Microtrac, Inc., San Diego, CA) and hydrodynamic diameter was recorded.  

Endotoxin Contamination: Determination of endotoxin presence in NiO samples was assessed 

using the Pierce Limulus Amebocyte Lysate (LAL) Chromogenic Endotoxin Quantitation Kit (Thermo 

Scientific; Waltham, MA) according to the manufacturer’s protocol. The presence of bacterial endotoxin 

catalyzes the activation of a proenzyme in the LAL assay, from which the substrate can be colorimetrically 

measured and correlated to the activation rate, which is proportional to the level of endotoxin present in 
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the sample. Both NiO samples were tested over multiple concentrations ranging from 5.0 - 0.25 µg/µl. 

Concentration of endotoxin was determined using a plate spectrophotometer at absorbance wavelength 

of 450 nm.  

Acellular Electron Spin Resonance: Surface reactivity of NiO particles was assessed by acellular 

electron spin resonance (ESR). The particles were prepared in DM at the doses to be used in the in vivo 

studies and combined with hydrogen peroxide. The subsequent generation of short-lived hydroxyl 

radicals were reacted with a diamagnetic compound, 5,5-dimethyl-1-pyrroline N-oxide (DMPO, spin trap) 

prolonging their existence and allowing for detection using an EMX spectrometer (Bruker Instruments 

Inc.; Billerica, MA) and a flat cell assembly (1613). The resultant wave forms were measured and radical 

generation quantified. 

Dissolution Potential: The rate of NiO dissolution was assessed for both particles in three 

simulated fluids representative of various biological compartments that materials were most likely to 

associate with following their aspiration. NiO-F and NiO-UF were prepared in doses and delivery vehicle 

identical to those in the in vivo studies. An aliquot of each particle suspended in DM was retained for 

analysis, and the remaining suspension was divided and combined with either artificial lysosomal fluid 

(ALF, pH 4.5, representative of the biochemical environment following phagocytosis by alveolar 

macrophages) or Gamble’s solution (GS, pH 7.4, representative of deep lung interstitial fluid), prepared 

according to previously-published procedures (1614).  

Triplicate samples of NiO particles suspended in DM, ALF, and GS were incubated at 37ºC and 

agitated daily. At 1, 10, 19, and 29 d, samples were centrifuged at 3500 rpm for 30 minutes and 2 mL of 

supernatant fluid was removed and stored at 4ºC until analysis. The concentration of soluble Ni was 

assessed in each sample by inductively-coupled plasma optical emission spectrometry (ICP-OES). 

Samples were diluted to 5 mL and analyzed using a Perkin Elmer Optima 5300DV ICP to determine µg 

Ni/mL in each sample. Concentrations were averaged between triplicate samples and results were used 

to calculate the amount of soluble nickel released from the original dose with respect to time. 

Zeta Potential in Dispersion Medium: Zeta potential of NiO particles was determined by measuring 

electrophoretic mobility in DM (pH 7.4). All measurements were performed at 25°C using a Malvern 
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Zetasizer Nano ZS90 (Worcestershire, UK) equipped with a 633 nm laser at a 90° scattering 

angle. Samples were equilibrated inside the instrument for two minutes, and five measurements 

consisting of five runs each were recorded. 

 

Animals 

Specific pathogen-free female BALB/cJ mice, 6-8 weeks of age were obtained from Jackson 

Laboratory (Bar Harbor, ME) for use in the time course study and allergy model. The BALB/c strain is a 

Th2-responder commonly used to evaluate IgE-mediated allergy (1615, 1616).  All mice were individually 

housed in polycarbonate ventilated cages with HEPA-filtered air in the AAALAC-approved National 

Institute for Occupational Safety and Health (NIOSH) Animal Facility, and provided food (Harlan Teklad 

Rodent Diet 7913) and water ad libitum in a controlled humidity temperature environment with a 12 h 

light/dark cycle. Animals were allowed to acclimate for one week in the facility prior to exposures. All 

procedures in the studies comply with the ethical standards set forth by Animal Welfare Act and the Office 

of Laboratory Animal Welfare (OLAW). The studies were approved by the NIOSH Health Effects 

Laboratory Division (HELD) Institutional Animal Care and Use Committee within the Center for Disease 

Control and Prevention in accordance with an approved animal protocol (protocol number 16-JR-M-015). 

 

In Vivo Exposures and Study Design 

Dose Determination: Occupationally relevant doses of NiO were calculated using the current 

OSHA-enforced permissible exposure limit (PEL, 1.0 mg/m3 time weighted average) and NIOSH 

recommended exposure limit (REL, 0.015 mg/m3 time weighted average) for insoluble nickel compounds. 

Assuming a 75 kg standard worker (31% sitting, 69% light exercise) and a 50 nm NiO particle (density: 

6.67g/cm2) with a deposition efficacy of 31.2 %, alveolar deposition was calculated as follows (1617): 

 

20,000 
mL/min x 10-6 

m3/mL x 
PEL: 1.0 mg/m3 or 

x 480 
min x 31.2% = 

2.995 mg/day 

REL: 0.015 mg/m3 0.045 mg/day 
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minute 
ventilation  

air to liquid  
volume  

conversion 
 exposure limit  exposure 

time  deposition 
efficiency  

alveolar deposition  
in a standard  

worker 

 

The daily human alveolar deposition was then normalized to the surface area of the mouse lung 

and the number of exposure days at the PEL and REL were determined for a 40 µg dose using the 

following equation: 

 

2.995 mg/ day 
x 0.065 m2 = 

1.9 µg/ day or 
/ 40 µg = 

PEL: 21 days 

0.045 mg/day 0.29 µg/day REL: 1400 days 

human alveolar 
deposition  mouse lung 

surface area  mouse alveolar 
deposition  selected 

dose  representative exposure 

  

Accordingly, the 40 µg dose of NiO administered to mice was representative of three weeks of 

exposure at the current OSHA PEL and 4 years of exposure at the NIOSH REL. NiO-F and NiO-UF 

surface area measurements were then used to calculate doses normalized for both surface area and 

mass between particles, yielding three total NiO treatment groups: NiO-1 (40 µg NiO-F), NiO-2 (3 µg NiO-

UF), and NiO-3 (40 µg NiO-UF). 

Time Course Study: To evaluate the role of NiO particle size, mass, and surface area on 

pulmonary injury and inflammation at critical time points in the allergy model, a time course study was 

conducted. On day 0, three sets of mice were exposed by oropharyngeal aspiration to vehicle control 

(DM), 40 µg NiO-F, 3 µg NiO-UF, or 40 µg NiO-UF. Treatment groups and corresponding exposures are 

shown in table 2.1.  Mice were fully anesthetized with isoflurane, placed on a slanted board, and 

suspended by the incisors. The mouth was opened, tongue moved aside, and a 50 µl aliquot of sample 

was pipetted on the base of the tongue. The animal was restrained until two full breaths were completed 

and returned to its cage, placed on its side, and monitored for recovery from anesthesia. Mice were 

humanely euthanized with an overdose of sodium pentobarbital euthanasia solution (100-300 mg/kg body 

weight; Fort Dodge Animal Health; Fort Dodge, IA) at 1 day, 10 days, 19 days, or 29 days post-exposure. 

The time points were selected as they corresponded to critical time points in the sensitization and 
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challenge phases of the asthma model. The lungs from one set of mice (n = 8 per group per time point) 

underwent bronchoalveolar lavage (BAL) to collect fluid and cells for pulmonary toxicological analyses. 

In the same group of animals, serum was collected, and the spleen and mediastinal lymph nodes were 

harvested for cell counts and phenotyping. In another set of mice (n = 6 per group per time point), whole 

blood was taken for immune cell phenotyping and lungs were fixed with formalin for histopathological 

analysis. In the last set of mice (n = 6 per group per time point), lungs were isolated, lyophilized and used 

to evaluate lung burden of NiO at the respective time points to determine particle clearance over time. 

Ovalbumin Asthma Model: In order to evaluate the potential for NiO to exacerbate allergy as a 

function of mass, surface area, and or size, the same NiO-F and NiO-UF doses from the time course 

study were incorporated into an OVA allergy model. On day 0, mice were exposed to vehicle control or 

NiO particles by oropharyngeal aspiration. On days 1 and 10, mice were sensitized to chicken egg OVA 

via intraperitoneal injection with alum adjuvant (0.9 μg OVA + 0.5 mg alum in 200 μl PBS). Control animals 

were injected with 200 μl USP-grade PBS. A 150 µL aliquot of blood was collected from the tail vein of 

mice on day 14 to yield serum and confirm the presence of circulating OVA-specific IgE, indicative of 

successful sensitization. On days 19 and 28, mice were challenged via oropharyngeal aspiration to 50 µl 

sterile PBS or OVA (125 μg/50 μl sterile PBS) under isoflurane anesthetic. Directly following the second 

challenge (day 28) mice underwent whole body plethysmography to assess respiratory response to 

allergen challenge. Mice were euthanized on day 29 by sodium pentobarbital euthanasia solution 

overdose. The study consisted of four particle exposure groups aspirated with DM, 40 µg NiO-F, 3 µg 

NiO-UF, or 40 µg NiO-UF on day 0, each with a non-sensitized particle control group and OVA-sensitized 

group, for a total of eight groups in the study. A schematic of the treatment groups and dosing regimen 

for this study is shown in figure 2.1. 

 

Endpoints of Assessment: 

Post-Allergen Challenge Lung Function Assessment: In the asthma model, airway response to 

allergen challenge was measured using an unrestrained whole body plethysmography system (Buxco 

Research Systems, Wilmington, NC). Directly following the second allergen challenge on day 28, mice 



 

204 
 

were placed in individual plethysmograph chambers and given 5 minutes to acclimate prior to the start of 

measurements. Enhanced pause (Penh), an indicator of airway resistance, was measured and recorded 

every 30 seconds for 6 hours for each mouse. Following the completion of measurements, mice were 

returned to their cages and euthanatized the following day. Penh measurements from whole body 

plethysmography were plotted for each animal, area under the curve (AUC) was calculated, and mean 

AUC for each treatment group was calculated. 

BAL Cellular and Fluid Analysis: BAL was performed on the lungs in a set of mice from both the 

time course study and allergy model in order to obtain pulmonary cells for phenotypic analysis and fluid 

for analysis of biochemical indicators of lung injury and inflammation. Following euthanasia, the trachea 

was cannulated, the chest cavity was opened, and BAL was performed on the whole lungs. The acellular 

fraction of the first lavage was obtained by filling the lung with 0.6ml PBS, massaging for 30 seconds, 

and withdrawing. This concentrated aliquot was retained, kept separate, and designated as the first 

fraction. The following aliquots were 0.6 ml in volume, instilled once with light massaging, withdrawn, and 

combined until a 2.4 ml volume was obtained. For each animal, both lavage fractions were centrifuged 

(10 minutes, 1600 rpm) and the cell pellets were combined and resuspended in 1 ml PBS for cell counts, 

phenotyping, and microscopic analysis. The acellular fluid from the first fraction was retained for analysis 

of LDH activity and quantification of cytokines.  

The total numbers of BAL cells collected from mice were counted using a Coulter Multisizer II 

(Coulter Electronics; Hialeah, FL) within the size range of 4.5 µm and 20 µm. 75,000 cells were spun 

down onto slides for visual analysis with a Cytospin 3 centrifuge (Shandon Life Sciences International; 

Cheshire, England) and labeled with Leukostat stain (Fisher Scientific; Pittsburgh, PA) to differentiate 

alveolar macrophages, eosinophils, lymphocytes, and neutrophils. Another aliquot of cells were stained 

for surface markers for phenotype determination via flow cytometry as described below.  

Measurements of LDH activity in BALF were obtained using a Cobas Mira analyzer (Roche 

Diagnostic Systems; Montclair, IN). LDH activity was quantified by detection of the oxidation of lactate 

coupled to the reduction of NAD+ at 340nm.  
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Whole Blood Cellular Differentials: For both studies, whole blood was collected from a set of mice 

via the abdominal aorta following euthanasia. Erythrocyte, leukocyte, and platelet counts, in addition to 

leukocyte differentials (lymphocytes, monocytes, neutrophils, eosinophils, and basophils) were assessed 

using an Idexx ProCyte Dx Hematology Analyzer (Idexx Laboratories; Westbrook, ME). 

Lymphocyte Differentials by Flow Cytometry: Lymph nodes and spleens were harvested from 

mice and processed between frosted microscope slides to yield single cell suspensions in sterile PBS. 

Concentrations of cells from each tissue were determined by identical methods used for enumeration of 

BAL cells.  

Lymphocyte phenotypes were determined for BAL, LN, and spleen cells. 500,000 cells from each 

tissue were suspended in staining buffer (PBS + 1% bovine serum albumin + 0.1% sodium azide) 

containing Fc receptor blocking anti-mouse CD16/32 (BD Biosciences). Cells were incubated for 5 

minutes, washed, and resuspended in staining buffer containing fluorochrome-conjugated antibodies. 

BAL, LN and spleen cells were stained with a panel of cell surface markers for lymphocyte-differentiation. 

CD2-BV605, CD3-APC, CD4-FITC, CD8-PE, CD44-APC-R700, CD45-PerCP, CD45R(B220)-PE-Cy7, 

and CD86-BV421 (BD Biosciences) were used to discriminate between populations of CD4+ T-

lymphocytes, CD8+ T-lymphocytes, B-lymphocytes, and NK cells, as well as determine the 

corresponding activation state. An additional aliquot of BAL cells were stained with a second panel of 

markers to allow for differentiation of myeloid cell subsets. CD11b-PE-CF594, CD11c-APC-R700, CD24-

BV605, CD45-PerCP, CD64-PE, CD86-PE-Cy7, MHC II-BV515, Ly6G-APC, Siglec-F-APC-Cy7 (BD 

Biosciences) were employed to differentiate between eosinophils, neutrophils, macrophages, and 

dendritic cells (1618). Cells were incubated for 30 minutes, washed, and fixed in 100 µl Cytofix Buffer 

(BD Biosciences). Compensation controls were prepared using corresponding cell types stained with a 

single fluorophore. For each sample, 100,000 events were recorded on an LSR II flow cytometer (BD 

Biosciences, San Diego, CA). In all analysis, doublet exclusion was performed and cellular populations 

were gated on using FSC-A x SSC-A parameters, prior to subsequent analysis. All data analysis was 

performed using FlowJo 7.6.5. Software (TreeStar Inc., Ashland, OR).  
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BAL Fluid and Serum Proteins: Cytokines in the BAL fluid and serum of mice in the time course 

study and allergy model were quantified using a Milliplex MAP Kit magnetic bead panel (EMD Millipore 

Corporation, Billerica, MA) and analyzed on a Luminex 200 system (Luminex Corporation, Austin, TX). 

For both studies, cytokines analyzed included interleukin (IL)-2, 4, 5, 6, 10, 12p40, 12p70, 13, 17, eotaxin, 

tumor necrosis alpha (TNF-α), interferon gamma (IFN-γ), and granulocyte macrophage colony 

stimulating factor (GM-CSF). 

Levels of circulating total and OVA-specific IgE were assessed in mice of the allergy model by 

ELISA. Serum was diluted 1:10 and total IgE was assessed using the Mouse IgE ELISA kit (Innovative 

Research; Novi, MI) according to manufacturer instructions. Serum was diluted 1:25 and assessed for 

OVA-specific IgE levels using the Anti-Ovalbumin IgE (mouse) ELISA Kit (Caymen Chemical Company; 

Ann Arbor, MI) according to the manufacturer’s specifications.   

Lung Histopathology and Particle Clearance: For histopathological analysis, whole lungs from 

mice in the time course study and allergy model (n = 6 per group per time point) were inflated with 10% 

neutral buffered formalin for fixation, paraffin embedded, sectioned, and stained with hemotoxylin and 

eosin stain. Slides were quantitatively analyzed by a certified veterinary pathologist (Charles River 

Laboratories, Frederick, MD), who was blinded to the treatment groups. Indices of inflammation, injury, 

and fibrosis were scored on scale of 0-5, where 0 = no observed effect, 1 = minimal response, 2 = mild 

response, 3 = moderate response, 4 = marked response, and 5 = severe response, for both studies. For 

histopathology in the OVA models, additional parameters with relevance to allergic disease were 

assessed, including thickening around airways (epithelium and or smooth muscle), eosinophil and 

lymphocyte influx, and development of bronchus-associated lymphoid tissue (BALT).  

To determine the rate of NiO-F and NiO-UF clearance from the lung, whole lungs (n = 6 per group) 

from mice in the time course study were isolated, lyophilized, and weighed to obtain the dry weight. 

Concentration of nickel in lung tissue 1, 10, 19, and 29 days post-exposure was determined by 

inductively-coupled plasma mass spectrometry (ICP-MS; ALS Environmental, Kelso, WA) and reported 

as µg Ni/mg tissue. This information was then multiplied by the dry weight of the whole lungs for each 
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animal, expressed as percent Ni mass of originally-administered dose (40 µg) remaining at each time 

point, and averaged for each group. 

 

Statistical Analysis:  

Statistical analyses were conducted with GraphPad Prism version 7 (San Diego, CA). Results 

from all studies are expressed as means ± standard error and considered statistically significant at p < 

0.05. For the time course study, treatments were compared by one-way analysis of variance (ANOVA) 

followed by a post hoc Student’s t-test. All treatment groups from the allergy model, irrespective of 

sensitization status, were compared using ANOVA and Student’s t-test. For some endpoints in the OVA 

model, NiO-exposed/OVA-sensitized groups were analyzed independently of non-sensitized groups, and 

results were presented as fold-change over OVA control levels. Histology scores were analyzed using 

nonparametric Wilcoxon rank-sum tests using JMP version 13 (SAS Institute, Cary NC) (p<0.05).   

 

2.4. Results 

Material Characterization: 

NiO-F and NiO-UF particles exhibited unique color characteristics that were visible upon visual 

examination. NiO-F particles exhibited a bright green appearance, whereas NiO-UF particles were 

black/gray. Using FESEM microscopic images, 250 particles were measured to determine average 

primary particle size of both NiO particles. Measurements indicated an average primary particle size of 

181 nm and 42 nm for NiO-F and NiO-UF, respectively. Average agglomerate size in DM was also 

measured in the micrographs and was found to be 640 nm for NiO-F and 190 nm for NiO-UF. Microscopic 

analysis of NiO-F and NiO-UF particles also revealed differing morphologies between the two materials. 

NiO-F particles were generally jagged with a layered appearance (figure 2.2. A), whereas NiO-UF 

particles were consistently spherical in shape (figure 2.2. B) with a comparatively smoother surface 

structure.  

Similar to the findings from microscopic measurements, DLS analysis also indicated a size 

difference in agglomerates, reporting hydrodynamic diameters of 321 nm for NiO-F and 109 nm for NiO-
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UF (figure 2.3). Specific surface areas of the particles measured by BET analysis were 4.79 ± 0.27 m2/g 

for NiO-F and 64.49 ± 2.98 m2/g for NiO-UF particles. XPS analysis showed similar surface chemistries 

between NiO-F and NiO-UF particles with compositions consisting primarily of nickel and oxygen with 

various trace elements detected (figure 2.4). Slight variations in nickel:oxygen ratios between NiO-F and 

NiO-UF samples were observed (1:1 and 1.3:1, respectively). Assessment of endotoxin presence on NiO 

particles confirmed undetectable levels (below 0.1 EU/ml) in both samples.  

Surface reactivity analysis by acellular ESR resulted in no hydroxyl radical generation for both 

particles in response to hydrogen peroxide (figure 2.5). NiO-F and NiO-UF dissolution kinetics were 

shown to be dependent on the pH of the suspension fluid (figure 2.6). Minimal release of ions was 

observed from either particle when suspended in DM or GS, irrespective of time. However, suspension 

of particles in ALF was associated with increased dissolution and time-dependent increases in the 

concentration of nickel ions released. No statistically significant differences in the rate of dissolution were 

observed between NiO-F and NiO-UF at any time point, irrespective of physiological media type. 

Collective findings from physico-chemical characterization of NiO-F and NiO-UF are summarized in table 

2.2. 

 

NiO Time Course Study: 

Mice were oropharyngeally aspirated with a single dose of NiO-F or NiO-UF in doses normalized 

for particle mass (40 µg) or surface area (192 mm2, 3 µg) (table 2.1). Subsequently, mice were euthanized 

1, 10, 19, or 29 d post-exposure in order to evaluate pulmonary toxicity with respect to NiO dose mass 

and surface area . 

Evaluation of Pulmonary Injury and Inflammation: The degree of particle-induced pulmonary injury 

and inflammation was assessed by quantification of lavage fluid LDH levels, total BAL cell number, and 

number of BAL neutrophils at all time points (figure 2.7). No statistically significant alterations in any of 

these parameters were observed 1 d post-aspiration. Among the time points examined in this study, NiO-

induced injury and inflammation was greatest for all groups at 10 d post-aspiration. When administered 

in mass-equivalent doses of 40 µg, NiO-UF (NiO-3 group) induced a greater degree of lung injury and 
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inflammation than NiO-F (NiO-1 group). LDH was significantly elevated in the NiO-3 group compared to 

all other groups at 10 and 19 d (figure 2.7. A). LDH was elevated in the NiO-1 group at 10 d, only when 

compared to control, and it did not differ from the NiO-2 group, for which dose was normalized to the 

surface area of NiO-1. LDH levels returned to control values by 29 d for all groups. No significant 

increases in total BAL cell number (figure 2.7. B) or lung neutrophils (figure 2.7. C) were observed in the 

NiO-1 or NiO-2 groups, which had similar surface area by dose, when compared to control (or each other) 

at any time point in the study. However, the NiO-3 group exhibited significantly increased numbers of 

total BAL cells and lung neutrophils at 10 d, and lung neutrophil number remained significantly elevated 

compared to all groups for the duration of the time course.   

Total Lymph Node Cell Number and Cell Phenotyping: Similar to the measures of lung injury and 

inflammation, variations in mediastinal lymph node size and cellular composition were observed in 

response to the mass-normalized doses of NiO-F and NiO-UF. When administered at 40 µg, NiO-UF 

exposure (NiO-3 group), which had the highest surface area by dose, caused an earlier onset and 

persistence of lymph node expansion, as well as a significantly greater maximal cell number at 10 and 

19 d, when compared to the same mass-based dose of NiO-F (NiO-1 group) (figure 2.8). Lymphocyte 

numbers in the surface area-normalized doses, NiO-1 and NiO2, significantly increased over control 

beginning at 19 d, but did not differ significantly from each other at 1, 10, or 19 d. However, at 29 d lymph 

node expansion continued in the NiO-2 group to a similar level as the NiO-3 group, and this did not occur 

in the NiO-1 group. Despite the increases observed in total lymphocyte population cell numbers, ratios 

of lymphocyte phenotypes did not differ significantly between groups at any time point (table 2.3). A 

similar trend was observed with respect to lymphocyte populations in the spleen (table 2.4). 

Cytokine Analysis: BALF cytokine levels in each group at each time point were consistent with 

the corresponding inflammatory response illustrated by other measures of toxicity. Generally, cytokine 

responses were surface area-dependent. Exposure to the higher surface area-based dose resulted in 

more pronounced and persistent increases in several pro-inflammatory cytokines in the BALF (table 2.5), 

including IL-6, IFN-γ, and TNF-α which persisted until the final endpoint (figure 2.9).  
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Serum cytokine levels demonstrated a similar trend as BAL fluid cytokines (table 2.5). However, 

significant differences over DM control levels were only observed in the NiO-3 group with respect to TNF-

α at 19 d and IFN-γ at 1, 10, and 19 d. 

Circulating White Blood Cell Populations: Phenotypic differentiation of whole blood leukocyte 

(WBC) cell populations was performed to identify any alterations in circulating immune cell frequencies 

at all time points in the NiO time course study. Increased numbers of total WBC were only observed in 

the NiO-2 group at 10 and 19 d, when compared to DM control numbers at corresponding time points 

(table 2.6). Compared to DM controls, the percent of circulating WBC constituted by neutrophils was 

significantly decreased at 1 d in the NiO-2 group and at 10 d in the NiO-3 group. At 19 d, the NiO-3 group 

exhibited an elevated proportion of circulating neutrophils when compared to DM controls. 

Lung Histopathology and Particle Clearance: Histopathological analysis of lung tissue from DM 

controls and animals exposed to the 40 µg dose of fine particle (NiO-1) and the ultrafine particle (NiO-3) 

were evaluated for markers of injury and inflammation by a board-certified veterinarian who was blinded 

to treatment groups. Histopathological findings are summarized for each group at each time point in table 

2.7. Results confirmed the presence of particles in alveolar macrophages of all NiO-exposed groups, the 

temporal progression of which corresponded to microscopic and ICP-MS analysis and Ni clearance 

findings discussed below. The degree of inflammatory cell infiltration reported by the histopathological 

analysis was also in accordance with the findings from differential phenotyping performed in house. 

Peribronchiolar/perivascular edema and cellular accumulation was more severe in animals exposed to 

NiO-3 compared to NiO-1, and NiO-3-induced tissue injury was still prominent 29 d post-exposure. 

To evaluate particle clearance over time, a separate group of animals were exposed to an equal 

mass dose of 40 µg of the fine particle NiO-1 or the ultrafine particle NiO-3, and Ni lung burden was 

measured at 1, 10, 19, and 29 d post-exposure. Results showed that lung Ni levels were comparable 

between animals exposed to both particles 1 d post-exposure; however, by 10 d, lungs of animals 

exposed to the fine particle contained 62% of the original dose, whereas lungs of animals exposed to the 

ultrafine particle only contained 47% of the original dose Ni mass (figure 2.10). At 19 d and 29 d post-
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exposure, lungs from both groups contained approximately 39% and 32% of the original Ni dose mass, 

respectively.  

Dark field microscopy and light microscopy were used to visualize the particle burden in alveolar 

macrophages with respect to time post-exposure. Collectively, the degree of particle loading and 

frequency of particle-laden alveolar macrophages in each group appeared consistent with the clearance 

data obtained from the whole lung Ni burden analysis. Figure 2.11 shows images of particle-laden 

alveolar macrophages from each group 10 d post-exposure.  

 

NiO OVA Asthma Model 

For the OVA asthma model, animals were administered the same particle doses from the time 

course study by oropharyngeal aspiration on 0 d. On 1 and 10 d, mice were sensitized to OVA (OVA, 

NiO-1A, NiO-2A, and NiO-3A groups), or administered vehicle to serve as non-sensitized control groups 

(DM, NiO-1, NiO-2, and NiO-3 groups). Aspiration OVA challenge occurred on 19 and 28 d, lung function 

was measured following the second challenge, and mice were euthanized the following day (figure 2.1)   

Day 14 Post-Sensitization Serum IgE Evaluation: Following NiO aspiration and two sensitization 

procedures, levels of circulating total IgE and OVA-specific IgE were evaluated on 14 d to confirm 

successful sensitization of allergy groups (figure 2.12). Total IgE levels were elevated in all sensitized 

groups compared to non-sensitized groups at 14 d. The presence of OVA-specific IgE exclusively in all 

sensitized groups  indicated successful sensitization to OVA. No  statistically significant differences in 

total or OVA-specific IgE levels were observed between any groups with shared sensitization status. 

Day 28 Post-Allergen Challenge Lung Function Assessment: OVA-sensitized animals were 

challenged with OVA by aspiration on 19 d and 28 d, while control animals were aspirated with PBS. 

Directly following the second challenge on 28 d, mice were placed in whole body plethysmography 

chambers to monitor airway function, where Penh values were recorded every 30 seconds for 6 hours for 

each animal. A time course depiction of Penh values for a single representative animal from DM, OVA, 

and all NiO-exposed/OVA sensitized groups is shown in figure 2.13. A. Calculation of mean Penh area 

under the curve (AUC) for each group showed a more robust pulmonary response to OVA challenge in 
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the NiO-1 fine particle group, which was not present in either ultrafine particle group (figure 2.13. B). No 

differences in airway function were observed between the non-sensitized groups (data not shown).  

Day 29 Lung Cellular Influx and Phenotyping: Mice were euthanized on 29 d and the lungs were 

lavaged to obtain cellular and fluid fractions for analysis. In the non-sensitized groups, there was an 

increase in total BAL cells in the NiO-3 compared to all other groups, which was consistent with findings 

from the time course study (figure 12.14 A). The total number of BAL cells was significantly increased in 

all OVA sensitized groups compared to non-sensitized groups, but no significant differences were 

observed between any sensitized groups. Phenotypical differentiation of BAL cells in the sensitized 

groups showed significant increases in percent lung eosinophils (figure 2.14. B, table 2.8) in groups 

exposed to NiO-UF (NiO-2A, NiO-3A), independent of dose mass or surface area. When compared to 

OVA control, percent lung neutrophils (figure 2.14. C) was similar between groups exposed to surface 

area-normalized doses (NiO-1A, NiO-2A). A significant increase in percent lung neutrophils was only 

observed in animals exposed to the highest NiO dose with respect to surface area, the NiO-3A group, 

when compared to OVA control. 

Vaculoated macrophages were commonly observed in the BAL of animals, an observation most 

prominently seen in animals exposed to NiO-UF (figure 2.15. A-C). Multinucleated giant cells were also 

exclusively observed in animals of the NiO-3A group (figure 2.15. D). 

Day 29 Lymph Node and Spleen Cell Phenotyping: Enumeration of mediastinal lymph node cells 

showed that all OVA-sensitized groups had elevated total lymph node cell numbers compared to non-

sensitized groups (figure 2.16). Among the NiO-exposed/OVA-sensitized animals, lymph node number 

in the NiO-3A group was significantly increased when compared to all other treatment groups. 

Phenotyping of lymph node cells (figure 2.16. B, table 2.9) showed consistent ratios of CD4+ T-cells, 

CD8+ T-cells, and B-cells between OVA, NiO-1A, and NiO-2A groups. However, in the NiO-3A group, 

the mediastinal lymph nodes contained a significantly increased proportion of CD4+ T-cells, and a 

significantly decreased proportion of B-cells compared to all other OVA-sensitized groups. 

In the spleen, a similar trend was observed. OVA, NiO-1A, and NiO-2A groups all had similar 

proportions of CD4+ T-cells, CD8+ T-cells, and B-cells. In comparison, animals of the NiO-3A group had 
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significantly lower percentages of B-cells and increased percentages of both CD4+ and CD8+ T-cells 

(table 2.10).  

Day 29 Serum Total and OVA-Specific IgE Levels: Total circulating IgE levels at 29 d were 

significantly increased in all OVA-sensitized groups (purple bars) compared to non-sensitized groups 

(orange bars), as shown in figure 2.17. Moreover, all OVA-sensitized groups exposed to NiO, irrespective 

of particle size, dose mass, or dose surface area, had significantly increased total IgE levels when 

compared to OVA control levels. OVA-specific IgE levels, shown as the hatched area of the bars in figure 

2.17, were also quantified from serum and revealed no significant difference between the surface-area 

normalized groups (NiO-1A and NiO-2A) when compared to OVA control levels. Also, when compared 

to levels of serum total IgE, the proportion of OVA-specific IgE was similar between OVA control, NiO-

1A, and NiO-2A groups, ranging from 56-63%. Contrarily, OVA-specific IgE levels in the NiO-3A group 

only comprised 19% of the total IgE and were significantly lower than the other NiO-exposed/OVA-

sensitized groups. 

Day 29 Cytokine Analysis: Analysis of helper T-cell cytokine levels in BAL fluid showed that, when 

compared to OVA control levels, alterations in cytokine expression tended to be similar among groups 

exposed to equal doses of NiO with respect to surface area (table 2.11, figure 2.18). The NiO-1A and 

NiO-2A groups, which were exposed to NiO-F and NiO-UF, respectively, at equivalent surface areas of 

192 mm2 showed minimal changes in Th1/17 cytokine levels but robust increases in Th2 cytokines when 

compared to OVA control. Notably, IL-4 levels were increased over 6-fold from OVA control and NiO-3A 

levels, consistent with these groups’ elevated levels of OVA-specific IgE. Contrarily, animals of the NiO-

3A group that were exposed to the higher ultrafine NiO surface area-based dose of 2580 mm2 showed 

minimal increases in Th2 cytokines when compared to OVA controls. Rather, Th1/17 cytokines were 

significantly elevated when compared to NiO-1A, NiO-2A, and OVA control groups. While all NiO-treated 

OVA-sensitized groups had elevated IL-6 levels in the BAL fluid compared to OVA control animals, the 

degree of IL-6 increase appeared to be better correspond to NiO dose mass. Interestingly, the groups 

exposed to the higher mass of NiO (40 µg) had lower levels of BALF IL-6 compared to the group exposed 

to the lower 3 µg NiO-UF dose.  
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Serum cytokine levels demonstrated a similar trend between groups exposed to NiO doses with 

equivalent surface areas (figure 2.19, table 2.11). No clear trend was observed with respect to selective 

modulation of Th1/17 and Th2 cytokine levels in NiO-1A and NiO-2A groups; however, exposure to the 

higher NiO surface area (NiO-3A), resulted in consistent elevations in Th1/17 cytokines and modest 

decreases in Th2 cytokines compared to OVA control levels- a similar pattern to that observed in the BAL 

fluid. Alterations in serum IFN-γ levels appeared unique to each group, as levels decreased over 5-fold 

in the NiO-1A group, remained equal to OVA control levels in the NiO-2A group, and increased 2-fold in 

the NiO-3A group. 

A heat map depicting control level fold-change alterations in Th1/17 and Th2 BALF/serum 

cytokines in sensitized groups of the NiO OVA study are shown in figure 2.20. 

Day 29 Whole Blood Cell Differentials: Circulating WBC populations were differentiated and are 

shown in table 2.12. 

Day 29 Lung Tissue Histopathological Analysis: Lung tissue from all groups (n = 6) was collected 

for histological analysis of various parameters associated with respiratory allergy. The scores for each 

animal in each category of pathology are presented in table 2.13. There were no notable observations 

made with respect to asthma-associated cellular or anatomical alterations in non-sensitized groups.  

In sensitized animals, histopathological analysis reported inflammatory cell infiltration that was 

conducive with the differential phenotyping of inflammatory cells performed by flow cytometry. 

Macrophage accumulation and vacuolation was observed in all groups, and the degree of eosinophil and 

neutrophil influx varied between NiO-1A, NiO2-A, and NiO-3A groups, but corresponded with the findings 

generated by flow cytometry. Hypertrophy of the bronchial epithelium was observed in all groups, but 

most frequently observed in the NiO-3A group (80% incidence). Peribronchiolar edema and airway 

exudate was also observed in all sensitized groups, but no significant differences between treatment 

groups were noted.  
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2.5. Discussion 

The goal of these studies was to investigate the role of dose metrics in immune toxicity following 

pulmonary exposure to NiO particles of different sizes. Specifically, studies were designed to determine 

if exposure to NiO particles prior to sensitization and elicitation altered allergic responses. In the time 

course study, NiO-UF exposure was associated with a greater degree of lung injury and inflammation 

than NiO-F when administered in equal mass doses (NiO-3 vs NiO-1). When NiO-UF was administered 

in a dose normalized for the surface area of the NiO-F dose (NiO-2), this discrepancy was mitigated. 

Contrarily, in the OVA asthma model, immune endpoints related to the allergic response were 

differentially impacted by multiple NiO-F and NiO-UF dose metrics. NiO exposure, irrespective of any 

metric, resulted in elevated circulating total IgE levels at 29 d. Exposure to surface area-normalized doses 

(NiO-1A and NiO-2A) resulted in similar responses with respect to OVA-specific IgE levels, BALF/serum 

cytokines, and lung neutrophils. However, lung eosinophil and Penh response appeared better correlated 

to particle size with NiO-F (NiO-1A) exposure resulting in greater airway reactivity (increased Penh) and 

NiO-UF (NiO-2A and NiO-3A) resulting in increased lung eosinophil burden. 

Characterization of NiO-F and NiO-UF yielded data consistent with expected results. The primary 

particle size of NiO-UF (42 nm) was comparable to vendor size specifications (50 nm), whereas NiO-F 

particles (181 nm) were substantially smaller than expected (vendor reporting: -325 mesh, < 44 µm). 

However, NiO-F particles were still significantly larger than NiO-UF.  

The average agglomerate size for both particles varied depending on the method of analysis. 

According to FESEM-based measurements, the agglomerate sizes for NiO-F and NiO-UF were 640 and 

190 nm, respectively. Comparatively, measurements from DLS reported sizes of 321 and 109 nm for 

NiO-F and NiO-UF. This discrepancy may have arisen as a result of the different states of the particles 

in each analysis. The particles were initially prepared for both analyses using identical methods; however, 

microscopic analysis required drying of the particles on a filter, whereas DLS measurements were taken 

while particles were still suspended in the delivery vehicle. As a result, discrepancies in the agglomerate 

size reported by each method may reflect phase-specific behavior of the particles with respect to 

particle/particle interactions 
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Although many metal oxide nanoparticles are associated with the generation of oxygen radical 

species, this behavior was not observed when both NiO particles were characterized by acellular ESR in 

this study. This finding is consistent with similar findings reporting radical quenching by NiNP and 

antioxidant-like behavior in an in vitro ESR assay (1619, 1620). 

Ex vivo analysis of NiO-F and NiO-UF dissolution behavior generated results consistent with 

previous reports (1621). The lack of significant ion release by NiO in neutral solutions has been frequently 

reported. Similarly, the enhanced rate of Ni ion release observed following particle suspension in ALF 

has been previously characterized by many studies (1424, 1622). 

XPS analysis revealed that nickel and oxygen were the most prominent elemental constituents 

present on the surface of NiO-F and NiO-UF. The peak energies generated by both samples were 

consistent with a similar mixed surface composition containing NiO, Ni2O3, and Ni(OH)2. However, 

differences in the proportions of these compounds were detected on the surfaces of NiO-F/NiO-UF. As 

a result, the ratio of surface Ni and O content varied slightly between the two particles; NiO-F particles 

exhibited a surface Ni:O ratio of 1:1, whereas the NiO-UF particles exhibited a slightly elevated proportion 

of nickel on the surface and a Ni:O ratio of 1.3:1. The nickel-enriched surface chemistry of NiO-UF was 

suggested to be a contributing factor in the distinct coloration observable between the two particles. NiO 

particles can exhibit notable variations in coloration ranging from light green to greenish gray and black. 

The stoichiometric composition of surface nickel oxide species, particle size, crystal structure, presence 

of elemental contaminants, and surface irregularities are all properties associated with the coloration 

discrepancies seen between different NiO powders (1409, 1623). 

The nature of NiO-induced pulmonary inflammation and the kinetics of resolution observed in the 

NiO  time course study are consistent with other studies that have investigated NiO nanoparticle-induced 

acute lung inflammation in vivo (1413, 1419, 1624-1626). Some metal nanomaterials have been 

associated with the induction of eosinophil-dominant inflammation in the lung, but the neutrophilic-

dominant inflammation observed following NiO exposure in this study (figure 2.7) is in agreement with 

other existing investigations of NiO nanoparticles (1414, 1627-1631). The magnitude of lung injury and 

inflammation caused by NiO was correlated to surface area of the administered particles in this study; 
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the ultrafine particle at the high dose (highest surface area and greater number of particles per mass) 

caused the greatest degree of injury and inflammation (figure 2.7), followed by the fine particle at the high 

dose and the ultrafine particle at an equivalent surface area-based dose, particularly at 10 d post-

exposure.  

Although dose metrics including particle number and particle volume have been occasionally cited 

as parameters predictive of the toxic potential of some meal nanomaterials, a similar association between 

lung inflammation and NiO surface area has been previously reported in other studies (696, 764, 1250, 

1355, 1605, 1632). Surface area has also been reported to be the dose parameter that best represents 

the magnitude of acute pulmonary toxicity induced by other metal-based nanomaterials including titanium 

dioxide (TiO2NP) and various carbon-based materials (35, 1633-1636). Contrarily, dose mass has been 

shown to better predict the severity of lung injury caused by other metal-based nanoparticles including 

zinc oxide (ZnONP), cobalt oxide (CoONP), and copper oxide (CuONP) (1637, 1638).  

Inconsistencies between the dose metric best correlated to the toxic potential of different metal 

nanomaterials often reflect variations in their mechanisms of toxicity. For example, particle number has 

been largely implicated as a parameter best correlated to the toxic potential of nanomaterials exhibiting 

long, fiber-like morphologies. Rigid nanofibers and nanowires with high aspect ratios are often associated 

with the induction of frustrated phagocytosis, compromised locomotion, and or death of alveolar 

macrophages following pulmonary exposure. Since a single nanofiber has the potential to trigger the 

release of pro-inflammatory cytokines and damage-associated molecular patterns (DAMP) by an 

individual macrophage and compromise clearance of foreign material from the airways, particle number 

often reflects the magnitude of pulmonary inflammation caused by nanofibers and nanowires with high 

aspect ratios (845, 1632, 1639). Comparatively, dose mass has been frequently implicated in the toxic 

potential of  metal nanomaterials with high dissolution potential, such asZnONP, CoONP, CuONP. These 

particles often induce toxic effects resulting from the rapid release of cytotoxic metal ions from the parent 

particle. Likewise, the absolute quantity of ions capable of being released from these nanomaterials is 

related to the mass of the administered dose, rendering it a dose metric correlated to the degree of toxicity 

driven by this mechanism (1638). Contrarily, NiO nanoparticles and other metal nanomaterials known to 
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be relatively insoluble at neutral pH are frequently associated with toxic effects that emerge as a result 

of particle surface-interactions. Subsequent ROS formation, oxidative stress, and perturbation of cellular 

structures have been cited as mechanisms involved in their acute toxic effects on the lungs (35). 

Accordingly, the surface area of the administered dose better represents the magnitude of resultant tissue 

injury. Moreover, additional physico-chemical characteristics with implications for surface area-

dependent toxic effects have also been implicated in the toxic response. NiO nanoparticle pre-exposure 

dispersion state, surface modification, and morphology have all been shown to influence the inflammatory 

response caused by NiO nanomaterials in the lungs (1355, 1423, 1620, 1632). These findings also 

emphasize important considerations for dosimetrics, highlighting the potential relevance of dose 

parameters such as surface chemistry and particle number on a mass basis, which may be increasingly 

relevant in future studies (1423).  

The only marker throughout the time course study that differed between treatment groups 

exposed to NiO surface area-normalized doses (NiO-1 and NiO-2) was the mediastinal LN size at 29 d 

(figure 2.8). The kinetics and degree of LN expansion were similar between the NiO-1 and NiO-2 groups 

until the 29 d time point, when the LN size of the NiO-2 group continued to increase, reaching values 

equivalent to that of the NiO-3 group at the same time point. Contrarily, LN size at 29 d in the NiO-1 group 

had decreased from the response recorded at 19 d; however, it remained significantly elevated compared 

to corresponding control levels. Likewise, each group exhibited unique responses in the LN during the 

time course that differed with respect to the kinetics of size increase and magnitude of this response. 

Several contributing factors may be responsible for this observation, including NiO dissolution kinetics 

and particle deposition/clearance patterns in relationship to immune cell signaling.  

Increased LN cellularity may reflect expansion of lymphocyte populations in response to local 

immune activation driven by the release of Ni ions. Both NiO particles were relatively insoluble at neutral 

pH, but their dissolution was shown to be accelerated in acidic environments, as demonstrated in the 

ALF (figure 2.6), which represents the environment encountered by particles following uptake by 

pulmonary phagocytes. Subsequent dissolution of particles and release of toxic ions can result in pro-

inflammatory signaling by macrophages, as well as necrotic cell death, leading to the release of DAMP 
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and cytotoxic ions into the airways. All of these effects can trigger inflammatory reactions leading to 

proliferation of lymphocyte populations in the lung-draining LN. In this study, ex vivo analysis showed 

that dissolution was similar for NiO-UF and NiO-F in the acidic ALF solution, making it difficult to attribute 

differences in dissolution rate to the variations in LN size increase between the NiO-1 and NiO-2 groups 

at 29 d. However, it is important to note that while ex vivo analysis did not reveal differences in dissolution 

behavior between NiO-F and NiO-UF, this approach cannot account for the numerous complexities of 

the in vivo environment that can impact particle dissolution. Moreover, numerous particle-independent 

factors could have contributed to differences in the rate of ion release from the surface area-normalized 

doses of NiO-F and NiO-UF in vivo. For example, an increased number of alveolar macrophages in the 

lungs of one group could have resulted in enhanced particle dissolution; however, at the time points 

investigated in this study, cellular recruitment to the lungs did not differ between the NiO-1 and NiO-2 

groups. Overall, it remains unclear if the differences in LN size increase between these groups was 

reflective of differences in the rate of ion release between particles.  

Comparatively, the increase in LN size may reflect the translocation of pulmonary immune cells 

to the LN. Accordingly, the early LN expansion characteristic of the NiO-3 group (figure 2.8) may have 

been correlated to the pulmonary clearance kinetics of the ultrafine particles versus the fine particles with 

respect to dose mass (figure 2.10). Following exposure to a 40 µg dose of either particle, 47 % of the 

original Ni dose remained in the lungs of the NiO-3 group at 10 d, versus 62 % in the NiO-1 group. 

However, by 29 d, lung Ni burden was similar between groups. Size-specific particle deposition patterns 

in the alveolar region and airways may have contributed to differences in the rate of cell-mediated particle 

clearance with respect to mass.  Deposition of particles in different anatomical compartments of the 

respiratory tract can lead to differences in the propensity for local retention of particles in the lung 

parenchyma, their likelihood for uptake by pulmonary phagocytes, potential for cell-mediated transport 

via lymphatics, or physical translocation by the mucociliary escalator (20). These factors can all impact 

the quantity of particles that translocate to the LN, as well as their kinetics of relocation. Many other 

features of the administered dose may also impact these processes. For example, dose volume is known 

to contribute greatly to the overloading of pulmonary phagocytes, which can trigger alterations in cell 
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migratory potential (838). Particle number, dose mass, and surface area can also impact macrophage 

responses with potential to modulate the clearance of particles. In this study, it is difficult to discern the 

material properties and factors that account for the differences in temporal patterns of lymphocyte 

expansion between groups. Likewise, the time-dependent increase in LN size following NiO exposure 

may reflect discrepancies in the absolute quantity and time course of ion release, as well as deposition 

and clearance patterns of the delivered dose as a function of particle size, mass, and/or surface area. 

Although numerous studies have been conducted to help elucidate the role of various 

nanomaterial physico-chemical properties on lung toxicity, there are considerably fewer studies that 

examine the potential for metal nanomaterial exposure to augment immunological processes in allergy 

models; moreover, even fewer studies have examined the role of nanomaterial characteristics and dose 

metrics on this immunomodulatory potential. Incorporation of the NiO-F and NiO-UF particles into the 

OVA study demonstrated that, contrary to the surface area-dependent general pulmonary inflammation 

caused by NiO, multiple dose metrics impacted immune endpoints with implications for asthmatic 

responses.  

In the OVA model, the pulmonary response to allergen challenge and number of lung eosinophils 

were both parameters that appeared associated with NiO particle size. Increases in lung eosinophils and 

enhanced bronchoconstrictive responses are two features of allergic airway disease that generally 

present simultaneously in asthma, wherein the extent of their involvement is frequently correlated to 

clinical disease severity (1640). Interestingly, these responses were differentially increased as a function 

of NiO particle size in the OVA model. NiO-F exposure was associated with enhanced Penh responses 

compared to OVA controls (figure 2.13), whereas increased lung eosinophil recruitment occurred in 

response to NiO-UF exposure (figure 2.14. B). Furthermore, the groups demonstrating the most robust 

Penh and eosinophil responses in this study did not exhibit the most pronounced responses with respect 

to other prototypical markers of allergic reactivity, including OVA-specific IgE and Th2 cytokine levels.   

Average Penh values were only elevated in the NiO-1A group, the only group exposed to NiO-F. 

As a parameter indicative of resistance to airflow, alterations in Penh may result from several different 

underlying mechanisms. Non-immunological mechanisms capable of increasing resistance to airflow 
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include exposure-induced structural or physiological alterations that impact the mechanics of respiration. 

For example, modulation of airway smooth muscle signaling and subsequent contractility behavior has 

been demonstrated following exposure to several metal nanomaterials (792, 1641, 1642). However, no 

Penh alterations were observed in non-sensitized groups exposed to NiO, suggesting that the Penh 

response observed in the NiO-1A group was both particle-specific and dependent on an immunologically-

based mechanism associated with the asthmatic condition.  

The enhanced Penh response selectively observed in animals exposed to the larger NiO particle 

may reflect interference with bronchoconstrictive responses resulting from interactions between NiO 

particles and various molecular mediators of asthmatic elicitation. Microscopic analysis of lung tissue and 

cells in the lavage fluid revealed that NiO particles were still abundantly present in the airways and 

pulmonary phagocytes at 29 d. The presence of these particles during allergen challenge can have 

notable implications for allergic processes since protein allergens, immunoglobulins, chemokines, and 

cytokines have all been shown to exhibit altered biological activity upon interaction with metal 

nanomaterials (522, 1643). Notably, granulocytes and IgE molecules, when pre-exposed to 

nanoparticles, have been shown to exhibit compromised binding activity, preventing cellular 

degranulation (916). Likewise, alterations in Penh reactivity and other markers of elicitation response 

severity in the OVA model may have been subject to influence from persistent NiO particle presence in 

the airways. The extent of such effects would be dependent on the burden of NiO particles remaining in 

the respiratory tract (dose-dependent clearance of particles), number of particles free from cellular- or 

tissue-mediated immobilization, and properties associated with the surface-loading capacity of particles, 

such as surface area.  

The degree of eosinophil influx to the lungs was another marker in the OVA model that correlated 

with particle size. However, contrary to the enhanced Penh reaction, which was exclusively associated 

with exposure to the larger particle, increased eosinophil recruitment was associated with exposure to 

the smaller NiO particle (at both doses). One of the major cytokines responsible for recruitment of 

eosinophils to the lungs is IL-5, a prototypical Th2 cytokine (1644). However, neither group with elevated 

numbers of lung eosinophils (NiO-2A, NiO-3A) exhibited significant elevations in BALF IL-5 levels (figure 
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2.18). This observation suggests that non-immunological mechanisms may be responsible for the 

increase in eosinophil recruitment in these groups. In this regard, NiO nanoparticles have been shown to 

recruit eosinophils to the lungs in vivo as a result of their internalization by cells, where accumulation in 

acidic lysosomes facilitates the release of cytotoxic ions, causing necrotic cell death. Eotaxin is passively 

released by these dying cells, triggering the local influx of eosinophils, independent of IgE-mediated or 

Th2-biased mechanisms (663).  

Several studies have shown that the rate of ion release from metal nanomaterials is a critical 

determinant in the selective recruitment of neutrophils and eosinophils to the airways. Generally, 

insoluble and highly soluble metal nanomaterials have been associated with the preferential induction of 

neutrophilic- and eosinophilic-dominant inflammation, respectively (1414, 1645). A study by Jeong et al. 

(2015) illustrates this concept. In the study, cobalt nanoparticles with divergent solubility profiles were 

instilled into the lungs of rats, and the subsequent inflammatory responses were characterized. The 

insoluble Co3O4 nanoparticles produced neutrophilic-driven inflammation, whereas the soluble CoO 

nanoparticles induced eosinophilic-dominant inflammation. Moreover, the number of neutrophils 

recruited to the lung was strongly correlated to the surface area of the administered Co3O4 dose. 

Comparatively, the number of eosinophils recruited to the airways by CoO strongly correlated with the 

dose of cobalt ions released from the parent particles, and mirrored the inflammatory profile caused by 

the highly soluble salt, CoCl2 salts (787).  

Collectively, these observations suggest that the influx of phenotypically-distinct inflammatory cell 

populations in healthy and allergic airways following NiO exposure may be associated with differences 

in particle dissolution potential as a result of disease state-specific microenvironments. The exclusive 

recruitment of neutrophils to the lungs of animals in the NiO time course study and non-sensitized groups 

of the OVA model are consistent with the insoluble nature of NiO-F and NiO-UF in neutral conditions. By 

comparison, the recruitment of eosinophils exclusively observed in the NiO-2A and NiO-3A groups of the 

OVA model suggests that the present of established allergic airway inflammation enhanced the 

dissolution potential of NiO-UF. In this study, although analysis of particle dissolution ex vivo showed that 

NiO-UF and  NiO-F did not differ significantly in acidic conditions over time (figure 2.6), NiO-UF showed 
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a trend for a higher degree of dissolution than NiO-F. This effect may be exacerbated in vivo due to the 

increased complexity of the environment in the phagolysosme, as well as potentially the increased acidic 

environment of asthmatic airways (1646). Further studies are necessary to better discern the role of 

particle solubility in relation to the particle size-specific inflammatory response caused by NiO in allergic 

disease.  

The inverse relationship between enhanced Penh reactivity and eosinophil lung burden in the OVA 

model is a nonconventional finding. However, several potential mechanisms may be responsible for this 

effect. For example, the release of toxic granule proteins by eosinophils has the potential to cause 

significant injury to lung tissue, which can alter airflow mechanics and mask bronchoconstrictive 

responses measured by whole body plethysmography. This effect could explain the increases in lung 

eosinophil burden observed in the NiO-2A and NiO3-A group, despite the absence of enhanced Penh 

responses. Similarly, since eosinophils can modulate neural communication with airway smooth muscle 

cells, an increased lung eosinophil burden might be responsible for interference with signaling pathways 

involved in allergen-induced bronchoconstriction (1647). Furthermore, since eosinophils have the 

capacity to bind IgE molecules, increased numbers of lung eosinophils may have led to immobilization of 

allergen or other molecular mediators involved in triggering or amplifying Penh responses (1648).  

Another interesting observation in the OVA model was the impact of NiO exposure on 

immunoglobulin production and specificity. At 29 d, levels of total IgE were elevated in all NiO-

exposed/OVA-sensitized groups, irrespective of NiO particle size, mass, or surface area (figure 2.17). 

Comparatively, OVA-specific IgE levels were conserved between groups with respect to NiO surface 

area. Although exposure to the smaller of the two surface area-based doses (NiO-1A and NiO-2A groups) 

was associated with a minor increase compared to OVA controls, the effect was not statistically 

significant. Contrarily, exposure to the larger surface area-based dose (NiO-3A group) was associated 

with a significant decrease in OVA-specific IgE production compared to all other sensitized groups. This 

discord between NiO dose/exposure effects on total and OVA-specific IgE levels at 29 d resulted in a 

notable discrepancy in the IgE specificity ratio between groups. The NiO-1A and NiO-2A groups exhibited 

a similar IgE profile as OVA controls, wherein OVA-specific IgE constituted 58%, 56%, and 63% of all 
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IgE, respectively. By comparison, allergen non-specific IgE dominated the IgE repertoire of the NiO-3A 

group, as only 19% of the total circulating IgE was OVA-specific. 

Although NiO dose-dependent alterations in the IgE repertoire were observed at 29 d, this 

response could be indicative of NiO adjuvant activity during OVA sensitization or particle-induced 

modulation of the elicitation response. Therefore, IgE levels were also assessed at 14 d in order to clarify 

if NiO exposure was capable of inducing sensitization-specific effects, independent of allergen challenge. 

No differences in the levels of total or OVA-specific IgE were observed between NiO-exposed/OVA-

sensitized groups at 14 d (figure 2.12). However, differences in the proportionality of IgE specificity were 

discernable between groups at 14 d. In OVA control animals, OVA-specific IgE comprised 39% of the 

total IgE pool after sensitization. Comparatively, OVA-specific IgE constituted 53%, 56%, and 24% of the 

total IgE in the NiO-1A, NiO-2A, and NiO-3A groups, respectively. Since antibody production, irrespective 

of allergen specificity, did not differ between groups with respect to quantity,  this finding implies that 

pulmonary NiO exposure did not compromise the capacity for B-cells to undergo isotype switching in 

response to systemic sensitization. However, the existence of differences in the proportionality of IgE 

specificity between groups suggests that respiratory NiO exposure can compromise other peripheral 

immune processes, such as somatic hypermutation and affinity maturation in B-cells.  

In this study, NiO exposure prior to allergic sensitization was associated with a modest impact on 

antibody production during allergic sensitization, as illustrated by the similar IgE levels between groups 

at 14 d. By comparison, many other studies using allergy models have demonstrated that exposure to 

metal nanomaterials during the sensitization phase of allergy can cause profound adjuvant effects. 

TiO2NP, ZnONP, SiO2NP, and aluminum nanoparticles (AlNP) have all been shown to induce prominent 

increases in antigen-specific antibody levels following both systemic and mucosal sensitization, 

independent of allergen challenge (868, 874, 879, 882, 946). However, a key discriminating feature 

between these studies and the current study is the exposure route associated with sensitization and 

nanomaterial administration. The vast majority of existing studies have investigated the effects of metal 

nanomaterials when co-administered with antigen simultaneously during sensitization. Similar to the 

mechanisms of many commonly used vaccine adjuvants, the subsequent adjuvant effects are often 
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dependent on particle/antigen interactions (1649). Fewer studies have examined the potential adjuvant 

effects of metal nanomaterials when administered independently from antigen (732-734, 926). Likewise, 

the current study was designed to determine if a particle exposure affected subsequent encounters with 

allergen, as may occur in occupational settings. 

In this study, NiO particle effects appeared more prominent during the elicitation phase of the 

allergic response. Exposure-dependent variations in the OVA-specific IgE response only became 

apparent at 29 d, following two OVA challenges. IgE responses were consistent with the BAL fluid and 

serum cytokine profiles in the respective groups, which were also conserved with respect to NiO surface 

area (figures 2.18 and 2.19, table 2.11). The NiO-1A and NiO-2A groups trended together with a greater 

increase in Th2 cytokines while the NiO-3A group had greater increases in Th1 cytokine levels. This 

polarization pattern is also in accordance with the observation from histopathological analysis that 

multinucleated giant cells were exclusively present in the NiO-3A group. Giant cells have been associated 

with hard metal lung disease and Th1-dominant/delayed type hypersensitivity responses in the lung, 

including hypersensitivity pneumonitis (452, 1650).  

The cellular profile of the mediastinal LN was another parameter shown to be correlated to the 

surface area of NiO in the OVA study (figure 2.16). The 29 d LN response showed a similar trend between 

the NiO-1A and NiO-2A groups, where total cell number was increased over OVA controls, but the 

increase seen in the NiO-3A group was even further elevated over all other groups. Phenotypic analysis 

of LN cells  revealed a pattern indicative of general expansion in the NiO-3A group, as all lymphocyte 

subpopulations were present in similar proportions as non-sensitized groups. Comparatively, a similar 

increase in the proportion of LN B-cells and decrease in the ratio of CD4+ T-cells was observed in the 

OVA, NiO-1A, and NiO-2A groups. These three groups exhibited alterations in LN cellular composition 

that would be expected in a typical IgE-mediated allergic condition, which was consistent with the 

increases in OVA-specific IgE levels seen in these animals. The lack of selective B-cell expansion in LN 

of the NiO-3A group also corresponded to the OVA-specific IgE response in the group, wherein levels 

were not elevated in a similar manner as the other sensitized groups. However, the NiO-3A group did 
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exhibit significant increases in total IgE levels, which may have been reflective of the increase in absolute 

number of LN B-cells resulting from the drastic increase in LN size specifically observed in this group.   

NiO nanoparticles, to our knowledge, have only been incorporated into one other asthma model 

to date. Horie et al. (2016) aspirated C57BL/6 mice with NiO nanoparticles (< 100 nm) or microparticles 

(600 – 1400 nm), following which, mice were sensitized to OVA by inhalation (1, 3, 5, and 7 d post NiO 

exposure).. Following four OVA challenges by inhalation (14, 16, 18, 20 d), OVA-specific IgE levels were 

increased  exclusively in animals exposed to the smaller NiO particle (870).  

The findings from our study and that of Horie et al. exhibit similarities, as well as discrepancies. 

In both studies, the treatment groups associated with increased production of OVA-specific IgE exhibited 

concurrent increases in Th2-dominant immune markers. In both studies, selective Th1/Th2 dominancy 

was also similarly related to NiO particle size and dose surface area. However, opposing effects of NiO 

size/surface area on the direction of Th1/Th2 polarization were reported by the two studies. This 

discrepancy may reflect the use of different mouse strains by the two studies, as the propensity for 

Th1/Th2-dominant immunity differs between BALB/c and C57BL/6 strains. Furthermore, clearance of 

nanoparticles from the lung is known to differ between these strains. Since the rate of NiO clearance 

appeared to contribute to variations in the LN response in the NiO time course study, this is a critical 

distinction between the studies that may account for the discordant findings (904).  

Another source of variability between studies that may account for the divergent relationship 

between NiO size/surface area and Th1/Th2 polarization is the route of exposure used to induce OVA 

sensitization. Although both studies exposed animals to NiO via aspiration a day before sensitization, our 

study utilized intraperitoneal injections to induce sensitization, whereas Horie et al. induced sensitization 

by inhalation of OVA. As a result, the model design employed by Horie et al. uniquely facilitated the 

potential for interactions between NiO particles and OVA molecules in the lung during sensitization, 

whereas our study design was not conducive with the potential for similar interactions.  

Many studies have shown that physical association of nanoparticles/antigen in the lungs during 

allergic sensitization can result in profound adjuvant effects (883, 1651). This response has been 

attributed to the binding of antigen/nanoparticles, which can result in altered antigen uptake and 
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processing by APC, augmented delivery kinetics to the LN, regional deposition within the LN, and 

modulation of antigen presentation/lymphocyte stimulation. Accordingly, the magnitude of Th2 adjuvancy 

has been correlated to the surface loading capacity of nanoparticles, increases in which facilitate the 

binding of larger quantities of antigen. Physico-chemical properties of metal nanomaterials that have 

been associated with this mechanism of IgE/Th2 response amplification (when administered 

simultaneously with antigen during sensitization) include decreased particle size, increased surface area 

and porosity, and specific surface modifications (882, 883). The magnitude of Th2 adjuvant activity 

induced by many of these nanoparticles has also been shown to be dose-dependent, as larger doses 

facilitate the binding of higher quantities of antigen. Correspondingly, attenuation of metal nanomaterial-

induced Th2 adjuvant activity has been correlated to increases in particle agglomeration, as well as 

surface properties associated with compromised antigen binding affinity/saturation (879, 1652, 1653). 

Collectively, these findings demonstrate that physical interactions between antigen/nanoparticles can 

facilitate adjuvant effects on sensitization, and various physico-chemical properties of nanomaterials can 

further influence the magnitude of this effect. The association between decreased NiO particle size and 

increased OVA-specific IgE levels reported by Horie et al. is consistent with this mechanism of 

immunomodulation. Moreover, many of these studies have also demonstrated that the Th2 adjuvant 

activity of the nanomaterial is abolished if exposure occurs during the challenge phase of allergy. These 

findings highlight the existence of different mechanisms capable of augmenting allergic processes, and 

further emphasizes the importance of nanomaterial exposure occurrence with respect to the different 

phases of allergic disease (783, 887). 

In contrast to the findings reported by Horie et al., exposure to higher doses of NiO with respect 

to surface area caused exacerbation of Th1-driven inflammation in our OVA model. This effect was likely 

related to the persistent pro-inflammatory/Th1 pulmonary immune status in animals exposed to the high 

dose of NiO-UF on 0 d. As demonstrated in the NiO time course study, exposure to this dose (NiO-3 

group) was associated with persistent elevations in several notable pro-inflammatory/Th1 cytokines 

(figure 2.9) that were still significantly elevated at time points corresponding to time points of allergen 

challenge in the OVA model (19 and 29 d). The existence of an established Th1-polarized immune status 
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in the airways could have limited the magnitude of allergen-induced Th2 responses mounted by the NiO-

3A group, and/or further exacerbated the Th1 response. Comparatively, the resolution of NiO-induced 

pulmonary inflammation before OVA challenge in the NiO-1A and NiO-2A groups was associated with 

increases in OVA-specific IgE and Th2 cytokine levels. Several other studies have reported a similar 

induction of neutrophil-dominant lung inflammation by nanoparticles that correspondingly results in 

attenuation of Th2-driven allergic inflammation following systemic sensitization (896, 897, 1654).  

Differences in the routes of exposure employed by these two studies likely contributed to the 

conflicting findings regarding the impact of NiO size on the amplification of Th2-dominant allergic 

responses. This discriminating feature confers differential potential for particle/antigen interactions during 

sensitization, an effect which is known to impact the magnitude and nature of subsequent adaptive 

immune responses. Likewise, the findings from the two studies likely involve different immunological 

mechanisms of NiO-induced OVA allergy modulation, wherein these processes exhibit variations in 

susceptibility to influence from specific dose metrics and NiO particle characteristics. The correlation 

between decreased particle size and Th2 adjuvancy reported by Horie et al. is consistent with interactions 

between NiO/OVA in the lung during sensitization, leading to alterations in antigen delivery, and 

subsequent promotion of Th2-dominant response development. By comparison, the correlation between 

increased NiO surface area and Th1-dominant immune reactivity in our study is consistent with surface 

area-driven polarization of pulmonary immunity towards a pro-inflammatory state, predisposing for Th1-

dominant reactivity upon allergen exposure.  

In addition to the findings from these two asthma models, a few other studies have demonstrated 

results indicative of the potential for NiO nanoparticles to augment respiratory allergy by other 

mechanisms. For example, disruption in the pulmonary immune Th1/Th2 balance has been correlated to 

a varying degree of nitrative stress induced by different sizes of NiO nanoparticles (1655). The 

preferential induction of Th1/Th17-dominant lung inflammation by NiO nanoparticles has been shown in 

numerous studies to cause the subsequent development of inflammatory reactions resembling delayed-

type hypersensitivity reactions in the airways. Characteristic features of pulmonary alveolar proteinosis 

and hypersensitivity pneumonitis have been reported following NiO nanoparticle exposure in vivo (537, 
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1627). Accordingly, respiratory exposure to NiO nanoparticles may present concerns with respect to both 

IgE-mediated and T-cell-mediated allergic responses in the lungs (1414, 1630, 1645).  

Respiratory NiO nanoparticle exposure was also shown in one study to induce alterations in 

several systemic immune markers following chronic low dose exposure in vivo. The authors observed 

lymph node follicular expansion, alterations in the maturation status of splenic lymphocyte populations, 

and enhanced eosinophil responses in rats following exposure to 23 nm NiO nanoparticles for up to 10 

months. The authors concluded that these effects were indicative of the development of an allergic 

syndrome to specific to nickel (1656). Although these systemic immune alterations may, in fact, contribute 

to the development of nickel-specific allergic disease, these effects may also result in an increased 

susceptibility to sensitization by other allergens, exacerbation of existing allergic disorders, or the 

development of other immune disorders. This observation also emphasizes that the potential adverse 

immune effects caused by respiratory exposure to NiO nanoparticles (and other nanomaterials) are not 

anatomically-restricted to the respiratory tract. 

The effect of NiO nanoparticles on allergic airway inflammation was examined in another study, 

where a T-bet-/- mouse model was used. This mouse model exhibits compromised Th1 cell development 

and subsequent predisposition for Th2-biased immunity, leading to the spontaneous generation of many 

pathophysiological characteristics of asthma, independent of allergen exposure. Many of these asthmatic 

features were shown to be exacerbated following exposure of mice to 20 nm NiO nanoparticles. 

Increased influx of lung eosinophils, mucus cell metaplasia, and elevations in Th2 cytokine levels were 

all observed, as well as chronic alveolitis. These findings suggest the potential for NiO nanoparticles to 

exacerbate Th2-driven inflammation in the elicitation phase of asthma, as well as potentially accelerate 

the development of airway remodeling in chronic asthmatic conditions (934).  

Collectively, these existing studies emphasize that respiratory NiO nanoparticle exposure can 

modulate many aspects of pulmonary immunity. In naïve lungs, size-dependent skewing of immunity 

towards Th1 or Th2-dominancy may lead to the development of delayed-type hypersensitivity responses 

or enhance susceptibility for IgE-mediated allergic sensitization, respectively. Adjuvant effects on allergic 

sensitization and exacerbation of asthmatic elicitation responses can also emerge as a result of 
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respiratory NiO exposure. Exacerbation of respiratory allergy can involve the modulation of any number 

of diverse immunological mechanisms, some of which are specific to the sensitization phase of allergy, 

whereas others are specific to the elicitation phase. Likewise, the immunomodulatory potential of NiO 

may differ depending on the sensitization status of the exposed individual. Moreover, as emphasized by 

the results from our study, specific physico-chemical properties may be differentially implicated in the 

immunological activity of NiO nanoparticles depending on the phase of allergic disease during which 

exposure occurs, the route of exposure, and the existence of concomitant disease states. 

 

2.6. Conclusion 

The results from the NiO time course study are consistent with existing studies, demonstrating a 

correlation between the surface area of metal nanomaterials and subsequent inflammatory response 

severity. However, the OVA study indicated that, in addition to surface area, other metrics related to NiO 

size were influential in the alteration of both local and systemic immune markers associated with IgE-

dependent asthmatic responses. Further study is needed to determine role of dissolution as it relates to 

surface area and particle toxicity, particularly in different compartments in the lung such as acidic 

environments such is in the macrophage vacuoles. Since toxic effects of nanomaterials are heavily 

dependent on the biochemical properties of their environment, this observation emphasizes that the 

altered chemistry of asthmatic airways may implicate different mechanisms of toxicity than those typically 

observed in non-asthmatic lungs. This finding is likely applicable to other disease states, wherein the 

toxic effects of metal nanomaterials may be differentially correlated to physico-chemical properties in 

healthy and diseased tissues.   
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CHAPTER 2 TABLES 

 
 

 

 

 

 

 

 

 

 

 
 
Table 2.1. NiO time course study treatment groups and corresponding exposure particle, size, dose mass, and 
dose surface area (SA). 
 

 

Table 2.1. NiO Time Course Study Treatment Groups 

Treatment 
Group 

Particle 
Primary 
particle 

size 

Dose 
mass 

Dose 
SA 

DM - - - - 

NiO-1 NiO-F 181 nm 40 µg 192 mm2 

NiO-2 NiO-UF 42 nm 3 µg 192 mm2 

NiO-3 NiO-UF 42 nm 40 µg 2,580 mm2 
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Table 2.2. Summary of NiO-F and NiO-UF Characterization Results 
 

NiO-F NiO-UF 

Vendor size specification -325 mesh 50 nm 

Particle color green black/gray 

Primary particle size (FESEM) 181 ± 37 nm 42 ± 7 nm 

Average agglomerate size:    

     FESEM 640 nm 190 nm 

     DLS 321 nm 109 nm 

Morphology irregular, jagged spherical 

Specific surface area (m2/g) 4.79 ± 0.27 64.49 ± 2.98 

Ni : O ratio 1 : 1 1 : 1.3 

Endotoxin level ND ND 

Zeta Potential (mV) -8.42 ± 2.20 -6.23 ± 2.45 

 

 

Table 2.2. Summary of NiO-F and NiO-UF characterization data. ND- Not Detected. 



 

233 
 

 

 
Table 2.3. Lymphocyte differentials for each treatment group at each time point in the NiO time course study 
expressed as a percentage of total lymph node cells. n = 8 per group, p < 0.05. * indicates statistical significance 
over all other groups at the corresponding time point; # indicates statistical significance over DM; ^ indicates 
statistical significance over DM, NiO-1. 

Table 2.3. NiO Time Course Study 

Lymph Node Cell Phenotypes by Percent of Total Cells 

Time Group 
Total Cell # 

(x106) 

Cell Populations by Phenotype (% of total cells) 

CD4+ T-cells CD8+ T-cells B-cells Other 

1d 

DM 3.33 ± 1.51 51.6 ± 4.56 21.1 ± 2.33 15.1 ± 2.22 12.2 ± 3.2 

NiO-1 4.70 ± 1.61 52.3 ± 6.21 19.8 ± 2.98 14.2 ± 2.10 13.7 ± 2.1 

NiO-2 4.81 ± 1.44 53.4 ± 4.14 20.0 ± 3.02 16.5 ± 3.12 10.1 ± 1.8 

NiO-3 5.70 ± 2.20 49.7 ± 7.85 21.2 ± 2.24 12.3 ± 1.74 16.8 ± 2.1 

10d 

DM 3.09 ± 1.51 51.8 ± 5.55 20.6 ± 2.56 14.4 ± 2.01 13.2 ± 2.2 

NiO-1 5.08 ± 1.62 48.6 ± 5.47 23.4 ± 3.02 15.5 ± 1.66 12.5 ± 2.1 

NiO-2 5.22 ± 1.64 49.9 ± 5.12 20.8 ± 3.11 17.7 ± 1.04 11.6 ± 2.0 

NiO-3 11.96 ± 3.11 * 47.5 ± 6.23 20.9 ± 2.13 16.4 ± 3.17 15.2 ± 2.2 

19d 

DM 3.64 ± 1.34 53.0 ± 7.45 24.5 ± 3.64 15.0 ± 2.25 7.5 ± 1.5 

NiO-1 8.27 ± 2.17 # 50.7 ± 5.12 22.1 ± 3.02 15.2 ± 2.77 12.0 ± 2.6 

NiO-2 8.41 ± 3.29 # 50.1 ± 6.11 22.7 ± 2.99 14.2 ± 2.09 13.0 ± 2.7 

NiO-3 13.28 ± 2.34 * 51.1 ± 5.23 20.8 ± 2.47 16.2 ± 2.11 11.9 ± 1.9 

29d 

DM 2.98 ± 1.02 54.0 ± 4.11 20.9 ± 2.66 15.5 ± 1.98 9.6 ± 1.8 

NiO-1 6.26 ± 1.97 # 50.0 ± 6.10 21.9 ± 3.07 14.2 ± 2.08 13.9 ± 1.1 

NiO-2 9.51 ± 2.11 ^ 52.2 ± 5.05 21.1 ± 4.03 13.9 ± 1.46 12.8 ± 2.9 

NiO-3 10.71 ± 3.31 ^ 53.1 ± 4.99 20.3 ± 2.70 12.8 ± 1.77 13.8 ± 3.0 
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Table 2.4. Spleen cell phenotypes for each group at each time point in the NiO time course study expressed as a 
percent of total cells in the spleen. n = 8 per group.  

Table 2.4. NiO Time Course Study 

Spleen Cell Phenotypes by Percent 

Time Group CD4+ T-cells CD8+ T-cells B-cells NK Cells Other 

1d 

DM 17.8 ± 2.4 % 12.2 ± 1.2 % 56.1 ± 14.2 % 2.31 ± 0.2 % 11.6 ± 1.2 % 

NiO-1 16.4 ± 3.1 % 15.4 ± 1.3 % 55.6 ± 9.8 % 3.12 ± 0.1 % 9.5 ± 1.0 % 

NiO-2 19.2 ± 2.5 % 13.4 ± 1.1 % 53.3 ± 12.4 % 3.02 ± 0.1 % 12.1 ± 1.5 % 

NiO-3 15.4 ± 1.9 % 14.6 ± 1.0 % 55.4 ± 8.5 % 2.98 ± 0.2 % 7.8 ± 1.0 % 

10d 

DM 16.4 ± 1.8 % 12.2 ± 1.6 % 54.7 ± 9.6 % 3.46 ± 0.4 % 13.2 ± 2.0 % 

NiO-1 14.9 ± 1.7 % 14.8 ± 1.9 % 56.7 ± 8.7 % 4.10 ± 0.6 % 9.5 ± 1.1 % 

NiO-2 13.7 ± 1.6 % 13.9 ± 1.2 % 57.2 ± 7.0 % 2.39 ± 0.1 % 12.8 ± 1.3 % 

NiO-3 16.4 ± 2.0 % 12.9 ± 1.7 % 55.5 ± 8.8 % 2.77 ± 0.3 % 12.4 ± 1.2 % 

19d 

DM 16.9 ± 2.0 % 14.0 ± 2.0 % 53.3 ± 6.5 % 3.46 ± 0.2 % 12.3 ± 2.0 % 

NiO-1 17.7 ± 2.0 % 15.0 ± 1.8 % 54.7 ± 11.1 % 4.11 ± 0.5 % 8.5 ± 2.1 % 

NiO-2 16.4 ± 1.9 % 11.9 ± 0.9 % 56.5 ± 10.2 % 4.09 ± 0.4 % 11.1 ± 1.6 % 

NiO-3 15.0 ± 1.6 % 12.9 ± 1.7 % 58.7 ± 8.5 % 3.67 ± 0.6 % 9.7 ± 0.8 % 

29d 

DM 16.7 ± 2.1 % 13.5 ± 2.0 % 55.7 ± 6.7 % 2.88 ± 0.1 % 11.2 ± 1.1 % 

NiO-1 16.0 ± 1.8 % 13.6 ± 1.3 % 55.2 ± 8.8 % 3.46 ± 0.2 % 11.7 ± 1.7 % 

NiO-2 15.2 ± 2.2 % 16.6 ± 1.3 % 55.9 ± 8.1 % 3.44 ± 0.5 % 8.9 ± 2.1 % 

NiO-3 14.4 ± 1.8 % 15.8 ± 1.4 % 57.8 ± 9.9 % 2.77 ± 0.4 % 9.2 ± 0.7 % 
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Table 2.5. NiO Time Course Study: Serum/BALF Cytokine Levels (pg/mL) 
  IFN-γ IL-2 IL-12p40 IL-12p70 IL-17 TNF-α GM-CSF IL-4 IL-5 IL-13 Eotaxin IL-6 IL-10 

Serum 

1d
 

DM 10.1 ± 2.1 4.4 ± 1.4 43.2 ± 16.2 25.7 ± 13.6 12.0 ± 1.7 8.0 ± 2.4 34.2 ± 5.0 7.6 ± 2.1 31.4 ± 5.1 50.1 ± 16.2 420 ± 45.2 42.3 ± 15.4 16.0 ± 2.1 

NiO-1 11.2 ± 2.5 3.0 ± 1.4 56.2 ± 17.1 24.9 ± 6.6 10.3 ± 3.0 6.4 ± 1.9 30.1 ± 7.1 5.1 ± 2.4 40.2 ± 9.6 45.2 ± 17.4 504 ± 50.1 41.1 ± 14.0 15.7 ± 3.0 

NiO-2 14.9 ± 3.3 5.9 ± 2.2 61.4 ± 26.7 19.6 ± 5.7 8.6 ± 1.8 7.6 ± 1.8 28.8 ± 4.7 4.8 ± 2.7 32.7 ± 8.5 40.1 ± 16.1 525 ± 36.6 29.8 ± 6.5 20.9 ± 8.9 

NiO-3 20.7 ± 5.2  ̂ 4.0 ± 2.1 66.6 ± 15.5 30.2 ± 6.9 6.7 ± 1.1 4.6 ± 1.1 29.0 ± 7.9 5.9 ± 1.0 28.9 ± 5.9 52.3 ± 14.0 539 ± 29.8 34.7 ± 10.0 14.4 ± 3.2 

10
d 

DM 16.4 ± 2.4 2.3 ± 1.0 40.7 ± 14.1 25.6 ± 6.1 11.0 ± 2.9 10.5 ± 0.9 26.0 ± 3.4 5.4 ± 2.0 36.7 ± 4.2 45.6 ± 11.8 552 ± 28.5 26.8 ± 9.1 15.2 ± 3.4 

NiO-1 11.7 ± 2.0 3.9 ± 0.6 50.1 ± 16.1 24.7 ± 8.5 11.7 ± 3.2 11.7 ± 1.7 24.2 ± 4.5 4.7 ± 1.2 28.8 ± 7.0 46.7 ± 9.4 550 ± 37.2 30.7 ± 6.5 16.9 ± 2.1 

NiO-2 12.2 ± 2.5 1.7 ± 0.6 52.9 ± 14.2 22.3 ± 12.7 6.4 ± 2.7 6.1 ± 1.1 32.1 ± 6.6 6.0 ± 2.0 29.1 ± 8.0 61.2 ± 147 456 ± 49.6 28.6 ± 7.1 17.4 ± 2.2 

NiO-3 30.9 ± 5.7* 5.0 ± 0.5 53.4 ± 15.5 28.4 ± 10.7 8.2 ± 2.9 17.1 ± 3.0 31.7 ± 5.9 8.1 ± 3.1 30.7 ± 5.1 53.2 ± 20.1 439 ± 53.0 32.1 ± 4.7 22.1 ± 2.9 

19
d 

DM 11.8 ± 1.5 2.3 ± 0.5 49.8 ± 14.7 22.7 ± 6.2 9.6 ± 4.1 10.2 ± 2.1 30.1 ± 5.0 3.1 ± 1.0 31.8 ± 5.0 55.8 ± 18.5 504 ± 31.1 35.5 ± 8.3 20.0 ± 2.7 

NiO-1 9.6 ± 2.2 2.2 ± 0.4 51.7 ± 15.4 23.8 ± 4.9 8.3 ± 2.8 6.2 ± 0.6 30.9 ± 8.7 2.9 ± 0.9 26.8 ± 4.5 49.6 ± 12.7 433 ± 55.4 41.2 ± 8.4 16.7 ± 2.5 

NiO-2 8.7 ± 0.8 2.0 ± 0.7 56.2 ± 12.0 22.1 ± 5.8 7.7 ± 2.9 5.7 ± 1.0 26.7 ± 6.4 5.5 ± 0.5 29.7 ± 3.7 48.8 ± 15.5 512 ± 65.6 40.3 ± 7.7 17.2 ± 4.8 

NiO-3 22.1 ± 0.7* 2.9 ± 0.6 39.6 ± 16.1 28.8 ± 4.7 11.2 ± 1.8 20.7 ± 1.9* 27.1 ± 4.9 4.7 ± 0.7 31.1 ± 3.6 53.2 ± 16.3 485 ± 20.0 33.9 ± 7.1 19.9 ± 4.6 

29
d 

DM 8.7 ± 1.5 4.4 ± 0.9 55.2 ± 12.7 19.8 ± 3.0 10.3 ± 4.1 11.4 ± 2.3 25.7 ± 5.1 6.1 ± 0.5 30.6 ± 5.1 52.3 ± 15.7 487 ± 68.7 30.2 ± 10.5 16.0 ± 3.7 

NiO-1 7.6 ± 1.6 7.1 ± 2.0 67.1 ± 24.2 18.7 ± 6.9 5.5 ± 2.6 7.7 ± 2.6 29.9 ± 8.3 2.3 ± 0.5 26.5 ± 7.0 55.4 ± 14.5 463 ± 37.4 40.1 ± 6.1 14.3 ± 4.2 

NiO-2 9.3 ± 2.0 2.9 ± 1.0 43.2 ± 26.1 21.3 ± 5.8 7.8 ± 1.5 12.2 ± 2.1 33.7 ± 6.4 3.9 ± 1.1 32.7 ± 5.0 46.2 ± 13.2 503 ± 45.0 29.8 ± 5.2 21.1 ± 5.5 

NiO-3 12.7 ± 2.3 3.7 ± 1.7 55.5 ± 26.5 24.1 ± 4.2 9.1 ± 3.2 9.6 ± 0.9 31.0 ± 6.7 4.8 ± 1.0 27.1 ± 4.4 49.8 ± 18.8 522 ± 26.0 33.6 ± 8.8 18.1 ± 2.6 

BALF 

1d
 

DM 2.3 ± 0.7 5.6 ± 3.2 14.2 ± 4.5 5.1 ± 3.6 0.9 ± 0.2 3.2 ± 0.3 2.4 ± 0.4 35.6 ± 11.4 88.8 ± 11.2 12.2 ± 1.9 25.2 ± 2.9 5.2 ± 1.0 21.0 ± 3.6 

NiO-1 2.0 ± 0.8 6.4 ± 2.3 18.7 ± 3.4 6.1 ± 2.9 1.0 ± 0.3 3.0 ± 0.4 3.6 ± 0.2 36.1 ± 9.9 90.5 ± 15.4 12.3 ± 2.3 30.2 ± 4.8 5.2 ± 1.0 20.9 ± 3.9 

NiO-2 2.1 ± 0.5 8.1 ± 3.8 15.2 ± 1.9 7.0 ± 2.0 1.2 ± 0.1 2.1 ± 0.5 3.4 ± 0.6 40.3 ± 6.9 101 ± 12.7 12.0 ± 3.2 25.7 ± 5.8 6.7 ± 1.0 22.1 ± 2.8 

NiO-3 3.1 ± 0.2 9.1 ± 4.7 20.1 ± 3.9 6.3 ± 1.9 1.3 ± 0.2 4.0 ± 1.2 3.7 ± 0.5 30.9 ± 5.9 108 ± 16.2 12.0 ± 4.0 22.3 ± 6.0 9.3 ± 2.0 22.3 ± 5.2 

10
d 

DM 3.9 ± 0.9 4.4 ± 0.6 15.3 ± 4.5 6.7 ± 2.9 1.1 ± 0.2 4.1 ± 1.4 2.0 ± 0.2 30.3 ± 5.8 92.8 ± 15.4 12.0 ± 2.3 26.3 ± 5.5 6.3 ± 1.0 19.8 ± 3.4 

NiO-1 4.0 ± 0.6 6.5 ± 0.5 16.7 ± 2.9 5.2 ± 2.4 1.7 ± 0.1 5.1 ± 2.2 2.2 ± 0.1 29.2 ± 5.4 78.4 ± 16.2 12.7 ± 4.1 39.6 ± 3.9* 5.6 ± 0.7 28.7 ± 3.5+ 

NiO-2 5.9 ± 1.5 5.0 ± 0.4 29.7 ± 3.4^ 4.1 ± 2.9 3.8 ± 1.0 2.3 ± 1.3 2.9 ± 0.2 34.9 ± 6.0 77.9 ± 10.9 11.9 ± 2.9 31.4 ± 4.5 6.4 ± 1.5 20.6 ± 4.5 

NiO-3 16.2 ± 4.7* 10.1 ± 0.9* 22.7 ± 5.7 5.0 ± 3.7 2.1 ± 0.2 11.7 ± 3.9* 2.9 ± 0.2 31.8 ± 4.1 115 ± 9.5 10.9 ± 2.8 27.5 ± 8.8 15.5 ± 3.0* 24.3 ± 5.5 

19
d 

DM 3.0 ± 1.0 2.1 ± 0.6 17.3 ± 4.2 5.1 ± 2.5 2.0 ± 0.3 5.0 ± 1.4 1.9 ± 0.3 34.8 ± 3.9 102 ± 8.5 10.8 ± 5.1 26.9 ± 9.5 5.9 ± 0.2 19.1 ± 2.8 

NiO-1 7.5 ± 3.1 5.4 ± 0.5 37.4 ± 5.8* 6.2 ± 2.9 1.3 ± 0.3 3.2 ± 0.5 2.0 ± 0.5 42.7 ± 8.2$ 108 ± 11.4 21.1 ± 4.0* 24.7 ± 6.6 4.7 ± 1.4 24.8 ± 6.5 

NiO-2 9.7 ± 1.5# 4.8 ± 0.4 21.5 ± 3.2 5.1 ± 3.4 1.8 ± 0.4 2.9 ± 0.9 2.7 ± 0.2 55.1 ± 8.6$ 170 ± 21.4+ 11.6 ± 3.2 26.5 ± 5.2 6.5 ± 1.2 22.6 ± 4.4 

NiO-3 22.9 ± 4.2* 11.9 ± 0.9 18.7 ± 2.1 4.1 ± 2.7 5.2 ± 0.5* 12.0 ± 5.0* 3.8 ± 0.1 30.1 ± 9.1 96.4 ± 12.5 12.7 ± 2.0 25.0 ± 6.7 8.0 ± 3.3 23.0 ± 3.2 

29
d 

DM 2.0 ± 0.3 5.2 ± 1.4 16.7 ± 3.4 4.8 ± 4.1 1.8 ± 0.2 4.0 ± 1.0 3.0 ± 1.0 29.8 ± 8.5 102 ± 14.0 12.1 ± 1.9 22.3 ± 5.2 4.3 ± 0.6 23.0 ± 3.4 

NiO-1 3.0 ± 0.2 6.7 ± 2.9 22.2 ± 2.5 5.4 ± 2.9 2.5 ± 0.6 2.5 ± 0.4 2.4 ± 0.6 33.3 ± 10.1 85.7 ± 16.5 10.8 ± 2.2 22.1 ± 3.2 4.1 ± 0.7 22.1 ± 5.5 

NiO-2 1.9 ± 0.6 5.9 ± 0.9 18.1 ± 1.2 6.2 ± 1.9 1.3 ± 0.5 6.1 ± 0.9 2.5 ± 0.5 34.0 ± 8.0 95.7 ± 18.5 11.5 ± 2.3 22.9 ± 3.6 4.9 ± 0.6 28.9 ± 2.2 

NiO-3 20.1 ± 5.6* 8.8 ± 0.8 21.1 ± 6.3 8.7 ± 3.0 3.8 ± 0.6+ 10.2 ± 2.8* 4.0 ± 0.4 30.5 ± 5.9 94.7 ± 12.8 11.4 ± 3.7 23.8 ± 3.9 9.8 ± 2.4* 25.1 ± 3.1 
                                         

   Th1/17 Cytokines   Th2 Cytokines   Other  

 
 
Table 2.5. Raw values of serum and BALF cytokine levels for each treatment group at 1, 10, 19, and 29 days post NiO aspiration in the NiO time course 
study. n = 8 per group, p < 0.05. * indicates statistical significance over all other groups at the corresponding time point; # indicates statistical significance 
over DM; ^ indicates statistical significance over DM, NiO-1; + indicates significance over DM, NiO-2; $ indicates statistical significance over DM and NiO-3. 
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Table 2.6. Whole blood cellular differentials from the NiO time course study at each time point for each treatment 
group. Number of red blood cells (RBC) and white blood cells (WBC) are reported in addition to absolute number of 
neutrophils (neutr), lymphocytes (lymph), monocytes (mono), eosinophils (eos), and basophils (baso) and percent 
of each cell type comprising the total WBC population. n = 8 per group.

Table 2.6. NiO Time Course Study  

Whole Blood Cell Differentials  

  
 RBC WBC  Cell Number (k/uL)  % of Total WBC 
 (M/uL) (k/uL)  Neutr Lymph Mono Eos Baso  Neutr Lymph Mono Eos Baso 

1d 

DM  9.27 2.18  0.77 1.38 0.01 0.02 0.00  35.32% 63.30% 0.46% 0.92% 0.00% 

NiO-1  9.65 2.48  0.88 1.56 0.01 0.03 0.00  35.48% 62.90% 0.40% 1.21% 0.00% 

NiO-2  9.76 2.00  0.54 1.44 0.01 0.01 0.00  27.00% 72.00% 0.50% 0.50% 0.00% 

NiO-3  9.55 2.54  0.99 1.51 0.02 0.02 0.00  38.98% 59.45% 0.79% 0.79% 0.00% 

10d 

DM  9.67 2.17  1.02 1.09 0.02 0.03 0.01  47.00% 50.23% 0.92% 1.38% 0.46% 

NiO-1  9.65 2.48  1.11 1.33 0.02 0.02 0.00  44.76% 53.63% 0.81% 0.81% 0.00% 

NiO-2  9.76 3.59  1.56 1.99 0.03 0.01 0.00  43.45% 55.43% 0.84% 0.28% 0.00% 

NiO-3  9.81 2.78  1.10 1.65 0.01 0.01 0.01  39.57% 59.35% 0.36% 0.36% 0.36% 

19d 

DM  9.13 2.29  1.02 1.24 0.01 0.02 0.00  44.54% 54.15% 0.44% 0.87% 0.00% 

NiO-1  9.15 2.87  1.26 1.56 0.02 0.03 0.00  43.90% 54.36% 0.70% 1.05% 0.00% 

NiO-2  9.52 3.15  1.46 1.66 0.02 0.01 0.00  46.35% 52.70% 0.63% 0.32% 0.00% 

NiO-3  9.87 2.32  1.19 1.11 0.01 0.01 0.00  51.29% 47.84% 0.43% 0.43% 0.00% 

29d 

DM  9.31 2.28  0.99 1.25 0.01 0.02 0.01  43.42% 54.82% 0.44% 0.88% 0.44% 

NiO-1  9.55 3.15  1.34 1.78 0.00 0.03 0.00  42.54% 56.51% 0.00% 0.95% 0.00% 

NiO-2  9.46 2.57  1.09 1.46 0.01 0.01 0.00  42.41% 56.81% 0.39% 0.39% 0.00% 

NiO-3  9.60 3.09  1.49 1.55 0.02 0.02 0.01  48.22% 50.16% 0.65% 0.65% 0.32% 
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Table 2.7. NiO Time Course Study 

Lung Histopathology Summary 
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1d 

DM 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-1 1,0,0,0,0,0 1,1,1,1,1,1 # 0,0,0,0,0,0 2,0,0,0,0,0 2,0,0,0,0,0 3,0,0,0,0,0 2,0,0,0,0,0 0,0,0,0,0,0 

NiO-3 0,0,0,0,0,0 1,1,1,1,1,1 # 1,1,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

10d 

DM 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-1 0,0,0,0,0,0 1,1,1,1,1,1 # 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-3 1,1,1,0,0,0 1,1,1,1,1,1 # 3,3,2,1,1,0 * 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

19d 

DM 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-1 0,0,0,0,0,0 1,1,1,1,1,1 # 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-3 1,1,0,0,0,0 1,1,1,1,1,1 # 2,2,2,1,1,1 * 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

29d 

DM 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-1 0,0,0,0,0,0 1,1,1,1,1,1 # 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-3 1,0,0,0,0,0 1,1,1,1,1,1 # 2,1,1,0,0,0 * 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 2,0,0,0,0,0 

 

 

Table 2.7. Summary of histopathological findings from lungs of DM, NiO-1 (40 µg fine particle), and NiO-3 (40 µg 
ultrafine particle)  groups at 1, 10, 19, and 29 days post-exposure in the NiO time course study. Scores for each 
animal are compiled for each treatment group and histopathological finding. Scale: n = normal, 1 = minimal, 2 = mild, 
3 = moderate, 4 = marked, 5 = severe. n = 6 per group, p < 0.05. # indicates statistical significance over DM at the 
corresponding time point; * indicates significance over all groups. 
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Table 2.8. BAL cell differentials for each treatment group at 29 d in the NiO OVA model by absolute number and 
percent of total BAL cells. AM = alveolar macrophage, lymph = lymphocytes, PMN = neutrophils, Eos = eosinophils. 
n = 8 per group. 
 

Table 2.8. Day 29 NiO OVA Asthma Model 

BAL Cell Differentials 

Absolute Number 

Group Total BAL Cells AM Lymph PMN Eos 

DM 1,187,750 ± 213,023 1,187,026 ± 37,985 2,724 ± 423 12,455 ± 988 541 ± 89 

NiO-1 1,437,375 ± 199,621 1,385,205 ± 60,949 9,958 ± 1,222 42,212 ± 6,215 411 ± 51 

NiO-2 1,437,375 ± 333,101 1,385,205 ± 81,727 9,958 ± 1,556 42,212 ± 4,179 351 ± 64 

NiO-3 1,965,125 ± 210,009 1,907,258 ± 76,290 17,783 ± 2,477 40,084 ± 3,210 711 ± 101 

OVA 2,933,923 ± 321,117 1,165,248 ± 25,632 182,631 ± 22,455 1,354,392 ± 142,102 231,652 ± 29,666 

NiO-1A 3,009,237 ± 314,455 1,507,294 ± 48,322 190,982 ± 33,899 1,014,414 ± 130,220 296,547 ± 33,710 

NiO-2A 3,404,743 ± 288,917 1,602,344 ± 65,969 201,247 ± 37,411 1,002,411 ± 99,851 598,741 ± 46,600 

NiO-3A 3,466,690 ± 356,098 1,021,951 ± 31,680 332,331 ± 29,100 1,505,600 ± 165,740 606,808 ± 52,179 

Percentage 

DM 1,187,750 ± 213,023 98.7 ± 3.2 % 0.2 ± 0.0 % 1.0 ± 0.0 % 0.0 ± 0.0 % 

NiO-1 1,437,375 ± 199,621 96.3 ± 4.4 % 0.7 ± 0.1 % 2.9 ± 0.3 % 0.0 ± 0.0 % 

NiO-2 1,437,375 ± 333,101 96.3 ± 5.9 % 0.7 ± 0.1 % 2.9 ± 0.2 % 0.0 ± 0.0 % 

NiO-3 1,965,125 ± 210,009 97.0 ± 4.0 % 0.9 ± 0.1 % 2.0 ± 0.1 % 0.0 ± 0.0 % 

OVA 2,933,923 ± 321,117 39.7 ± 2.2 % 6.2 ± 0.6 % 46.2 ± 3.3 % 7.9 ± 0.8 % 

NiO-1A 3,009,237 ± 314,455 50.1 ± 3.2 % 6.3 ± 0. 7% 33.7 ± 4.1 % 9.9 ± 1.1 % 

NiO-2A 3,404,743 ± 288,917 47.1 ± 4.1 % 5.9 ± 0.7 % 29.4 ± 5.1 % 17.6 ± 3.1 % 

NiO-3A 3,466,690 ± 356,098 29.5 ± 3.1 % 9.6 ± 0.8 % 43.4 ± 6.1 % 17.5 ± 2.1 % 



 

239 
 

 

 

Table 2.9. Total cell number in the mediastinal lymph nodes and percentages of each lymphocyte population for 
each treatment group at 29 d in the NiO OVA model. n = 8 per group,  p < 0.05. a indicates statistical significance 
over all non-sensitized groups; b indicates statistical significance over DM, NiO-1, NiO-2; c indicates statistical 
significance over DM; d indicates statistical significance over all non-sensitized groups, OVA; e indicates statistical 
significance over all other groups; f indicates statistical significance over all non-sensitized groups, NiO-3A. 
 
 
 

Table 2.9. Day 29 NiO OVA Asthma Model 

Lymph Node Cell Phenotypes by Percent of Total Cells 

Group Total LN Cells CD4+ T-cells CD8+ T-cells B-cells Other 

DM 3,873,973 ± 499,632 55.2 ± 4.1% 14.2 ± 3.1% 26.1 ± 3.0% 4.5 ± 1.4% 
NiO-1 5,856,315 ± 569,478 c 54.8 ± 3.0% 15.2 ± 2.3% 27.9 ± 2.9% 5.0 ± 1.0% 
NiO-2 5,428,942 ± 442,989 c 55.9 ± 3.2% 13.7 ± 2.0% 30.2 ± 3.5% 6.3 ± 2.5% 
NiO-3 7,552,486 ± 1,110,222 b 57.9 ± 2.9% 15.3 ± 2.8% 28.0 ± 2.5% 5.7 ± 2.4% 
OVA 11,756,798 ± 1,420,407 a 36.8 ± 3.0% f 13.3 ± 1.9% 44.3 ± 4.0% f 5.6 ± 1.8% 
NiO-1 16,192,731 ± 2,033,177 d 38.5 ± 2.9% f 15.1 ± 2.8% 45.0 ± 3.9% f 4.4 ± 0.8% 
NiO-2 18,874,551 ± 1,956,100 d 35.9 ± 2.8% f 14.3 ± 2.7% 48.5 ± 5.0% f 6.3 ± 1.6% 
NiO-3 30,939,970 ± 6,296,222 e 55.5 ± 4.1% 13.6 ± 1.7% 31.8 ± 4.2% 6.1 ± 1.4% 
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Table 2.10. Spleen cell differentials for each treatment group at 29 d in the NiO OVA model expressed as percent 
of total spleen cells.

Table 2.10. Day 29 NiO OVA Asthma Model 

Spleen Cell Phenotypes by Percent of Total Cells 

Group CD4+ T-cells CD8+ T-cells B-cells NK Cells Other 

DM 31.2 ± 3.4 % 12.1 ± 1.0 % 52.1 ± 10.2 % 2.3 ± 0.2 % 2.3 ± 0.1 % 

NiO-1 32.1 ± 3.1 % 14.3 ± 1.4 % 49.1 ± 9.9 % 1.9 ± 0.2 % 2.6 ± 0.1 % 

NiO-2 28.1 ± 2.7 % 11.1 ± 1.0 % 55.2 ± 7.1 % 2.2 ± 0.1 % 3.4 ± 0.2 % 

NiO-3 25.1 ± 3.0 % 15.0 ± 2.0 % 55.4 ± 5.5 % 2.0 ± 0.0 % 2.5 ± 0.0 % 

OVA 27.7 ± 2.1 % 9.4 ± 1.1 % 60.1 ± 6.6 % 1.3 ± 0.0 % 1.5 ± 0.1 % 

NiO-1A 24.1 ± 1.9 % 8.7 ± 1.3 % 61.2 ± 10.7 % 3.0 ± 0.1 % 3.0 ± 0.2 % 

NiO-2A 26.6 ± 1.7 % 14.0 ± 1.4 % 55.9 ± 7.7 % 1.9 ± 0.2 % 1.6 ± 0.3 % 

NiO-3A 38.2 ± 2.9 % 20.2 ± 1.7 % 38.1 ± 8.9 % 1.7 ± 0.1 % 1.8 ± 0.2 % 
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Table 2.11. Day 29 NiO OVA Model: Serum/BALF Cytokine Levels (pg/mL) 

 IFN-γ IL-2 IL-12p40 IL-12p70 IL-17 TNF-α GM-CSF IL-4 IL-5 IL-13 Eotaxin IL-6 IL-10 

SERUM 

DM 12.9 ± 3.0 4.1 ± 2.1 42.2 ± 19.2 22.2 ± 4.0 12.2 ± 2.0 6.5 ± 2.0 33.1 ± 4.9 6.9 ± 2.4 32.4 ± 11.9 49.8 ± 12.1 464 ± 99.1 34.5 ± 6.8 17.6 ± 8.1 

NiO-1 10.5 ± 3.1 3.7 ± 2.6 35.2 ± 14.5 26.8 ± 8.6 14.9 ± 1.6 8.8 ± 2.4 32.2 ± 10.2 4.8 ± 1.3 41.1 ± 12.0 52.5 ± 21.0 502 ± 93.2 30.7 ± 4.4 17.5 ± 5.1 

NiO-2 13.8 ± 3.3 5.6 ± 1.6 35.7 ± 10.7 29.7 ± 6.2 9.9 ± 0.6 5.7 ± 2.9 28.0 ± 5.3 5.7 ± 1.4 39.1 ± 20.0 46.8 ± 19.7 498 ± 64.1 27.3 ± 5.4 18.5 ± 5.5 

NiO-3 10.3 ± 2.3 4.2 ± 1.2 46.0 ± 13.7 30.1 ± 5.8 10.1 ± 2.8 10.0 ± 3.6 28.0 ± 6.6 4.0 ± 0.5 39.9 ± 13.1 49.0 ± 18.1 526 ± 82.4 29.6 ± 4.0 15.1 ± 6.6 

OVA 14.7 ± 2.0 6.2 ± 1.7 109 ± 19.2a 66.5 ± 15.2a 13.7 ± 2.9 34.7 ± 3.9a 175 ± 15.1a 3.0 ± 2.0 206 ± 16.5a 553 ± 56.4a 1002 ± 100a 37.1 ± 6.7 112 ± 12.8a 

NiO-1A 3.1 ± 0.5e 7.9 ± 1.8 109 ± 31.1a 160 ± 15.5e 18.8 ± 3.2 25.3 ± 5.4a 170 ± 14.7a 5.2 ± 1.7 214 ± 17.1a 518 ± 51.1a 989 ± 96.4a 39.1 ± 13.8 105 ± 11.2a 

NiO-2A 10.0 ± 1.6 11.1 ± 3.0a 132 ± 41.0a 123 ± 17.6d 22.1 ± 3.6g 29.2 ± 4.5a 176 ± 16.6a 6.1 ± 1.7 220 ± 15.5a 596 ± 50.2a 896 ± 88.7a 47.1 ± 13.9 130 ± 18.4a 

NiO-3A 23.4 ± 3.2e 18.7 ± 2.0e 230 ± 44.7e 98.7 ± 17.8a 16.6 ± 3.2 40.1 ± 6.4h 181 ± 15.4a 2.8 ± 1.1i 141 ± 18.0e 510 ± 44.7a 999 ± 102a 24.1 ± 5.6j 88.4 ± 9.1a 

BALF 
DM 4.4 ± 1.0 5.6 ± 2.5 14.8 ± 3.6 9.7 ± 3.0 1.6 ± 0.5 4.2 ± 1.5 5.1 ± 1.1 33.3 ± 6.2 102 ± 19.8 13.4 ± 3.3 25.5 ± 3.0 3.5 ± 1.3 25.2 ± 5.0 

NiO-1 2.7 ± 1.2 6.7 ± 1.8 15.5 ± 3.1 4.2 ± 2.0 1.4 ± 0.3 2.2 ± 1.1 3.2 ± 1.0 45.2 ± 10.4 99.8 ± 20.1 14.0 ± 4.2 24.5 ± 4.0 4.4 ± 1.2 21.0 ± 4.0 

NiO-2 2.6 ± 0.9 10.1 ± 2.2 14.2 ± 2.0 6.5 ± 2.0 1.4 ± 0.7 4.8 ± 1.2 5.1 ± 2.2 33.2 ± 11.0 77.5 ± 15.2 12.5 ± 5.0 23.7 ± 6.9 6.5 ± 1.0 19.1 ± 3.3 

NiO-3 12.2 ± 2.2b 11.0 ± 3.1 13.2 ± 4.9 7.1 ± 2.8 1.6 ± 0.5 11.1 ± 2.8b 4.2 ± 2.0 40.8 ± 9.8 105 ± 30.2 14.4 ± 3.2 22.1 ± 5.0 8.5 ± 3.7 18.2 ± 5.0 

OVA 7.1 ± 3.1b 22.3 ± 5.3a 19.8 ± 4.5 4.7 ± 2.0 1.2 ± 0.4 17.0 ± 3.2b 10.1 ± 2.9a 78.4 ± 16.4a 472 ± 65.1a 25.5 ± 5.0a 70.9 ± 11.4a 58.9 ± 14.7a 41.4 ± 6.6a 

NiO-1A 6.5 ± 1.0a 15.2 ± 4.8k 15.5 ± 4.2 3.5 ± 1.0 2.0 ± 0.5 15.4 ± 2.4b 8.2 ± 2.8a 572 ± 165g 512 ± 119a 32.7 ± 5.2a 74.9 ± 12.7a 111 ± 22.2d 44.0 ± 10.7a 

NiO-2A 9.9 ± 2.1b 13.9 ± 3.1 l 16.0 ± 4.0 5.2 ± 2.1 2.1 ± 0.5 16.2 ± 2.7b 9.1 ± 2.0a 568 ± 175g 501 ± 108a 29.1 ± 6.7a 80.1 ± 20.2a 356 ± 93.2e 45.1 ± 11.8a 

NiO-3A 32.1 ± 8.1e 54.8 ± 8.1e 25.4 ± 6.7a 6.7 ± 2.8 5.5 ± 1.2e 18.8 ± 2.7b 6.3 ± 3.2 117 ± 19.2d 452 ± 123a 18.3 ± 4.1m 82.3 ± 38.1a 99.8 ± 20.7d 36.2 ± 7.7a 
                                        

  Th1/17 Cytokines   Th2 Cytokines   Other  

 
 
 
Table 2.11. Raw values of serum and BALF cytokine levels for each treatment group at 29 d of the NiO OVA model. n = 8, p < 0.05. a indicates statistical 
significance over all non-sensitized groups; b indicates statistical significance over DM, NiO-1, NiO-2; d indicates statistical significance over all non-
sensitized groups, OVA; e indicates statistical significance over all other groups; g indicates statistical significance over all non-sensitized groups, OVA, NiO-
3A; h indicates statistical significance over all non-sensitized groups, NiO-1A; i indicates statistical significance over all non-sensitized groups, NiO-2A; j 
indicates statistical significance over OVA, NiO-1A, NiO-2A; k indicates statistical significance over DM, NiO-1; l indicates statistical significance over DM, 
NiO-1, OVA. 
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Table 2.12. Whole blood cellular differentials from the NiO OVA model for each treatment group. Number of red 
blood cells (RBC) and white blood cells (WBC) are reported in addition to absolute number of neutrophils (neutr), 
lymphocytes (lymph), monocytes (mono), eosinophils (eos), and basophils (baso) and percent of each cell type 
comprising the total WBC population. n = 6 per group. 

Table 2.12. Day 29 NiO OVA Asthma Model 

Whole Blood Cell Differentials 

 
 RBC WBC  Cell Number (k/uL)  % of Total WBC 
 (M/uL) (k/uL)  Neutr Lymph Mono Eos Baso  Neutr Lymph Mono Eos Baso 

DM  9.74 2.08  0.76 1.19 0.03 0.10 0.00  36.54% 57.21% 1.44% 4.81% 0.00% 

NiO-1  9.73 2.20  1.11 1.05 0.01 0.03 0.00  50.45% 47.73% 0.45% 1.36% 0.00% 

NiO-2  9.94 1.64  0.56 1.01 0.06 0.01 0.00  34.15% 61.59% 3.66% 0.61% 0.00% 

NiO-3  9.69 2.12  1.03 0.99 0.08 0.02 0.00  48.58% 46.70% 3.77% 0.94% 0.00% 

OVA  9.60 2.17  0.44 1.56 0.07 0.09 0.01  20.28% 71.89% 3.23% 4.15% 0.46% 

NiO-1A  9.78 2.45  0.52 1.78 0.08 0.05 0.02  21.22% 72.65% 3.27% 2.04% 0.82% 

NiO-2A  9.97 2.72  0.56 2.01 0.09 0.05 0.01  20.59% 73.90% 3.31% 1.84% 0.37% 

NiO-3A  9.88 2.64  0.61 1.88 0.08 0.06 0.01  23.11% 71.21% 3.03% 2.27% 0.38% 
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Table 2.13. Day 29 NiO OVA Asthma Model  

Lung Histopathology Summary 

 

A
cc

um
ul

at
io

n 
al

ve
ol

ar
 m

ac
ro

ph
ag

es
 

 In
fil

tr
at

io
n 

eo
si

no
ph

il,
 m

on
on

uc
le

ar
 

pe
rib

ro
nc

hi
ol

ar
/p

er
iv

as
cu

la
r 

In
fil

tr
at

io
n 

m
ix

ed
 c

el
l 

pe
rib

ro
nc

hi
ol

ar
/p

er
iv

as
cu

la
r 

B
la

ck
/b

ro
w

n 
pa

rt
ic

le
s 

in
 

In
 a

lv
eo

la
r 

m
ac

ro
ph

ag
es

 

A
cc

um
ul

at
io

n 
M

ac
ro

ph
ag

es
, e

os
in

op
hi

l, 
ne

ut
ro

ph
il 

in
 a

lv
eo

la
r 

lu
m

en
s 

B
ro

nc
hi

ol
e 

ep
ith

el
iu

m
 h

yp
er

tr
op

hy
 

M
ul

ti-
nu

cl
ea

te
d 

gi
an

t c
el

ls
 

M
ac

ro
ph

ag
e 

va
cu

ol
at

io
n 

E
de

m
a 

pe
rib

ro
nc

hi
ol

ar
/p

er
iv

as
cu

la
r 

E
xu

da
te

 
ai

rw
ay

s 

M
ac

ro
ph

ag
es

, n
eu

tr
op

hi
ls

 
at

 te
rm

in
al

 b
ro

nc
hi

ol
e/

al
ve

ol
ar

 d
uc

t 

H
em

or
rh

ag
e 

DM 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-1 1,1,0,0,0,0 0,0,0,0,0,0 1,1,0,0,0,0 1,1,1,1,1,1 c 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 1,0,0,0,0,0 0,0,0,0,0,0 

NiO-2 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 1,1,1,1,1 c 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 1,0,0,0,0,0 

NiO-3 1,0,0,0,0,0 0,0,0,0,0,0 1,1,1,1,1,0 b 1,1,1,1,1,1 c 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

OVA 0,0,0,0,0,0 2,2,2,2,2,2 a 0,0,0,0,0,0 1,1,1,1,1,1 c 1,1,1,1,1,1 a 1,1,1,1,1,1 a 0,0,0,0,0,0 1,1,1,1,1,1 a 0,0,0,0,0,0 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-1A 0,0,0,0,0,0 2,2,2,2,2,1 a 0,0,0,0,0,0 1,1,1,1,1,1 c 2,1,1,1,1,1 a 1,1,1,1,1,0 a 0,0,0,0,0,0 1,1,1,1,1,1 a 1,1,0,0,0,0 1,1,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-2A 0,0,0,0,0,0 2,2,2,2,2,2 a 0,0,0,0,0,0 1,1,1,1,1,1 c 1,1,1,1,1,1 a 1,1,1,1,0,0 a 0,0,0,0,0,0 1,1,1,1,0,0 a 1,1,0,0,0,0 1,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

NiO-3A 0,0,0,0,0,0 3,2,2,2,2,1 a 0,0,0,0,0,0 1,1,1,1,1,1 c 2,1,1,1,1,0 a 1,1,1,1,1,0 a 1,1,0,0,0,0 1,1,1,1,1,1 a 1,1,1,0,0,0 1,1,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 

 

 

Table 2.13. Summary of histopathological findings from lungs of all groups at day 29 in the NiO OVA model. Scores for each animal are compiled for each 
treatment group and histopathological finding and compared to corresponding control (DM for non-sensitized groups, OVA for sensitized groups). Scale: n 
= normal, 1 = minimal, 2 = mild, 3 = moderate, 4 = marked, 5 = severe. n = 6, p < 0.05. a indicates statistical significance over all non-sensitized groups; b 
indicates statistical significance over DM, NiO-1, NiO-2; c indicates difference over DM.
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Table 2.14. Summary of results from the NiO time course study and the NiO OVA asthma model illustrate 
associations between individual dose metrics and specific endpoints, and subsequent immune effects. 

Table 2.14. NiO Time Course Study and NiO OVA Asthma Model 
Summary of Results 

Dose Metric  Correlated Endpoint Effect 

NiO Time Course Study 

Surface Area → 

LDH 
Total BAL Cell # 
Lung neutrophils 
Total LN Cell # 

↑ SA = ↑ LDH 
↑ SA = ↑ BAL Cell # 
↑ SA = ↑ Lung neutrophils 
↑ SA = ↑ LN Cell # 

NiO OVA Asthma Model 

NiO Exposure → Serum Total IgE NiO exposure  = ↑ total IgE in  
OVA-sensitized animals 

Surface Area → 
Lung neutrophils 
BALF cytokines 

Serum OVA-specific IgE 

↑ SA  =  ↑ lung neutrophils 
↑ SA  = Th2 cytokines, ↓ SA = Th1/17 cytokines 
↓ SA  = ↓ OVA-specific IgE levels 

Particle Size → 
Lung eosinophils 

Penh 
↓ particle size  = ↑ lung eosinophils 
↑ particle size  = ↑ Penh 

Mass → BALF IL-6 ↓  mass  = ↑ lavage fluid IL-6 levels 
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CHAPTER 2 FIGURES 

 

 

 

 

 

Figure 2.1. Treatment groups, corresponding exposures, and timeline of treatments in the OVA asthma model. Two 
groups of mice were exposed to dispersion medium (DM) or NiO particles at doses identical to those of the time 
course study on day 0 via oropharygenal aspiration (asp). One group of each treatment was not sensitized to OVA 
to serve as non-sensitized particle control groups and another group of each treatment was sensitized to OVA. 
Accordingly, on days 1 and 10, mice were intraperitoneally injected (i.p.) with PBS (non-sensitized) or OVA + alum 
in PBS (sensitized). On day 14, 150 µL blood was collected via the tail vein to evaluate circulating OVA-specific IgE 
levels, indicative of successful sensitization to OVA (green circle). On days 19 and 28, mice were aspirated with 
OVA or PBS and placed in whole body plethysmography (WBP) chambers to assess airway response to allergen 
challenge (blue circle). On day 29, all mice were euthanized. 
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Figure 2.2. Scanning electron micrographs of NiO-F and NiO-UF at identical magnifications (A, B; scale bar- 1µm) 
and size-adjusted magnifications (C, D). Magnified images showing particle surface detail for NiO-F (E, F) and NiO-
UF (G, H).   
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Figure 2.3.  Dynamic light scattering (DLS) analysis of NiO-F (A) and NiO-UF in DM (B).  

A 
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Figure 2.4. XPS hi-res spectrum of NiO-F (A) and NiO-UF (B). Relative elemental composition of carbon, oxygen, 
sodium, chloride, silicon, nickel, and bromine in NiO-F and NiO-UF samples and ratio of nickel to oxygen on the 
surfaces of each material (C). 
 

 

 

 

 

 

Material 
Relative Elemental Composition (Atom %) Ni:O 

ratio C O Na Cl Si Ni Br 

NiO-F 7.2 45 1.1 - 2.6 45 - 1:1 

NiO-UF 8.0 39 - 0.7 - 51 0.5 1:1.3 

A B 

C 
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Figure 2.5. ESR spectra for dispersion media (A), chromium (VI) (B, positive control), NiO-F (C), and NiO-UF (D).
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Figure 2.6. Rate of dissolution for NiO-F (solid lines) and NiO-UF (dotted lines) in different simulated biological fluids 
shown as percent of the original Ni concentration measured as soluble fraction. Purple lines represent particles 
suspended in dispersion media (DM, pH 7.2), pink lines indicate particles suspended in Gamble’s solution (GS, pH 
7.4), and orange lines indicate particles suspended in artificial lysosomal fluid (ALF, pH 4.5). n = 3, p < 0.05, * 
indicates statistically different from the same particle in GS and DM suspensions.  
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Figure 2.7. Markers of pulmonary injury and inflammation measured in mice from the NiO time course study at 1, 
10, 19, and 29 days post NiO exposure following bronchoalveolar lavage (BAL). A) Lung lactate dehydrogenase 
(LDH) levels in BAL fluid, B) total cell number in BAL, and C) total neutrophil number in BAL are shown for DM 
control (gray), NiO-1 (green), NiO-2 (blue), and NiO-3 (red) groups. n = 8 per group, p < 0.05, * indicates statistically 
significant from all other groups, # indicates statistically significant from DM control. 
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Figure 2.8. A) Total cell number in the mediastinal lymph node recovered from each group and B) cell phenotypes 
by absolute number at 1, 10, 19, and 29 days post-exposure in the NiO time course study. n = 8 per group, p < 
0.05, * indicates statistically significant from all other groups, # indicates statistically significant from DM, ^ indicates 
statistically significant from DM and NiO-1. 
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Figure 2.9. Levels of several notable Th1/pro-inflammatory cytokines that were elevated in the BALF of animals in 
the NiO time course study. BALF IL-6 (A), IFN-γ (B), and TNF-α (C) responses were generally conserved with 
respect to NiO surface area, wherein the higher dose (NiO-3) caused more pronounced and persistent increases. 
n = 8, p < 0.05, * indicates statistical significance over all other groups at the corresponding time point, # indicates 
statistical significance over DM only. 
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Figure 2.10. Whole lung nickel levels following aspiration of 40 µg the NiO-1 fine particle (green) or the NiO-3 
ultrafine particle (red) in mice were measured by ICP-MS on dried lung tissue at 1, 10, 19, and 29 days post-
exposure. Data is expressed as a percentage of the originally-administered dose. n=6, p < 0.05, * indicates 
statistically significant difference between particles at the same time point. 
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Figure 2.11. Dark field and light micrographs of alveolar macrophages recovered by BAL from each group at 10 
days post-exposure. Images of macrophages isolated from the DM (A-C), NiO-1 (D-F), NiO-2 (G-I), and NiO-3 (J-
L) groups showed variations in the degree of particle loading at 10 day, and size/morphology of internalized 
particles. 
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Figure 2.12. Levels of circulating total (n = 3-5) and OVA-specific (n = 8) IgE from serum of mice collected on day 
14 of the OVA allergy model, following NiO aspiration and two sensitization procedures. Sensitized groups are 
shown in purple and non-sensitized groups are shown in orange. Total IgE levels are represented by the entire bar, 
OVA-specific IgE levels are represented by the hatched portion of the bar, and OVA-specific : total IgE ratio is 
expressed as a percentage over the corresponding bars. p < 0.05, a indicates statistically significant from all non-
sensitized groups.  
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Figure 2.13. Whole body plethysmography results at day 28 of the OVA model. Penh was recorded every 30 seconds 
for 6 hours immediately following OVA aspiration challenge for each mouse. A time course view of the Penh response 
is shown for a single, representative animal from the DM, OVA, NiO-1A, NiO-2A, and NiO-3A groups in panel A. 
Area under the curve was calculated, and averaged for animals from each group and expressed as fold-change 
over OVA control average (B). n = 8, p < 0.05, A indicates fold-change with statistical significance over all other 
groups. 
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Figure 2.14. A) Total cell number and fraction of eosinophils (pink), polymorphonuclear cells (orange), lymphocytes 
(red), and alveolar macrophages (yellow) recovered from BAL at day 29 in the OVA asthma model. n = 8, p < 0.05, 
a indicates total BAL cell number significant over all sensitized groups, b indicates significance over DM, NiO-1, 
and NiO-2. Percent eosinophils (B) and neutrophils (C) of total BAL cells are expressed as fold change over OVA 
control levels (dotted line). n = 8,  p < 0.05. A indicates fold change significantly different from all other groups, B 
indicates fold change significantly different from NiO-1A.  
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Figure 2.15. Vacuolated macrophages were most prominently observed following exposure to the 40 µg dose of 
NiO-UF in the NiO OVA asthma model. Red arrows indicate observable vacuolation in alveolar macrophages in the 
lung tissue (A) and lavage fluid (B, C) of an animal from groups NiO-3 (B) and NiO-3A (A, C). Histopathological 
analysis of lung tissue from the NiO OVA study also reported the presence of multinucleated giant cells (yellow 
arrow) exclusively observed in the lung tissue of NiO-3A animals (D).  
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Figure 2.16. Total number of cells (whole bar) and phenotypes [CD4+ T-cells (orange), CD8+ T-cells (red), and B-
cells (yellow)] collected from the mediastinal lymph nodes at day 29 in the OVA asthma model (A).  The table (B) 
shows the absolute number of cells in each lymphocyte population in the OVA-exposed groups at day 29. n = 8 per 
group,  p < 0.05. a indicates statistical significance over all non-sensitized groups; b indicates statistical significance 
over DM, NiO-1, NiO-2; c indicates statistical significance over DM; d indicates statistical significance over all non-
sensitized groups, OVA; e indicates statistical significance over all other groups; f indicates statistical significance 
over all non-sensitized groups, NiO-3A. 
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Figure 2.17. Levels of circulating total and OVA-specific IgE from serum of mice collected on day 29 of the OVA 
allergy model following NiO aspiration, two sensitization procedures, and two OVA challenges. Sensitized groups 
are shown in purple and non-sensitized groups are shown in orange. Total IgE levels are represented by the entire 
bar, OVA-specific IgE levels are represented by the hatched portion of the bar, and OVA-specific : total IgE ratio is 
expressed as a percentage over the corresponding bars. n = 8, p < 0.05. a indicates statistical significance over all 
non-sensitized groups; d indicates statistical significance over all non-sensitized groups, OVA; f indicates statistical 
significance over all non-sensitized groups, NiO-3A. 
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Figure 2.18. Th1/17 and Th2 cytokine levels in BAL fluid collected at day 29 from NiO-exposed/OVA-sensitized 
mice expressed as fold change over OVA control values. n = 8,  p < 0.05. A indicates fold-change with statistical 
significance over all other groups; C indicates fold-change with statistical significance over OVA, NiO-3A; D 
indicates fold-change with statistical significance over OVA, NiO-2A. 
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Figure 2.19. Th1/17 and Th2 cytokine levels in serum from NiO-exposed/OVA-sensitized mice expressed as fold 
change over OVA control values. n = 8,  p < 0.05. A indicates fold-change with statistical significance over all other 
groups; C indicates fold-change with statistical significance over OVA, NiO-3A; E indicates fold-change with 
statistical significance over OVA. 
 
 
 

 

 
 



 

264 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 2.20. Fold change in cytokine levels in BALF and serum of NiO-exposed mice compared to OVA control 
levels. n = 8,  p < 0.05. A indicates fold-change with statistical significance over all other groups; C indicates fold-
change with statistical significance over OVA, NiO-3A; D indicates fold-change with statistical significance over 
OVA, NiO-2A, E indicates fold-change with statistical significance over OVA. 
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CHAPTER 3: 

Evaluation of the skin sensitizing potential of gold nanoparticles 

and the impact of established dermal sensitivity on the pulmonary immune response 

to various forms of gold 
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3.1. Abstract 

Gold nanoparticles (AuNP) are largely biocompatible, and overt toxic responses are rarely 
reported following exposure; however, several studies have shown the potential for AuNP to modulate 
immune cell functions, accumulate in lymphoid organs, and augment allergic responses to environmental 
allergens. These observations are concerning since gold salts have been historically implicated in a 
number of adverse immune effects, including the development of gold-induced ACD. Despite this 
knowledge, the potential for AuNP to cause allergic disease has yet to be investigated.  

 

In order to address this knowledge gap, three studies were performed in vivo. First, the skin 
sensitizing potential of different forms of gold was assessed by incorporating soluble gold salts (AuCl3) 
and increasing concentrations of gold particles (Au, 942 nm), and gold nanoparticles (AuNP, 30 nm) into 
a Local Lymph Node Assay (LLNA). Next, the pulmonary immune effects of AuNP (10 µg, 30 µg, 90 µg) 
were assessed 1 d, 4 d, 8 d post-aspiration. Finally, in accordance with the recent recognition of the 
frequency of gold contact allergy in the general population, an allergy study was performed in order to 
assess the impact of existing dermal sensitivity to gold on the pulmonary immune response to the 
materials. In this study, mice were dermally sensitized to gold by similar methods used in the LLNA (d 1-
3), then aspirated once (d 10), twice (d 10, d 14), or three times (d 10, d 14, d 18) with gold particles then 
euthanized the day after the final aspiration. Subsequent responses were evaluated with respect to mass 
and surface area of the administered gold dose according to three treatment groups: 30 µg Au, a mass-
equivalent dose of AuNP, or a surface area-normalized dose of AuNP (0.8 µg).  
 

In the LLNA study, AuCl3 had a stimulation index (SI) of 10.9, in accordance with its known potent 
sensitizing capacity. Although the SI of AuNP (2.3) was higher than that of Au (1.1), a three-fold increase 
in lymphocyte proliferation was not observed for either particle. In the dose-response study, AuNP was 
not associated with increases in any markers of lung injury or inflammation, irrespective of dose and time. 
However, following exposure to the highest dose of AuNP (90 µg), a significant increase in the total 
number of cells in the mediastinal lymph nodes was observed at 8 d, wherein selective expansion of 
CD4+ T-cell and B-cell populations was seen. In the allergy study, no alterations in any immune 
parameters were observed at any time point amongst the groups of animals that had not been previously 
sensitized to gold. Comparatively, after the second and third gold aspirations, a significant increase in 
the number of BAL lymphocytes was seen in all previously-sensitized/gold-aspirated groups, the 
magnitude of which correlated to surface area of the administered dose. Animals aspirated with the 30 
µg AuNP dose exhibited the greatest number of total BAL lymphocytes, as well as a selective increase 
in the number and proportion of CD8+ T-cells. In the lymph nodes of these animals, CD8+ T-cells 
constituted a larger percent of the total lymphocyte population and exhibited higher levels of activation 
marker expression. Comparatively, aspiration with the lower surface area-based doses of Au/AuNP 
resulted in the preferential influx of CD4+ T-cells to the lungs, exposure-dependent elevations in serum 
IgE levels, and selective expansion/activation of CD4+ T-cells and B-cells within the lymph nodes.  

 

The findings from this study suggest that AuNP do not constitute a notable risk for allergic 
sensitization. However, established contact sensitivity to gold is associated with increased immune 
reactivity following pulmonary exposure to the metal. Subsequent immune effects appear directionally 
polarized in a surface area-dependent manner, wherein responses resembling delayed-type 
hypersensitivity reactions occur following exposure to higher doses. Collectively, these findings suggest 
that individuals exhibiting dermal sensitivity to gold may be more susceptible to adverse pulmonary 
immune effects following exposure to AuNP. 
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3.2. Introduction 

Like many other metal nanomaterials, gold nanoparticles (AuNP) have utility as catalysts, 

electrochemical sensors, and antimicrobial additives, and are they becoming increasingly used in fuel 

cell applications, biological imaging, and the electronics industry (1657, 1658). However, the highest 

demand for this material originates in the biomedical sector, as AuNP are one of the few metal 

nanomaterials being used extensively in medical applications (1349). AuNP exhibit general 

biocompatibility, are easily synthesized, and their physico-chemical properties can be easily manipulated, 

all of which are characteristics that facilitate its utility in this field. Accordingly, AuNP have been employed 

as a vaccine platform, diagnostic imaging agent, drug delivery vehicle, and adjuvant in cancer therapy, 

among other novel uses (63, 1433, 1566, 1659). 

Current applications for AuNP and the corresponding increase in material demand will inevitably 

lead to increases in AuNP exposure. Workers involved in the manufacture, handling, and transport of 

AuNP are likely to be exposed to the materials by dermal contact and inhalation. These routes of 

exposure also constitute the majority of potential exposures to AuNP in its current markets. Uses in 

medical settings render healthcare workers a population of individuals potentially susceptible to AuNP 

exposures, but also constitute a risk for patients (1172). Patients may also be uniquely subjected to AuNP 

exposures by parenteral routes, given that many of the biomedical applications of AuNP implicate their 

systemic administration. 

Larger forms of particulate gold materials and objects containing metallic gold exhibit a relatively 

low degree of toxic potential, especially when compared to other metals. However, some gold-containing 

agents have been associated with adverse health effects, many of which implicate the immune system. 

Contact sensitivity to gold is one such response. Since the development of gold-specific adaptive immune 

responses most commonly occurs following penetration of the skin by gold ions, soluble gold salts are 

often implicated in cases of ACD caused by gold (1536, 1660). Although skin contact is the most common 

route of exposure associated with sensitization in the general population, the development of gold allergy 

following systemic administration of gold-based therapeutics is also commonly reported (1458). 

Subsequent dermal eruptions frequently occur, constituting one of the major complications presenting in 



 

268 
 

patients undergoing gold therapy. Other adverse immune reactions in these patients include alterations 

in circulating white blood cell populations, compromised antibody production, and the development of a 

delayed-type hypersensitivity response in the airways leading to a condition termed ‘gold lung’ (408, 

1476, 1530, 1661) 

Despite the current applications for AuNP and the established immunotoxic potential of gold, the 

allergenic potential of AuNP remains unknown. To begin addressing this knowledge gap, three studies 

were conducted using a mouse model. First, the potential for AuNP to induce dermal sensitization was 

investigated using the LLNA and compared to the immunogenic activity of soluble gold salts. Next, the 

pulmonary immune effects of AuNP were assessed in vivo with respect to dose and time. Lastly, the 

impact of established dermal sensitivity on the pulmonary immune response to gold was investigated. 

Mice were aspirated with gold particles or AuNP in mass- and surface area-normalized doses to 

determine if these parameters were related to subsequent biological effects. Collectively, the findings 

from these studies will help determine if AuNP present a risk for the development of gold-specific allergic 

disease and if individuals with existing gold contact allergy constitute a population vulnerable to adverse 

immune effects following respiratory exposure to AuNP. 

 

3.3. Materials and Methods 

Material Characterization 

Gold particles (<10 µm, Au) and gold (III) chloride (AuCl3) were obtained from Sigma-Aldrich in 

powder form. Gold nanoparticles (AuNP) were obtained from the National Institute of Standards and 

Technology (NIST) Standard Reference Materials Program. Reference Material 8012 is a well-

characterized citrate-stabilized AuNP (30 nm nominal diameter) received at a concentration of 20% (w/v) 

in aqueous suspension (1662). Physico-chemical properties of both particulate gold materials were 

characterized prior to incorporation into in vivo studies.  

Primary Particle Size, Agglomerate Size, and Particle Morphology: Field emission scanning 

electron microscopy (FESEM, Hitachi Model S-4800) was employed to assess primary particle size and 

morphology of Au and AuNP. Particles were prepared in distilled water for microscopic analysis. Images 
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were collected for both particles and the diameters of 250 particles from each sample were recorded 

using point count methods. Image J Software (Version X; National Institutes of Health; Bethesda, MD) 

was used for analysis of mean diameter and degree of polydispersity for each particle.  

Surface Area: Surface area of the Au particles (in powder form) was measured by gas adsorption 

using a Quantachrome NOVA 2200e surface area analyzer and ultra-high purity nitrogen adsorbate. 

Specific surface area (SSA) was determined by using the multipoint Brunauer, Emmett, and Teller (BET) 

method (1611). Since AuNP were received in aqueous suspension, geometric calculations were used to 

determine the surface area of this material using the particle sizes generated from microscopic 

measurements and the known density of gold (19.32g/cm3). The same approach was employed with Au 

to confirm the results of gas adsorption analysis.  

Endotoxin Contamination: Endotoxin presence in Au and AuNP samples was evaluated using the 

Pierce Limulus Amebocyte Lysate (LAL) Chromogenic Endotoxin Quantitation Kit (Thermo Scientific; 

Waltham, MA) according to the manufacturer’s protocol. The presence of bacterial endotoxin catalyzes 

the activation of a proenzyme in the LAL assay, from which the substrate can be colorimetrically 

measured and correlated to the activation rate, which is proportional to the level of endotoxin present in 

the sample. Both Au samples were tested over multiple concentrations ranging from 5.0 - 0.25 µg/µl. 

Concentration of endotoxin was then determined using a plate spectrophotometer at absorbance 

wavelength of 450 nm.  

Zeta Potential in Vehicle: Zeta potential of AuNP particles was determined by measuring 

electrophoretic mobility in distilled water (pH 7.1). All measurements were performed at 25°C using a 

Malvern Zetasizer Nano ZS90 (Worcestershire, UK) equipped with a 633 nm laser at a 90° scattering 

angle. Samples were equilibrated inside the instrument for two minutes, and five measurements 

consisting of five runs each were recorded. 

 

Animals 

Specific pathogen-free female C57BL/6J mice, 8-12 weeks of age, were obtained from Jackson 

Laboratory (Bar Harbor, ME) for use in all studies. All mice were housed 4 per cage in polycarbonate 
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ventilated cages with HEPA-filtered air in the Association for Assessment and Accreditation of Laboratory 

Animal Care (AAALAC)-approved National Institute for Occupational Safety and Health (NIOSH) Animal 

Facility, and provided food (Harlan Teklad Rodent Diet 7913) and water ad libitum in a controlled humidity/ 

temperature environment with a 12 h light/dark cycle. Animals were allowed to acclimate for four weeks 

in the facility prior to exposures. All procedures in the studies comply with the ethical standards set forth 

by Animal Welfare Act and the Office of Laboratory Animal Welfare (OLAW). The studies were approved 

by the NIOSH Health Effects Laboratory Division (HELD) Institutional Animal Care and Use Committee 

within the Center for Disease Control and Prevention in accordance with approved animal protocols (13-

SA-M-022, 18-001). 

 

In Vivo Exposures and Study Design 

Local Lymph Node Assay: The Local Lymph Node Assay (LLNA) was performed in accordance 

with previously-established standardized protocols (1663). Accordingly, mice were exposed topically to 

vehicle control (50% DMSO), increasing concentrations of Au or AuNP, or positive control (10% AuCl3) 

on the dorsal sides of both ears (25 µl per ear) for three consecutive days (days 1, 2, 3) (figure 3.1). 

Following two days of rest, on day 6, mice were injected intravenously via the lateral tail vein with 20 µCi 

[3H]-thymidine (Dupont NEN, specific activity 2 Ci/mmol). Five hours after the [3H]-thymidine injection, 

mice were euthanized via CO2 asphyxiation and the left and right cervical lymph nodes (CLN) were 

excised from each mouse and pooled for each treatment group. Single cell suspensions were prepared, 

and following overnight incubation in 5% trichloroacetic acid (TCA), samples were analyzed using 

Packard Tri-Carb 2500TR liquid scintillation counter. Stimulation indices (SI) were calculated by dividing 

the mean disintegrations per minute (DPM) per test group by the mean DPM for the vehicle control group.  

AuNP Dose Response Study: AuNP were incorporated into a dose response time course study 

in order to evaluate pulmonary toxicity and determine optimal doses for incorporation into the allergy 

study. AuNP were diluted in distilled water at concentrations of 0.2, 0.6, and 1.8 mg/mL and sonicated 

for 10 seconds at 10 W with a probe sonicator. On day 0, mice (n = 8 per group per time point) were 

exposed by oropharyngeal aspiration to 50 µL of either solution to constitute 3 AuNP doses: 10, 30, or 
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90 µg per mouse. Mice were fully anesthetized with isoflurane, placed on a slanted board and suspended 

by the incisors. The mouth was opened and tongue moved aside, while a 50 µl aliquot of sample was 

pipetted on the base of the tongue. The animal was restrained until two full breaths were completed and 

returned to its cage, placed on its side, and monitored for recovery from anesthesia. Mice were humanely 

euthanized with an overdose of sodium pentobarbital euthanasia solution (100-300 mg/kg body weight; 

Fort Dodge Animal Health; Fort Dodge, IA) at 1 day, 4 days, or 8 days post-exposure. Blood was collected 

from the abdominal aorta, bronchoalveolar lavage (BAL) was performed, and mediastinal lymph nodes 

(MLN) and spleens were collected for analysis. 

Au Allergy Study: In order to determine the effects of pre-existing dermal sensitivity to gold on the 

pulmonary response to different forms of gold materials, an allergy study was conducted using 8 

treatment groups (n = 4 per group per time point). Starting on day 1, all mice were either dermally 

sensitized to gold or exposed to vehicle to serve as non-sensitized control groups. Dosing solutions were 

prepared using identical methods from the LLNA study. Accordingly, on days 1, 2, and 3, mice were 

dermally exposed on the ears to 50% DMSO (groups 1-4) or 10% AuCl3 (groups 5-8). After 6 days of 

rest, different groups of mice were exposed via aspiration to gold particles in varying doses once (10 d), 

twice (10 and 14 d), or three times (10, 14, 18 d). Exposure solutions were distilled water (vehicle control 

[VC], groups 1 and 5), 30 µg Au (groups 2 and 6), or AuNP at doses normalized for the mass (30 µg- 

groups 3 and 7) or surface area (9.90x10-6 m2- groups 4 and 8) of the Au exposures. On the day following 

the final aspiration for each group (11, 15, or 19 d), mice were euthanized, serum was collected, lungs 

were lavaged, and immune tissues were collected for analysis. Treatment groups and schedule of 

exposures are shown in figure 3.2. 

 

Toxicology and Immune Response Parameters 

BAL Cellular and Fluid Analysis: BAL was performed on the lungs of mice from both the AuNP 

dose response study and Au allergy study in order to obtain pulmonary cells for phenotypic analysis and 

fluid for analysis of biochemical indicators of lung injury and inflammation. Following euthanasia, the 

trachea was cannulated, the chest cavity was opened, and BAL was performed on the whole lungs. The 
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acellular fraction of the first lavage was obtained by filling the lung with 0.6ml PBS, massaging for 30 

seconds, and withdrawing. This concentrated aliquot was retained, kept separate, and designated as the 

first fraction. The following aliquots were 0.6 ml in volume, instilled once with light massaging, withdrawn, 

and combined until a 2.4 ml volume was obtained. For each animal, both lavage fractions were 

centrifuged (10 minutes, 1600 rpm) and the cell pellets were combined and resuspended in 1 ml PBS for 

cell counts, phenotyping, and microscopic analysis. The acellular fluid from the first fraction (BALF) was 

retained for analysis of LDH activity and quantification of cytokines.  

The total BAL cell number was determined using a Coulter Multisizer II (Coulter Electronics; 

Hialeah, FL) by quantifying the number of events within the size range of 4.5 µm and 20 µm. Myeloid 

immune cells in the BAL were quantified by spinning down 75,000 cells from each sample onto 

microscope slides using a Cytospin 3 centrifuge (Shandon Life Sciences International; Cheshire, 

England), then cells were labeled with Leukostat stain (Fisher Scientific; Pittsburgh, PA). Microscopic 

analysis allowed for differentiation between alveolar macrophages, eosinophils, lymphocytes, and 

neutrophils. An aliquot of BAL cells was also stained for surface markers to allow for phenotypic 

differentiation of lymphoid immune cell populations by flow cytometry, using procedures described below.  

Measurements of LDH activity in BALF were obtained using a Cobas Mira analyzer (Roche 

Diagnostic Systems; Montclair, IN) as an index of lung injury. LDH activity was quantified by detection of 

the oxidation of lactate coupled to the reduction of NAD+ at 340nm.  

Lymphocyte Differentials by Flow Cytometry: For the AuNP dose response study and Au allergy 

study, lymph nodes and spleens were harvested from mice for characterization of the immune cell 

populations within these tissues. In the AuNP dose response study, only the MLN, which drain the lungs, 

were collected. In the Au allergy study, both the MLN and CLN were collected in order to compare cellular 

profiles in the local lymphoid tissues corresponding to the different sites of gold exposure. Spleens and 

lymph nodes were processed between frosted microscope slides to yield single cell suspensions in sterile 

PBS. Concentrations of cells from each tissue were determined by identical methods used for the 

enumeration of BAL cells.  
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For flow cytometric analysis, 500,000 cells from each tissue were suspended in staining buffer 

(PBS + 1% bovine serum albumin + 0.1% sodium azide) containing Fc receptor blocking anti-mouse 

CD16/32 (BD Biosciences). Cells were incubated for 5 minutes, washed, and resuspended in staining 

buffer containing fluorochrome-conjugated antibodies.  

Lymphocyte phenotypes were determined for BAL, lymph nodes, and spleen cells using a staining 

panel containing CD2-BV605, CD3-APC, CD4-FITC, CD8-PE, CD44-APC-R700, CD45-PerCP, 

CD45R(B220)-PE-Cy7, and CD86-BV421 (BD Biosciences). These markers allowed for discrimination 

between populations of CD4+ T-lymphocytes, CD8+ T-lymphocytes, B-lymphocytes, and NK cells, as 

well as determine the corresponding activation state of the T-cells and B-cells.  

Another aliquot of BAL cells was stained using a second panel of markers to allow for 

differentiation of myeloid cell subsets. CD11b-PE-CF594, CD11c-APC-R700, CD24-BV605, CD45-

PerCP, CD64-PE, CD86-PE-Cy7, MHC II-BV515, Ly6G-APC, Siglec-F-APC-Cy7 (BD Biosciences) were 

employed to differentiate between eosinophils, neutrophils, macrophages, and dendritic cells (1618).  

Cells were incubated for 30 minutes with the respective staining cocktails, washed, and fixed in 

100 µl Cytofix Buffer (BD Biosciences). Compensation controls were prepared using corresponding cell 

types stained with a single fluorophore. For each sample, 100,000 events were recorded on an LSR II 

flow cytometer (BD Biosciences, San Diego, CA). In all analysis, doublet exclusion was performed and 

cellular populations were gated on using FSC-A x SSC-A parameters, prior to subsequent analysis. All 

data analysis was performed using FlowJo 7.6.5. Software (TreeStar Inc., Ashland, OR).  

Whole Blood Cellular Differentials: In the AuNP dose response and Au allergy studies, blood was 

drawn from the abdominal aorta directly following euthanasia. A 100 µL aliquot of whole blood was 

retained in order to quantify circulating immune cells, and the serum fraction was separated from the 

remaining blood volume for protein analysis. Using the aliquot of whole blood, erythrocyte and leukocyte 

number was determined for each sample, and leukocytes were differentiated (lymphocytes, monocytes, 

neutrophils, eosinophils, and basophils) using an Idexx ProCyte Dx Hematology Analyzer (Idexx 

Laboratories; Westbrook, ME).  



 

274 
 

BAL Fluid and Serum Proteins: The BALF and serum cytokine profiles of animals from the AuNP 

dose response study and Au allergy study were characterized using a Milliplex MAP Kit magnetic bead 

panel (EMD Millipore Corporation, Billerica, MA) and analyzed on a Luminex 200 system (Luminex 

Corporation, Austin, TX). For both studies, prototypical T-helper (Th)1/17 and Th2 cytokines were 

quantified. Specific analytes included interleukin (IL)-2, 4, 5, 6, 10, 12p40, 12p70, 13, 17, eotaxin, tumor 

necrosis alpha (TNF-α), interferon gamma (IFN-γ), and granulocyte macrophage colony stimulating factor 

(GM-CSF). 

In the Au allergy study, serum was also used to assess levels of circulating IgE. Serum was diluted 

1:10 and total IgE was assessed by ELISA using the Mouse IgE ELISA kit (Innovative Research; Novi, 

MI) according to manufacturer instructions.  

 

Statistical Analysis 

Statistical analyses were conducted with GraphPad Prism version 7 (San Diego, CA). Results 

from all studies are expressed as means ± standard error and considered statistically significant at p < 

0.05. For all studies, all treatments were compared by one-way analysis of variance (ANOVA) followed 

by a post hoc Student’s t-test.  

 

3.4. Results 

Material Characterization:  

Transmission and scanning electron micrographs of both gold particles are shown in figures 3.3 

and 3.4, respectively, illustrating a notable difference in size between the particulate constituents of the 

two materials. FESEM micrographs were used to measure primary particle size from 250 particles for 

each material, which was determined to be 942.1 nm for Au, and 29.7 nm for AuNP. The Au and AuNP 

particles exhibited similar spherical morphologies and smooth surface textures. 

Gas adsorption was performed on the Au powder, and BET analysis revealed a SSA of 0.46 ± 

0.13 m2/g. Using the particle sizes determined from microscopy, geometric calculations indicated a SSA 

of 10.46 m2/g for AuNP. Consistent with the results from gas adsorption/BET analysis, a SSA of 0.33 
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m2/g was calculated for Au using the same approach. No detectable levels of endotoxin were present in 

either sample. Zeta potential was determined to be -26.4 ± 5.1 mV for Au and -33.6 ± 6.9 mV for AuNP. 

Results from the physico-chemical characterization of Au and AuNP are summarized in table 3.1. 

 

Au LLNA Study:  

Using 10% AuCl3 as a positive control, the capacity for Au and AuNP to induce dermal 

sensitization was assessed using a standard procedure for the LLNA (107). Mice were topically exposed 

to Au or AuNP in concentrations of 2.5, 5.0, or 10.0% and subsequent lymphocyte proliferation was 

determined by measuring 3H-thymidine levels in the CLN (figure 3.5). AuCl3 had a stimulation index (SI) 

of 10.9, in accordance with its known potent sensitizing capacity (657). Although the SI of AuNP (2.3) 

was higher than that of Au (1.1), a three-fold increase in lymphocyte proliferation was not observed for 

either particle, indicating a lack of sensitizing potential. 

 

AuNP Dose Response Study: 

The effect of AuNP exposure on the lungs was investigated in a dose-response time course study. 

Mice were aspirated with vehicle control (VC), 10 µg, 30 µg, or 90 µg AuNP and euthanized 1, 4, or 8 

days post-aspiration to evaluate markers of pulmonary injury and inflammation. Overall, AuNP caused 

minimal lung injury and inflammation, as indicated by no elevations in BALF LDH levels at any time points, 

irrespective of dose (table 3.2). Similarly, total BAL cell number and BAL neutrophil number were not 

significantly increased in any groups 1, 4, or 8 d post-aspiration.  

There was a significant increase in MLN total cell number following exposure to 90 µg AuNP at 4 

and 8 d post-exposure (figure 3.6). Phenotypic analysis of the lymphocyte populations in the MLN 

revealed that the increase in MLN size was associated with increases in selective populations of 

lymphocytes (table 3.3, figure 3.7). Exposure to the highest dose of AuNP led to a significant increase in 

the proportion of CD4+ T-cells (65.75% compared to 61.93, 62.53, and 61.78%) and B-cells (16.01% 

compared to 12.85, 11.79, and 11.06%) at 8 d compared to all other groups. Simultaneously, a decrease 

in the proportion of CD8+ T-cells (16.73% compared to 23.26, 22.55, and 22.58%) was observed.  
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Despite alterations in the lymphocyte population frequencies in the MLN of animals exposed to 

the 90 µg AuNP dose, a similar response was not observed in the spleen. No alterations in proportions 

of CD4+ T-cells, CD8+ T-cells, B-cells, or NK cells were seen in the spleen of any groups at any timepoint 

(table 3.4). 

Differentiation of circulating immune cells revealed no significant changes in the number or 

percentage of any cell phenotype between any groups at any time point (table 3.5). Similarly, no 

differences were observed in the levels of any cytokines measured in the BALF (table 3.6) or serum (table 

3.7) between groups at any time point. 

 

Au Allergy Study: 

Next, an allergy study was conducted in order to determine if existing dermal sensitivity to gold 

impacted the response following pulmonary Au or AuNP exposure. In order to evaluate the role of particle 

size, dose mass, and surface area on any subsequent effects, mass and surface area-normalized doses 

of Au and AuNP were used in this study. Treatment groups for the Au allergy study, corresponding 

Au/AuNP dose parameters, and a timeline of exposures are shown in figure 3.2. 

Quantification of total BAL cells revealed no differences in cell number between any non-

sensitized groups (groups 1-4), irrespective of the number of gold aspirations (table 3.8). In gold-

sensitized mice (groups 5-8), total BAL cell number and subpopulations of specific cells did not differ 

between any other groups after a single aspiration (11 d). However, following two aspirations (15 d), total 

BAL cell number became significantly elevated in all gold-aspirated groups when compared to group 5 

control levels (figure 3.8), and group 7 levels were further elevated over group 6. In response to an 

additional gold aspiration (19 d), total BAL cell number remained elevated over group 5 control in all gold-

aspirated groups and the number of BAL cells in group 7 was became significantly increased over all 

other groups.  

Differentiation of BAL cell phenotypes showed similar increases in the number of BAL neutrophils 

in all sensitized/gold-aspirated groups at 15 d, however after the third aspiration (19 d), the number of 

neutrophils became further elevated in groups 6 and 7 (figure 3.9 A). BAL eosinophils were only elevated 
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in group 7 at 15 d, but at 19 d, group 6 values also became significantly increased over group 5 (figure 

3.9 B). Absolute values for all BAL cell populations in sensitized/gold-aspirated groups are shown in 

figure 3.9 C. 

The total number of lymphocytes recovered from the BAL of the sensitized/gold-aspirated groups 

increased with each successive aspiration of gold (figure 3.10 A). The extent of lymphocyte influx 

appeared dependent on the surface area of the administered dose of gold, and accordingly, the highest 

number of BAL lymphocytes was consistently seen in group 7. Differentiation of BAL lymphocyte 

subpopulations further revealed that group 7 also exhibited a selective propensity for the recruitment of 

CD8+ T-cells to the lung. After three aspirations, the increase in number and proportion of BAL CD8+ T-

cells in group 7 (table 3.8) was responsible for a drastic decrease in the group’s BAL CD4+ to CD8+ T-

cell ratio (figure 3.10 B and C). By comparison, the BAL lymphocyte CD4:CD8 ratio was conserved 

between all other sensitized groups, despite the increase in total BAL lymphocyte number in groups 6 

and 8. 

Similar to the cellular responses observed in the lung, there were no alterations in MLN cell 

number or ratios of cell populations in non-sensitized groups (groups 1-4) at any time points (table 3.9). 

In sensitized groups, no alterations occurred after a single aspiration, but several features of the MLN 

cellular profile were altered after two and three gold aspirations. On 15 d, the total number of MLN cells 

was significantly increased in groups 6 and 7 compared to groups 5 and 8 (figure 3.11 A). However, 

lymphocyte population ratios changed only in group 7. The MLN exhibited a lower proportion of CD4+ T-

cells and higher proportion of CD8+ T-cells and non-lymphoid cells when compared to all other groups 

at this time point. Group 7 animals also exhibited higher levels of CD4+ and CD8+ T-cells bearing a 

CD44hi phenotype. Interestingly, group 8 animals exhibited the highest proportion of CD44hi CD4+ T-

cells among all groups.  

After the third aspiration, MLN size remained elevated in groups 6 and 7, and while a slight 

increase in MLN size was observed in group 8, the response was not statistically significant over group 

5 controls. At 19 d, all three sensitized/gold-aspirated groups showed elevated levels of activated CD4+ 

T-cells, CD8+ T-cells, and B-cells compared to group 5 controls. However, a higher proportion of 
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activated CD4+ T-cells and B-cells was observed in groups 6 and 8, whereas the highest prevalence of 

activated CD8+ T-cells was seen in group 7. Numbers of activated CD4+ and CD8+ T-cells in the MLN 

of all sensitized groups are shown in figure 3.12 A and B. The gating strategy used to identify CD44 

expression levels is shown in figure 3.12 C and D. 

In addition to the MLN, CLN were also collected in the Au Allergy study. The total CLN cell number 

was significantly increased in all dermally sensitized groups compared to all non-sensitized groups at all 

time points, consistent with their sensitized status (table 3.10). Animals that had been dermally sensitized 

with gold also exhibited an elevated proportion of CD4+ and CD8+ T-cells and decreased ratio of B-cells 

when compared to non-sensitized groups. However, no differences in lymphocyte population ratios were 

observed amongst the sensitized groups at any time points.  

In the spleen, no alterations in lymphocyte populations or activation status were observed 

between groups until 15 d (table 3.11). At this time point, the only observable alteration was the 

percentage of activated CD4+ T-cells, which was elevated only in group 7 animals. By 19 d, this group 

also exhibited an elevated proportion of CD8+ T-cells, higher levels of activated CD8+ T-cells, and a 

lower proportion of B-cells compared to all other sensitized groups. At the time point, an increase in the 

number of B-cells expressing a CD86hi phenotype was observed in groups 6 and 8. 

Circulating immune cell populations were not altered in any group at any time point in the allergy 

study (table 3.12).  

As illustrated in figure 3.13, quantification of serum IgE revealed that prior sensitization with gold 

was associated with elevations in circulating IgE. After a single aspiration (11 d), all sensitized groups 

(groups 5-8)  exhibited higher IgE levels than those measured in non-sensitized groups (groups 1-4), but 

no differences were observed amongst the sensitized groups. No alterations in levels were observed 

following the second and third gold aspirations in any non-sensitized groups or groups 5 and 7. By 

comparison, IgE levels increased in groups 6 and 8 with each successive aspiration, leading to 

significantly higher levels than those seen in groups 5 and 7. 

Levels of several notable Th1/17 and Th2 cytokines were quantified in the serum of animals from 

the allergy study. No alterations in any cytokine levels were observed between any non-sensitized groups 
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at any time points, as shown in table 3.13. In previously-sensitized groups, the only significant change 

observed at 15 d was IL-4 level in group 6 animals, which was significantly increased over all other 

sensitized groups. A similar increase was seen in group 8, but not until the 19 d time point. At the same 

time point, IL-10 levels also became significantly elevated in groups 7 and 8, while increases in IL-5 were 

exclusively seen in group 6. 

Cytokine levels were also assessed in the BALF and are shown in table 3.14. No significant 

differences in the levels of any cytokines were seen between non-sensitized groups at any time point. 

Among dermally-sensitized groups, the only significant changes observed at 15 d included an increase 

in group 7 GM-CSF and group 6 IL-6 levels. Following the third aspiration (19 d), BALF IL-12p70 and IL-

2 levels became significantly increased in groups 7 and 8. IFN-γ levels were increased in all three 

sensitized/gold-aspirated animals over group 5 controls, and further elevations were seen in the animals 

of groups 6 and 8. 

 

3.5. Discussion 

Three studies were conducted to evaluate the potential immune effects of AuNP exposure, 

specifically in relation to allergic disease. First, since soluble gold salts are known to be potent dermal 

sensitizers, Au and AuNP were incorporated into an LLNA to evaluate their skin sensitizing potential and 

compare these responses to that of AuCl3. Neither particulate material was associated with significant 

expansion of the lymph nodes following exposure at the selected doses (2.5 – 10%), indicating minimal 

risk for the development of gold-induced ACD. Next, a pulmonary dose response study was performed 

to evaluate the potential for AuNP to induce pulmonary injury/inflammation or other alterations in local 

immune reactivity in the airways. Even at the highest dose of 90 µg, AuNP aspiration did not induce 

increases in any markers of inflammation in the airways over the 8 d time course. However, the high dose 

of AuNP did cause an increase in MLN size 4 and 8 d post exposure, wherein the expansion was 

associated with an elevated proportion of B-cells and CD4+ T-cells. Finally, a third study was performed 

to evaluate the effects of gold respiratory exposure in a state of established skin sensitivity. The results 

from this study demonstrated that dermal sensitization to gold prior to pulmonary exposure greatly 
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impacted the biological activity of gold in the lung. Furthermore, several local and peripheral immune 

markers were differentially impacted by various parameters of the administered dose of gold. 

In the LLNA study, the different gold materials exhibited varying degrees of lymphocyte 

stimulation following topical applications (figure 3.5). AuCl3 demonstrated a SI of 10.9, which is consistent 

with existing knowledge derived from animal studies and human data. Gold (III) chloride was associated 

with the highest stimulation index among 12 different metal salts in the LLNA previously conducted by 

Basketter et al. (657). Similarly, gold sodium thiomalate was shown in the guinea pig maximization test 

(GPMT), LLNA, and mouse ear swelling test (MEST) to be a potent skin sensitizer (1540). In human 

subjects with suspected contact sensitivity to gold, formulations comprised of gold sodium thiosulfate, 

gold sodium thiomalate, and gold trichloride have all been demonstrated to effectively elicit ACD 

responses (1467, 1534).  

By comparison, the Au particles (942 nm average particle size) did not generate any level of 

lymphocyte expansion compared to vehicle control (SI = 1.1). This observation is consistent with reports 

of an inability for metallic, non-ionized gold particles to induce skin sensitization (1664). The lack of 

immunogenicity associated with metallic gold is also reflected by the relatively few reports of ACD caused 

by jewelry items comprised of pure gold (1664). 

Although other metal nanomaterials have been previously incorporated into the LLNA to evaluate 

their skin sensitizing potential, this is the first study that has investigated the potential for skin sensitization 

by AuNP. Although AuNP induced a slightly elevated degree of lymphocyte expansion over vehicle 

controls and Au (SI = 2.3), dermal sensitizers are classified by their capacity to induce a three-fold 

increase in lymphocyte proliferation over vehicle control responses in the LLNA, a response which was 

not observed following AuNP exposure. Several factors may be responsible for the lack of sensitizing 

potential seen following skin exposure to AuNP.  

Sensitization to gold and the subsequent development of gold-induced ACD has been most 

frequently associated with soluble gold compounds. Since metal-induced ACD is driven by the 

immunogenic activity of haptenic metal ions, their propensity to release large quantities of ions is 

conducive with increased allergenic potential (289). Haptenic gold ions are able to penetrate the stratum 



 

281 
 

corneum and permeate into lower epidermal layers populated with resident immune cells, facilitating the 

interactions with APC required for sensitization. Gold ions also must interact with skin proteins and form 

haptenic ion/carrier complexes large enough to be recognized by the innate immune system. Since these 

processes are required for the induction of allergic sensitization, gold-containing items or chemical 

formulations that readily shed ions present an inherent risk for allergic responses following skin contact. 

These early events of sensitization also illustrate why metallic gold and insoluble particulates of gold are 

less frequently associated with ACD. Their exceptional chemical stability results in the release of far fewer 

ions than soluble gold compounds. Furthermore, their large size renders the stratum corneum a physical 

barrier that effectively restricts their passage into deeper layers of skin where APC interactions may 

occur.   

Given these observations, the lack of lymphocyte proliferation in response to topical AuNP 

exposure in the LLNA study is likely attributable, largely, to the physico-chemical properties of the 

particles. The colloidal AuNP used in this study are citrate-stabilized, insoluble particulates compromised 

of metallic gold, all of which are properties that confer minimal potential for dissolution. As a result, AuNP 

appear to constitute an ineffective source of haptenic gold ions at the doses used in the study. However, 

AuNP did induce a greater degree of lymphocyte proliferation than Au, suggesting the possible release 

of larger quantities of gold ions than the larger gold particle. This effect is substantiated by the established 

correlation between increased particle surface area of nanoparticles and an increased rate of dissolution 

observed with soluble metal nanoparticles (1665). Accordingly, equivalent doses of Au/AuNP in the LLNA 

study (administered as a percent particle weight to volume vehicle), when considered in particle surface 

area-derived metrics, implicate doses differing by orders of magnitude between the two particles. 

Irrespectively, the potentially accelerated rate of dissolution associated with AuNP did not result in the 

generation of gold ions in a dose adequate enough to induce dermal sensitization. 

Despite an apparent lack of skin sensitizing potential, evidence suggests that AuNP may still be 

capable of causing gold-specific ACD responses. It is well-established that the elicitation phase of ACD 

can be triggered by significantly lower doses of metal ions than those required to induce sensitization. As 

demonstrated with nickel, the quantity of ions required to induce sensitization was reported to be 100-
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fold to 1,000-fold less than the dose required to trigger elicitation reactions (1666). A similar effect may 

be responsible for the conflicting findings regarding the potential for metallic gold to cause ACD. Metallic 

gold has been consistently shown to pose a minimal risk for skin sensitization. Contrarily, numerous 

reports have demonstrated the potential for metallic gold to elicit ACD reactions in sensitized individuals 

(1438). Metallic gold (in the form of 24 karat gold earrings and metallic gold patch test agents), has been 

shown to trigger localized ACD reactions, implying a variation in the exposure thresholds associated with 

allergic sensitization and elicitation (1493, 1660). Accordingly, while dissolution behavior appears critical 

in the propensity for gold-containing objects to induce dermal sensitization, it appears less important with 

respect to the elicitation of ACD. These observations suggest that although AuNP did not induce skin 

sensitization in the LLNA study, exposure to the same doses may be capable of eliciting ACD responses 

in subjects with existing gold sensitivity.  

In the AuNP dose response study, aspiration of AuNP was not associated with any signs of overt 

pulmonary injury or inflammation at any time points, irrespective of dose (table 3.2). This finding is 

consistent with other studies that have demonstrated general biocompatibility of AuNP in the respiratory 

tract (1572, 1583, 1587). The only immune parameter altered in response to AuNP aspiration was the 

MLN size at 4 and 8 d in animals exposed to the highest dose (figure 3.6). All groups exhibited similar 

proportions of non-lymphoid cell populations (denoted as ‘other’) in the MLN at all time points, suggesting 

that the increase in LN size in animals exposed to the 90 µg AuNP dose was not reflective of pulmonary 

phagocyte-mediated clearance of particles from the lungs to the MLN. Comparatively, lymphocyte 

populations expanded in the MLN of animals exposed to the 90 µg AuNP dose at 8 d, wherein a selective 

increase in the proportions of CD4+ T-cells and B-cells were observed (figure 3.7). Although the 

implications of this observation are unclear, polarization of cell populations towards a Th2-dominant state 

may have implications for subsequent antigen exposures. Several studies have demonstrated the 

capacity for pulmonary AuNP exposure to promote the development of antigen-specific humoral 

responses in the respiratory tract (776, 950). Likewise, the increase in MLN size and elevated proportions 

of CD4+ T-cells and B-cells in the dose response study suggests a potential for immunomodulatory 

activity of AuNP that appears to be dose-dependent. 
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Although the increase in CD4+ T-cell and B-cell populations in the MLN following exposure to the 

highest dose of AuNP resembles characteristic features associated with aeroallergen sensitization and 

elicitation of asthmatic responses, it is unlikely that this response was reflective of the development of an 

adaptive immune response in this study. Metals known to induce respiratory sensitization have been 

shown to cause profound increases in BALF and serum Th2 cytokine levels, as well as increased 

recruitment of eosinophils to the airways following exposure, responses which were not observed in this 

study (1667). However, Ni and Co compounds have been shown to induce the development of T-cell-

mediated allergic reactions in the lungs of guinea pigs, responses which occurred up to 8 weeks post-

exposure (1668). Accordingly, results from the AuNP dose response study suggest an unlikely potential 

for acute AuNP exposure to induce sensitization of the respiratory tract; however, additional studies are 

required to more definitively assess the potential for development of gold-specific allergic responses in 

the lungs. 

Collectively, the results from the LLNA and AuNP dose response studies indicated that AuNP are 

not likely to induce allergic sensitization via the skin or respiratory tract. However, given the increasing 

prevalence of contact allergy to gold in the general population, the potential for respiratory AuNP 

exposure to selectively impact these individuals is a concern. Several reports have described cases of 

human subjects with established metal-specific ACD who subsequently developed pulmonary allergic 

reactions to the same metal. The existence of ACD has been demonstrated to precede the development 

of immediate-type IgE-dependent asthmatic reactions induced by metals including nickel, cobalt, and 

chromium (288, 414, 454, 1669). Established skin sensitivity has also been suggested to be risk factor 

for the development of delayed-type, T-cell-mediated mechanisms in the lungs as demonstrated by cases 

caused by nickel, platinum, chromium, and cobalt (294, 295, 400, 403, 422, 428). These findings imply 

that gold may have potential to induce similar effects, wherein subjects with existing contact allergy to 

gold may develop delayed-type hypersensitivity reactions in the lung following respiratory exposure.  

In the allergy study, mice were dermally sensitized to soluble AuCl3 and subsequently aspirated 

with different forms of gold particles to evaluate the impact of an existing allergic state on the immune 

response. In order to determine the role of particle properties and dose parameters on these effects, mice 
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were aspirated with the larger Au particles or mass- or surface area-equalized doses of AuNP. Nearly all 

endpoints assessed in the Au Allergy study remained unaltered in all non-sensitized groups, irrespective 

of gold aspirations (groups 1-4). Contrarily, animals that had been previously sensitized to gold via the 

skin exhibited heightened reactivity to pulmonary gold exposure. 

Total BAL cell number increased in all sensitized, gold-aspirated groups with each successive 

aspiration (figure 3.8). The magnitude of this increase appeared associated with the surface area of the 

administered gold dose, as the greatest increase in BAL cell number was seen in group 7 animals, which 

were exposed to the largest surface area-based dose (30 µg AuNP). Interestingly, analysis of BAL cell 

subpopulations revealed that the increase in BAL neutrophil number seen at 19 d was conserved 

between the groups exposed to mass-normalized doses of gold. Groups 6 and 7, which were exposed 

to Au and AuNP in 30 µg doses, respectively, exhibited the most pronounced increases in lung 

neutrophils number. Although BAL neutrophil number was elevated in group 8 animals over group 5 

controls, the response was not as robust as groups 6 and 7. Since no neutrophil recruitment was 

observed in the corresponding non-sensitized, the dose mass-dependent recruitment of lung neutrophils 

was also dependent on sensitization state. 

Similar to the increase in total BAL cell number, the number of lymphocytes present in the BAL 

also appeared correlated to the surface area of the aspirated gold dose (figure 3.10). Group 7 animals, 

which were exposed to the higher surface area-based dose of AuNP, exhibited consistently heightened 

numbers of BAL lymphocytes when compared to the other sensitized groups. Moreover, the phenotype 

of T-cell subpopulations recruited to the airways also differed with respect to gold surface area. A 

selective increase in BAL CD8+ T-cells was seen in group 7, whereas the increase in BAL lymphocytes 

in groups 6 and 8 consisted primarily of CD4+ T-cells. Consequently, the BAL CD4:CD8 T-cell ratio 

remained similar between group 5 controls and groups 6 and 8 at all time points, while a significant 

decrease was observed exclusively in group 7 at 19 d. This may represent a notable finding, as 

lymphocyte subpopulations present in the BAL are often used as diagnostic criteria for various pulmonary 

immune responses.  
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Although the majority of metals capable of inducing respiratory allergy are associated with 

immunological mechanisms mediated by metal-specific IgE molecules, some metals are known to induce 

T-cell-mediated hypersensitivity responses in the lungs. Beryllium is the prototypical metal associated 

with this type of allergic response. The pathogenesis of chronic beryllium disease (CBD) involves 

delayed-type hypersensitivity-like mechanisms primarily mediated by beryllium-reactive CD4+ T-cells 

(477, 1670). Likewise, hallmark features of CBD include significant increases in the number and 

proportion of BAL T-cells, as well as enhanced proportions of cells with elevated activation status. CD8 

+ T-cells are less frequently-implicated in respiratory hypersensitivity responses caused by metals, but 

evidence from several human case reports suggests this lymphocyte population may be of specific 

importance with respect to gold.  

Nearly all adverse pulmonary effects associated with gold have been reported in human subjects 

receiving systemic gold therapy. Although alveolitis, bronchiolitis, and pulmonary fibrosis have all been 

reported following the systemic administration of gold salts, one of the most distinctive reactions is an 

adaptive immune-mediated response referred to as ‘gold lung’ (1478, 1671). Gold lung resembles a form 

of hypersensitivity pneumonitis wherein antigen-specific T-cells accumulate in the airways leading to 

adaptive immune-mediated inflammation of the alveolar mucosa (1650, 1672). This condition most 

frequently emerges in patients exhibiting positive patch test reactivity to gold and or established contact 

allergy to gold, a complication frequently associated with gold therapy. The development of both CD4+ 

and CD8+ gold-specific T-cells as a result of gold therapy often manifests in clinical presentations 

resembling ACD skin eruptions (407, 408). However, evidence suggests that the same pool of gold-

specific effector T-cells may be responsible for the development of gold lung, explaining the existence of 

skin reactions as a predisposing factor for gold lung. Patients with gold lung exhibit higher numbers of 

lymphocytes in the BAL, as well as increased numbers of activated lymphocytes. BAL lymphocytes, as 

well as peripheral lymphocytes, both exhibit reactivity to gold in individuals with gold lung. However, a 

unique dependence on the CD8+ subsets of gold-specific T-cells has been observed in gold lung, as 

patients often exhibit an inverted CD4:8 ratio. A significant decrease in the BAL CD4:CD8 T-cell ratio (< 

1) is a biomarker frequently used to confirm suspected cases of gold lung (407, 409).  
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The decreased BAL CD4:CD8 T-cell ratio in group 7 animals of the allergy study suggests a 

potential hypersensitivity response in the lungs involving similar immunological mechanisms as those 

responsible for cases of gold lung. Although the increase in CD8+ BAL T-cells in patients with gold lung 

exhibit specificity for recognition of gold, T-cell reactivity was not evaluated in this study. Likewise, it 

remains unclear if the influx of CD8+ T-cells to the airways in the allergy study involved exposure-induced 

recruitment of gold-reactive cells previously generated in response to dermal sensitization. However, the 

magnitude of skin reactivity to gold test agents in ACD patch tests has been correlated to the surface 

area of contact (1673). Given this observation, the surface area-dependent influx of CD8+ T-cells 

suggests that lymphocytes recruited in response to gold aspiration may exhibit gold specificity. 

Pulmonary CD8+ T-cell recruitment was not observed in the groups exposed to the smaller surface area-

based doses of Au/AuNP (groups 6 and 8), suggesting that this response may be subject to an elicitation 

threshold correlated to the surface area of the gold dose. Contrarily, exposure to the lower doses of gold 

surface area may have been associated with the preferential recruitment of gold-reactive CD4+ T-cells. 

Similar to BAL neutrophil number, MLN total cell number at 15 d was similar between mass-

normalized exposure groups. Exposure to 30 µg Au or AuNP in groups 6 and 7, respectively, resulted in 

similar increases in MLN size after the second aspiration of gold. After the third gold aspiration, an 

increase in MLN size was seen in group 8 animals; however, it was not significantly elevated over group 

5 controls. Although the kinetics and magnitude of MLN size increase appeared correlated to the mass 

of Au/AuNP dose administered, phenotypic analysis of lymphocyte populations revealed similar 

population-specific effects with respect to gold surface area. Animals exposed to the highest surface area 

of gold particles (group 7) exhibited higher numbers of and proportions of CD8+ T-cells compared to all 

other groups, similar to the BAL lymphocyte response in group 7. Moreover, the group’s CD8+ T-cell 

populations were associated with an elevated percent of cells expressing a CD44hi activation phenotype. 

Comparatively, exposure to the lower surface area-normalized doses of gold did not cause alterations in 

relationships between cell populations in the lymph nodes; however, the percentage of both CD4+ T-

cells and B-cells expressing high levels of activation marker expression were significantly increased in 

groups 6 and 8.  
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MLN were collected from mice in the Au allergy study in order the characterize responses in local 

lymphoid tissue following pulmonary exposure to gold. In addition, the CLN, which drain the site of dermal 

exposure used to sensitize mice to gold, were also collected. Lymphocyte populations were analyzed in 

the CLN at all time points in order to determine if aspiration of gold had any effect on peripheral lymphoid 

tissues and residual activity associated with the dermal sensitization procedure. CLN of sensitized 

animals were significantly larger, exhibited higher percentages of CD4+ and CD8+ T-cells, and lower 

proportions of B-cells than non-sensitized groups. These observations are consistent with the clonal 

expansion of gold-specific T-cells following AuCl3 exposure. However, no differences in any parameters 

were observed between groups 5-8, indicating a lack of reactivity in the CLN in response to pulmonary 

gold exposure. The notable differences between the cellular profile of the MLN in these groups implies a 

greater reactivity of local lymphoid tissues to the effects of gold aspiration, as well as enhanced 

involvement as mediators of the subsequent pulmonary immune response. 

The immunological mechanisms responsible for metal-induced ACD are primarily Th1-driven, 

cell-mediated responses, and many of the mediators involved in these responses negatively regulate 

humoral/Th2-biased responses (1674). Given this knowledge, the finding that all dermally-sensitized 

groups exhibited higher levels of serum IgE than non-sensitized groups was a surprising finding in the 

allergy study. The expansion of gold-specific T-cells following skin sensitization was paralleled with a 

decrease in the proportion of B-cells in the CLN, a response which would be expected to attenuate IgE 

production. However, a similar increase in IgE levels following dermal sensitization with gold sodium 

thiosulfate has been previously reported (1540). Gold has rarely been associated with immediate type 

hypersensitivity responses or development of gold-specific IgE, and the specificity of IgE was not 

determined in this study, so the implications of this observation remain unknown. 

The group-dependent alterations in IgE production observed in the allergy study are also 

particularly interesting when compared to findings from the AuNP dose response study. Exposure to 

lower doses of gold surface area in the allergy study resulted in expansion of CD4+ T-cell and B-cell 

populations in the MLN, similar to the responses seen following exposure to the highest surface area-

based dose of gold in the AuNP dose response study. Accordingly, gold surface area appeared to induce 
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divergent responses on lymphocyte expansion depending on sensitization status. In the absence of 

established dermal sensitivity, exposure to higher surface area-based doses of gold appeared to promote 

Th2-polarized responses, whereas the same dose was correlated to the attenuation of Th2 reactivity in 

sensitized animals.  

Discrete alterations in the BALF and serum cytokine profiles were observed in sensitized groups 

of the Au allergy study. Although no general trends were discernable with respect to changes in collective 

groups of Th1/17 and Th2 cytokines, a few individual cytokines appeared selectively modulated following 

aspiration of gold. In the serum, IL-10 levels were elevated in groups 7 and 8 at 19 d. This increase 

appeared associated with particle size, as the increase was only observed in animals aspirated with 

AuNP, irrespective of dose. Immune cells isolated from donors with suspected gold sensitivity have been 

shown to selectively increase IL-10 release following challenge with gold salts in vitro, supporting a 

potential role for this cytokine in the gold allergy study (1675). Group-specific alterations in serum IL-4 

levels were also observed in the allergy study. Increased production of IL-4 was observed in group 6 at 

15 d and in groups 6 and 8 at 19 d. Similar IL-4 responses between these groups implies a surface area-

dependent effect wherein increased expression is associated with exposure to lower surface area-based 

doses of gold. IL-4 is a cytokine critically involved in Th2-driven immune responses, wherein its functions 

include stimulating isotype switching of B-cells, a mandatory step required for the production of IgE. 

Accordingly, the increase in serum IL-4 seen in groups 6 and 8 of the allergy study is consistent with the 

increase in circulating IgE levels observed in these groups. 

BALF cytokine analysis demonstrated occasional alterations in levels of IL-6 and GM-CSF in 

some groups. However, the cytokines associated with the most consistent and pronounced alterations in 

the BALF were IFN-γ, IL-2, and IL-12. Levels of IL-2 and IL-12 were increased at 19 d in groups 6 and 8, 

suggesting a relationship between the production of these two cytokines with gold dose surface area. A 

similar surface area-dependent increase in the level of BALF IFN-γ was seen. Although all 

sensitized/gold-aspirated groups exhibited increased BALF IFN-γ levels compared to group 5 controls, 

the most robust response was seen in groups 6 and 8. IL-6 levels were also shown to be increased in 
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the BALF of animals in group 6, but only at the 15 d time point. Interestingly, several of these cytokines 

have been previously associated with gold allergy.  

In one study, lymphocytes were isolated from individuals with confirmed sensitivity to gold, as well 

as control subjects, and stimulated ex vivo. Subsequent cytokine secretion was monitored, which 

revealed a selective increase in IL-2 and IFN-γ production exclusively by gold-reactive cells (1533, 1676). 

However, IFN-γ was identified as the cytokine exhibiting the most accurate predictive potential to identify 

gold reactivity, and correspondingly, has been proposed to have utility as a diagnostic marker for 

identification of subjects with gold-induced ACD (1507). IFN-γ production by BAL lymphocytes has also 

been implicated in CBD, where beryllium-specific CD4+T-cells in the lung secrete high levels of this 

cytokine (503). Accordingly, the elevated levels of IFN-γ in the BALF of all sensitized/gold-aspirated 

groups in the allergy study suggest the presence of gold-specific T-cells in the airways, which may have 

been stimulated by aspirated gold particles. The existence of a similar mechanism as that seen in CBD 

is further supported by the existence of higher IFN-γ levels in groups 6 and 8, which exhibited preferential 

expansion of CD4+ T-cell subtypes. 

An interesting discrepancy observed between the results of the AuNP dose response study and 

allergy study suggests that the immune effects of gold may be equally as dependent on the timing and 

frequency of exposure as the total dose administered. Despite administration of the same cumulative 

AuNP dose (90 µg), the increase in MLN size and the alterations in lymphocyte subpopulations observed 

in the 90 µg exposure group in the dose response study was not observed in group 2 animals in the 

allergy study. This finding may reflect a dependence of MLN alterations on the administration of AuNP 

as a single bolus dose. Since the animals of the allergy study were aspirated three times with AuNP at 

doses of 30 µg, four days apart, the timing and number of exposures may also impact the immune 

response to AuNP in the lungs.  

 

3.6. Conclusion 

Overall, the results from these studies suggest that on intact skin, ~30 nm AuNP do not constitute 

a significant risk for dermal sensitization following acute exposure. Similarly, respiratory AuNP exposure 
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was not associated with significant pulmonary injury or inflammation at a range of doses, and no overt 

immune reactivity was observed. However, the highest dose of AuNP caused expansion of MLN, wherein 

a disproportionate increase in CD4+ T-cell and B-cell populations was seen. This observation suggests 

the potential for AuNP exposure to modulate immune reactivity or the nature of immune responses 

following subsequent antigen exposures. Although these findings indicate minimal risk for sensitization 

of the skin and respiratory tract by AuNP, several notable immune effects were observed in response to 

pulmonary AuNP exposure when animals had been previously sensitized to gold via the skin. These 

effects appeared best correlated to the surface area of the administered dose of gold, wherein the higher 

surface area-based dose was associated with many effects resembling those seen in T-cell-mediated 

hypersensitivity responses of the lungs.  

Collectively, these findings suggest that individuals with existing gold contact allergy may be at 

increased risk for adverse immune effects following respiratory exposure to AuNP or other gold materials. 

Although additional studies are required to fully characterize the allergenic potential of AuNP, these 

findings emphasize the potential importance of pre-existing disease states on the biological activity of 

nanomaterials and highlight the need for future studies that consider potentially vulnerable populations. 

Moreover, the sensitization state-dependent immune responses induced by AuNP may be pertinent to 

other allergenic metals, as well. Many metals known to induce contact allergy are being manufactured in 

nanoparticulate forms, and individuals with existing skin sensitivity to nickel, cobalt, and chromium may 

be exceptionally vulnerable to allergic effects following inhalation of nanoparticles containing these 

metals. Accordingly, as efforts to characterize the immunotoxic potential of nanomaterials continue, the 

prevalence of metal hypersensitivity should be considered and evaluated as a potential risk factor for 

immune responses caused by metal nanomaterial exposure. 
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CHAPTER 3 TABLES 

 

 
 
 
 
Table 3.1.  Summary of physico-chemical characterization of gold particles (Au) and nanoparticles (AuNP). 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.1. Summary of Au and AuNP Characterization Results 
 

Au AuNP 

Vendor size specification < 10 µm 30 nm 

Material form Powder Citrate-stabilized in H2O 
(20% w/v) 

Primary particle size  942.1 ± 42.1 nm 29.7 ± 1.2 nm 

Morphology  spherical spherical 

SSA: Gas adsorption/BET (powder) 0.46 ± 0.13 m2/g - 

SSA: Geometric calculation 0.33 m2/g 10.46 m2/g 

Endotoxin level Not detected Not detected 

Zeta Potential (mV) -26.4 ± 5.1 -33.6 ± 6.9 
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Table 3.2. AuNP Dose Response Study 
Markers of Pulmonary Inflammation 

Time 
Point Treatment Group LDH Total # BAL Cell Total # BAL Neutrophils 

1d 

VC 73.1 ± 3.9 1,153,929 ± 62,306 7,709 ± 978     (0.7%) 
10 µg AuNP 84.9 ± 1.8 1,094,438 ± 42,333 7,334 ± 827     (0.7%) 

30 µg AuNP 76.5 ± 6.3 1,057,350 ± 43,786 6,262 ± 759     (0.6%) 

90 µg AuNP 73.0 ± 1.4 1,103,788 ± 61,314 6,058 ± 661     (0.6%) 

4d 

VC 76.4 ± 4.4 1,097,086 ± 65,567 5,199 ± 305     (0.5%) 
10 µg AuNP 67.8 ± 3.4 1,147,800 ± 61,494 7,095  ± 935     (0.7%) 

30 µg AuNP 78.5 ± 3.9 1,142,613 ± 53,542 6,229 ± 572     (0.6%) 

90 µg AuNP 72.0 ± 4.1 1,168,300 ± 76,462 6,673 ± 693     (0.6%) 

8d 

VC 79.3 ± 2.8 1,131,214 ± 70,708 6,650 ± 586     (0.6%) 

10 µg AuNP 76.3 ± 3.0 1,080,338 ± 45,117 6,782 ± 859     (0.6%) 

30 µg AuNP 80.8 ± 3.4 1,105,313 ± 61,021 7,031 ± 651     (0.7%) 

90 µg AuNP 77.8 ± 3.2 1,256,250 ± 79,916 7,016 ± 880     (0.6%) 

 
 
 
 

Table 3.2.  BALF lactate dehydrogenase (LDH) levels, total BAL cell number, and total BAL neutrophil number (and 
percent of total BAL cells) for each treatment group at 1d, 4d, and 8d post-AuNP aspiration in the AuNP dose 
response study. n = 8 per group.  
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Table 3.3. AuNP Dose Response Study 
Mediastinal Lymph Node Cell Phenotypes by Percent 

Time 
Point Treatment Group 

CD4+  
T-cells 

CD8+  
T-cells B-Cells Other 

1d 

VC 62.32 % 22.54 % 12.52 % 3.12 % 
10 µg AuNP 61.41 % 22.71 % 12.79 % 3.68 % 

30 µg AuNP 61.95 %  22.52 % 12.28 % 2.71 % 

90 µg AuNP 61.36 % 22.38 % 12.17 % 3.92 % 

4d 

VC 61.17 % 22.63 % 12.89 % 3.65 % 
10 µg AuNP 61.82 % 23.33 % 12.36 % 2.86 % 

30 µg AuNP 62.34 % 22.82 % 12.22 % 2.80 % 

90 µg AuNP 63.90 % 20.81 % 12.80 % 2.69 % 

8d 

VC 61.93 % 23.26 % 12.85 % 3.50 % 

10 µg AuNP 62.53 % 22.55 % 11.79 % 3.41 % 

30 µg AuNP 61.78 % 22.58 % 11.06 % 3.83 % 

90 µg AuNP 65.75 %* 16.73 %* 16.01 %* 2.25 % 

 

 

Table 3.3. Immune cell phenotypes in the mediastinal lymph nodes expressed as a percentage are shown for each 
group at each time point. n = 8 per group, p < 0.05, * indicates statistically significant from all other groups at the 
corresponding time point. 



 

294 
 

 

 

Table 3.4. Immune cell phenotypes in the spleen expressed as a percentage for each group at each time point. n 
= 8 per group, p < 0.05, * indicates statistically significant from all other groups at the corresponding time point. 

Table 3.4. AuNP Dose Response Study 
Spleen Cell Phenotypes by Percent 

Time 
Point Treatment Group 

CD4+  
T-cells 

CD8+  
T-cells B-Cells NK Cells Other 

1d 

VC 15.02 % 8.24 % 62.12 % 2.01 % 8.92 % 
10 µg AuNP 15.09 % 9.04 % 60.83 % 1.95 % 10.21 % 

30 µg AuNP 14.71 % 8.45 % 61.41 % 1.87 % 10.62 % 

90 µg AuNP 15.12 % 7.96 % 62.00 % 2.11 % 9.75 % 

4d 

VC 14.84 % 7.90 % 61.24 % 2.03 % 9.84 % 
10 µg AuNP 15.36 % 9.11 % 60.43 % 1.67 % 10.26 % 

30 µg AuNP 14.96 % 8.21 % 59.71 % 1.85 % 10.37 % 

90 µg AuNP 15.25 % 8.64 % 60.72 % 1.96 % 9.91 % 

8d 

VC 15.17 % 8.53 % 60.79 % 2.07 % 10.12 % 

10 µg AuNP 15.80 % 8.42 % 61.18 % 2.10 % 9.84 % 

30 µg AuNP 14.80 % 7.82 % 62.19 % 1.89 % 9.92 % 

90 µg AuNP 15.33 % 8.90 % 61.57 % 1.94 % 10.44 % 
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Table 3.5. AuNP Dose Response Study 
Whole Blood Cell Differentials 

Time 
Point 

Treatment  
Group 

RBC WBC  Cell Number (k/uL)  % of Total WBC 
(M/uL) (k/uL)  Neutr Lymph Mono Eos Baso  Neutr Lymph Mono Eos Baso 

1d 

VC 9.85 2.33  0.85 1.45 0.02 0.01 0.00  36.48% 62.23% 0.86% 0.43% 0.00% 
10 µg AuNP 9.65 2.22  0.99 1.19 0.01 0.02 0.01  44.59% 53.60% 0.45% 0.90% 0.45% 
30 µg AuNP 9.74 2.54  1.23 1.28 0.02 0.01 0.00  48.43% 50.39% 0.79% 0.39% 0.00% 
90 µg AuNP 9.70 2.18  0.80 1.34 0.02 0.02 0.00  36.70% 61.47% 0.92% 0.92% 0.00% 

4d 

VC 9.56 2.18  0.96 1.17 0.01 0.03 0.01  44.04% 53.67% 0.46% 1.38% 0.46% 
10 µg AuNP 9.63 1.85  0.75 1.08 0.01 0.01 0.00  40.54% 58.38% 0.54% 0.54% 0.00% 
30 µg AuNP 9.84 2.02  0.71 1.27 0.02 0.02 0.00  35.15% 62.87% 0.99% 0.99% 0.00% 
90 µg AuNP 9.97 1.99  0.73 1.20 0.03 0.02 0.01  36.68% 60.30% 1.51% 1.01% 0.50% 

8d 

VC 9.85 1.97  0.81 1.13 0.01 0.01 0.01  41.12% 57.36% 0.51% 0.51% 0.51% 
10 µg AuNP 9.67 2.11  0.88 1.19 0.02 0.02 0.00  41.71% 56.40% 0.95% 0.95% 0.00% 
30 µg AuNP 9.71 2.49  1.02 1.41 0.03 0.03 0.00  40.96% 56.63% 1.20% 1.20% 0.00% 
90 µg AuNP 9.68 2.33  1.00 1.29 0.01 0.02 0.01  42.92% 55.36% 0.43% 0.86% 0.43% 

 

 
Table 3.5. Whole blood cell differentials for each group at each time point in the AUNP dose response study. RBC 
= red blood cells, WBC = white blood cells, Neutr = neutrophils, Lymph = lymphocytes, Mono = monocytes, Eos = 
eosinophils, Baso = basophils. n = 8 per group. 
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Table 3.6. AuNP Dose Response Study 
BALF Cytokine Levels (pg/mL) 

 
 IFN-γ IL-2 IL-12p40 IL-12p70 IL-17 TNF-α GM-CSF IL-4 IL-5 IL-13 Eotaxin IL-6 IL-10 

1d 

VC 4.1 ± 0.8 6.1 ± 1.1 98.5 ± 12.3 35.2 ± 3.2 0.8 ± 0.1 4.2 ± 1.1 3.1 ± 1.0 6.1 ± 1.3 5.0 ± 1.2 2.5 ± 0.3 3.0 ± 0.3 2.2 ± 0.2 1.8 ± 0.1 
10 µg 3.2 ± 0.7 6.5 ± 1.2 86.4 ± 15.2 30.4 ± 3.6 1.0 ± 0.2 4.1 ± 1.2 3.0 ± 0.5 6.3 ± 1.2 6.1 ± 1.3 2.6 ± 0.2 3.2 ± 0.2 4.1 ± 0.4 1.2 ± 0.2 
30 µg 3.0 ± 0.9 6.4 ± 1.0 88.2 ± 10.4 31.1 ± 5.1 1.1 ± 0.3 3.8 ± 1.0 2.7 ± 0.6 5.5 ± 1.1 6.0 ± 1.0 2.9 ± 0.4 3.0 ± 0.4 3.3 ± 0.2 1.9 ± 0.2 
90 µg 3.1 ± 0.8 5.8 ± 1.9 90.7 ± 11.9 28.6 ± 4.0 1.3 ± 0.5 3.7 ± 1.0 2.6 ± 0.7 5.9 ± 1.0 5.7 ± 1.2 3.1 ± 0.5 3.1 ± 0.2 3.0 ± 0.3 2.2 ± 0.3 

4d 

VC 3.2 ± 0.8 5.7 ± 2.1 100 ± 12.5 29.6 ± 3.3 1.4 ± 0.2 3.6 ± 1.1 3.9 ± 0.8 6.2 ± 1.0 5.4 ± 2.1 3.3 ± 0.3 2.9 ± 0.2 3.4 ± 0.3 2.3 ± 0.4 
10 µg 3.2 ± 0.7 5.1 ± 2.0 109 ± 20.1 27.1 ± 3.6 1.0 ± 0.1 4.1 ± 1.2 4.0 ± 0.9 6.0 ± 1.2 5.5 ± 2.0 2.8 ± 0.3 2.8 ± 0.1 3.1 ± 0.3 2.0 ± 0.2 
30 µg 3.4 ± 0.5 6.0 ± 1.5 88.6 ± 16.6 32.2 ± 3.9 1.2 ± 0.2 4.2 ± 1.6 3.5 ± 0.5 5.7 ± 1.1 5.0 ± 1.5 3.7 ± 0.4 3.7 ± 0.3 3.9 ± 0.2 2.1 ± 0.2 
90 µg 3.1 ± 0.6 6.2 ± 1.9 94.1 ± 15.7 33.4 ± 3.8 1.1 ± 0.2 4.0 ± 1.4 3.6 ± 0.5 5.8 ± 0.9 6.1 ± 1.6 3.3 ± 0.5 3.3 ± 0.3 2.5 ± 0.4 1.8 ± 0.3 

8d 

VC 2.9 ± 0.6 6.0 ± 2.2 97.6 ± 14.7 30.8 ± 5.1 0.9 ± 0.1 3.7 ± 1.1 2.9 ± 0.6 5.9 ± 0.8 6.2 ± 0.9 3.4 ± 0.3 3.4 ± 0.2 2.8 ± 0.2 2.4 ± 0.2 
10 µg 2.8 ± 0.6 6.1 ± 1.6 95.5 ± 20.9 31.9 ± 4.4 1.1 ± 0.1 3.8 ± 1.2 2.7 ± 0.4 6.1 ± 1.1 5.0 ± 1.1 3.0 ± 0.3 3.0 ± 0.2 2.7 ± 0.3 1.7 ± 0.1 
30 µg 3.1 ± 0.5 5.7 ± 1.5 86.1 ± 15.5 33.6 ± 4.7 0.9 ± 0.1 3.7 ± 1.0 3.0 ± 0.2 6.2 ± 1.0 5.3 ± 1.5 3.1 ± 0.2 3.1 ± 0.2 3.2 ± 0.3 1.5 ± 0.1 
90 µg 3.2 ± 0.5 5.5 ± 1.4 100 ± 14.5 28.1 ± 4.2 1.3 ± 0.3 3.9 ± 0.9 4.1 ± 0.5 4.9 ± 1.6 5.7 ± 1.4 2.8 ± 0.4 2.8 ± 0.3 3.3 ± 0.2 2.1 ± 0.3 

                                       

   Th1/17 Cytokines  Th2 Cytokines Other 

 

 

Table 3.6. BALF cytokine levels for each treatment group at each time point of the AuNP dose response study. n = 8 per group. 
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Table 3.7. AuNP Dose Response Study 
Serum Cytokine Levels (pg/mL) 

 
 IFN-γ IL-2 IL-12p40 IL-12p70 IL-17 TNF-α GM-CSF IL-4 IL-5 IL-13 Eotaxin IL-6 IL-10 

1d 

VC 6.2 ± 1.2 11.4 ± 1.2 100 ± 13.5 45.6 ± 5.2 15.0 ± 2.6 32.9 ± 4.5 205 ± 25.6 2.4 ± 0.5 19.6 ± 2.1 369 ± 45.6 645 ± 125 35.9 ± 3.5 99.2 ± 6.5 
10 µg 5.4 ± 0.9 12.5 ± 2.3 126 ± 14.9 40.1 ± 6.4 13.3 ± 3.4 60.7 ± 5.2 198 ± 30.1 2.5 ± 0.6 21.7 ± 2.2 351 ± 50.2 602 ± 120 30.4 ± 3.0 98.5 ± 8.4 
30 µg 7.1 ± 0.8 13.0 ± 2.6 95.7 ± 20.5 39.7 ± 4.2 14.9 ± 2.5 28.4 ± 6.2 175 ± 33.2 3.6 ± 0.4 20.6 ± 3.0 360 ± 61.1 622 ± 199 27.8 ± 3.2 86.7 ± 9.1 
90 µg 6.4 ± 1.2 10.9 ± 1.7 99.1 ± 16.4 38.8 ± 5.6 11.7 ± 2.0 29.6 ± 2.3 203 ± 23.9 3.1 ± 0.2 20.7 ± 1.9 376 ± 60.2 651 ± 264 31.5 ± 4.5 79.1 ± 10.2 

4d 

VC 6.5 ± 1.3 12.7 ± 1.3 111 ± 19.5 55.6 ± 5.8 9.9 ± 1.8 36.7 ± 3.1 183 ± 23.5 3.9 ± 0.6 22.7 ± 2.5 350 ± 51.2 609 ± 201 36.5 ± 4.1 101 ± 11.2 
10 µg 4.9 ± 1.8 14.0 ± 1.9 125 ± 18.2 51.7 ± 6.7 11.2 ± 1.6 40.1 ± 3.0 197 ± 25.4 4.1 ± 0.4 26.7 ± 4.6 389 ± 46.3 623 ± 165 40.1 ± 3.8 117 ± 10.5 
30 µg 8.0 ± 1.9 13.2 ± 2.2 120 ± 23.4 48.6 ± 4.6 10.7 ± 1.3 42.9 ± 2.9 209 ± 36.4 3.0 ± 1.0 26.4 ± 2.3 347 ± 39.4 620 ± 145 46.7 ± 3.0 96.5 ± 13.9 
90 µg 7.1 ± 1.5 11.7 ± 2.0 100 ± 20.1 55.1 ± 5.0 13.6 ± 1.1 41.7 ± 2.4 215 ± 45.2 4.9 ± 1.4 21.7 ± 3.0 350 ± 35.5 654 ± 132 39.2 ± 3.2 115 ± 14.5 

8d 

VC 6.0 ± 1.6 14.5 ± 3.4 100 ± 14.2 42.1 ± 4.2 10.2 ± 1.1 30.1 ± 4.1 188 ± 22.7 4.2 ± 1.0 20.0 ± 2.2 325 ± 29.6 592 ± 133 40.1 ± 3.3 96.5 ± 15.1 
10 µg 5.2 ± 0.9 13.9 ± 4.2 114 ± 15.4 45.2 ± 4.0 11.6 ± 1.2 42.5 ± 5.2 196 ± 20.5 4.1 ± 1.1 21.8 ± 3.5 333 ± 30.4 612 ± 175 36.6 ± 4.5 101 ± 15.2 
30 µg 4.9 ± 0.8 12.7 ± 1.9 98.5 ± 9.6 46.3 ± 3.6 12.7 ± 1.1 39.6 ± 6.3 182 ± 23.3 3.6 ± 0.9 25.4 ± 2.0 326 ± 31.1 631 ± 145 37.8 ± 5.7 115 ± 20.7 
90 µg 5.0 ± 0.6 12.5 ± 2.8 99.6 ± 9.0 41.7 ± 3.9 13.0 ± 2.0 34.2 ± 6.0 206 ± 30.6 4.5 ± 0.4 24.7 ± 2.9 364 ± 58.4 622 ± 148 34.0 ± 3.2 109 ± 10.9 

                                       

   Th1/17 Cytokines  Th2 Cytokines Other 

 

 

Table 3.7. Serum cytokine levels for each treatment group at each time point of the AuNP dose response study. n = 8 per group. 
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Table 3.8. BAL cell total number and cell phenotypes by percent for all groups at all time points in the Au Allergy 
study. n = 4 per group, p < 0.05, * indicates statistically significant from group 5 control at the corresponding time 
point; ** indicates statically significant from all other groups at the corresponding time point. 
 

Table 3.8. Au Allergy Study-  
BAL Cell Phenotypes by Percent 

Cell Phenotype 
Group 

1 2 3 4 5 6 7 8 

Day 11 

Total BAL Cell # 1,140,500 1,098,750 1,125,000 1,120,500 1,141,000 1,113,250 1,191,500 1,168,250 

Macrophages 94.01 % 93.65 % 92.78 % 93.01 % 93.24 % 92.15 % 93.54 % 93.11 % 

Neutrophils 0.99 % 1.17 % 1.01 % 1.22 % 1.25 % 1.20 % 0.97 % 1.11 % 

Eosinophils 0.52 % 0.67 % 0.61 % 0.62 % 0.67 % 0.51 % 0.56 % 0.58 % 

Lymphocytes 3.79 % 3.80 % 3.75 % 3.65 % 3.55 % 3.59 % 3.82 % 4.00 % 

 CD4+ T-cells 2.39 % 2.61 % 2.50 % 2.36 % 2.01 % 2.22 % 2.45 % 2.62 % 

 CD8+ T-cells 0.80 % 0.71 % 0.74 % 0.77 % 0.89 % 0.85 % 0.82 % 0.80 % 

 B-Cells 0.60 % 0.48 % 0.51 % 0.52 % 0.65 % 0.52 % 0.55 % 0.58 % 

Other 1.02 % 0.89 % 1.15 % 1.42 % 1.29 % 2.55 % 1.11 % 1.20 % 

Day 15 

Total BAL Cell # 1,152,250 1,098,000 1,109,600 1,165,200 1,170,400 1,540,000* 2,079,750* 1,709,250* 

Macrophages 92.58 % 93.33 % 93.07 % 92.57 % 94.12 % 93.34 % 92.56 % 93.17 % 

Neutrophils 1.30 % 1.20 % 1.06 % 0.99 % 0.99 % 1.20 % 1.12 % 1.13 % 

Eosinophils 0.56 % 0.57 % 0.64 % 0.63 % 0.60 % 0.55 % 0.54 % 0.49 % 

Lymphocytes 3.71 % 3.61 % 3.82 % 3.93 % 3.58 % 3.88 % 3.86 % 3.96 % 

 CD4+ T-cells 2.50 % 2.44 % 2.62 % 2.59 % 2.33 % 2.44 % 2.58 % 2.60 % 

 CD8+ T-cells 0.66 % 0.69 % 0.71 % 0.74 % 0.75 % 0.85 % 0.67 % 0.80 % 

 B-Cells 0.55 % 0.48 % 0.49 % 0.60 % 0.50 % 0.59 % 0.61 % 0.56 % 

Other 1.25 % 1.29 % 1.41 % 1.21 % 0.71 % 1.03 % 1.92 % 1.25 % 

Day 19 

Total BAL Cell # 1,145,200 1,119,500 1,096,000 1,165,250 1,162,600 1,835,750* 2,367,750** 1,806,000* 

Macrophages 94.17 % 93.54 % 92.85 % 93.11 % 93.56 % 92.87 % 89.74 % 93.11 % 

Neutrophils 0.96 % 1.12 % 0.91 % 1.27 % 1.15 % 1.37 % 1.26 % 1.04 % 

Eosinophils 0.66 % 0.59 % 0.55 % 0.64 % 0.66 % 0.60 % 0.52 % 0.54 % 

Lymphocytes 3.87 % 3.68 % 3.82 % 3.81 % 3.21 % 3.86 % 4.53 % 4.12 % 

 CD4+ T-cells 2.55 % 2.58 % 2.62 % 2.49 % 2.55 % 2.51 % 2.65 % 2.44 % 

 CD8+ T-cells 0.71 % 0.65 % 0.69 % 0.82 % 0.66 % 0.75 % 2.10 %** 0.81 % 

 B-Cells 0.62 % 0.45 % 0.51 % 0.50 % 0.57 % 0.60 % 0.45 % 0.87 % 

Other 1.01 % 1.07 % 1.18 % 1.17 % 1.42 % 1.30 % 3.28 %** 1.19 % 
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Table 3.9. Mediastinal lymph node cell phenotypes by percent for all groups at all time points in the Au Allergy 
study. n = 4 per group, p < 0.05, * indicates statistically significant from group 5 control; ** indicates statistically 
significant from all other groups; # indicates statistically significant from groups 5 and 6; ^ indicates statistically 
significant from groups 5 and 8; @ indicates statistically significant form groups 5 and 7.  
 

Table 3.9. Au Allergy Study  
Mediastinal Lymph Node Cell Phenotypes by Percent 

Cell 
Phenotype 

Group 

1 2 3 4 5 6 7 8 

Day 11 

Total LN Cell # 3,303,500 3,320,500 3,370,250 3,130,500 3,268,000 3,204,500 3,365,000 3,376,250 

CD4+ T-cells 62.24 % 63.35 % 63.01 % 61.49 % 63.21 % 62.22 % 61.17 % 62.59 % 
 CD44hi 1.23 % 2.22 % 1.49 % 0.87 % 1.17 % 2.04 % 2.39 % 1.37 % 
CD8+ T-cells 22.4 % 21.19 % 20.58 % 22.96 % 22.19 % 21.17 % 23.69 % 22.01 % 
 CD44hi 2.14 % 1.47 % 3.10 % 2.85 % 2.00 % 3.15 % 1.85 % 1.96 % 
B-cells 12.55 % 11.96 % 13.22 % 12.84 % 12.22 % 11.39 % 22.01 % 12.50 % 
 CD86hi 3.27 % 4.18 % 2.97 % 3.11 % 3.19 % 2.87 % 3.64 % 2.45 % 
Other 2.22 % 3.02 % 2.35 % 2.45 % 2.38 % 3.10 % 1.69 % 2.90 % 
Day 15 

Total LN Cell # 3,252,750 3,419,500 3,235,500 3,263,750 3,457,000 4,967,750* 5,683,500* 3,195,850 

CD4+ T-cells 62.50 % 62.59 % 63.17 % 61.97 % 62.25 % 63.12 % 58.64 %** 62.79 % 
 CD44hi 2.12 % 2.14 % 0.85 % 1.49 % 1.22 % 3.36 % 7.47 % # 12.15 %** 
CD8+ T-cells 21.89 % 22.59 % 23.70 % 22.60 % 22.89 % 22.96 % 26.12 %** 21.47 % 
 CD44hi 1.80 % 1.66 % 2.58 % 3.10 % 1.47 % 2.59 % 12.54 %** 3.98 % 
B-cells 13.21 % 12.45 % 12.40 % 11.88 % 12.45 % 11.24 % 10.23 % 11.95 % 
 CD86hi 3.00 % 2.67 % 2.41 % 1.92 % 2.22 % 2.68 % 2.77 % 3.28 % 
Other 2.77 % 3.08 % 3.19 % 2.71 % 2.79 % 2.68 % 6.01 %** 2.79 % 
Day 19 

Total LN Cell # 3,381,750 3,466,500 3,590,750 3,561,000 3,565,250 5,585,500* 6,443,000^ 4,226,250 

CD4+ T-cells 59.64 % 61.27 % 62.89 % 62.99 % 61.87 % 62.39 % 55.10 %** 61.88 % 
 CD44hi 1.90 % 0.85 % 2.60 % 2.31 % 2.29 % 26.9 % @ 14.23 %* 24.47 % @ 
CD8+ T-cells 21.90 % 22.48 % 23.57 % 24.06 % 22.89 % 20.47 % 31.12 %** 23.41 % 
 CD44hi 1.88 % 1.75 % 1.67 % 2.91 % 2.05 % 4.58 % 35.21 %** 5.12 % 
B-cells 12.56 % 12.56 % 13.14 % 11.90 % 12.45 % 12.52 % 9.56 % 13.07 % 
 CD86hi 2.25 % 2.49 % 1.58 % 0.88 % 1.44 % 25.51 % @ 5.55 %* 20.19 % @ 
Other 3.21 % 1.86 % 2.54 % 2.31 % 2.79 % 3.21 % 4.22 % 1.64 % 
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Table 3.10. Cervical lymph node cell phenotypes by percent for all groups at all time points in the Au Allergy study. 
n = 4 per group, p < 0.05. a indicates statistically significant from all non-sensitized groups (groups 1-4). 
 

 

Table 3.10. Au Allergy Study 
Cervical Lymph Node Cell Phenotypes by Percent 

Cell Phenotype 
Group 

1 2 3 4 5 6 7 8 

Day 11 

Total LN Cell # 3,256,100 3,125,000 3,459,100 3,346,200 15,236,000 a 16,457,000 a 14,598,000 a 17,458,000 a 

CD4+ T-cells 62.2% 63.0% 61.1% 60.8% 66.7% a 67.0% a 68.2% a 66.9% a 
CD8+ T-cells 20.5% 22.4% 21.7% 22.2% 29.6% a 28.8% a 28.4% a 30.1% a 
B-cells 15.2% 13.2% 14.0% 14.1% 8.2% a 9.0% a 9.6% a 9.4% a 
Day 15 

Total LN Cell # 2,986,500 3,125,600 3,233,000 3,410,600 16,785,000 a 15,498,000 a 14,987,000 a 16,674,000 a 

CD4+ T-cells 63.3% 61.4% 60.8% 62.2% 68.8% a 67.8% a 69.0% a 67.7% a 
CD8+ T-cells 21.4% 20.8% 22.7% 21.1% 30.2% a 28.8% a 28.6% a 27.9% a 
B-cells 13.5% 14.1% 12.9% 13.7% 8.5% a 9.3% a 10.4% a 9.9% a 
Day 19 

Total LN Cell # 3,220,100 3,005,100 3,259,000 2,986,400 15,268,000 a 14,985,000 a 17,458,000 a 16,475,000 a 

CD4+ T-cells 60.7% 61.4% 63.4% 60.7% 67.4% a 68.1% a 70.1% a 69.2% a 
CD8+ T-cells 19.8% 21.5% 22.0% 21.8% 27.7% a 28.4% a 31.0% a 30.2% a 
B-cells 12.8% 13.0% 14.1% 13.6% 9.6% a 8.7% a 8.2% a 9.6% a 
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Table 3.11. Spleen cell phenotypes by percent for all groups at all time points in the Au Allergy study. n = 4 per 
group, p < 0.05. * indicates statistically significant from group 5 control; ** indicates statistically significant from all 
other groups. 
 

 
 
 
 
 
 
 
 
 

 
 

Table 3.11. Au Allergy Study  
Spleen Cell Phenotypes by Percent 

Cell Phenotype 
Group 

1 2 3 4 5 6 7 8 

Day 11 

CD4+ T-cells 14.23 % 15.01 % 15.24 % 14.87 % 14.93 % 15.11 % 15.09 % 15.03 % 
 CD44hi 1.12 % 2.05 % 1.48 % 1.72 % 1.28 % 2.14 % 2.03 % 2.09 % 
CD8+ T-cells 8.55 % 9.12 % 9.07 % 8.61 % 8.78 % 8.69 % 9.13 % 9.07 % 
 CD44hi 2.18 % 1.44 % 1.82 % 1.37 % 1.52 % 1.58 % 1.34 % 2.11 % 
B-cells 62.14 % 60.76 % 62.37 % 63.41 % 59.87 % 62.22 % 60.39 % 60.47 % 
 CD86hi 1.56 % 1.44 % 1.08 % 0.96 % 1.47 % 1.58 % 2.05 % 1.88 % 
NK Cells 1.94 % 1.85 % 2.01 % 2.13 % 2.24 % 1.89 % 1.96 % 1.87 % 
Other 10.11 % 11.23 % 11.31 % 10.98 % 11.25 % 12.09 % 10.43 % 10.56 % 
Day 15 

CD4+ T-cells 15.20 % 14.96 % 14.87 % 15.03 % 15.11 % 14.52 % 14.62 % 15.07 % 
 CD44hi 1.46 % 1.82 % 0.89 % 1.62 % 1.66 % 2.25 % 1.54 % 0.97 % 
CD8+ T-cells 9.12 % 9.23 % 8.87 % 8.96 % 9.14 % 8.54 % 8.93 % 9.11 % 
 CD44hi 2.02 % 2.37 % 1.82 % 1.77 % 0.95 % 2.22 % 10.27 %** 1.84 % 
B-cells 61.14 % 62.52 % 60.74 % 59.89 % 61.56 % 62.54 % 61.33 % 60.94 % 
 CD86hi 1.28 % 1.35 % 1.64 % 1.40 % 2.47 % 6.12 % 1.57 % 4.98 % 
NK Cells 2.10 % 2.00 % 2.04 % 1.89 % 2.14 % 1.74 % 2.07 % 1.93 % 
Other 11.21 % 11.29 % 11.23 % 12.01 % 10.45 % 12.41 % 11.79 % 10.85 % 
Day 19 

CD4+ T-cells 14.96 % 14.85 % 15.02 % 15.11 % 15.12 % 14.60 % 15.22 % 14.75 % 
 CD44hi 1.58 % 1.43 % 1.79 % 0.98 % 1.77 % 2.24 % 1.47 % 1.16 % 
CD8+ T-cells 9.30 % 9.15 % 8.88 % 8.74 % 8.96 % 9.22 % 12.04 %** 8.57 % 
 CD44hi 2.10 % 2.07 % 1.68 % 1.05 % 0.69 % 1.14 % 12.41 %** 1.98 % 
B-cells 62.32 % 63.45 % 62.14 % 61.17 % 63.14 % 62.12 % 58.62 %** 61.17 % 
 CD86hi 2.09 % 2.27 % 1.39 % 1.16 % 1.17 % 7.68 %* 2.05 % 4.87 %* 
NK Cells 2.16 % 2.01 % 2.22 % 1.91 % 2.44 % 2.12 % 1.85 % 1.93 % 
Other 11.26 % 10.54 % 11.74 % 11.03 % 12.47 % 11.40 % 10.63 % 12.07 % 
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Table 3.12. Au Allergy Study 
Whole Blood Cell Differentials 

Time 
Point 

Tx 
Group 

RBC WBC  Cell Number (k/uL)  % of Total WBC 
(M/uL) (k/uL)  Neutr Lymph Mono Eos Baso  Neutr Lymph Mono Eos Baso 

11d 

1 9.84 2.12  0.89 1.20 0.01 0.01 0.01  41.98% 56.60% 0.47% 0.47% 0.47% 

2 9.68 2.09  0.85 1.21 0.01 0.01 0.01  40.67% 57.89% 0.48% 0.48% 0.48% 

3 9.75 2.13  0.93 1.17 0.02 0.01 0.00  43.66% 54.93% 0.94% 0.47% 0.00% 

4 9.70 2.44  1.20 1.19 0.03 0.02 0.00  49.18% 48.77% 1.23% 0.82% 0.00% 

5 9.85 2.25  1.18 1.03 0.01 0.02 0.01  52.44% 45.78% 0.44% 0.89% 0.44% 

6 9.67 2.04  1.07 0.95 0.01 0.01 0.00  52.45% 46.57% 0.49% 0.49% 0.00% 

7 9.66 2.12  1.11 0.97 0.01 0.02 0.01  52.36% 45.75% 0.47% 0.94% 0.47% 

8 9.68 2.38  1.09 1.24 0.03 0.01 0.01  45.80% 52.10% 1.26% 0.42% 0.42% 

15d 

1 9.82 2.12  1.03 1.06 0.01 0.01 0.01  48.58% 50.00% 0.47% 0.47% 0.47% 

2 9.91 2.14  0.96 1.15 0.01 0.02 0.00  44.86% 53.74% 0.47% 0.93% 0.00% 

3 9.89 1.92  0.84 1.05 0.01 0.02 0.00  43.75% 54.69% 0.52% 1.04% 0.00% 

4 9.82 2.07  0.93 1.11 0.01 0.02 0.00  44.93% 53.62% 0.48% 0.97% 0.00% 

5 9.65 1.94  0.79 1.12 0.01 0.02 0.00  40.72% 57.73% 0.52% 1.03% 0.00% 

6 9.66 1.97  0.85 1.08 0.01 0.02 0.01  43.15% 54.82% 0.51% 1.02% 0.51% 

7 9.74 2.13  1.02 1.09 0.01 0.01 0.00  47.89% 51.17% 0.47% 0.47% 0.00% 

8 9.77 2.34  1.26 1.04 0.02 0.02 0.00  53.85% 44.44% 0.85% 0.85% 0.00% 

19d 

1 9.78 2.27  1.10 1.14 0.01 0.01 0.01  48.46% 50.22% 0.44% 0.44% 0.44% 

2 9.82 2.13  1.14 0.95 0.02 0.01 0.01  53.52% 44.60% 0.94% 0.47% 0.47% 

3 9.80 1.86  0.95 0.87 0.02 0.02 0.00  51.08% 46.77% 1.08% 1.08% 0.00% 

4 9.96 1.85  0.96 0.86 0.02 0.01 0.00  51.89% 46.49% 1.08% 0.54% 0.00% 

5 9.93 2.23  1.14 1.07 0.01 0.01 0.00  51.12% 47.98% 0.45% 0.45% 0.00% 

6 9.83 2.24  1.20 1.00 0.02 0.02 0.00  53.57% 44.64% 0.89% 0.89% 0.00% 

7 9.81 2.17  1.01 1.12 0.02 0.01 0.01  46.54% 51.61% 0.92% 0.46% 0.46% 

8 9.81 2.04  1.07 0.94 0.01 0.01 0.01  52.45% 46.08% 0.49% 0.49% 0.49% 

 

 

Table 3.12. Analysis of whole blood for all groups at all time points in the Au Allergy study. Red blood cell number 
(RBC), total white blood cell (WBC) number, and differentials of WBC populations are shown. Populations of 
neutrophils (neutr), lymphocytes (lymph), monocytes (mono), eosinophils (eos), and basophils (baso) are 
expressed as absolute number and as a percent of total WBC. n = 4 per group. 
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Table 3.13. Au Allergy Study 
Serum Cytokine Levels (pg/mL) 

Time 
Point 

Tx 
Group IFN-γ IL-2 IL-12p40 IL-12p70 IL-17 TNF-α GM-CSF IL-4 IL-5 IL-13 Eotaxin IL-6 IL-10 

11d 

1 5.5 ± 1.1 12.0 ± 2.3 108 ± 11.2 49.8 ± 4.0 12.4 ± 2.2 36.1 ± 4.0 175 ± 22.3 3.0 ± 0.4 20.7 ± 2.2 411 ± 85.2 704 ± 95.3 36.5 ± 2.8 85.6 ± 9.6 

2 5.2 ± 1.3 10.4 ± 1.5 87.7 ± 10.1 55.7 ± 5.1 16.1 ± 1.9 29.4 ± 4.5 196 ± 31.8 2.5 ± 0.5  17.0 ± 1.9 364 ± 54.0 655 ± 120 30.2 ± 3.0 84.1 ± 8.8 

3 5.3 ± 1.2 11.8 ± 2.4 91.0 ± 10.1 61.0 ± 5.7 15.7 ± 3.0 37.0 ± 3.3 210 ± 29.9 2.4 ± 0.6  15.6 ± 2.0 385 ± 27.4 663 ± 94.2 31.1 ± 3.2 78.1 ± 7.1 

4 6.1 ± 2.0  10.0 ± 2.0  96.5 ± 15.6 46.5 ± 4.9 14.4 ± 1.8 33.4 ± 2.9 207 ± 18.7 1.9 ± 0.5 18.4 ± 1.6 399 ± 36.6 680 ± 76.0 29.9 ± 2.7 92.2 ± 7.7 

5 4.8 ± 1.6 14.7 ±1.4 105 ± 15.5 45.5 ± 4.1  15.5 ± 1.7 30.5 ± 2.8 200 ± 24.5 2.2 ± 0.3  19.9 ± 1.7  421 ± 41.2 710 ± 110 42.1 ± 6.1 107 ± 11.4 

6 4.9 ± 1.2  12.2 ± 2.1 102 ± 17.5 55.7 ± 5.0 15.0 ± 1.9 41.1 ± 4.5  189 ± 20.3 2.3 ± 0.4 22.1 ± 1.5 404 ± 40.7 685 ± 103 40.0 ± 5.2 111 ± 10.5 

7 5.2 ± 1.0  13.3 ± 2.2 111 ± 20.1 52.9 ± 7.4 15.0 ± 1.8 32.2 ± 5.1 182 ± 15.6 3.1 ± 1.0 21.7 ± 3.4 371 ± 39.5 660 ± 99.7 38.8 ± 3.5 87.4 ± 6.2  

8 5.6 ± 0.9 10.9 ± 1.7 96.6 ± 14.4 56.6 ± 6.0 13.7 ± 2.3 37.0 ± 3.8 194 ± 19.1 2.6 ± 0.6 20.1 ± 2.1 385 ± 28.8 693 ± 85.4 35.0 ± 4.0 90.0 ± 7.4 

15d 

1 5.1 ± 0.8 11.9 ± 2.0 99.7 ± 16.2 45.6 ± 5.0 11.9 ± 2.0 35.5 ± 2.4 205 ± 18.8 2.7 ± 0.2  18.8 ± 2.3 412 ± 51.1 711 ± 129 28.8 ± 5.1 80.2 ± 5.5 

2 6.1 ± 1.1  14.1 ± 2.2 95.5 ± 15.2  53.2 ± 5.1 14.4 ± 2.0 30.5 ± 3.0 211 ± 20.0 3.2 ± 0.4 20.7 ± 2.7 386 ± 35.5 666 ± 120 32.7 ± 4.5 91.1 ± 4.8 

3 5.9 ± 1.4 15.2 ± 3.4  107 ± 11.2 55.1 ± 7.1 13.3 ± 1.8 29.6 ± 2.8 188 ± 16.4 3.1 ± 0.5 22.1 ± 3.0 377 ± 27.4 685 ± 55.7 40.2 ± 6.2 90.7 ± 9.0 

4 5.7 ± 1.0 12.2 ± 2.2 111 ± 20.7 50.0 ± 4.2 12.2 ± 3.0 31.1 ± 3.7 190 ± 20.3 1.9 ± 0.3 16.6 ± 3.1 407 ± 33.3 714 ± 76.4 34.4 ± 4.0 76.4 ± 5.6 

5 4.8 ± 1.0 14.0 ± 2.2 94.4 ± 10.2 49.9 ± 3.9 10.9 ± 2.1 30.1 ± 1.9 166 ± 21.1 4.0  ± 2.4 18.5 ± 2.0 401 ± 40.2 701 ± 102 36.6 ± 4.1 102 ± 13.4 

6 4.9 ± 0.9 13.9 ± 2.4 95.6 ± 9.9 50.0 ± 5.1 13.4 ± 4.1 28.8 ± 2.5 203 ± 20.1 8.5 ± 1.8*  19.6 ± 2.1 412 ± 36.4  700 ± 85.2 35.8 ± 2.8 111 ± 24.1 

7 5.1 ± 1.4 11.7 ± 1.8 112 ± 14.5 51.2 ± 4.0 11.8 ± 2.7 34.4 ± 3.2 202 ± 16.5 3.5 ± 0.9 20.1 ± 2.2 388 ± 28.5 688 ± 84.5 41.1 ± 3.3 89.7 ± 7.4 

8 5.2 ± 2.0 12.2 ± 2.0 109 ± 12.2 46.6 ± 3.7 14.0 ± 2.1 30.0 ± 2.8 189 ± 27.4 4.6 ± 0.8 19.7 ± 3.0 375 ± 30.0 690 ± 71.1 40.7 ± 2.9 92.2 ± 12.7 

19d 

1 5.5 ± 1.6 11.9 ± 1.8 111 ± 10.2 50.1 ± 4.7 12..2 ± 2.3 36.6 ± 2.1 210 ± 22.1 3.2 ± 0.3 17.9 ± 3.1 370 ± 32.1 665 ± 74.1 29.8 ± 1.8 101 ± 9.9 

2 5.6 ± 1.5  10.7 ± 0.9  101 ± 7.7  52.3 ± 6.0 13.0 ± 2.0 33.2 ± 3.0 196 ± 24.7 3.3 ± 0.2 18.4 ± 2.1 366 ± 40.1 674 ± 101 31.0 ± 2.7 85.6 ± 7.7 

3 6.1 ± 1.4 13.3 ± 1.3 92.2 ± 7.6 60.7 ± 7.1 14.1 ± 2.5 32.7 ± 1.9 185 ± 30.2 4.1 ± 0.6 19.5 ± 2.4 405 ± 62.1 712 ± 54.1 37.4 ± 4.4 76.3 ± 6.1 

4 6.0 ± 1.5 14.1 ± 2.2 90.7 ± 6.6 48.5 ± 5.8 12.9 ± 1.9 37.4 ± 3.5 178 ± 25.1 4.2 ± 1.1 20.7 ± 1.9 400 ± 36.1 720 ± 64.2 35.5 ± 3.5 80.1 ± 7.1 

5 4.7 ± 1.0 10.9 ± 1.8 88.7 ± 9.2 55.6 ± 6.1 11.7 ± 2.0 29.9 ± 4.1 213 ± 26.4 3.6 ± 0.8 20.1 ± 2.2 408 ± 29.6 704 ± 52.3  29.9 ± 3.1 89.9 ± 6.5 

6 5.0 ± 0.9  11.4 ± 2.0 80.1 ± 10.2 54.4 ± 6.1 12.2 ± 1.5 35.5 ± 3.0 222 ± 31.4 9.7 ± 1.3* 28.3 ± 2.1* 419 ± 40.5 685 ± 58.1 33.0 ± 3.2  90.2 ± 6.4 

7 5.3 ± 0.8 12.2 ± 1.8 116 ± 12.3 50.7 ± 7.1 13.3 ± 2.9 34.7 ± 3.0 187 ± 20.0 3.1 ± 0.4 19.5 ± 2.7 395 ± 40.1 700 ± 88.4 34.7 ± 2.6 127 ± 9.1* 

8 5.5 ± 1.4 13.3 ± 2.7 110 ± 13.0 48.7 ± 4.4 15.5 ± 3.0 36.6 ± 2.8 196 ± 18.5 5.0 ± 0.8* 23.5 ± 3.0 378 ± 45.2 699 ± 85.8 38.8 ± 5.0 135 ± 16.7* 

               

  
 Th1/Th17 Cytokines   Th2 Cytokines   Other  

 

 
Table 3.13. Serum cytokine levels for each treatment group at each time point of the Au Allergy study. n = 4 per group, p < 0.05. * indicates statistically 
significant over group 5 control. 
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Table 3.14. Au Allergy Study 
BALF Cytokine Levels (pg/mL) 

Time 
Point 

Tx 
Group IFN-γ IL-2 IL-12p40 IL-12p70 IL-17 TNF-α GM-CSF IL-4 IL-5 IL-13 Eotaxin IL-6 IL-10 

11d 

1 3.3 ± 0.3 6.0 ± 0.4 112 ± 15.4 36.4 ± 3.0 1.2 ± 0.1 4.0 ± 0.3 3.3 ± 0.3 5.5 ± 0.4 5.2 ± 0.4 2.6 ± 0.6 3.4 ± 0.5 2.5 ± 0.2 2.0 ± 0.2 

2 2.9 ± 0.4 5.5 ± 0.3 101 ± 9.6 29.8 ± 1.8 0.9 ± 0.1 3.6 ± 0.3 2.8 ± 0.2 6.2 ± 0.7 6.1 ± 0.8 3.0 ± 1.0 3.5 ± 0.3 3.1 ± 0.3 2.1 ± 0.3 

3 2.2 ± 0.2 5.4 ± 0.3  98.5 ± 7.7 31.1 ± 3.0 1.0 ± 0.2 3.8 ± 0.4 2.4 ± 0.1 6.0 ± 1.1 5.8 ± 0.5 2.5 ± 0.4 3.0 ± 0.2 3.0 ± 0.2 2.2 ± 0.2 

4 2.4 ± 0.2 6.1 ± 1.0 95.4 ± 8.0 32.2 ± 2.8 1.3 ± 0.2 4.2 ± 0.5 3.0 ± 0.3 5.9 ± 0.7 5.5 ± 0.8 3.2 ± 0.3 3.1 ± 0.3 2.8 ± 0.2 2.2 ± 0.3 

5 3.0 ± 0.2 5.2 ± 0.6 88.7 ± 9.5 35.5 ± 3.3 2.0 ± 0.2 4.5 ± 0.2 4.2 ± 0.9 4.8 ± 0.4 7.1 ± 0.5 3.0 ± 0.2 2.8 ± 0.3 2.6 ± 0.4 1.8 ± 0.2 

6 3.2 ± 0.4 5.5 ± 0.5 80.1 ± 7.7 27.7 ± 2.9 1.3 ± 0.2 4.0 ± 0.3 3.6 ± 0.5 4.9 ± 0.5 6.5 ± 0.5 3.1 ± 0.2 4.1 ± 0.4 3.3 ± 0.3 3.2 ± 0.3 

7 2.4 ± 0.2 6.1 ± 0.6 114 ± 12.3 34.0 ± 2.5 1.1 ± 0.1 3.9 ± 0.3 2.9 ± 0.8 5.2 ± 0.5 5.9 ± 0.5 1.9 ± 0.2 4.0 ± 0.5 3.0 ± 0.3 3.0 ± 0.3 

8 2.7 ± 0.1 5.8 ± 0.4 122 ± 10.4 33.3 ± 2.8 2.1 ± 0.3 2.8 ± 0.3 3.1 ± 0.6 5.5 ± 0.4 6.0 ± 0.5 2.2 ± 0.2 3.3 ± 0.3 3.1 ± 0.5 1.9 ± 0.4 

15d 

1 2.8 ± 0.2 4.8 ± 0.5 120 ± 12.2 30.1 ± 2.5 0.8 ± 0.1 4.0 ± 0.4 3.3 ± 0.5 6.1 ± 0.5 5.7 ± 0.3 2.8 ± 0.3 4.2 ± 0.6 3.3 ± 0.5 2.6 ± 0.5 

2 3.0 ± 0.3 6.2 ± 0.8 122 ± 15.4 30.0 ± 3.5 0.9 ± 0.2 3.5 ± 0.3 3.6 ± 0.4 6.6 ± 0.7 4.9 ± 0.6 2.9 ± 0.2 5.0 ± 0.8 2.9 ± 0.2 2.2 ± 0.1 

3 3.1 ± 0.3 6.0 ± 0.8 104 ± 10.7 28.8 ± 3.5 0.8 ± 0.2 3.2 ± 0.3 4.4 ± 0.8 5.3 ± 0.5 7.2 ± 0.5 1.8 ± 0.3 2.8 ± 0.3 3.0 ± 0.5 2.5 ± 0.3 

4 2.5 ± 0.2 5.5 ± 1.0 98.7 ± 12.2 29.9 ± 2.8 1.4 ± 0.3 3.1 ± 0.3 2.9 ± 0.3 4.8 ± 0.4 6.6 ± 0.4 3.3 ± 0.3 3.3 ± 0.3 3.5 ± 0.8 3.1 ± 0.3 

5 2.6 ± 0.2 5.4 ± 0.5 92.5 ± 8.5 35.5 ± 4.0 1.5 ± 0.2 4.2 ± 0.3 2.6 ± 0.3 5.7 ± 0.5 5.9 ± 0.4 1.9 ± 0.2 4.0 ± 0.4 2.8 ± 0.4 2.6 ± 0.2 

6 2.7 ± 0.3  4.9 ± 0.5 90.1 ± 8.5 28.6 ± 2.9 0.9 ± 0.1 4.4 ± 0.4 3.0 ± 0.2 5.5 ± 0.5 5.5 ± 0.5 2.5 ± 0.3 4.2 ± 0.4 16.2 ± 2.5* 2.7 ± 0.3 

7 2.4 ± 0.3 6.1 ± 0.8 96.6 ± 10.0 31.1 ± 3.5 0.8 ± 0.1 4.5 ± 0.5 10.1 ± 0.8* 6.3 ± 0.6 5.0 ± 0.4 2.7 ± 0.2 3.9 ± 0.4 4.0 ± 0.6 2.9 ± 0.3 

8 2.5 ± 0.2 5.5 ± 0.5 116 ± 13.3 32.2 ± 2.7 1.0 ± 0.3 3.7 ± 0.3 3.2 ± 0.5 6.0 ± 0.3 6.8 ± 0.5 2.2 ± 0.1 5.0 ± 0.4 3.9 ± 0.3 2.4 ± 0.2 

19d 

1 3.0 ± 0.3  5.2 ± 0.4 96.7 ± 8.6 32.2 ± 3.5 1.0 ± 0.1 5.0 ± 0.5 2.8 ± 0.4 6.1 ± 0.5 5.9 ± 0.6 2.9 ± 0.3 5.1 ± 0.6 4.1 ± 0.6 2.5 ± 0.2 

2 3.1 ± 0.4 4.8 ± 0.6 100 ± 8.6 29.6 ± 2.0 1.1 ± 0.2 4.0 ± 0.4 2.6 ± 0.5 5.7 ± 0.5 4.8 ± 0.4 3.3 ± 0.2 4.4 ± 0.5 3.2 ± 1.0 2.6 ± 0.2  

3 2.8 ± 0.3 5.8 ± 0.6 119 ± 9.6 36.7 ± 4.0 1.3 ± 0.2 3.9 ± 0.4 3.5 ± 0.3 4.7 ± 0.5 6.2 ± 0.5 3.0 ± 0.3 4.4 ± 0.6 2.8 ± 0.2 3.3 ± 0.4 

4 2.9 ± 0.2 6.3 ± 0.9 111 ± 7.4 32.2 ± 2.9 1.2 ± 0.1 4.4 ± 0.5 4.1 ± 0.6 4.9 ± 0.5 7.0 ± 0.6 4.1 ± 0.3 3.8 ± 0.7 2.9 ± 0.3 3.1 ± 0.5 

5 3.5 ± 0.6 6.8 ± 1.2 88.5 ± 6.4 31.1 ± 4.2 1.8 ± 0.2 4.6 ± 0.4 3.6 ± 0.8 6.6 ± 0.7 5.8 ± 0.3 2.6 ± 0.2 2.9 ± 0.3 3.2 ± 0.3 2.0 ± 0.1 

6 17.0 ± 3.2@ 5.7 ± 0.5 113 ± 15.4 28.8 ± 3.0 2.2 ± 0.1 5.2 ± 0.5 3.5 ± 0.7 5.5 ± 0.6 5.5 ± 0.3 2.5 ± 0.2 3.6 ± 0.4 6.2 ± 1.0 2.2 ± 0.2 

7 6.2 ± 1.5* 15.5 ± 2.5* 107 ± 10.6 62.1 ± 4.5* 0.8 ± 0.2 5.0 ± 0.3 5.4 ± 0.8 5.4 ± 0.5 6.6 ± 0.3 3.6 ± 0.3 4.1 ± 0.4 4.2 ± 0.8 3.0 ± 0.3 

8 14.7 ± 2.0@ 11.9 ± 1.6* 95.5 ± 8.7 55.6 ± 4.9* 1.4 ± 0.2 3.8 ± 0.4 4.0 ± 0.8 6.3 ± 0.6 6.9 ± 0.6 3.3 ± 0.3 5.2 ± 0.5 4.4 ± 0.6 2.8 ± 0.2 

               

  
 Th1/Th17 Cytokines   Th2 Cytokines   Other  

 

 
Table 3.14. BALF cytokine levels for each treatment group at each time point of the Au Allergy study. n = 4 per group, p < 0.05. * indicates statistically 
significant over group 5 control; @ indicates statistical significance over groups 5 and 7. 
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CHAPTER 3 FIGURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.1. Timeline of exposures for the Local Lymph Node Assay (LLNA). Mice were dermally exposed to vehicle 
control (50% DMSO), positive control (10% AuCl3), or 2.5, 5.0, or 10% Au or AuNP for three consecutive days (1d, 
2d, 3d) on the dorsal sides of both ears. Following two days of rest, mice were injected intravenously with 3H-
thymidine, euthanized 5 hours later, and lymph nodes were harvested for analysis. 
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Figure 3.2. Schedule of exposures for the Au allergy study (A) and treatment groups with corresponding exposures 
(B). Mice were treated dermally with DMSO vehicle control (VC) or 10% AuCl3 on days 1, 2, and 3 to establish 
contact allergy to gold in one set of animals (groups 5-8) and generate a set of non-sensitized control animals 
(groups 1-4). After 6 days of rest, mice were aspirated with H2O (VC), Au particles, or AuNP in mass- and surface 
area-normalized doses beginning on day 10. Groups 2, 3, 6, and 7 were administered 30 µg mass-equivalent doses 
of Au (groups 2 and 6) and AuNP (groups 3 and 7). Groups 2, 4, 6, and 8 were exposed to 9.90x10-6 m2 surface 
area-normalized doses of Au (groups 2 and 6) and AuNP (groups 4 and 8). After the first aspiration on day 10, a 
set of mice (n = 4) was euthanized the following day (day 11). The remaining mice were aspirated again with 
identical treatment doses on day 14, and a set of mice (n = 4) was euthanized the following day (day 15). The last 
group of mice were aspirated a third time on day 18 and euthanized the following day (day 19). 
 

Treatment Groups in the Au Allergy Study and 
Corresponding Exposures 

Treatment Group Group # Days 1-3 
(dermal) 

Days 10, 14, 18  
(aspiration) 

Particle Dose Mass Dose SA 

Non-sensitized vehicle control 1 

DMSO 

VC - - 
Non-sensitized Au 2 Au 30 µg 9.90x10-6 m2 

Non-sensitized AuNP mass 3 AuNP 30 µg 3.14x10-4 m2 
Non-sensitized AuNP SA 4 AuNP 0.8 µg 9.90x10-6 m2 

Sensitized vehicle control 5 

10% AuCl 

VC - - 
Sensitized Au 6 Au 30 µg 9.90x10-6 m2 

Sensitized AuNP mass 7 AuNP 30 µg 3.14x10-4 m2 
Sensitized AuNP SA 8 AuNP 0.8 µg 9.90x10-6 m2 

A 

B 
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Figure 3.3. Transmission electron micrographs of Au (A, C) and AuNP (B, D). Particles are shown at equal 
magnifications (A, B; scale bar = 500 nm) and in size-specific detail (C- 1µm scale bar, D- 50 nm scale bar). 
 

A B 

C D 
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Figure 3.4. Scanning electron micrographs of Au and AuNP at identical magnifications (A, B; scale bar- 1µm) and 
size-adjusted magnifications (C, D). Magnified images showing particle surface detail for Au (E, F) and AuNP (G, 
H).   
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Figure 3.5. In the LLNA study, the exposure site-draining lymph nodes were excised and 3H-thymidine incorporation 
was assessed (expressed as disintegrations per minute; DPM). Treatment groups included vehicle control (gray, 
50% DMSO); Au particles at 2.5, 5.0, or 10% w/v (purple); AuNP particles at 2.5, 5.0, or 10% w/v (yellow); and 10% 
AuCl3 positive control (gray). Stimulation index was calculated for each material and is shown over the 
corresponding bars. n = 8 per group, p < 0.05, * indicates statistically significant from all other groups. 
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Figure 3.6. Total mediastinal lymph node cell number for each treatment group (black = vehicle control, red = 10 µg 
AuNP, green = 30 µg AuNP, blue = 90 µg AuNP) at each time point of the AuNP dose response study. n = 8 per 
group, p < 0.05, * indicates statistically significant from all other groups. 
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Figure 3.7. Mediastinal lymph node cell phenotypes from the AuNP dose response study. The proportion pf 
lymphocyte phenotypes (yellow = CD4+ T-cells, orange = CD8+ T-cells, red = B-cells, gray = other cell type) with 
respect to total number are shown for each time point in A (1 d), B (4 d), and C (8 d). Absolute values for each cell 
population are shown in D. n = 8 per group, p < 0.05, * indicates statistically significant from all other groups at the 
corresponding time point. 
 

 

 



 

312 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Total number of BAL cells in all sensitized groups at all time points in the Au Allergy study. n = 4 per 
group, p < 0.05, * indicates statistically significant over group 5 control; ** indicates statistically significant from all 
other groups; # indicates statistically significant from groups 5 and 6. 
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Figure 3.9. Total number of BAL neutrophils (A) and eosinophils (B) in all sensitized groups at all time points in the 
Au Allergy study and total cell number for all BAL cell populations (C). n = 4 per group, p < 0.05, * indicates 
statistically significant over group 5 control; ** indicates statistically significant from all other groups; # indicates 
statistically significant from groups 5 and 6; ^ indicates statistically significant from groups 5 and 8. 
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Figure 3.10. Total number of BAL lymphocytes in all sensitized groups at all time points (A) in the Au Allergy study 
and time-dependent alterations in BAL lymphocyte CD4 : CD8 T-cell ratio (B and C). n = 4 per group, p < 0.05, * 
indicates statistically significant over group 5 control; ** indicates statistically significant from all other groups at the 
corresponding time point. 
 

 

 



 

315 
 

 

 

Figure 3.11. Total cell number in the mediastinal lymph nodes of all sensitized groups at all time points (A) in the 
Au Allergy model and corresponding cellular differentials (B). n = 4 per group, p < 0.05. * indicates statistically 
significant from group 5 control; ** indicates statistically significant from all other groups; ^ indicates statistically 
significant from groups 5 and 8.  
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Figure 3.12. Percent of mediastinal lymph node CD4+ T-cells (A) and CD8+ T-cells (B) expressing a CD44hi 
phenotype, indicative of activation, at all time points of the Au Allergy study for all sensitized groups. n = 4, p < 0.05. 
* indicates statistically significant from group 5 control; ** indicates statistically significant from all other groups; # 
indicates statistically significant from groups 5 and 6; @ indicates statistically significant from groups 5 and 7. Flow 
cytometry gating strategy and population shift with respect to CD44 expression by group 6 CD3+CD4+ cells at 11d 
(C) and 19 d (D). The proportion of the total cell population expressing a CD44hi phenotype was determined by 
quantification of events falling with the black box.  
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Figure 3.13. Circulating IgE levels in all groups of the Au Allergy study at all time points. Color-matched lines 
represent sensitized (solid line) and non-sensitized (dotted line) Au treatment-matched groups. n = 4 per group, p 
< 0.05, * indicates statistically significant over group 5 control, “a” indicates statistically significant from all non-
sensitized control groups. 
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Two major studies were designed to begin addressing increasingly relevant knowledge gaps 

associated with the immunotoxic potential of metal nanomaterials. The overarching goals of these studies 

were 1) to investigate specific nanomaterials containing metal constituents with known allergic effects, 2) 

identify any particle size-specific immune effects, and 3) determine the relationship between these effects 

and various physico-chemical properties.   

The first set of studies investigated the potential for pulmonary NiO exposure to cause acute lung 

inflammation and augment OVA-induced asthma with respect to mass and surface area as dose metrics. 

Although all indices of pulmonary inflammation correlated with the administered surface area of NiO in 

the time course study, exposure-induced alterations in immune parameters of the OVA study did not 

exhibit a similar degree of dose metric exclusivity. Many allergic markers were similarly modulated 

amongst groups exposed to surface area-normalized doses of particles, suggesting underlying 

mechanisms subject to NiO surface area-dependent modulation. By comparison, some immune 

parameters were conserved with respect to particle size or NiO exposure, irrespective of any dose metric. 

The second set of studies was designed to investigate the potential for AuNP to induce dermal 

sensitization and alterations in pulmonary immunity. Furthermore, the impact of established contact 

sensitivity on respiratory responses to different forms of gold was investigated. Subsequently, irrespective 

of differences in particle size, metallic AuNP and Au particles both exhibited a lack of skin sensitizing 

potential, and AuNP aspiration was not associated with any notable inflammatory effects in the lung. 

However, exposure to the highest dose of AuNP was associated with an increase in lymph node size at 

8 d. In the Au allergy model, Au/AuNP aspiration did not lead to any detectable alterations in any immune 

parameters in animals that had not been previously dermally-sensitized to gold. Comparatively, 

sensitized animals exhibited increased numbers of BAL lymphocytes with each successive aspiration. 

The degree of lymphocyte influx was correlated to dose surface area, and animals exposed to the highest 

AuNP dose also exhibited a selective increase in the number of BAL CD8+ T-cells to the airways. In 

accordance with the preferential expansion and activation of specific lymphocyte subpopulations within 

the lymph nodes, BAL/serum cytokine profiles, and serum IgE levels, higher surface area-based doses 

of AuNP were generally associated with the development of Th1-polarized immune responses with many 
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features resembling those seen in hypersensitivity pneumonitis. Contrarily, lower surface area-based 

doses of Au/AuNP were associated with polarization of immune responses towards a Th2-dominant 

state. 

Collectively, the results from the NiO and AuNP studies exhibit several notable discrepancies, as 

well as many similarities regarding the effects of metal nanomaterials on allergic disease.  

The NiO and Au studies, reported herein, were employed to investigate different aspects of 

allergic disease. The NiO studies were performed to assess augmentation of IgE-mediated allergic 

responses to the protein allergen, OVA, in the respiratory tract. Comparatively, the Au studies were 

executed to characterize the potential for AuNP to cause dermal sensitization and elicit T-cell-mediated 

metal allergy in the context of both dermal and respiratory exposures.  

Within these studies, both test materials were incorporated into a time course model to 

characterize their inflammatory potential in the lungs with respect to critical windows in the ensuing allergy 

models. Although NiO-UF was associated with much more pronounced toxic effects than AuNP following 

respiratory exposure, the degree of acute pulmonary inflammation following exposure to both materials 

exhibited similar dose-responsive relationships with respect to the surface area of the administered 

doses.  

Similarly, despite variations in the immunomodulatory mechanisms being investigated, model 

allergens, tissues of involvement, and underlying hypersensitivity types between the two studies, the NiO 

and Au studies also both demonstrated an association between the immunological effects of the particles 

and their surface area. However, the strength of this association was not as robust as the observed 

relationship between surface area and magnitude of acute pulmonary inflammation. All markers of toxicity 

measured in the NiO and AuNP time course studies exhibited dose-responsive relationships with respect 

to material surface area. While many immune parameters of the allergy models were similarly conserved 

with respect to surface area, some allergic markers appeared better correlated with other dose metrics. 

For example, in the NiO OVA study, alterations in Penh responses and lung eosinophil burden were 

conserved between groups with respect to particle size. In the Au allergy study, the number of BAL 

neutrophils correlated better with the mass of Au/AuNP administered to sensitized animals.  
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The NiO and Au particles were also both shown to induce alterations in Th1/2 balance in their 

respective allergy models. Furthermore, the directionality of this polarization was consistently correlated 

to dose surface area in both studies. In the NiO allergy study, exposure to larger surface area-based 

doses of NiO resulted in Th1-dominant polarization of OVA-specific responses. Th2 adjuvant effects were 

correlated to the lower surface area-based doses of NiO. Similarly, in the Au allergy study, sensitized 

animals that were exposed to larger surface area-based dose of AuNP exhibited comparable responses 

involving preferential expansion of many Th1-related immune markers. The lower doses of Au/AuNP 

surface area were associated with increases in IgE production and expansion of CD4+ T-cell and B-cell 

populations in the lymph nodes, characteristics of Th2-dominant responses.  

Interestingly, the directionality of immune polarization following AuNP aspiration appeared to be 

dependent on sensitization status. In the AuNP dose response study, exposure to the highest mass- and 

surface area-based dose of AuNP was associated with the preferential expansion of lymphocyte 

populations more commonly implicated in Th2-mediated immune responses. Accordingly, increased 

numbers of lymph node CD4+ T-cells and B-cells were exclusively observed in the 90 µg AuNP exposure 

group at 8 d. Although this effect demonstrates a similar surface area-based dose-responsive tendency 

as the immune responses seen in the Au allergy model, the two responses exhibit divergent 

directionalities of polarization. In the allergy model, the higher surface area-based dose of AuNP was 

associated with development of Th1-dominant effects in pre-sensitized animals, whereas the same dose 

caused expansion of Th2-associated lymphocyte populations in naïve animals of the time course study. 

Collectively, these observations imply that AuNP exposure can cause divergent immunological 

responses, the nature of which depends on the sensitization status of the host. 

Other studies that have investigated the immunomodulatory potential of AuNP in the context of 

allergic disease have actually generated similar findings regarding sensitization status-dependent 

immune responses to AuNP. In one study, intranasal administration of AuNP with OVA during 

sensitization was been shown to promote the expansion of antigen-specific CD4+ T-cells in the lymph 

nodes (1677). This observation is consistent with the findings from the AuNP dose response study, which 
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suggested the potential for AuNP to enhance IgE-mediated, Th2-dominant immune effects in naïve 

subjects.  

By comparison, AuNP have also been studied in two asthma models that incorporated their 

exposure into the challenge phase. Accordingly, respiratory exposure to both 5 and 6.3 nm AuNP were 

shown to attenuate many aspects of allergic airway inflammation following allergen challenge (891, 892). 

Exposure was associated with decreased inflammatory cell recruitment, compromised ROS production, 

and inhibition of airway hyperreactivity. In these cases, the diminishment of Th2/IgE allergic reactivity 

following AuNP exposure was associated with a pre-established state of OVA sensitivity. Although the 

type of allergic responses examined in these asthma models and the Au allergy study presented in 

Chapter 3 differ, all of the studies similarly demonstrate a selective attenuation of Th2 responses by 

AuNP in cases of established allergic sensitivity. 

The results from the NiO and Au studies, in combination with existing literature, suggest several 

specific metal nanomaterial physico-chemical properties with notable implications for allergic disease. 

However, these properties may be differentially implicated with respect to 1) metal-specific allergy or 

hypersensitivity responses to non-metal allergens, 2) T-cell-mediated or IgE-mediated allergic processes, 

3) allergic responses of the skin or respiratory tract, and 4) immunological processes specific to the 

sensitization or elicitation phase of allergic disease. 

In the context of metal allergy, all knowledge regarding physico-chemical properties of importance 

pertains to T-cell-mediated allergic responses. The potential for metal nanomaterials to cause IgE-

mediated metal-specific allergic responses remains completely uninvestigated, and likewise, physico-

chemical properties with potential to contribute to such responses remain unknown.  

Accordingly, ample evidence suggests that the development of metal-specific immunological 

memory following skin contact with metal nanomaterials is heavily dependent on the dissolution potential 

of the materials. When comprised of allergenic metal constituents, nanomaterials that exhibit high 

dissolution potential are capable of releasing higher concentrations of haptenic metal ions, increasing 

sensitizer bioavailability. In accordance with established knowledge that metal salts exhibit enhanced 

potential to cause skin sensitization over metallic and particulate metal particles, highly soluble metal 
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nanomaterials appear far more likely to induce dermal sensitization than insoluble metal nanoparticles 

(671). 

With respect to metal ACD elicitation, the dissolution potential of metal nanomaterials also 

appears to be critically influential. The importance of this property is illustrated by the observation that 

that Pd salts and PdNP induced differing degrees of contact allergy elicitation reactions in vivo and metal-

specific lymphocyte activation in vitro (545, 672). However, since it is known that the exposure threshold 

required to incite allergic elicitation reactions is orders of magnitude lower than that required to induce 

sensitization, the dissolution potential of metal nanomaterials may be less critical in the elicitation phase 

of contact allergy than the sensitization phase (91, 1666). 

Although meal-induced T-cell-mediated hypersensitivity reactions of the respiratory tract are not 

as well-understood as dermal responses occurring by the same mechanism, this type of response does 

occur (452, 1678). Moreover, metal nanomaterials have not been extensively studied in this context. 

However, the results of the Au allergy study suggest that inhalation exposure to metal nanomaterials may 

result in local recruitment of metal-reactive T-cells in individuals with established populations, like those 

present in cases of contact sensitivity. The observed association between aspirated-gold surface area 

and the magnitude of T-cell influx to the airways, Th1/2 BALF cytokine levels, and IgE production implies 

that this property may have specific implications for metal-specific T-cell-mediated respiratory allergy. 

The majority of existing knowledge regarding metal nanomaterial physico-chemical properties 

implicated in allergic effects pertains specifically to their allergy-augmenting effects. In this context, 

nanomaterial characteristics implicated in immunomodulation can differ depending on the underlying 

immunological mechanisms subject to disruption, and likewise, specific phases of allergy. This concept 

is illustrated by several studies that demonstrate potential for the same material to exhibit no effect, 

enhance, or attenuate allergic markers depending on exposure occurrence in relation to the phases of 

allergy (783, 879, 896, 897). Metal nanomaterials and physico-chemical properties that have been 

correlated to immunomodulatory potential during specific phases of asthma, ACD, and atopic dermatitis 

models are shown in figure 4.1 (534, 544, 551, 624, 723-725, 781, 783, 789, 812, 882, 883, 887, 891, 

903, 1652, 1679-1681).  
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The majority of existing studies have examined the effects of metal nanomaterial properties on 

the augmentation of IgE-mediated asthma. As demonstrated by the NiO OVA model presented previously 

in Chapter 2, metal nanomaterial exposure prior to allergic sensitization can result in modulation of 

numerous immune parameters following the subsequent induction and elicitation of IgE-mediated 

respiratory allergy. The nanomaterial characteristics most closely related to the modulatory effects seen 

in this study were particle size and surface area. These properties appeared to contribute to 

immunomodulatory effects reflective of their association with the inflammatory potential of NiO particles 

in the lung. Innate immune stimulation, inflammatory reactions, and subsequent local tissue damage can 

prime the respiratory immune system for the development of Th1/Th2-skewed immune responses. 

Accordingly, since the magnitude of these inflammatory responses has been associated with properties 

like size and surface area of NiO and other insoluble metal nanomaterials, these properties may also be 

implicated in allergy augmentation by this mechanism (1355, 1682).  

Additional studies have reported observations consistent with these findings from the NiO OVA 

study. For example, surface area dose-dependent innate immune responses induced by SiNP, FeNP, 

and TiO2NP have been associated with attenuation of subsequently-induced Th2-driven allergic airway 

inflammation (896, 897, 1651, 1653). Accordingly, higher doses of these materials have been correlated 

to Th1-dominant immune states in allergic conditions, whereas Th2 adjuvancy has been selectively 

observed following exposure to lower doses of the materials.  

Other physico-chemical properties have been shown to be influential when metal nanomaterial 

exposure occurs simultaneous to allergic sensitization. In this context, extensive evidence suggests that 

metal nanomaterials can modulate adaptive immune response generation as a result of physical 

interactions with antigen that result in altered delivery kinetics and presentation efficiency (1683). 

Accordingly, sensitization to protein allergens in the presence of metal nanomaterials, irrespective of 

whether sensitization is achieved by respiratory, systemic, or dermal exposure, has been consistently 

shown to be impacted in a size-, surface area-, crystallinity-, and surface modification-dependent manner 

(534, 624, 887, 946, 1651). Since these properties are directly related to nanomaterial surface-loading 
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capacity and binding activity, their correlation with modulation of sensitization when administered with 

antigen is  consistent with this mechanism. 

Metal nanomaterial exposure after sensitization, but prior to allergen challenge, has been 

frequently reported to involve similar mechanisms of immune modulation as those implicated in effects 

of exposure prior to sensitization. Accordingly, many of the same physico-chemical properties have been 

shown to be influential in this context. For example, inflammatory cell phenotypes recruited to the airways 

following exposure to ZrNP, AgNP, and AuNP have been shown to differ with respect to surface 

modification and dose (903). This preferential recruitment of specific immune cell populations prior to 

allergen challenge has been shown to facilitate alterations in the nature of allergen-induced airway 

inflammation, as well as response severity and duration (789, 891). 

Metal nanomaterial exposure simultaneous to allergen challenge has been shown to result in 

modulation of asthmatic elicitation responses involving two distinct underlying mechanisms.  

First, the early airway response may be subject to interference by metal nanomaterials. This 

phase of the elicitation response is primarily mediated by IgE-induced degranulation of mast cells, a 

process with potential for nanomaterial-induced disruption that is best illustrated by several in vitro studies 

(182). For example, AuNP have been shown to interact with mast cell surface receptors and IgE 

molecules, leading to alterations in binding capacity, and subsequent degranulation behavior (784). 

Similarly, AuNP have also been shown to interact with protein allergens in a manner that results in 

modulation of basophil activation (522). In accordance with these mechanisms, metal nanomaterial size 

and surface chemistry are properties with potential implications for modulation of the early phase 

asthmatic response.  

The other mechanism of metal nanomaterial-induced elicitation response augmentation involves 

the late phase asthmatic response, which is associated with the recruitment, infiltration, and activation of 

inflammatory cells in the airways (189). Metal nanomaterial size and surface area appear critically 

influential in this aspect, as nanomaterials can adsorb many biological molecules involved in inflammatory 

cell recruitment, the extent to which is dependent on these properties. For example, TiO2NP have been 

shown to bind CXCL8, neutralizing its biological activity, which includes neutrophil recruitment (1015).  
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It has been proposed that pulmonary oxidative stress is a critical mediator of the late phase 

asthmatic response (1684). Likewise, oxidative potential has also been corelated to alteration of 

elicitation reactions by metal nanomaterials. Properties including surface modification and charge have 

been shown to modulate inflammatory cell recruitment in the context of oxidative stress (789, 812, 906). 

Moreover, metal nanomaterials with properties associated with increased antioxidant potential have been 

shown to attenuate allergic inflammation when administered with allergen during challenge (1685). 

Compared to IgE-mediated respiratory allergy, less is known regarding the physico-chemical 

properties of metal nanomaterials implicated in the modulation of T-cell-mediated ACD. Metal 

nanomaterial exposure prior to dermal sensitization has been associated with alterations in skin immune 

status and resident immune cell activity. As a result, modulation of the early events of ACD development 

have been shown to be dependent on parameters including particle size and dose (723, 1680). 

Surface modification and dissolution potential of metal nanomaterials have been correlated to 

allergy-modulating potential in the elicitation phase of ACD. Antigen-specific T-cell reactivity has been 

shown to be differentially augmented with respect to variations in the chemistry of metal nanomaterial 

surface-bound functional groups, as well as the propensity for ion release from the parent material (1074, 

1118). These observations substantiate other findings that have correlated the capacity for metal 

nanomaterials to modulate T-cell intracellular glutathione levels and cell signaling pathways, leading to 

alterations in cytokine production, and subsequent effector functions following allergen challenge (1102). 

Skin sensitization leading to the development of IgE-mediated atopic dermatitis has been shown 

to be modulated by metal nanomaterials exhibiting many of the same properties implicated in their 

modulatory effects on sensitization in the context of asthma. Similar mechanisms of nanomaterial-

mediated alterations in antigen transport implicate size, surface area, and agglomeration status as 

properties of particular importance in this type and phase of skin allergy (534, 544, 550). 

 
Conclusion 

There is a growing amount of toxicological data demonstrating the potential for metal 

nanomaterial exposure to cause significant immunotoxic effects. Many of these effects have been 
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associated with modulation of various immunological processes implicated in allergic disease. 

Accordingly, metal nanomaterials represent an emerging class of potential immunotoxicants, some of 

which may cause allergic sensitization, exacerbate the severity of elicitation reactions, or accelerate the 

progression of chronic allergic conditions.  

Despite existence evidence of these detrimental immune effects, numerous studies have also 

demonstrated mechanisms by which the immunological activities of metal nanomaterials may be 

beneficial to humans. Recent progress in our understanding of the relationships between metal 

nanomaterial physico-chemical properties and their corresponding interactions with the immune system 

has already led to numerous biomedical advancements with potential to revolutionize modern healthcare. 

For example, metal nanomaterials have been intentionally employed to develop novel approaches to 

drug delivery, in vitro diagnostics, and immunotherapy (527, 946, 951, 975, 1145, 1686-1691). 

Although allergic adjuvancy was discussed herein as a largely unfavorable consequence of metal 

nanomaterial exposure, similar immunological mechanisms are responsible for the efficacy of commercial 

vaccine adjuvants, which are critical for the development of pathogen-specific immunological memory. 

Among the most commonly-used adjuvants approved for use in humans, the majority, including 

aluminum-based adjuvants, are associated with the preferential induction of Th2-dominant, humoral 

immune responses. The development of adjuvants that selectively promote Th1-dominant, cellular 

immune responses has been a historically challenging endeavor for immunologists. However, many 

metal nanomaterials, including CoNP and AlNP, have been proposed to have potential utility in this 

regard, exhibiting the capacity to overcome many of the barriers responsible for the limited success of 

previous efforts (527, 951, 1692). Likewise, metal nanomaterials have the potential to enhance the 

efficacy of many existing vaccine formulations, as well as facilitate the development of novel vaccines to 

protect against pathogens and other antigens of interest. 

Paradoxically, many nanotechnological advances have led to utilization of metal nanomaterials 

for the prevention and treatment of allergic disease. Although some metal nanomaterials have been 

shown to exhibit immunostimulatory effects responsible for the exacerbation of allergic responses, others 

have been associated with attenuation of allergic inflammation. For example, AuNP and AgNP have been 
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shown, in some cases, to mitigate allergic inflammation in the context of asthma (891, 892, 898, 1685). 

ZnONP and AgNP have both been shown to alleviate allergic inflammation in the skin, and topical creams 

containing AgNP have been shown to effectively minimize symptoms of ACD (624, 666, 1681). Similarly, 

semi-metallic nanoparticles comprised of CaCO3 and CaPO4 have been shown to effectively prevent 

nickel-induced ACD elicitation reactions. The increased surface area of these nanoparticles was 

exploited to facilitate the binding of haptenic metal ions, effectively neutralizing their immunogenic activity 

(727). Collectively, these observations have led to suggestions that metal nanomaterials may have 

notable therapeutic utility in the context of allergic disorders. 

Similarly, immunotoxicological advancements using nanomaterials have also contributed to the 

preliminary development of pharmaceutical agents capable of inhibiting allergen-specific IgE-mediated 

responses. “Nanoallergens” are comprised of multivalent antigenic epitopes that irreversibly bind IgE, 

preventing cellular degranulation, and subsequent clinical manifestations of allergy (1693). Furthermore, 

SiNP have been used to develop a vaccine to reduce allergic inflammation caused by HDM. Exposure to 

small quantities of antigen, using SiNP as a delivery vehicle, has been shown to enhance the production 

of allergen-specific IgG in vivo (986). As the major therapeutic goal of traditional immunotherapy 

approaches, the production of allergen-specific IgG results in neutralization of allergen-specific IgE, 

decreasing allergen reactivity. Accordingly, metal nanomaterials present a promising avenue for 

advances in immunotherapeutic options with potential to benefit individuals suffering from allergic 

disease. 

Overall, metal nanomaterials have been associated with diverse immune effects, some of which 

can lead to detrimental health effects, and others which may prove beneficial to humans.  In order to 

protect against the adverse immune effects caused by metal nanomaterials, as well as effectively harness 

their beneficial immunological potential, existing knowledge gaps in this field should not continue to 

remain overlooked. The capacity for metal nanomaterials to induce sensitization, elicit allergic reactions 

in cases of existing sensitivity, and cause adverse allergic responses following systemic exposure remain 

largely unknown. Additionally, a more complete understanding of the role of physico-chemical properties 

in both innate and adaptive immune responses is needed. Minimization of these knowledge gaps by 
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future efforts will help maintain the safety of the general population and workers, as well as catalyze the 

biomedical advancements emerging from the promising field of nanotechnology.
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CHAPTER 4 FIGURE 

 
 
Figure 4.1. Augmentation of respiratory and dermal allergy associated with specific metals, physico-chemical properties, underlying mechanisms, and 
exposure occurrence with respect to the sensitization and elicitation phases of allergy are shown. SA (surface area), por (surface porosity), agg 
(agglomeration), cry (crystallinity), crg (surface charge), diss (dissolution potential), mod (surface modification).  
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