Metal-Organic Framework Structures - how closely are they related to Classical Inorganic Structures

Srinivasan Natarajan* and Partha Mahata

Electronic Supplementary Information

Figure S1: The figures illustrate 12 six-membered fundamental rings around a single node of the diamond net, which correspond to 2 rings per angle

Figure S2: The figures illustrate the vertex symbol of the cds net. The figures show that around a single node of the cds net, four angles are associated with one 6 -membered fundamental ring, one angle is associated with a two 6membered fundamental rings and the other one is associated with two 8 -membered shortest circuits. The eight membered shortest circuits are componed of two 6-membered fundamental rings.

(a)

(b)

Figure S3: (a) The 10 -membered fundamental ring of the srs net in $\left[\mathrm{Zn}_{2}(\mathrm{BTC})\left(\mathrm{NO}_{3}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot 5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{BTC}=1,3,5-$ benzentricarboxylate), (b) The three-dimensional connectivity between the 3-connected $\mathrm{Zn}_{2}(\mathrm{COO})_{3}$ units (light blue sphere) and the 3-connected BTC units (purple sphere) forming the srs net. One single 10-membered ring is highlighted by the orange bonds.

Reference: O. M. Yaghi, C. E. Davis, G. Li and H. Li, J. Am. Chem. Soc. 1997, 119, 2861.

6

(b)

Figure S4: (a) The 10-membered fundamental ring (based on connectivity of the Zn^{+2} ion through oxalate linker) of the ths net in $\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}\right]_{2}\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]_{2} .3 \mathrm{H}_{2} \mathrm{O}$, (b) The connectivity of 3-connected Zn^{+2} ions forming ths topology. One single 10membered ring is highlighted by the orange bonds.

Reference: R. Vaidhyanathan, S. Natarajan, A. K. Cheetham and C. N. R. Rao, Chem. Mater. 1999, 11, 3636.

Figure S5: (a) Figure shows that Ag^{+}is connected with four btza unit in $[\mathrm{Ag}(\mathrm{btza})] \cdot \mathrm{CH}_{3} \mathrm{OH}$ (btza $=$ bis $(1,2,4-$ triazol-1-
yl)acetate), (b) Figure shows that btza is connected with four Ag^{+}ions, (c) The connectivity between the Ag^{+}ions and btza units forming the sra net.

(c)

Figure S6: (a) Figure shows that In^{+3} ions is connected with four 1,4-bdc in $\left[\operatorname{InH}(\mathrm{bdc})_{2}\right](\mathrm{bdc}=$ terephthalate) (b) Figure shows that 1,4-bdc is connected with two In^{+3} ions, (c) The connectivity between the In^{+3} ions and 1,4-bdc units forming the qtz $\left(\mathrm{SiO}_{2}\right)$ net.

(b)

Figure S7: (a) The connectivity between the planar $\mathrm{Cu}_{2}(\mathrm{COO})_{4}$ units and the 2-bromo-terephthalate linkers in $\mathrm{Cu}_{2}\{0-\mathrm{Br}-$ bdc $\left.\}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .8$ DMF $2 \mathrm{H}_{2} \mathrm{O}$ (o-Br-bdc $=2$-bromo-terephthalate), (b) The connectivity of 4-connected $\mathrm{Cu}_{2}(\mathrm{COO})_{4}$ units (light blue sphere) forming nbo topology.

Figure S8: (a) Figure shows the three-dimensional structure of $\left[\mathrm{M}_{2}\left(2,2^{\prime}-\text { bipy }\right)_{2}(1,3-\mathrm{bdc})_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Y}, \mathrm{Gd}, \mathrm{Dy} ; 1,3-\mathrm{bdc}=$ isophthalate) through the connectivity of the M_{2} unit and the isophthalate (1,3-bdc), (b) Figure shows the connectivity of the 4-connected M_{2}-units (light blue sphere) forming cds topology.

(b)

Figure S9: (a) Figure shows the connectivity between Eu^{+3} ions and the 1,3-adamanetanedicarboxylate in $\left[\mathrm{Eu}_{2}\left\{\mathrm{C}_{10} \mathrm{H}_{14}(\mathrm{COO})_{2}\right\} 3\right]$, (b) Figure shows the connectivity of the five-connected Eu forming bnn net.

(b)

Figure S10: (a) Figure shows the connectivity between Zn^{+2} ions and HCOO^{-}anions (formate) with $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]^{+}$ion at the middle forming perovskite structure in $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right] \mathrm{Zn}(\mathrm{HCOO})_{3}$, (b) The ideal perovskite structure with the general formula of ABX_{3}. Note the similarity between the two structures

(b)

Figure S11: (a) Figure shows La^{+3} ion is connected with eight other La^{+3} ions through 4,4'-bipyridine- $\mathrm{N}, \mathrm{N}^{\prime}$-dioxide bridging ligand in $\left[\mathrm{La}(4,4 \text { '-bipyridine-N, } \mathrm{N} \text { '-dioxide })_{4}\right] \cdot\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot 4 \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$, (b) Figure shows the connectivity of the 8 -connected La^{+3} ions forming bcu topology. The elementary cell edge of the bcu structure is shown by violet line.

(a)

Figure S12: (a) Figure shows the connectivity between the Cu^{+}(tetrahedral) ions and the 3-connected TPT (trigonal) ligands in $\left[\mathrm{Cu}_{3}(\mathrm{tpt})_{4}\right]\left(\mathrm{BF}_{4}\right)$. $(\mathrm{tpt})_{2 / 3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, (b) The connectivity between 4 -connected Cu^{+}ions (cyan sphere) and 3-connected TPT ligand (purple sphere) forming $\mathrm{C}_{3} \mathrm{~N}_{4}$ net. The figure a is highlighted by orange bonds based on the connectivity of the nodal positions.

(a)

(b)

(c)

Figure S13: (a) Figure shows $\mathrm{Zn}_{2}(\mathrm{COO})_{2} \mathrm{O}_{4}$ unit is connected with six $1,3,5$-benzenetricarboxylate and act as octahedral node in $[\mathrm{Zn}(1,3,5$-benzenetricarboxylate $)] \cdot \mathrm{NH}_{2}\left(\mathrm{CH}_{3}\right)_{2}$.DMF, (b) Figure shows $1,3,5$-benzenetricarboxylate unit is connected with three $\mathrm{Zn}_{2}(\mathrm{COO})_{2} \mathrm{O}_{4}$ units, (c) The connectivity between the $\mathrm{Zn}_{2}(\mathrm{COO})_{2} \mathrm{O}_{4}$ unit and the 1,3,5-benzenetricarboxylate forming $\mathbf{r t l}$ topology. The elementary cell edge of the rutile structure is shown by violet line.

(c)

Figure S14: (a) Figure shows $\mathrm{Zn}_{4} \mathrm{O}(\mathrm{COO})_{6}$ unit is connected with six TCPPDA units and acts as octahedral node in $\left[\mathrm{Zn}_{4} \mathrm{O}\left(\mathrm{D}_{2^{-}}\right.\right.$ tcppda).DMF. $\mathrm{H}_{2} \mathrm{O}$ (DMF $=\mathrm{N}, \mathrm{N}$ '-dimethylformamide, D_{2}-tcppda $=\mathrm{N}, \mathrm{N}, \mathrm{N}$, N '-tetrakis(4-carboxyphenyl)-1,4phenylenediamine with D_{2} symmetry), (b) Figure shows TCPPDA unit is connected with four $\mathrm{Zn}_{4} \mathrm{O}(\mathrm{COO})_{6}$ units and acts as tetrahedral node, (c) The connectivity between the six connected $\mathrm{Zn}_{4} \mathrm{O}(\mathrm{COO})_{6}$ units and four connected D2-TCPPDA forming cor net.

(a)

(b)

(c)

Figure S15: (a) Figure shows Cd_{4} cluster is connected with eight TCPM ligands and acts as a cubic node in $\left[\mathrm{Cd}_{4}(\mathrm{TCPM})_{2}(\mathrm{DMF})_{4}\right] \cdot 4 \mathrm{DMF} .4 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{TCPM}=\right.$ tetrakis-(4-carboxyphenyl) methane), (b) TCPM ligand is connected four Cd_{4} clusters and acts as tetrahedral node, (b) The connectivity between the 8 -connected Cd_{4} and the four connected TCPM ligands to form fluorite net.

