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Abstract: Novel applications of online pH determinations at temperatures from -35 
°
C to 

130 
°
C in technical and biological media, which are all but ideal aqueous solutions, require 

new approaches to pH monitoring. The glass electrode, introduced nearly hundred years 

ago, and chemical sensors based on field effect transistors (ISFET) show specific 

drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides 

seem to be a promising and alternative to the state-of-the-art measuring methods, and 

might overcome some problems of classical hydrogen electrodes and reference electrodes. 

Keywords: pH sensor; platinum metal oxides; RuO2, IrO2; reference electrode; hydrogen 

electrode; capacitance 

 

 
1. Introduction 

 

Although Sørensen’s concept of pH dates back to the beginning of the 20th century, the 

measurement of absolute pH values in aqueous and non-aqueous solutions still proves most 

circumstantial by means of a Harned cell. Therefore all known proton probes, such as the glass 

electrode and Ion Selective Field Effect Transistors (ISFETs) are based on calibration steps based on 

standard solutions. Endeavors for replacing the potentiometric method by coulometric proton counting 

still appear futuristic. The scope of this review article comprises:  

1. (i) The analytical meaning of the pH value, (ii) traditional and novel pH measuring techniques, 

and (iii) the variety of pH sensitive materials and (iv) preparation methods described in the 

literature. 

2. Platinum metal oxides are presented as materials which are able to replicate similar proton-

exchange processes occuring at common glass membranes. This justifies the title  
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“ion-exchanging surfaces”, because the bulk of platinum metal oxides is mainly electronically 

conducting. Less expensive than commercial glass electrodes, disposable metal oxide probes are 

useful, e.g., for applications in aqueous and biological media.  

3. Additionally, pH dependent redox processes occur at platinum metal oxides. With respect to a 

future direct pH indicator, the redox pseudocapacitance of hydrous RuO2 is considered as a 

model system, which requires the passage of protons through grain boundaries and cracks on the 

porous electrode surface for the establishment of the equilibrium potential. 

4. Finally, this article points out the role of (i) the support material, and (ii) the reference electrode. 

The pH sensitive material is usually coated on a support material to create a durable electrode.  

 
2. pH Monitoring Using Glassy Materials and Similar Proton Probes 

 

The term pH value was coined in 1909 by Søren P.L. Sørensen [1] to describe the solution pressure 

pH = –lg (cH/mol dm
–3

), pondus Hydrogenii or potentia Hydrogenii, of hydrogen ions in aqueous 

solutions. IUPAC defines the quantity pH in terms of the molality basis activity aH of hydrogen ions in 

solution: 

30
cHH

0
HH

H
cmg

lglglglgH −
ργ⋅γ⋅ +−=−=−=

c

c

m

m
ap  (1)

where γH denotes the molal activity coefficient of the hydrogen ion H
+
 at the molality mH (in mol per 

kilogram of solvent), and m
0
 ≡ 1 mol kg

–1
. The IUPAC definition holds although free hydrogen ions 

cannot exist in aqueous solution; aH denotes as well the activity of hydronium ions H3O
+
 and higher 

associates [H3O·nH2O]
+
, n = 1,2,3,4,5,6. For calculations with volume concentrations, the density of 

pure water ρ must be corrected: pHc = pH – lg ρ. As the single ion activity aH cannot be measured by 

any thermodynamically valid method, primary pH standards were established.  

Precise pH measurements [2] rely on the potentiometric method [3] rather than on optical methods.  

 

2.1. Glass Electrodes 

 

In 1909, based on observations of Cremer (1906) at glass membranes, F. Haber and  

Z. Klemensiewicz developed the pH glass electrode [4]: a glass bubble filled with strong electrolyte 

and a silver|silver chloride electrode inside (Figure 1-a). Improved pH selective glasses were found by 

Mcinnes in 1930. Present glasses contain, e.g., 63% SiO2, 28% Li2O, 5% BaO, 2% La2O3 [5]. UO2 and 

TiO2 improve the performance in alkaline solutions [6]. A. Beckman’s practical pH meter (1934) used 

a high-gain vacuum tube amplifier in order to replace the earlier used sensitive galvanoscope by a 

cheap milliamperemeter. Swiss chemist W. Ingold (1952) created the single-rod measuring chain, 

which finally combined working electrode and reference electrode in one shaft. Advanced 

potentiometric measuring chains have become commercially available since the 1970s. In 1986, Ingold 

replaced the liquid inner electrolyte by a gelled electrolyte, in order to slow down the loss of 

electrolyte through the junction between reference electrode and external solution, however, at the cost 

of lifetime.  
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Figure 1. (a) Experimental setup by Haber and Klemensiewicz. (b) Single-rod measuring 

cell with double junction: 1 = solution, 2 = inner electrolyte (KCl, 3 mol/L, pH 7),  

3 = reference electrode, 4 = external Ag|AgCl|KCl reference electrode, 5 = junction.  

(c) Ideal chain voltage versus pH. 

 

        

(a)                                     (b)                                           (c) 

 

The double junction electrode introduced an additional chamber between reference electrode and 

external solution to save the reference electrolyte from external contamination (Figure 1-b). The 

potential difference ΔφI–II across the thin glass membrane reflects the difference between the H
+
 

activities a on both sides, and can only be determined by means of two reference electrodes. The less 

than 0.5 µm thick soaking layers on both sides of the membrane enable the exchange of cations in the 

silicate framework against H3O
+
 from the surrounding solutions and vice versa. The two soaking 

layers are connected by the cationic conductivity of the thin glass membrane. The measured chain 

voltage E is made up of the membrane contribution and the diffusion potentials at the liquid junction 

between each reference electrode and the ambient solution: 
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The measured voltage E consists of (1) the H
+
 activity-dependent potential drop Δφ1 between glass 

membrane and outer solution I, (2) Δφ2 between glass and inner electrolyte II, (3) Δφ3 at the inner 

reference electrode, (4) Δφ4 at the external reference electrode, (5) the diffusion potential at both 

reference electrodes, Ed = Δφd,I + Δφd,II, which is caused by small amounts of various ions passing the 

diaphragm in both directions with different velocity, driven by concentration gradients between the 

adjacent solutions. Even at the same pH of inner electrolyte and outer test solution, the measured chain 

voltage does not equal zero, because the slightly different soaking layers on both glass sides cause an 

instable asymmetry voltage Eas = Δφas. Due to the dissociation of functional groups at the glass surface, 

the slope of the E vs. pH function may be smaller than the theoretical NERNST response,  

dE/dpH = ln 10
 
·
 
(RT/F) ≈ 0.059, at 25 

°
C.  

V

1
2
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The practical chain zero-point, U = 0 V, in commercial glass electrodes is at about pH 6.84, and 

drifts to slightly higher pH values the more the membrane glass corrodes in the inner electrolyte. The 

offset voltage at pH 7 is determined mainly by the diffusion potential in the test solution. The 

intersection point of the isotherms (pHiso|Uiso) in Figure 1-c is calculated by means of the pH 

measurements in two buffer solutions (A and B) at two different temperatures (1 and 2): 

12
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−
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Hence the terminal voltage of a pH meter is not absolutely defined; it must be calibrated against 

standardized pH buffer solutions [ 7 ]; e.g. hydrochloric acid (0.1 mol/L, pH 1.094), potassium 

hydrogen phthalate (0.05 mol kg
–1

, pH 4.005), Na2HPO4/KH2PO4 (each 0.025 mol kg
–1

, pH 6.865), 

sodium tetraborate (0.01 mol kg
–1

, pH 9.180), NaHCO3/Na2CO3 (each 0.025 mol kg
–1

, pH 10.012)  

at 25 
°
C. 

Solutions of strong acids, such as 0.001 molar HCl (pH 3.00), exhibit nearby no temperature 

dependence of pH, because the H
+
 concentration is determined by the dissociation of the acid. In 

alkaline solutions, however, the pH value is determined by the autoprotolysis of water, and decreases 

with rising temperature; e.g. 0.001 molar NaOH: pH 11.94 at 0 °C; 11.00 (25 °C); 10.26 (50 °C). 

The cross-sensitivity of the pH electrode is described by the Nikolsky-Eisenman equation, 

containing the selectivity coefficients ki for all other single charged ions present [8,9]: 

( )...ln
KNaH0 21 ++++= +++ akakaEE

F

RT
 (4)

The cross-sensitivity is measured in different solutions after adding rising amounts of NaClO4, e.g., 

0, 0.01, 0.1, and 1 mol/L, respectively. Useful solutions for this purpose are [10]:  

a) 2,2-Bis(hydroxyethyl)amino-tris(hydroxymethyl)methane, 20.924 g/L,
 
in HCl, 0.05 mol/L;  

pH 6.58 

b) Trishydroxymethylamine, 18.17 g/L, in HCl, 0.1 mol/L; pH 7.90 

c) Ethanolamine, 3.054 g/L, in HCl, 0.03 mol/L; pH 9.39 

d) Piperidine, 10,644 g/L, in HCl, 0.1 mol/L; pH 11.34 

e,f,g) Tetramethylammoniumhydroxide, 25% (54,69 g/L, 105.73 g/L or 328,14 g/L, respectively), 

in HCl, 0.1 mol/L, exhibits pH 12.61, pH 13,3, and pH 14.0 respectively. NaCl is added to 

this solution. 

 

2.2. Absolute Measurement of pH in Dilute Aqueous Solution: IUPAC Recommendation  

 

The Harned cell [11] is a primary method of measurement [12] in order to incorporate pH 

determinations into the SI system, based on a well-defined measurement equation in which all of the 

variables can be determined experimentally in terms of SI units. The Harned cell, a cell without 

transference, defined by (–) Pt|H2|solution, KCl|AgCl|Ag (+), consists of a hydrogen electrode (dry 

hydrogen at atmospheric pressure p) and a silver-silver chloride electrode, and exhibits no diffusion 

potential, which usually occurs at any two adjacent liquid phases. The measurement comprises  

three steps: 
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1. The cell (–) Pt|H2|HCl(m)|AgCl|Ag (+) is filled with hydrochloric acid (e.g. mHCl = 0.01 mol kg
–1

, 

γ+HCl = 0.904 at 25 
°
C), and the potential difference according to the spontaneous cell reaction,  

½H2 + AgCl → Ag(s) + H
+
 + Cl

–
 is measured. From this E

0
 is calculated (p

0
 = 101

 
325 Pa): 

210

2
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)kgmol1(/
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⋅
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pp
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F

RT
EE   (5) 

2. The Harned cell is then filled with a test solution, and the acidity function p(aHγCl) = –lg(aHγH) is 

measured for at least three molalities of added potassium chloride (I < 0.1 mol kg
–1

). p(aHγCl)
0
 is 

found by linear extrapolation towards infinite dilution. In practice, the cells of step 1 and step 2 are 

operated simultaneously in a thermostat bath at 25 
°
C, so that ΔE2–ΔE1 is independent of the 

standard potential difference and the assumption that the standard hydrogen potential equals 

E
0
(H

+
|H2) = 0 at all temperatures: 
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3. The pH value in Equation (6b) is calculated according to the BATES-GUGGENHEIM convention that 

the immeasurable activity coefficient of the chloride ion γCl is estimated by help of the Debye-

Hückel theory. For KCl (z+ = z– = 1), the ionic strength I, and the molar concentration c (in mol/L), 

or molality m (in mol kg
–1

), respectively, are identical: 

IB

IA

+
−=γ

1
Cllg  , and A = 0.509 (at 25 °C); B = 1.5 (at 5–50 °C); i

i
i czI ∑= 2

2
1  (7) 

For non-aqueous solvents [13], having an water-like autoprotolysis, LH + LH  [LH2]
+
 + L

–
, the 

neutral point, similar to pH 7 in pure water, is defined by n = –lg K , wherein K is the equilibrium 

constant of the autoprotolysis. Such a specific pHn scale for each solvent does not allow the direct 

comparison with aqueous solutions.  

A universal scale of acidity for all media must be based on the activity of free protons,  

pH = –lg aH [14], and can be measured relative to a standard hydrogen electrode in this medium as 

shown above. For concentrated sulfuric acid (pH = –10), and saturated KOH solution (pH 19), the 

usual range between pH 0 and 14 is reached again by dilution. 

 

2.3. Solid State pH Electrodes 

 

The fabrication of an all-solid-state glass electrode [15] is complicated by the internal reference 

electrodes, which do not work precisely in the absence of a buffer solution. Trials to coat platinum 

wires with glass were not successful. Silver layers, amalgams (of sodium, lithium or cadmium), metal 

alloys and tungsten bronzes on the inner porous glass membrane are known (see Section 7). 

Ion Selective Field Effect Transistors (ISFET) have been developed since the 1970s [16], but have 

not yet reached the precision of the pH glass electrode. ISFET pH sensors are limited to a pressure of 

about 2 bar and temperatures up to about 85 
°
C.  
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Table 1. Properties of ISFET pH-sensors with different gate materials [17]. 

Gate Sensitivity Response and stability 

SiO2 20–40 mV pH–1 non-linear response 

SiO2 (40...110 nm, thermally grown) +  

Si3N4 (~100 nm, CVD) on silicon [18]. 

Channel: 20 µm × 100 µm.  

Reference electrode: Ag|AgCl|NaCl 

 ~53 mV pH–1 Slow response; 

sensitivity decreases with time 

(formation of oxynitride) 

Al2O3 53–57 mV pH–1 linear response, very low drift 

Ta2O5 55–59 mV pH–1 linear response,  

undesired light sensitivity 

 
Figure 2. Principle of a solid state pH electrode (ISFET). The SiO2 layer at the gate is 

covered by an ionsensitive layer. The gate voltage UG is the potential difference between 

reference electrode and n-channel (dashed line between source and drain). 

 

 

Basically, the current flowing between two semiconductor electrodes (drain and source) is 

controlled by the electrostatic field generated by the protonated third electrode (gate), which is placed 

between drain and source. Usually the gate is coated by (i) a ceramic material such as Al2O3, Si3N4, 

Ta2O5, ZrO2, GaN (Table 1); (ii) an organic material, e.g. valinomycin in a resin; (iii) a polymer such 

as PTFE, polypyrrol or polyethylene naphthalate (PEN), or (iv) a catalytical metal layer, e.g. Pt. 

Instead of measuring the potential difference on two sides of a glass membrane, the current flowing 

through the transistor (MOSFET) is observed. For practical measurements in liquids, the electrical 

circuit must be closed with a reference electrode (Figure 2). On any change of pH value and thus the 

gate potential, the voltage supply to the reference electrode is re-adjusted by electronic feedback in 

order to keep the measured drain current constant to a predefined value – usually the current at the 

isothermal point in order to avoid the influence of temperature. Highly accurate amperometers are 

required (< 1 µA) to measure the drain-source current, while the gate voltage is increased.  
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Figure 3. (a) ISFET transfer characteristics at different pH at 25 
°
C. The gate is coated 

with a RuO2 thin film. (b) Hysteresis widths during the pH 7–4–7–10–7 loop cycle [19]. 

      

(a)                                                          (b) 

 

pH-sensitive films of RuO2 can be sputtered or screen-printed on silicon, alumina, pyrex, or 

polyester foil (Figure 3-a). The electrochemical sensor exhibits three basically nonideal characteristics:  

(i)  Drift effect: The slow nonrandom change of output voltage with time (by some mV h
–1

) in a 

solution with constant composition and temperature. Measurement circuit, reference electrode, 

and device body are greatly affected. 

(ii)  Hysteresis or memory effect: When the ISFET is measured many times in the same pH buffer 

solution, different output voltages at the buffer solution–insulator interface occur. This 

apparent delay of the pH response creates a loop cycle with different hysteresis widths in 

different pH buffer solutions (Figure 3-b). 

(iii)  Optical effect: The output voltage of the ISFET changes (by some ten mV) when the light is 

switched on and off. For surface potential mapping, on the dry backside of the silicon 

substrate, a light-emitting diode may be applied to generate a photocurrent, the size being a 

measure of the surface potential at that particular region. 

 

2.4. Enamel Electrode 

 

A pH-sensitive enamel zone, deposited on a sturdy steel tube, can be used for pH measurements 

under mechanical stress [20]. A flat steel diaphragm, at the end of the tube, is connected to the 

reference electrode. The probe has an individual slope around 55 mV pH
–1

; the working range is 

between pH 0 and pH 10. The sodium error, especially at elevated temperatures, limits applications to 

pH 6–8 at temperatures above 140 °C. pHiso (see Figure 1-c) lies around pH 2. 

The composition of a glass having a similar thermal expansion coefficient than steel was reported as 

(by weight): 68.61% SiO2, 18.41% Na2O, 6.44% MgO, 6.54% UO2 [2]. Mixed electronically and 

ionically conducting glasses in order to connect two pH glass layers, may contain iron oxide; such as 

36.9% SiO2, 16.1% Na2O, 43.4% Fe2O3, 2.6% Al2O3 [2]. 
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Table 2. Specific advantages and drawbacks of different pH measuring systems. 

 Range of application Challenges 

Glass electrode Temperature: < 80...130 °C 

Pressure: < 60 bar (with counter 

pressure) 

Stability: ± 1 mV week–1 

 Interaction of surfactants and film formation on the 

glass surface in reaction mixtures 

 Mechanical instability of the glass membrane 

 Individual calibration of each electrode; 

 Destruction by fluoride and highly hydroscopic 

solutions. 

 Sodium error in alkaline solutions 

 Expensive manufacture 

ISFET Temperature: < 85 °C 

Pressure: < 2 bar 

 Film formation on the surface 

 Bad long-term stability 

 Poor stability of the reference electrode 

Antimony 

electrode  

e.g. strong caustic solutions  

(no sodium error), fluoride 

containing waste water 

 High degree of asymmetry (pHiso ≈ –3) 

 Chloride causes potential shift 

 Deleterious effect of sulfides, and citrates (which 

form complexes with SbIII) 

Optical sensors Transparent liquids 

Small and flexible (fiber sensors) 

No reference element required 

Signal transmittance over large 

distances 

 Change of transparency of the solution 

 Photobleaching and wash-out of indicator phases 

 Non-linear calibration curve with immobilized 

indicators 

 

2.5. Gel Membrane Electrodes 

 

Proton-sensing compounds – such as N-octadecylmorpholine – in a polymer matrix [21] are suitable 

for pH measurements in a narrow pH range [22]. 

 

2.6. Electrochemically Active Monolayers 

 

Redox-active groups in a receptor adsorbate on a conducting substrate may indicate pH changes. 

Thioethers adsorb strongly on a gold surface through the sulfur atom; the alkyl groups may be linked 

to a ferrocene group and a carboxyl acid group, e.g. (C5H5)Fe(C5H4)–(CH2)6–S–(CH2)7COOH. On a 

change from pH 6.5 to pH 1, the redox peak of ferrocene in the cyclic voltamogram is shifted by about 

200 mV [23]. Cyclodextrins, calixarenes, and cavitands are able to bind organic guest molecules in a 

hydrophobic cavity, which can be used for biosensors. 

 

2.7. Colorimetric Sensors and Optodes 

 

Advantages and disadvantages of different pH monitoring methods are compiled in Table 2. The 

use of optical sensors for spectroscopy and light scattering measurements is restricted to nearby 
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colorless solutions without substantial changing of transparency. pH indicators require the absence of 

strongly oxidizing or reducing agents. For pH measurements in biological media, quinoline derivates 

have been reported as a fluorescence probe. 

 
3. Metal Electrodes for pH Determination 

 

A number of metal electrodes has been described in literature [24] for gas sensors that can basically 

be utilized for the detection of acid gases dissolved in liquids, too (Table 3). 

 
Table 3.  Electrode reactions and useful electrode materials for the detection of gases in 

potentiometric sensors (voltage probe) and amperometric sensors (current probe). 

 Anode reaction  

(electrochemical oxidation) 
U

Cathode reaction  

(electrochemical reduction) 

 

Ag 2Ag + HCl  2AgCl + 2H+ + 2 e– 

2Ag + H2S  Ag2S + 2H+ + 2e– 

2Ag + HCN  2AgCN + 2H+ + 2e– 

O2 + 4H+ + 4e–  2H2O  

(in acid solution) 

 

O2 + 2H2O + 4e–  4OH– 

(in alkaline solution) 

Ag

Pt 

Au

C 
Au SO2 +2H2O  H2SO4 + 2H+ + 2e– 

Pt CO + H2O  CO2 + 2H+ + 2e– 

2H2O     O2 + 4H+ + 4e– Cl2 + 2e–  2Cl– Au

 

3.1. Hydrogen Electrodes and Storage Electrodes 

 

Platinum black, purged with pure hydrogen (Section 2.2), is most corrosion resistive, but it is 

readily poisoned by CN
–
, H2S, and As2O3. Platinum absorbs oxygen if not stored under hydrogen 

permanently, and heavy metal ions, nitrate, and nitrophenols are reduced on its surface.  

Palladium, ruthenium, and osmium, if resaturated with hydrogen periodically, work as pH probes, 

without it being necessary to maintain them permanently in a current of hydrogen (such as platinum). 

It holds E = –0.0591 pH, or pH = –16.92·E (at 25 
°
C). 

The standard potential of the half-cell reveals whether a redox system is stable in aqueous solution 

or works as an oxygen electrode (E
0
’ > 0.815 V at pH 7) or a hydrogen electrode (E

0
’ < –0,414 V at 

pH 7). For example, the redox system Cr
3+

 + e
–
  Cr

2+
, due to the ínstable Cr

2+
, decomposes water 

and is therefore a hydrogen electrode, H
+
 + e

–
  ½H2, which, however, can be stabilized at pH 7.  

The quinhydrone electrode [25] consists of an equimolar mixture of benzoquinone and 1,4-dihydro-

xybenzene, which is contacted by a platinum rod. The standard redox potential  

E
0
 = – (RT/F) ln [pH2]

1/2
 ≈ +0.70 V corresponds to the low hydrogen pressure of about 2·10

–24
 bar. This 

quasi-hydrogen electrode is restricted to diluted acid solutions. At pH ≥ 8 it is decomposed by oxygen.  

OH OH  O O + 2H
+
 + 2e

–

 
(8) 
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3.2. Metal-metal Oxide Electrodes 

 

Metal surfaces which form unsoluble hydroxides in aqueous solution can be used for pH 

determinations. The redox potential of the antimony electrode [26,27] – see Table 4 – depends directly 

on the proton activity of the solution in the range between pH 3 and pH 11:  

H)(Hlnln)(Sbln
4343.033

'0

w

L030 pEaEaEE
F

RT

F

RT

K

K

F

RT

F

RT
⋅

⋅
−=++=+= ++   

(9) 

where Kw = a(H
+
)·a(OH

–
) denotes the ionic product of water. KL is the solubility product of antimony 

hydroxide according to Sb2O3 + 3H2O  2Sb(OH)3  2Sb
3+

 + 6OH
–
. The surface of antimony wires 

can be oxidized anodically or in a potassium nitrate melt. An immediate electrode response is achieved 

if Sb2O3 is added to the melt when puring the antimony electrode, too. The potential of the antimony 

electrode depends on the oxygen partial pressure and parasitic electrode reactions; mechanical 

cleaning of the electrode surface is uncritical.  

 
Table 4.  Metal-metal oxide electrodes with pH dependent potentials. Metals having a 

standard potential E
0
 < 0 V dissolve in aqueous solution. Values in parentheses denote 

unstable oxides at these conditions. *) In alkaline solutions, hydroxides are existent.  

Group Material Redox equilibrium: Ox + ze–  Red E0 / V (pH 0) E0’ / V (pH 14) 

IVa Tin SnO2 + 4H+ + 4e–  Sn + 2H2O –0.117 –0.945  

Lead HPbO2
– + H2O + 2e–  Pb + 3OH–  (–0.36) –0.537  

Va Arsenic As2O3 + 6H+ + 6e–  2As + 3H2O +0.234 –0.68   

Antimony Sb2O3 + 6H+ + 6e–  2Sb + 3H2O +0.152 –0.639  

Bismuth Bi2O3 + 3H2O + 6e–  2Bi + 6OH– +0.317 –0.46  *) 

Ib Copper Cu2O + H2O + 2e–  2Cu + 2OH– (+0.34 ) –0.36  *) 

Silver Ag2O + H2O + 2e–  2Ag + 2OH– (+0.80 ) +0.342  

Gold H2AuO3
– + H2O + 3e–  Au + 4OH– +1.50  +0.70   

IIb Zinc ZnO + H2O + 2e–  Zn + 2OH– (–0.497) (–1.260) *) 

Mercury HgO + H2O + 2e–  Hg + 2OH– +0.860 +0.098  

Vb Tantalum Ta2O5 + 10H+ + 10e–  2Ta + 5H2O –0.750 –1.578  

VIb Tungsten WO2 + 4H+ + 4e–  W + 2H2O –0.119 (–0.946)  

VIIb Rhenium Re2O3 + 6H+ + 6e–  2Re+ 3H2O +0.227 –0.600  

VIIIb Iron Fe3O4 + 8H+ + 8e–  3Fe + 4H2O (–0.085) –0.912  *) 

Nickel NiO + 2H+ + 2e–  Ni + H2O (+0.110) –0.717 *) 

Osmium OsO4 + 8H+ + 8e–  Os + 4H2O +0.838 (≈ 0.00)  

Rhodium RhOH2+ + H+ + 3e–  Rh + H2O +0.83  ≈ 0.00  

Iridium Ir2O3 + 3H2O + 6e–  2Ir + 6OH– +0.923 +0.098  

Platinum PtO2 + 4H+ + 4e–  Pt + 2H2O +1.0  +0.14   

 

The measured cell voltage of the antimony electrode against a reference electrode is disturbed by 

reducing and oxidizing agents in the solution – a problem of all metal electrodes. pHiso of the highly 

asymmetric cell (see Figure 1-c) lies at a negative pH value of -3.  
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In alkaline solutions the bismuth electrode was described [28]. Approximately linear functions of 

potential versus pH were observed with Sn, W, Fe, Ir, Os, Ag, Cu, Zn, and other metals, mainly in 

oxygen-free buffer solutions. Mostly, the slope does not equal the theoretical value of (ln 10) RT/F, 

and is limited to a narrow pH window, and depends on the anions present in the solution. These 

electrodes are not simply hydrogen electrodes; several simultaneous potential-determining processes 

give rise to a mixed potential which may come close to the reversible hydrogen potential. 

 
4. Platinum Metal Oxide Probes in Aqueous Solutions 

 

Metal oxides are useful materials for chemical sensors that utilize changes of electric charge at 

electrode-electrolyte interfaces. Both electronically and ionically conducting metal oxides have been 

described for resistive gas sensors [29], which, however, require a separate heating layer to accelerate 

chemical reactions at the interface between gas space and porous oxide. 

• Hydrogen-sensitive: Co3O4, ZnO, SnO2, MoO3, WO3, MnO2 

• Oxygen-sensitive: TiO2, SrTiO3, BaTiO3, ZrO2, Fe2O3, CoO, ZnO, SnO2, La2O3  

Metal oxides [30] behave as mixed electronic and ionic conductors due to their oxygen defect 

stoichiometry. The mechanism of pH response of metal oxides might be explained by surface 

phenomena at ion exchanging surface sites, and does not necessarily involve pH dependent redox 

transitions. With respect to a future coulometric “proton titrator”, the following section investigates the 

redox chemistry of hydrous ruthenium dioxide around its rest potential (~0.8 V vs. SHE) in aqueous 

solution.  

 

4.1. Ruthenium Dioxide: Model System of a Novel Proton Probe 

 

Since the late 1970s mixed platinum metal oxides [31], coated on titanium supports, have been 

developed for dimensionally stable electrodes (DSA) for chloralkali electrolysis [32]. The RuO2 

electrode works as a quasi-hydrogen reference electrode (cf. Section 3), and is sensitive for dissolved 

oxygen. First, in the 1980s, oxygen intercalation [33] was assumed, with a proton activity in the liquid 

phase, and an oxygen activity in the solid phase: RuO2 + 2z (H
+ 

+ e
–
)  RuO2–z + zH2O. However, 

platinum oxide surfaces were found to be able to exchange protons with aqueous solutions [34]. The 

mechanism in Equation 10 was found, among others, by investigating the point of zero charge and the 

exchange of tritium ions on the inner surface of the porous material [35,36]:  

RuOx(OH)y + ze
−
 + zH

+
  RuOx−z(OH)y+z (10) 

Simplified: Ru
IV

O2 + e
−
 + H

+
  Ru

III
O(OH) (11)

The pseudocapacitance C(U)
 
=

 
dQ/dU of the RuO2 electrode [37] arises from kinetically inhibited 

redox processes at the metal oxide-liquid interface, and depends strongly on frequency, temperature, 

and the applied voltage U.  

 

 



Sensors 2009, 9 

 

4966

Figure 3. (a) Dissociative adsorption of water at platinum metal oxides and proton conduc- 

tivity [38]: [Ru]OH2  [Ru]OH
−
 + H

+
  [Ru]O

2−
 + 2H

+
. (b) Cyclic voltammogram of a 

RuO2 electrode in sulfuric acid (3 mol/L) at different scan rates. Standard potentials: 

Ru
3+

/Ru
2+

 (0.24 V), Ru
IV

/Ru
3+

 (0.86 V), Ru
IV

/RuO4 (1.4 V). (c) Increase of ac impedance 

of a cell of two RuO2/Ni electrodes in potassium hydroxide solution with rising oxide 

coating: 1 = electrolyte resistance, 2 = grain boundary resistance, 3 = diffusion impedance. 
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The Helmholtz double-layer capacitance is always superimposed by faradaic delivered charges Q 

from the battery-like redox steps involved in the potential-determining charge-transfer reaction across 

the interface.
 
Water molecules saturate the free valences in the disturbed rutile lattice. By dissociative 

adsorption of water – as shown in Figure 3-a – the RuO2 surface is covered by hydroxide groups, 

which try to form oxide sites by the release of protons. The process might be driven by the goal to 

compensate the oxygen defect stoichiometry of the oxide. 
 

The cyclic voltammogram in Figure 3b shows the overlapping, highly reversible, redox processes of 

Ru(IV), a small amount of Ru(III) and other species. The thermodynamically calculated standard 

potential of the redox reaction 2RuO2 +2H
+
 +2e

−
  Ru2O3 + H2O at E

0
 = 0.937 V [39] corresponds to 

a current peak in the cyclic voltammogram, which arises during the precipitation reaction according to: 

2RuCl3 + 6KOH
 
+ ½O2

 → 2(RuO2·1.5H2O)
 
+

 
6KCl [40].  

Tetravalent ruthenium, e.g. in K2Ru(OH)Cl5, can be reduced to Ru(III) with hydrogen; and 

“Ru(OH)3” can be oxidized in the air to RuO2·2H2O. The peak currents, I = C v, in the oxidation wave 

at about 0.7–0.9 V in Figure 3-b increase if oxygen is blown on the RuO2 electrode. Solutions of 

RuCl3·3H2O, which are reduced electrochemically to pink [Ru(H2O)6]
2+

 ions, are immedeately 

oxidized back to the yellow [Ru(H2O)6]
3+

 by oxygen, or less fast by the decomposition of water. Ru(II), 

with hydrogen bound side-on, is known as a proton source,  

[Ru(H2O)5(H2)]
2+→[Ru(H2O)5H]

+
 +H

+
.  
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A RuO2 film that is electrochemically oxidized on a quartz crystal microbalance loses a mass of 

56.3 u per electronic charge, which corresponds roughly to [H(H2O)3]
+
 (mass 55) [41], cf. Equation 11. 

To explain the ionic conductivity of RuO2, a bulk diffusion process including H3O
+
 species was 

suggested [42]; later the low activation energy of 4–5 kJ mol
−1

 was attributed to a Grotthus-type 

proton hopping mechanism. The protons (or hydroxide sites), formed by dissociative adsorption of 

water, can penetrate into the porous electrode material. The impedance spectrum in Figure 3-c shows a 

diffusion branch at low frequencies which depends clearly on the thickness of the active layer.  

The voltammetric charge Q increases with rising RuO2 mass until the film gets too thick; solid-

phase redox reactions in the bulk material contribute by less than 10% to the overall capacitance. In 

particles larger than 30 nm, therefore, most of the charge capability will remain unused in the  

particle core. 

 

pH sensitivity. According to the Nernst equation, the redox potential at the RuO2 electrode 

(Equation 11) depends on the pH. At 25 
°
C, and nearby equal activities of Ru(III) and Ru(IV), which 

approach a = 1 in the solid state, the electrode reduction potential therefore drops in alkaline solution: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛⋅

⋅
+−=−= +

)Ru(

)Ru(10ln

)H()Ru(

)Ru(

VI

III
0

VI

III
0 log pH ln

c

c

F

RT

cc

c

F

RT
EEE  (12) 

At 25 °C approximately: H0,0590 pEE ⋅−=  (13)

In practice, the theoretical slope of –59 mV/pH is not reached. Obviously, the surface groups can 

additionally take up or release protons without electron transfer (see Figure 3-a). If RuO2 electrodes 

are soaked in diluted HCl (< pH 2), the Nernst slope can be improved. Actually, Ru(IV) in aqueous 

solution was shown to be cluster ions of the type Hn[Ru4O6(H2O)12]
(4+n)+

 [43].  

Performance and challenges of RuO2|Ni electrodes are shown in Figure 4. A 30 µm thick hydrous 

RuO2 layer (1.7 mg cm
–2

, bound in alkyd resin) on a nickel support, versus a glassy carbon 

counter/reference electrode, works as well as a glass electrode during potentiometric acid-base 

titrations. The voltage jump between pH 1.6 and 12.2 equals 532 mV, in contrast to: plain nickel sheet 

(176 mV), alkyd resin on nickel (346 mV), a cell of two identical RuO2/Ni electrodes (~100 mV, no S-

shape in Figure 4-a) and two glassy carbon electrodes (~200 mV, no S-shape). During aging of the 

sensor, the potential difference between pH 0 and 14 drops slowly, but the endpoint is displayed 

correctly. The stability during long-term measurements up to 200 h at different pH values is good 

(about ± 20 mV).  

 

Consideration of adsorbed gases. The stationary application as a pH probe in tap water (Figure 4-b) 

is complicated by dissolved oxygen and metal ions, and opposed potential determining processes at the 

working electrode and the counter/reference electrode. In diluted acids and bases, and, as well, in 

commercial pH buffer solutions, the RuO2/Ni and PtO2/Ni electrodes (vs. glassy carbon and RHE) do 

not clearly indicate the linear trend of increasing pH values. Cell voltage increases from pH 0 to 7, but 

decreases from pH 8 to 14. The nickel support can be neglected if the metal oxide layer is thick enough 

(> 100 µm); the cyclic voltamogram shows the metal oxide surface only. As the pH response is rather 

complicated by more or less unknown Ru cluster ions, a simplifying formal approach based on 

absorbed gases is tried. 
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Figure 4. (a) Quasi-stationary potentiometric titration curve of 0.025 molar hydrochloric 

acid with 0.1 molar sodium hydroxide solution at different metal oxide electrodes (hydrous 

RuO2 by alkaline precipitation, bound in alkyd resin; thermal decomposition of H2IrCl6, 

and H2PtCl6 on a nickel support). Counter electrode: glassy carbon. For the purpose of 

comparison, the curves are shifted into the voltage range of a commercial glass electrode. 

(b) Stationary long-time test of a RuO2|Ni electrode in tap water with different reference 

electrodes. Counter electrode: glassy carbon; average temperature 23 
°
C. Each data point 

was measured for 24 hours after adding small amounts of acid or base. For comparison, 

Nernst slopes: 1 = –(0.059/2); 2 = +0.059; 3 = –(0.059/4); 4 = +(0.059/2). 
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The RuO2 negative electrode behaves like a quasi-reversible hydrogen electrode, and the RuO2 

positive electrode behaves like a quasi-reversible oxygen electrode in aqueous solution. Actually, at 

the potential of zero charge φz the adsorbed water molecules change their orientation at the electrode 

surface: from the adsorption with the H atoms (φ < φz) to the adsorption with the O-atoms (φ > φz). 

1. In acid solution, as well as it is known for the hydrogen oxidation at a hydrogen electrode, the 

electrode potential increases with rising pH. Protons are released by the dissociative adsorption of 

water and superacid OH groups. Simplified, by the help of rutile lattice sites [Ru], the potential 

determining surface process at the more negatively charged RuO2 electrode reads: 

[Ru
III

]2O + H2O  2[Ru
III

]OH or [RuO]2(H2)  2[Ru
IV

]O + 2H
+
 + 2e

−
 (14) 

Formally: [Ru]H2  [Ru] + 2H
+
 + 2e

−
 (15)

2. In alkaline solution, as well as it is know for the oxygen reduction at an oxygen electrode, the 

electrode potential decreases with rising pH. By the dissociative adsorption of water, hydroxide sites 

are formed and bound in ruthenium cluster ions. 

4[Ru
IV

]O or 2[Ru]2(O2) + 2H2O + 4e
−
  2[Ru

III
]2O + 4OH

−
 (16) 

Formally: [Ru]O2 + 4e
−
 + 2H2O  [Ru] + 4OH

−
 (17)

With respect to Equations (15) and (17), RuO2 can be considered as a fuel cell sensor, especially as 

adsorbed hydrogen and oxygen recombine to water. However, the recombination is kinetically 
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inhibited. The relative predominance of dissolved oxygen and hydrogen in water, within the 

electrochemical stability window of water, can be estimated by the formal reaction (18) at 25 °C [44]: 

H2 + 2H2O  O2 + 6H+ + 6e– (18) 

)H(

)O(

2

2log0098.0pH0591.0819.0
p

p
E +⋅−=  (19)

At potentials below E, dissolved hydrogen is thermodynamically stable in aqueous solutions; at 

potentials above E oxygen is predominant. In Figure 4-b, line 1 (pH > 7) corresponds therefore to 

absorbed oxygen, and line 2 (pH < 7) to absorbed hydrogen, which determine the cell voltage of the 

metal oxide-glassy carbon cell. 

Recently, a mechanistic study and 
18

O labeling experiment on the photochemical oxidation of water 

at binuclear ruthenium complexes [45] illustrated the four oxidative electron-transfer process that takes 

the catalyst from its initial II,II oxidation state up to the formal IV,IV oxidation state. Once the Ru(IV) 

oxidation state is reached, two additional slower kinetic processes take place, corresponding to the 

formation of an intermediate that finally evolves oxygen. This result clarifies the intramolecular 

reaction pathway for the formation of the oxygen−oxygen bond in the case of adjacent  

ruthenium(IV) atoms.  

Ru

O

Ru

O

IV IV

Ru

O

Ru

O

IV IV H
2
O

- O
2

Ru

OH
2

Ru

OH
2

II II

- 2 H
2

 

 

Cross sensitivity. The proton exchange mechanism at a glass surface can basically be reproduced by 

platinum metal oxide-hydrates. However, the RuO2-solution interface appears to be not a selective 

proton conductor, because its conductivity depends considerably on the ionic composition of the 

solution. In distilled water and phthalate buffer (pH 7), quite different electrode potentials are 

measured at the metal oxide electrode due to the difference of ionic strength. Further problems are 

caused by the formation of ruthenium cluster ions, the sensitivity against other ions than H
+
, and the 

type of the reference electrode.  

The Nernst slope, which generally deviates from 59 mV pH
–1

 (25 °C), is nearly independent of 

dissolved anions in the solution (such as 0.1 mol/L of SO4
2–

, Br
–
, Cl

–
, and NO3

–
). However, 

commercial RuO2 resistive pastes, which contain PbO, exhibit a slope which depends on different 

anions significantly [46].  

Reducing agents (e.g. ascorbic acid, Fe
2+

, sulfite) and oxidants (H2O2, I
–
) damage the reversibility at 

both anodic and cathodic potentials, which reveals the role of adsorbed hydrogen and oxygen for the 

measured mixed potentials. Traces of platinum (being a recombination catalyst) significantly alter the 

cyclic voltammogram of a RuO2 electrode, especially in the hydrogen region. 

 

Preparation. Since the 1980s, etched titanium sheets have been repeatedly dip-coated in an 

alcoholic solution of RuCl3·3H2O, followed by drying and pyrolysis at 300–350 °C [47]. Higher 
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decomposition temperatures destroy the active surface area of the electrode, and yield less marked 

jumps of cell voltage in the acid-base titration curve at pH 7.  

In the 1990s, it got evident that the specific capacitance at the electrode-electrolyte interface can be 

enhanced by a residual amount of water in the RuO2·xH2O material [48], which corresponds to the 

presence of Ru(III) in the disturbed rutile lattice. High surface area ruthenium oxide-hydrate; 

RuO2·xH2O [49], prepared by alkaline precipitation [50] from RuCl3 solutions at about pH 7.5 (sol-gel 

process [51]), washed several times with water, dried at 90 °C, and finely dispersed in a mixture of 

polyalcohols, can be screen-printed on carbon fiber paper or nickel supports [52 ]. Commercial 

RuO2·xH2O has a water content between x = 1 and 3. Heat treating at 200 °C reduces the water content 

to x = 0.4, or 5% by weight. 

The IR absorption of solid RuO2 powders, due to the stretch vibration of H-bridged OH-groups 

above 3000 cm
−1

, is strongest for sol-gel RuO2, whereas the thermally prepared powders contain less 

adsorbed or chemically bound water. In contrast to the “thermal” powders, the colloidal sol-gel RuO2 

forms a considerable amount of coloured ions in aqueous solution, which appear to be important for 

redox capacitance. The SIMS spectra of sol-gel RuO2 reveal mass peaks at 133 u and 149 u, which 

might be attributed to the predominant Ru(III) and Ru(IV) species minus a proton, and cannot be 

found in single crystalline RuO2 in this significant amount [53]. RuO2 electrodes under current age by 

partial oxidation of the surface sites, i.e. by a loss of Ru(III) surface sites, which are essential for the 

dissociative adsorption of water involving proton conductivity. 

 

Non-aqueous solutions. The interfacial capacitance of platinum metal oxides in organic solutions is 

considerably lower than in aqueous solution. RuO2 typically contains a certain amount of residual 

water, which allows the development of an equilibrium potential based on the dissociative adsorption 

of water in non-aqueous solutions, too. Comprehensive information on this topic is not available in the 

literature. 

 

4.2. Applications of Ruthenium Dioxide Sensors 

 

Usual thick film sensors are prepared by three inks or pastes which are screen-printed onto alumina: 

Ag-Pd paste as conductor, metal oxide paste as active surface and an overglace paste as protector. In 

recent years, finely dispersed platinum metal oxides were coated on carbon particles or bound in 

polymers [54,55,56]. Polymer bound metal oxide electrodes can be fabricated by coating metal plates 

with a thin layer of a mixture of metal oxide powder in commercial varnish based resins. The best pH 

sensitivity is achieved by a mixture of 10% sol-gel RuO2·xH2O (water content ~7.2%) in a matrix of 

epoxy or polyester [57]. Reactive sputtering of platinum metal targets in argon-oxygen atmospheres is 

used to produce 1 μm thick oxide electrodes on alumina and silicon substrates; palladium and platinum 

oxides were found to be less stable than ruthenium oxide [58]. An overview of applications [59] is 

given in Table 5. Both potentiometric and amperometric sensors [60] have been used.  
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Table 5. Examples for pH sensors and measuring techniques based on RuO2.  

Construction of the sensor:  

WE = working electrode, RE = reference, CE = counter 

Applications and properties Ref.

Film layers 

 Screen-printed layers of graphite-based 

conducting inks containing 10% RuO2 

Lemonades, wine and milk. 

Sensitivity: –51 mV pH–1 

Response time: < 5 min 

[61] 

 Planar thick-film of RuO2·xH2O in a polymer 

matrix on a current collector on a alumina substrate 

651 mV vs. Ag|AgCl (pH 0) 

–52 mV pH–1 (pH 2–10) 

[62]

 Thick-film fabricated chemical sensor: RuO2 in a 

polymer binder on gold back contact. 

 

 

Application in water-based inks: 

Sensitivity:    –47 mV pH–1 (pH 4–10) 

pH sensitivity drift: 50 µV pH–1 d–1 

Previous calibration is needed. 

Drift of thick-film Ag|AgCl reference electrode: 

dU/dpH = [−0.070 ln (t/d) + 0.125] mV 

[63]

ISFET 

RuO2 sensing membrane on a p-type silicon 

wafer substrate by radio frequency sputtering (Ru 

metal, 1.3 Pa, in Ar/O2; 10 W, 13.56 MHz).  

Drain-source voltage 0.2 V; gate voltage  

UG = 0–6 V; while the drain-source current IDS is 

measured. 

Applications: lemonades, vinegar, milk, water. 

Sensitivity:   ~57± 1 mV pH–1 (IDS = 200 µA) 

Response time: < 1 s 

Drift rate:    0.13 mV pH–1 (pH 4) 

      0.38 mV pH–1 (pH 7) 

      7.31 mV pH–1 (pH 10), 

Hysteresis width: 4.4 mV (pH 7–4–7–10–7)  

      2.2 mV (pH 7–10–7–4–7) 

Loop time:  ~13 min 

Interfering ions: K+, Na+  

          (k ≈ 4·10–6, Equation 4)  

The IDS(UG) curve is shifted positively as the pH 

value increases (see Figure 3). 

[64]

Coulometric micro-tritrator: 

 Actuator for the coulometric production:  

two gold electrodes (on copper support) 

 End-point detection: 

Ru/RuO2 (WE), Ag|AgCl (RE), Au (CE) 

Acid-base titration, e.g. 0.01 molar acetic acid:  

ΔE = ~ 200 mV at 6.8 µA applied current  

[65]

Amperometric Biosensor:  

 5% Ru/carbon/enzyme (WE) on a silver-

conductive layer (CE) on a polyester support  

Pesticides monitoring by help of acetylcholine 

esterase and choline oxidase at 700 mV vs. SCE: 

Acetylcholine + H2O → Acetate + Choline 

Choline + O2 → Betaine aldehyde + H2O2 

The measured current is proportional to choline 

concentration in phosphate buffer (pH 7). 

[66]

Potentiometric biosensor:  

 RuO2/urease (WE) and RuO2/bovine serum 

albumin (CE) on silver current collector 

Flow injection system: Dialysate fluid and buffer 

are continously droped on the sensor by help of a 

peristalic pump. 

[67]

 59.5% RuO2, 40% graphite paste, 0.5% urease, 

screen-printed on a current collector. 

Detection of silver and copper ions, which inhibit 

urease, by a change of potential: ~50 mV mmol–1  

[68]

 

RuO2 Polymer 

Connector Alumina 
substrate 

Insulator 
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Biosensors [69,70,71]. Among a large variety of potentiometric sensors using biocatalytic and 

bioaffinity-based mechanisms, the detection of urea and creatinine is most advanced. Sensors based on 

RuO2 and urease are in development for the determination of heavy metals, which inhibit the 

enzymatic hydrolysis of urea: NH2CONH2 + 3H2O → 2NH4
+
 + HCO3

–
 + OH

–
 (Figure 5). 

 
Figure 5. (a) Principle of the urea biosensor based on pH-measurements. By enzymatic 

hydrolysis, alkaline products are formed. (b) The creatinine sensor is based on the 

detection of consumed oxygen or produced hydrogen peroxide during the enzymatic 

conversion of the analyte. 
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The pH sensitive RuO2 layer serves as a transducer for the ionic reaction products. On the RuO2 

electrode, screen-printed on ceramic substrate, urease in polyvinylchloride is adsorbed and then 

immobilized in a polymer such as Nafion. The biosensor can be cleaned from heavy metals by a 

solution of EDTA; a constant urea concentration is applied in a TRIS buffer, and the change of 

electrode potential (vs. Ag|AgCl) is observed after a given time due to the decreasing rate of substance 

conversion in the presence of heavy metal ions [72].  

1. Label-based immunosensors contain antibodies as analyte recognition parts. Horseradish 

peroxidase and alkaline phosphatase, e.g., catalyze reactions which produce electroactive products in 

immunoenzymatic biodevices. For example, at a polypyrrole coated screen-printed gold electrode, 

peroxidase may work as biocatalytic label converting o-phenylene-diamine into 2,3-diaminophenazine 

(in the presence of H2O2). Label-based analytical sensors with enzymatic, fluorescent, radiochemical, 

and nanoparticle markers rely on amperometric and optical detection rather than on potentiometry.  

2. Label-free bioaffinity sensors were realized by the aid of protein coated ISFETs, which 

dynamically measure the release or uptake of protons by biologically active protein molecules bound 

on the semiconductor. Antibodies can be adsorbed on colloidal nanoparticles (Au, Ag) in a polymer 

matrix (e.g. gelatin, nafion, polyvinyl butaral, thiosilane gel, poly(o-phenylenediamine)) on a metal 

support. Potentiometric genosensors – as field effect devices or membrane ion-selective electrodes, 

modified with oligonucleotides – shall detect complementary DNA sequences.  

Although the biorecognition is mostly specific, the generation of the potentiometric signal remains 

unclear, and are strongly affected the composition of the analysed samples. Biosensors based on 

voltammetry, piezoelectricity, or optical spectroscopy seem more promising for practical applications. 
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4.3. Iridium Dioxide 

 

IrO2 [73] promises to be a superior material for pH measurements in technical media, such as  

fuels [74], food applications [75], and in biological media [76]. Irdium oxide provides: (i) a wide linear 

pH response range, with negligible interference of ions and complexing agents, (ii) a fast and stable 

response in aqueous, nonaqueous, non-conductive, and even corrosive media, (iii) high conductivity, 

low temperature coefficient, and no requirement for pretreatment.  

 

Redox chemistry. In air-saturated solutions, iridium is covered by adsorbed oxygen atoms, which 

take part in redox reactions involving hydrogen ions. Anodic oxidation or heating in an oxygen 

atmosphere creates a surface layer of IrO2 with improved redox properties. The anodic and cathodic 

peaks in the cyclic voltammogram of an IrO2 electrode are attributed to the Ir
IV

/Ir
III

 redox transition, 

which is accompanied by the release and uptake of protons. During potential cycling of an iridium 

wire, the Ir
IV

/Ir
III

 transition becomes less reversible at high scan rates, resulting in the growing IrO2 

layer; the net cathodic current is smaller than the net anodic current: 

IrOx(OH)y + ze
−
 + zH

+
  IrOx−z(OH)y+z (x ≈ 2, y << 1, z ≈ 1 ) (20) 

Simplified: Ir
IV

O2 + e
− 

+ H
+
  Ir

III
O(OH) (21)

Electrodes prepared by thermal decomposition of iridium chloride or H2IrCl6 on a titanium support, 

as well as sputtered IrO2 on stainless steel and tantalum, respond to pH with a Nernstian sensitivity of 

nearby 59 mV/pH; whereas anodically prepared films exhibit a super-Nernstian response between 62 

and 77 mV/pH [77]. The dU/dpH slope drops with time, because the oxide hydration changes. The 

apparent electrode potential, obtained by extrapolating to pH 0, is close to the calculated value 

reported by POURBAIX for the reaction 2IrO2 +2H
+
 +2e

– 
 Ir2O3 + H2O, namely E

0
 = 926 mV vs. NHE 

(682 mV vs. SCE). However, during aging over a 60 days period, the electrode potential decreases by 

roughly 150 mV from the initial value for a freshly prepared electrode. 

 

Preparation. IrO2 electrodes have been prepared by (i) thermal decomposition of iridium salts, (ii) 

sol–gel processes, (iii) electrochemical or thermal oxidation of iridium wires, e.g. continuous potential 

cycling in aerated H2SO4 solution for several hours; (iv) reactive r.f. sputtering from a metallic iridium 

target in an oxygen plasma, (v) pulsed-laser ablation of iridium oxide targets; (vi) anodic, cathodic or 

electrophoretic deposition. In a polymer matrix, e.g. in Nafion [78] or PTFE-bound graphite [79], IrO2 

can be employed as a planar thick-film pH sensor using an interdigital structure [80] of the current 

collectors, e.g. of silver [81]. 

Potentiometric solid-state sensors are claimed to be rugged, and reference solutions are not  

needed [82], if the pH-sensitive working electrode is an iridium wire that has been partially oxidized to 

IrO2 (about 15 μm thick). The counter-reference electrode may be nearby pH-insensitive rhodium foil 

that is covered by a 5 µm thick rhodium oxide layer. The potential difference declines approximately 

linear in the range between pH 2 to pH 12. The slope of about –30 mV/pH is coined by the Rh/RhO2 

electrode (–26 mV/pH), whereas the Ir/IrO2 electrode shows Nernstian behaviour (–58 mV/pH). 
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Cross sensitivity [83,84]. Metal cations (Fe
3+

, Fe
2+

, Pb
2+

, Cu
2+

, Ag
+
) cause a small shift of some 

millivolts in the potential-pH response of the IrO2 electrode; Ni
2+

, and dissolved oxygen cause a shift 

of some ten millivolts. The addition of sulfate, sulfite, borate, phosphate, and ammonia to the 

electrolyte causes no detrimental effects; whereas oxalate, iodide, bromide, disulfite, thiosulfate, 

[Fe(CN)6]
3–

 and [Fe(CN)6]
4–

 alter the characteristics of the electrode more or less slightly and 

irreversibly.  

 

Stability and recycling [85]. IrO2 films can be removed from electrode supports by (i) aqua regia, 

(ii) anodic dissolution in 2 M H2SO4; or (iii) applying successive potentials of –3.0 V and +2.5 V  

(vs. Ag|AgCl) in 0.3 M Na2HPO4 solution.  

 
5. Tin Dioxide and Lead Dioxide 

 

The electronical conductor SnO2 [86,87] can be deposited on indium tin oxide glass (ITO) by 

sputtering [88]; it shows a much narrower dynamic range than the pH glass electrode; the Nernst slope 

equals about –58 mV/pH (pH 2 – 12). Commercial doped SnO2 (49 mV/pH) works mainly as a redox 

electrode. The sensing area, i. e. the length of the pH-sensitive tip of the glass micro electrode, should 

not be less than about 4 mm
2
 in order to avoid a critical reduction of the pH response (<< 59 mV pH

–1
). 

Sputtering of suitable IrO2 films succeeds best at 20% O2 gas, and a pressure of 2.7 Pa (0,02 Torr). 

PbO2 was recognized a pH probe already in the 1970s; it can be deposited on titanium and 

aluminium supports [89]. The electrode potential vs. saturated calomel (SCE) decreases linearly 

according to the reaction PbO2 + H
+
 + e

–
 → PbO(OH). Anions alter the electrode potential slightly 

(<5% at pH 7 in 1-millimolar solution of nitrate, hydrogencarbonate, phosphate, citrate), whereas 

cations (1 mmol/L of Li
+
, Na

+
, Mg

2+
, Ca

2+
, NH4

+
) have no adverse effect. The interference of NH4

+
 is 

marked in alkaline solutions. 

 
. Transition Metal Oxides 
 

TiO2 and mixed TiO2/RuO2 [90,91], Ta2O5, WO3, MnO2 [92], RhO2, OsO2, PdO [93], molybdenum 

bronzes and other oxides and have been described as materials for pH sensors in literature. Most 

oxides are useful between pH 2 to pH 11, and show a pronounced hysteresis, i. e. the electrode 

potential suffers a shift if the solution changes from pH 2 to pH 12, and back to pH 2 again. RuO2 and 

OsO2 show good accuracy (± 2 mV). Ta2O5 behaves poor in a carbon-bound electrode (± 30 mV). 

pH-sensors based on ZrO2 and Y2O3/ZrO2 (YSZ) for pH measurements under high pressure are 

mentioned in the literature [94,95,96].  

 
. Non-Oxidic Materials and Support Materials 
 

Aluminiumnitride (AlN) [97] and Galliumnitride (GaN) have been described for a H
+
 ion-sensitive 

field-effect transistor (ISFET). 

Conducting polymers such as polypyrrole, polyaniline, and the proton conductor Nafion were 

described for solid-state pH sensors. 
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Activated carbon and soot contain some percent of oxygen, typically bound in acidic or basic 

surface groups, which allow ion exchange with the surrounding solution. The quasi-stationary 

potential of a polymer-bound activated carbon electrode on an aluminium support, supplied by GORE 

for use in supercapacitors, is shown in Figure 6. Between pH 6 and pH 9, the electrode could be used 

as a quasi-reference electrode in aqueous solution. 

Indium oxide in a matrix of epoxy resin on etched aluminium foil [98] extends the range of nearby 

constant potential range from pH 5 to pH 11. The material might be interesting for a novel reference 

system (see Section 7). 

 
. Reference Electrodes 

 
The experimental conditions of the standard hydrogen electrode (SHE) [99] are all but trivial to 

fulfil. The most stable calomel electrode (Hg|Hg2Cl2|Cl
–
) is no longer used due to environmental 

concerns and the toxicity of mercury. Therefore, usually the Ag|AgCl|KCl (3.5 mol/L) reference 

electrode is used for chemical sensors [ 100 , 101 ]. The liquid filling, however, complicates 

miniaturisation and applications at higher pressures and temperatures.  

Silver-silver chloride electrode. The Ag|AgCl|Cl
–
 electrode works basically without any AgCl on its 

surface; AgCl can be dispersed in the solution, but the response to the chloride ions is slow according 

to the equilibrium: Ag
+

(s) + Cl
–

(s)  AgCl(s).  

 

Figure 6. (a) Quasi-stationary pH response of plain electrodes after 10 mins at 21 °C. Size: 

10x10 mm. (b) Impedance spectra of an In2O3/WO3 electrode (polymer-bound mixture on 

active carbon support) in buffer solutions at 20 °C. Reference electrode: Ag|AgCl|KCl, 

counter electrode: platinum [100]. 
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Figure 7.  (a) Principle of an all-solid-state reference electrode after Meinsberg Kurt-

Schwabe Research Institute. (b) Thick film silver-silver chloride reference electrode [102]. 

                           

(a)              (b) 

 

• At a porous AgCl coating in direct contact to the solution, redox reactions (e.g. O2/OH
–
) cause a 

mixed potential which deviates from the ideal response (+ 202 mV vs. SHE in sat. KCl solution, 

20–25 °C). AgCl is a silver ion conductor. Voltage stability can be improved by small grains, 

and a thermal treatment of the AgCl coating below 455 °C [103]. As the chloride electrolyte is 

necessary, the Ag|AgCl|Cl
–
 electrode requires a liquid junction across a diaphragm. All-solid 

electrodes for sensors are shown in Figure 7. 

• Gel-like electrolytes are useful at temperatures up to 140 °C and pressures up to 15 bar, however, 

at cost of increased diffusion potentials, irreversible bleeding, biofouling and aging of the gel. 

Ag|AgCl on a flat support material can be coated by a hydrogel (e.g. polyacrylamide) and 

surrounded by a membrane. The long-term stability of such reference electrodes in ISFETs is 

poor.  

• Polymer-electrolyte reference systems (e.g. solid KCl in polyester resin) and open junctions are 

commercially available, e.g., under the brand name XEROLYT
®

.  

• All-solid-state reference electrodes [104] would be most favourable. In a cylindrical shaft of 

porous alumina ceramic, which additionally serves as a diaphragm for the liquid junction, molten 

KCl is filled around a centered Ag|AgCl electrode [105]. AgCl diffuses partly in the KCl phase. 

Humidity from the environment provides the necessary conductivity in the hygroscopic KCl 

phase.  

• Thickfilms of noble metal filled glass (e.g. Corning 015) on oxide ceramic or steel supports 

show increased resistivity, response times in the range of minutes, and relatively short lifetime. 

The reference potential does often not obey the Nernst slope. Different thermal expansion 

coefficients between glass and ceramic support cause cracks. 

• The impact of a glassy carbon rod electrode under ambient conditions and the presence of 

dissolved oxygen, is shown in Figure 4-b. A linear function of cell voltage in the range between 

pH 2 to pH 12 was obtained by use of a plane gold counter-reference electrode; the total 
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capacitance of the cell is dominated by the large capacitance of the rough RuO2 electrode,  

C = [CRuO2
–1

 + CAu
–1

]
–1

 ≈ CRuO2. Gold is known as an electrode material with negligible hydrogen 

sorption; the oxygen overpotential is higher than that of platinum. 

• Rhodium foil, that is covered by a rhodium oxide layer, behaves nearby pH-insensitive (see 

Section 4.3).  

• Molybdenum and tungsten bronzes [106], e.g. Li0.4Mo0.95W0.05O3 [107] do not significantly 

respond to pH changes, oxygen concentration and redox potential of the solution. However, they 

are sensitive to alkali ions (K
+
 < Na

+
 < Li

+
), but the preparation of single-crystalline electrodes is 

hardly reproducible. 

• Manganese dioxide, HxMnO2 [108], suffers from poor reproducibility. 

• Boron carbide might be useful as electrode material having a high hydrogen overvoltage. 

• Prussian Blue as a reference in all-solid state pH glass electrodes was investigated in [109]. 

 
. Measuring Techniques 
 

Traditionally, the potentiometric method is favoured for pH measurements. Additionally, 

amperometry has been established especially for biosensors (see Table 5). The coulometric 

determination of proton concentrations offers for future sensor applications, e.g. based on redox active 

metal oxides. However, much work has to be done to finally correlate the faradaic redox reactions, 

which directly depend on pH, from all capacitive surface effects which reflect the electrolyte-electrode 

interface and the composition of the surrounding solution. 

As a preliminary step to a future direct recording pH sensor, ac impedance spectroscopy [110] 

might be useful. This technique allows the separation of electrolyte resistance, charge transfer 

processes and diffusion processes along the grain-boundaries and in the three-dimensional pores of the 

material. Tungsten trioxide, in a mixture with indium oxide [100] is shown in Figure 6 for use in a 

capacitive pH sensor. The solution resistance Rel is subtracted from the measured impedance to 

exclude both the geometric dimensions of the sensor and the ionic conductivity of the solution. Then 

the frequency-dependent interfacial capacitance CP(ω), corrected by the solution resistance, is 

calculated for each frequency f from the measured real and imaginary parts according to Equation 22. 

])(Im)el[(Re2

Im

22P )(
ZRZf

Z
C

−−π

−=ω  (22) 

If the dc resistance R of the pH measuring cell is assumed to be large, it holds  

CS(ω) = [2πf Im Z]
–1

 ≈ CP at low frequencies. Then the parallel equivalent circuit Rel–CP||RP simplifies 

to a series combination, of Rel–CS. Both CP and CS are frequency-dependent differential capacitances. 

The pH sensor may work either at a given frequency or differential capacitance is averaged by 

integration in a given frequency range. The change of resistance and capacitance may also be used in 

commercial pH meters as a diagnostic tool for the aging of a pH electrode and the requirement for re-

calibration [111]. 
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10. Conclusions 
 

1. A common reference system valid for pH measurements in all media is still missing; as well, 

there is no simple pH reference besides the intricate standard hydrogen electrode and the Harned cell. 

The pH values in non-aqueous solutions cannot simply be compared with those in aqueous systems. A 

coulometric proton titrator might be the solution for this problem, once appropriate directly pH 

dependent materials are known. 

2. For the potentiometric pH determination in aqueous solutions, the glass electrode is still 

unsurpassed. For special applications in solutions containing fluoride or alkali, metal oxide electrodes 

have been introduced; whereby the antimony electrode is the most prominent example.  

3. The electrode-electrolyte interface at platinum metal oxides is able to exchange protons with the 

surrounding solution. RuO2 and IrO2 were successfully applied for disposable applications in technical 

solutions and biological media. ISFETs based on platinum metal oxides suffer from poor long-term 

stability yet.  

4. The redox pseudocapacitance of hydrous RuO2, in which protons are involved, is considered as a 

model system. Relative pH measurements based on standard buffer solutions are already possible by 

impedance spectroscopy. For absolute pH determination, the separation of interfacial surface charges 

and faradaic charges has still to be solved. 

5. Platinum metal oxides can easily be coated on nickel foil by thermal decomposition of precursor 

solutions. Powders, e.g. obtained by sol-gel processes, can be bound in an epoxy matrix. 

6. Activated carbon, glassy carbon, and possibly indium oxide seem to be useful as liquid-free 

reference systems in pH sensors at values between pH 5 and pH 10. 

 

Symbols and Abbreviations 
 

a   activity, a = γc(c/c
0
) = γm(m/m

0
) 

C   capacitance (F), C = dQ/dU 

c   molar concentration (mol/L), amount of a substance solved per liter of solution 

c
0
   standard concentration: c

0
 ≡ 1 mol/L 

CE  counter electrode 

CVD  chemical vapour deposition 

E   potential of an electrode versus a reference electrode (in V vs. ref) 

E
0  

standard potential of an electrode or half-reaction (V NHE): at 25 °C, 101325 Pa,  

1-active solution 

ΔE
0
  difference in standard potential of two half-cells (V), electromotive force  

F   Faraday constant; charge on one mole of electrons: F = 96485 C mol
–1

 

I   electric current (A) 

j   imaginary operator, √(–1) 

Q   electric charge (C = A s) 

M   molar mass of a compund (kg mol
–1

) 

m   molality (mol kg
–1

), amount of substance solved per kilogram of solvent: m = c/(ρ – Mc) 

m
0
   standard molality: m

0
 ≡ 1 mol kg

–1
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NHE  standard hydrogen electrode, see Section 2.2 

p   pressure (1 Pa = 10
–5

 bar) 

p
0
   standard pressure: 101325 Pa 

R   electric resistance (Ω) 

Ref   Reference (electrode) 

RE  reference electrode 

RHE  reversible hydrogen electrode: ENHE = ERHE – 0.05916pH (25 °C) 

(s)   solid phase 

SCE  saturated calomel electrode 

SHE  standard hydrogen electrode, see Section 2.2 

T   absolute temperature (in K) 

TRIS  tris(hydroxymethyl) aminomethane  

U   electric voltage (V), potential difference between two electrodes 

Δφ  electric potential difference between two phases (V) 

ρ   density of a liquid (1 kg m
–3

 = 1 g/L
 
= 0.001 g cm

–1
) 

v   scan rate, v = dU/dt (in V s
–1

) 

WE  working electrode 

Z   ac impedance (Ω): Z = Re Z + j Im Z 

z   charge number of an ion; number of electrons transferred in the half-reaction equation 

γ   activity coefficient  
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