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A phenomenological approach is applied to explore signatures of disordered charge stripes and 

antiphase spin domains in single-particle properties of the high-temperature superconductors. Stripe 
phases are shown to explain many experimentally observed unusual features measured in angle- 
resolved photoemission and optical spectroscopy. It is argued that disordered and fluctuating stripe 
phases are a common feature of high-temperature superconductors, supported by the additional 
evidence from neutron scattering and NMR. 

I. INTRODUCTION 

One of the emerging new paradigms of high- 

temperature superconductors is that their normal-state 
properties are inherently connected to disordered or fluc- 

tuating stripe phases [l]. In this paper, we show that 

single-particle properties of a disordered stripe phase 

can account for exotic features of the spectral density 
measured by angle-resolved photoemission spectroscopy 

(ARPES) in Bi2Sr2CaCu208+, (for which the best data 

is available). In particular, we compute the spectral 
density in a background of disordered stripes and show 

that it reproduces the experimentally-observed shape of 

the Fermi surface, the existence of nearly dispersionless 

states at the Fermi energy (“flat bands”), and the appear- 
ance of weak additional states (“shadow bands”) [2-51, 

features which have no natural explanation within con- 

writiotiill band theory. Finally, we comment briefly on 

I Iic inrplications of partially ordered spin domains for 

NMR, cxperitnents. 

Recent elastic neutron-scattering experiments [SI in 

Lal,6-,Nd0.4Sr,Cu04 show that the suppression of su- 
perconductivity in the neighborhood of x = 3 is associ- 

ated with the formation of an ordered array of charged 
stripes which form antiphase domain walls between anti- 

ferromagnetically ordered spins in the Cu02 planes. This 

observation provides the long-sought explanation of the 

behavior [7] of the La2Cu04-8 family of compounds near 

to doping, and strongly supports the idea of stripe 

phases. 

Antiphase spin domains in La1.6-,Ndo.&rzCuO4 are 
indicated by a set of resolution-limited peaks in the mag- 

net.ic structure factor at wave vectors (+ If: e, f) and 

( f ,  f f E )  [SI. The associated charge stripes give rise 
to peaks in the nuclear structure factor at wave vectors 

( H E ,  0) and (0, f 2 e )  [8]. As mentioned by Tranquada 
et al. [6], it is natural to interpret the inelastic peaks in 
the magnetic structure factor which occur [9] at similar 

locations in reciprocal space in superconducting samples 

of La2-,Sr,Cu04--6 as evidence of “extended domains” 

[lo] of stripe fluctuations, in which the stripes are ori- 
ented along vertical or horizontal Cu-0 bond directions 

respectively. 

In the early days of high-temperature superconductiv- 
ity, it was shown that holes added to an antiferromagnet 
form an insulating stripe phase via a Fermi-surface in- 

stability [ll], which leads to a reduced density of states, 

or a gap, at the Fermi energy. An alternative mecha- 

nism for stripe phases is the competition between phase 

separation [12] (i .e. ,  the tendency of an antiferromag- 
netic insulator to expel doped holes) and the long-range 

part of the Coulomb interaction. In this case, the stripes 

may be either ordered, quantum melted, or disordered by 

quenched randomness [13]. The charge forms an array of 

metallic stripes, with a period that is determined by the 
energetics of phase separation and is unrelated to nest- 

ing vectors of the Fermi surface. The charge structures, 

in turn, drive the modulation of the antiferromagnetic 

order. The experiments [SI on Lal.6-,Nd0.4SrzCu04 
clearly favor the latter point of view. The ordering wave 

vectors do not nest the Fermi surface, and the ordered 
system has partially-filled hole bands associated with the 

stripes. Moreover the magnetic peaks first develop below 

the charge-ordering temperature [6,14]. Our interpreta- 
tion of the ARPES experiments on Bi&2CaC~208+~ 

lends further support to  this conclusion: we find an in- 
creased density of states corresponding to the flat bands 
seen in the experiments. 

11. STRIPE PHENOMENOLOGY 

Our objective is to determine a phenomenological band 
structure for electrons moving in an effective potential 
generated by charge stripes and antiphase spin domains. 

The phenomenological one-body Hamiltonian is given by: 



where the first term is the nearest-neighbor hopping on 
a square lattice and the second one describes the in- 

teraction with the effective stripe potential. Here, cl,, 

annihilates an electron of spin u = f at site Rl and 

nl,, = cf,cru. The effective potential is given by: 

- Vu(R) = p(R) + aS(R)eiQ'R, (2) 

where Q = (:, :) and a is the lattice spacing. Specif- 
ically, for vertical stripes, we. use the forms p(x, y) = 

x,)/Cs], where R = (x,y), 2, are fixed centers of the 
stripes, and the parameters PO, SO, &, and & determine 

the amplitude of the charge and spin modulation and 

whether the stripes are narrow or broad. 

PO C, sech[(t - xCn)/&] and S(x, Y) = SO n,, tanh[(x - 

111. ARPES AND STRIPE PHASES 

According to the usual interpretation [15], the mea- 
sured photo-current in a photoemission experiment is 

the product of the electronic spectral density A-(k, E )  

for the removal of one electron from the system and a 

slowly varying matrix element which reflects the pho- 

ton polarization selection rules. This spectral den- 

sity can be written as A-(k,E) = f(c)A(k,E), where 
f(c) = l/[e(t-tF)/kBT + 11 is the Fermi function, EF is 

the Fermi energy, and A(k, E )  = -(l/?r)ImG(k, E + io+) 
is the spectral density of the one-electron Green's func- 

tion G(k,t) = -i(Tcku(t)ciu(0)). 

A. An ordered stripe phase 

First., consider vertical stripes condensed into a regular 

array: p ( t + L )  = p(x) and s(x+2e) = s(x), where e is t h i  

separation between stripes. Results will be presented for 

bond-centered stripes, x, = ne + a/2 with e / a  integer, 
but. they are largely insensitive to this assumption. For 

even t / a ,  the unit cell size is (2e/a)  x 2 so the band- 

structure is computed by diagonalizing a (4e/a) x (4e/a)  

matrix for each k-vector. 

Figure 1 shows the spectral density A- (integrated 

over an energy window Ac = t/30 about E = )  as a func- 

tion of k. For illustration, we have used the parameters 

PO = -f/2, SO = 2t, tC = a, and ES = 2a, for which 
the Hamiltonian in Eq. (1) solves Hartree-Fock theory 

for t.he Hubbard model with V/t = 4 - 5. However, to 

describe Lal.s-,Ndo..&,Cu04 [6] at z = doping, we 
choose ! /a  = 4, which does not minimize the Hartree- 

Fock energy. 

The fine features of the Fermi surface reflect the energy 

gaps at. points spanned by the wave vectors (4 f E ,  f) of 
the spin order and ( f 2 ~ , 0 )  of the charge order, where 
E = a/X: they are generated by the multiple foldings of 
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the energy band in the first Brillouin zone by the effec- 
tive stripe potential V,(R). Figure 1 also shows shadow 

bands - weak features of the Fermi surface created by 

the local doubling of the unit cell in the regions between 

the stripes. 

In Fig. 2, the spectral density A- is shown for e/a = 10 
at x = $ doping to demonstrate the diminishing effect 

of the energy gaps when the periods of the stripe order 
and the underlying lattice are commensurate of a high 

rational fraction. Here, Cc = 4a and & = 8a in order to 

have a smooth spin wave. Interestingly, the shadow band 
circling the r point is very clear. 

The condition of half-filled stripes, x / 2 ~  = +,.yields an 

enhanced density of states at Fermi energy. This feature 

is clearly seen in Figs. l(b) and 2(b). 

B. A disordered stripe phase 

In order to describe superconducting materials, we 

now consider a quenched random distribution of stripes 

[16], which should give essentially the correct band struc- 
ture [17] for slow collective charge dynamics. With 

Bi2Sr2CaCu2Os+, in mind, we chose 15% doping and a 

mean stripe separation e/a = 4. The ensemble of stripe 

locations was constructed by taking x,+l - zn = 1 + 6, 
where the random variable 6 is uniformly distributed be- 
tween -3a and 3a, which destroys long-range charge and 

spin order. The spectral density was averaged over five 

realizations, and we assumed a non-zero temperature, 

kgT = t/10, which further diminishes finite size effects. 
We have found that the results do not depend markedly 

on the choice of ensemble, or the parameters in the effec- 
tive potential and that the large lattices used in the cal- 

culation (linear dimension 184 sites) are essentially self- 

averaging. In other words, our results are robust con- 

sequences of a disordered stripe array, and are largely 

independent of other details. (We have not investigated 
the effects of orientational disorder.) 

Figure 3 summarizes shows the k-dependence of the 

spectral density at the Fermi energy, and the quasi- 

electron dispersion along the line r-Ml-X/Y for a single, 

extended domain, with disordered vertical stripes (run- 
ning in the r-M2 direction). Stripe disorder has removed 

the fine details from the Fermi surface [Fig. 3(a)] which 

now closely resembles experiments. [2,4]. In particular, 

near MI, there is a high density of states and a truly 
flat "band" at the Fermi energy, extending towards the 

I' and X/Y points; see Fig. 3(b) and (c). The flatness 
along the r-M1 line is a consequence of both the smear- 

ing of the energy gap structure of the ordered system, 
and the localization of the electronic wave functions in 

the direction perpendicular to the stripes. The spectral 
density of the shadow band is reduced so much that it 
no longer shows up although, on a logarithmic scale, A-  
looks qualitatively like that of Ref. [3]. The effect of 



vertical stripes at M 2  is completely different: band nar- 
rowing in a direction parallel to the stripes leads to  an 

open Fermi surface. 

It  is clear from the energy dependence of the spectral 

density that there are no well-defined quasiparticle fea- 

tures near the MI point, which is consistent with a widely 

held view of the normal-state properties of the high- 

temperature superconductors [18]. This has profound 
implications for d.c. transport and other low-energy two- 

particle properties. 

The van Hove singularities of the ordered stripe phase 

are broadened by disorder. As a result, the density of 
states N(EF)  at the Fermi energy remains enhanced even 
for z / 2 ~  = 3 because it is less sensitive to  small varia- 

tions in doping concentration; see Fig. 3(d). 
5 ,  

IV. OPTICAL CONDUCTIVITY 

Finally, consider the real part of the optical conductiv- 

ity at non-zero energy, 

where ja(t) (a = z,y) is the current operator of wave 

vector q = 0 in the Heisenberg presentation [19]. Figure 
4 illustrates the optical conductivity for an ordered array 

of vertical stripes. Transitions from and to  the stripe- 

induced mid-gap states contribute to the pronounced 

peak at hw 2 t ,  while the other transitions yield only 

a weak feature at hw -.3t. 

Disordering the stripes destroys the momentum conser- 
vat.iorl in the perpendicular direction to the stripes. One 

roriseqiicnce of this that the spectral features in the opti- 

cal contlnctivity, shown in Fig. 5, are broadened; there is 

a rather small weight in the Drude component, so most 

most of the oscillator strength appears as a broad con- 
tinuum, extending to zero energy and centered in the 

neighborhood of hw - t .  This property is related to  the 

absence of well-defined quasiparticle features near the Mi 

point, as indicated already by t.he behavior of the spectral 

density A,(k, E )  near the Fermi energy E F .  

V. DISCUSSION 

In summary, ordered stripe phases have been observed 

1)Y neutron scattering in 
non-superconducting Lal.,j-,Ndo.&,Cu04, and there is 

strong evidence for disordered and/or fluctuating stripes 

in La2--oSr,Cu04--6. Here we have shown that disor- 
dered, or slowly fluctuating st.ripes in Bi2SrzCaCuzOs+, 

provide a natural explanation for the unusual features of 
blie ARPES data, including the shape of the Fermi sur- 

face and the regions of flat bands. It is reasonable to 
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re-examine other experiments on the high-temperature 
superconductors to  see whether they can be better un- 
derstood in terms of the properties of extended domains 

with short-ranged stripe order. 

Charged stripes are easily pinned by disorder and, 

at moderate temperatures, they form an essentially 

quenched-disordered array, which divides the Cu-0 plane 
into long thin regions, with weak antiphase coupling be- 

tween the intervening hole-deficient regions. This pro- 

vides natural interpretation of NMR experiments [20] 

which see two distinct species of Cu nuclei; in our pic- 

ture, one is in a pinned stripe, the other between the 

stripes. The fact that the coupling between spin domains 
is potentially frustrating provides a microscopic justifi- 

cation for the “cluster-spin-glass” phase in samples with 

z < 15 % 1211. Moreover the creation of dilute metallic 

stripes can account for the rapid suppression of the Nkel 

temperature for z < 2 % [22]. 
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FIG.1 (a) The  spectral density A- in the first Brillouin 

zone integrated over an energy window Ae = t/30 about 

EF and (b) the density of states M(e) as a function of 

energy e for an ordered array of vertical stripes of period 

t = 4a with $ doping. The  size of a circle, denoting a 

Fermi-surface crossing at a given value of k, shows the 

relative magnitude of A(k, EF). The parameters specify- 

ing the effective potential are po = -t/2, SO = 2t, & = a, 

and & = 2a. 

’ 

FIG.2 (a) The spectral density A- in the first Brillouin 

zone integrated over an energy window Ae = 1/30 about 

e~ and (b) the density of states N(e) as a function of 

energy e for an ordered array of vertical stripes of period 

t = 10a with & doping. The  size of a circle, denoting 

a Fermi-surface crossing at a given k, shows the relative 

magnitude of A(k, CF). T h e  parameters specifying the 

effective potential are po = -t/2, So = 2t, & = 4a, and 

= 8a. 

FIG.3 (a) The spectral density A- in the first Brillouin 

zone integrated over an energy window Ae = t/30 about 

e ~ ,  (b) the dispersion relation, (c) the corresponding 

spectral density of the highest-energy occupied “band” 

as a function of k along the l?-I&-X/Y line, and (d) the 

density of states M(e) as a function of energy e. The band 

is determined by broadening the energy &functions by 

a Lorentzian of the full width of t/4 at half maximum 

and finding the highest-energy maximum of A-. The re- 

sults are for a disordered array of vertical stripes with 

the mean separation of t = 4a with 15 % doping at the 

temperature kBT = t/10. The rest of the parameters are 

PO = 4 2 ,  SO = 21, & = u, and & = 2a. 

FIGA The real (absorptive) part of the optical con- 

ductivity U ~ , ~ ( W )  perpendicular (solid line) and parallel 

(dashed line) to an ordered array of vertical stripes with 

the separation of e = 4a at $ doping at zero temper- 

ature. The stripe configuration and the parameters are 

the same as in Fig. 1. 

FIG.5 The real (absorptive) part of the optical con- 

ductivity U ; I , ~ ( W )  perpendicular (solid line) and parallel 

(dashed line) to  a disordered array of vertical stripes with 

the mean separation o f t  = 4a at 15 7% doping at zero tem- 

perature. The stripe ensemble and the parameters are the 

same as in Fig. 3. 
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