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ABSTRACT

Context. Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute
extended envelopes.
Aims. We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish
the impact of the stellar metallicity on the effect of envelope inflation.
Methods. We analysed published grids of core-hydrogen burning massive star models computed with metallicities appropriate for
massive stars in the Milky Way, the Large Magellanic Cloud, and the Small Magellanic Cloud, the very metal poor dwarf galaxy
I Zwicky 18, and for metal-free chemical composition.
Results. Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity
peaks of iron, helium, and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of
the zero-age main sequence and a broadening of the main-sequence band in the upper part of the Hertzsprung-Russell diagram. We
derive the limiting L/M-values as a function of the stellar surface temperature above which inflation occurs, and find them to be higher
for lower metallicity. While Galactic models show inflation above ∼29 M⊙, the corresponding mass limit for Population III stars is
∼150 M⊙. While the masses of the inflated envelopes are generally low, we find that they can reach 1−100 M⊙ in models with effective
temperatures below ∼8000 K, with higher masses reached by models of lower metallicity.
Conclusions. Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly
growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in luminous
blue variables such as S Doradus and ηCarina.
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1. Introduction

Massive stars, although rare, are cosmic engines in the Universe.
They drive the dynamical and chemical evolution of galaxies
with their strong stellar winds, high luminosities, and spectac-
ular explosions. The earliest massive stars, that is, the metal-
free Population III stars, may have played a major role in the
reionisation of the Universe (Bromm et al. 2009). Furthermore,
massive stars in low-metallicity environments are primary candi-
dates for progenitors of long-duration gamma-ray bursts (Yoon
& Langer 2005; Woosley & Heger 2006), pair instability super-
novae (Heger & Woosley 2002; Langer et al. 2007), and superlu-
minous supernovae (Quimby et al. 2013; Inserra & Smartt 2014).
Accurate models of massive stars across a wide range of metal-
licities are therefore needed to facilitate comparisons with the
available observational data (Maeder & Meynet 2012; Langer
2012).

Recently, evidence has accumulated that stars more mas-
sive than the often quoted upper mass limit of ∼150 M⊙ (Figer
2005) exist in the local Universe. For example, Crowther et al.
(2010) estimated present-day masses of up to 260 M⊙ for sev-
eral stars in the Tarantula nebula of the Large Magellanic Cloud
(LMC). Furthermore, in the recently concluded VLT-FLAMES
Tarantula Survey of massive stars in the LMC (Evans et al.
2011), Bestenlehner et al. (2014) identified three stars with initial
mass estimates above 150 M⊙. Models of very massive stars with
up-to-date physics have therefore become increasingly relevant.

The mass-luminosity (M − L) relation for main-sequence
stars, L ∝ Mα, has α > 1. However, for constant opacity, α → 1
for M → ∞ (Kippenhahn & Weigert 1990). Therefore one might
wonder whether the Eddington limit, which is proportional to
L/M, is ever reached by stars.

The classical Eddington limit, which is proportional to the
electron-scattering opacity and the stellar L/M ratio, is not
reached for stars below ∼105 M⊙ for solar composition (Kato
1985, 1986). Sanyal et al. (2015) showed that even when the
Rosseland mean opacity is considered, stars below ∼500 M⊙
do not reach the Eddington limit at their surface. When the
Eddington limit is defined in the stellar interior (Langer 1997),
however, Sanyal et al. (2015) showed that main-sequence mod-
els with LMC composition reach and exceed the Eddington limit
at masses M & 40 M⊙. Such stellar models, instead of develop-
ing a strong outflow, re-adjust their structure such that a dilute
and extended envelope is produced, a process that is called en-
velope inflation. This effect was earlier pointed out by Ishii et al.
(1999) for zero-age main-sequence models and by Petrovic et al.
(2006) and Gräfener et al. (2012) for helium star models. As a
result of such an envelope structure, the surface temperatures of
these models are much lower than they would have been without
this effect, which has consequences for the further evolution of
the stars (Köhler et al. 2015). The distribution of OB stars in our
Galaxy shows many stars with masses >30 M⊙ in the effective
temperature range 10 000−30 000 K, and it has been suggested
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Table 1. Initial chemical compositions (in mass fraction), the metallicities, and the range of initial masses of the stellar evolutionary sequences.

MW LMC SMC I Zw18 PopIII

XFe 1.02 × 10−3 4.64 × 10−4 2.52 × 10−4 2.52 × 10−5 0

XO 4.14 × 10−3 2.65 × 10−3 1.14 × 10−3 1.14 × 10−4 0

XHe 0.264 0.256 0.251 0.248 0.240

Z 0.0088 0.0047 0.0021 0.00021 0

Minit ( M⊙) 3−100 1−500 5−60 9−294 10−1000

that these stars are affected by envelope inflation (Castro et al.
2014).

The metallicity (Z) of a star affects many of its physical prop-
erties such as the wind mass-loss rate, opacity, and the equation
of state. The OPAL opacity tables from Iglesias et al. (1992) in-
troduced an opacity peak at a temperature of T ∼ 2 × 105 K
caused by bound-bound and bound-free transitions of iron-group
elements. This so-called Fe-bump opacity drastically changed
the envelope structure of stellar models (Stothers & Chin 1993),
and even new pulsational instability strips were discovered in
the Hertzsprung-Russell diagram (Pamyatnykh 1999). Since the
Eddington factor depends on opacity, the Fe-bump, which is a
function of Z, plays a major role in determining the extent of
envelope inflation in a massive-star model.

In this paper, we extend the study by Sanyal et al. (2015) over
a wide range of metallicities from Galactic to metal-free, and in-
vestigate the properties of the stellar models in the context of
the Eddington limit and envelope inflation. Section 2.1 presents
an overview of the grids of models used in this study, while in
Sects. 3 and 4 we explain our concept of the Eddington limit and
envelope inflation. We discuss how the Eddington limit and en-
velope inflation change with metallicity in Sect. 5 and conclude
in Sect. 6.

2. Method

2.1. Stellar models

The stellar models used in the present study were computed with
a one-dimensional hydrodynamic Lagrangian code (BEC) that
includes the most recent input physics, including rotation (for
details, see Heger et al. 2000; Yoon et al. 2006; Brott et al. 2011;
Köhler et al. 2015, and references therein). Grids of models com-
puted with five metallicities were used that are appropriate for
the Milky Way (MW), LMC, Small Magellanic Cloud (SMC),
I Zwicky 18 (I Zw18 ), and for Population III (Pop III) stars. The
MW, the LMC, and the SMC models are published in Brott
et al. (2011) and Köhler et al. (2015), whereas the I Zw18 and
the Pop III models are from Szécsi et al. (2015) and Yoon et al.
(2012), respectively. The initial chemical compositions and the
initial mass ranges in each of these grids are summarised in
Table 1. In this paper, we consider only core-hydrogen burn-
ing models that are either non-rotating or slowly rotating, that
is, with vrot ≤ 100 km s−1, vrot being the equatorial rotational ve-
locity at the photosphere.

The standard non-adiabatic mixing length theory (MLT,
Böhm-Vitense 1958; Kippenhahn & Weigert 1990) was used to
model the energy transport in the convective zones in the stel-
lar interior with a mixing length parameter of α = l/Hp = 1.5
(Langer 1991), where l is the mixing length and Hp is the
pressure scale height. A discussion of the properties of con-
vection in the inflated envelopes of our LMC models can be
found in Sanyal et al. (2015). The parameters for core-convective

overshooting (α = 0.335) and rotationally induced chemical
mixing ( fc = 0.0228, fµ = 0.1) were adopted from Brott
et al. (2011). Transport of angular momentum by Spruit-Tayler
dynamo (Spruit 2002) was treated following Petrovic et al.
(2005). Radiative opacities from the OPAL tables (Iglesias &
Rogers 1996) were used for temperatures above 8000 K. For
temperatures below 8000 K the opacity tables from Alexander
& Ferguson (1994) were used.

2.2. Mass loss

Models for the MW, LMC, SMC, and I Zw18

For stellar models with effective temperatures higher than
22 000 K, the mass-loss prescription from Vink et al. (2001) was
employed to account for the winds of O- and B-type stars. The
mass-loss rate prescription from Nieuwenhuijzen & de Jager
(1990) was used at effective temperatures lower than 22 000 K
when the Nieuwenhuijzen & de Jager (1990) mass-loss rate ex-
ceeded that of Vink et al. (2001). In the Wolf-Rayet (WR) evo-
lutionary phases, that is, when the surface helium mass frac-
tion (Ys) is greater than 70%, the empirical mass-loss rates from
Hamann et al. (1995) were used, scaled down by a factor of 10
(Yoon et al. 2006). For 0.4 ≤ Ys ≤ 0.7, a linear interpolation
between the Vink et al. (2000, 2001) mass-loss rate and the
Hamann et al. (1995) mass-loss rate reduced by a factor of 10
was used.

Pop III models

For metal-free hot stars, a very low mass-loss rate of
10−14 M⊙ yr−1 is predicted near the classical Eddington limit
(Marigo et al. 2003; Krtička & Kubát 2006; Yoon et al. 2012).
Therefore, in the Pop III grid, stellar wind mass-loss rates were
applied only when there was any surface enrichment of CNO ele-
ments by rotational mixing. Hence the non-rotating models prac-
tically did not suffer from any mass loss over their lifetime. For
rotating stars, the mass-loss prescriptions from Kudritzki et al.
(1989) and Nieuwenhuijzen & de Jager (1990) were used for
Teff > 104 K and Teff < 104 K respectively, with a metallicity
scaling of Z0.69.

Rotationally enhanced mass loss

The effect of rotationally enhanced mass loss (Friend & Abbott
1986; Langer 1997) is treated in our models as

Ṁ(vrot) = Ṁ(vrot = 0)

(

1

1 −Ω

)0.43

, (1)

where

Ω =
vrot

vcrit

and vcrit =

√

GM

R
(1 − Γavg). (2)
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Table 2. Initial masses (in units of M⊙) of the non-rotating evolutionary
sequences that were re-computed.

MW LMC SMC I Zw18

40 40 50 100

50 60 60 150

60 70 80 196

80 100

Herev Γavg is the Eddington factor averaged over the region with
an optical depth of between 2/3 and 100. The enhancement of
the mass-loss rate is limited by the thermal timescale mass-loss
rate of the star to avoid the singularity in Eq. (1) as v approaches
vcrit (Yoon et al. 2012). We note that for the models analysed in
this paper the enhancement to the mass-loss rate is negligible.

2.3. Additional models

In the evolutionary sequences computed by Brott et al. (2011)
and Köhler et al. (2015), the data regarding the structure of a
stellar model are stored for every 50th computed model, that is,
at non-regular time intervals since the time steps are not uniform
during the evolution. For the I Zw18 sequences, every 250th
model is stored. To obtain a higher model density in certain parts
of the Hertzsprung-Russell (HR) diagram for the present study,
several evolutionary tracks (without rotation) were re-computed
with the same input parameters, as summarised in Table 2.

3. Eddington limit

Conventionally, a star is considered to be at the Eddington limit
when its luminosity L equals its Eddington luminosity (LEdd),
which is defined as the condition when the radiative accelera-
tion (grad) balances the gravitational acceleration (g) at the stellar
surface. The radiative acceleration is proportional to the stellar
luminosity and the opacity κ. When electron scattering is con-
sidered as the only source of opacity, that is, κ = κe, the classical
Eddington factor is defined as

Γe =
grad

g
=
κeL

4πcGM
, (3)

where the physical constants have their usual meaning. With
this definition, stellar models reach the Eddington limit only at
masses M & 105 M⊙ (Kato 1986).

When the Rosseland mean opacities are used, the LMC mod-
els from Köhler et al. (2015) do not reach the Eddington limit at
their surface, even at 500 M⊙ (Sanyal et al. 2015). However, we
can also define an Eddington factor locally (Langer 1997), such
that

Γ(r) :=
Lrad(r)

LEdd(r)
=
κ(r)Lrad(r)

4πcGM(r)
, (4)

where M(r) is the Lagrangian mass coordinate, κ(r) is the
Rosseland mean opacity, and L(r) is the local luminosity. Since
the convective luminosity does not contribute to the radiative
acceleration, it is not considered in Eq. (4). With this defini-
tion, core-hydrogen burning LMC models with masses as low
as ∼40 M⊙ reach the Eddington limit in their interior (Sanyal
et al. 2015). However, instead of a super-Eddington outflow, a
hydrostatic structure with an extended envelope is obtained (cf.
Sect. 4), often associated with a density inversion (cf. Fig. 9 in
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Fig. 1. Density profile of a 79 M⊙ solar metallicity core-hydrogen burn-
ing model showing the inflated envelope. The model had an initial mass
of 100 M⊙. The radial co-ordinate has been scaled with the core radius
rcore. The blue line (right Y-axis) shows the run of the Eddington fac-
tor Γ (Eq. (4)) in the interior of the model. The Eddington factor almost
reaches unity in the inflated region.

Sanyal et al. 2015). It has been argued in the literature (Langer
1997; Sanyal et al. 2015) that the concept of the Eddington limit
as a stability criterion does not apply in the stellar interior. If not
explicitly stated otherwise, we use the definition in Eq. (4) for
the Eddington factor in the rest of the paper.

Since the Rosseland mean opacity κ depends on the chemical
composition and hence the metallicity, the Eddington factor is
also expected to be a function of metallicity. Sanyal et al. (2015)
showed that in the LMC models from Köhler et al. (2015), the
opacity peaks caused by the partial ionisation of iron group ele-
ments, helium and hydrogen, shape the profile of the Eddington
factor inside a massive star model. In this paper we investigate
how the metallicity influences the Eddington factor in the stellar
interior.

4. Envelope inflation

As mentioned above, stellar models reaching the Eddington limit
in their interior have extended and dilute envelopes (Ishii et al.
1999; Gräfener et al. 2012; Köhler et al. 2015; Sanyal et al.
2015). When the Eddington limit is reached in the interior, either
Lrad or the opacity κ needs to be reduced. Since energy trans-
port by convection may be inefficient because of low densities,
however, Lrad cannot be significantly reduced in this case, and
hence the opacity needs to decrease by a further drop in den-
sity. As a result, an inflated envelope develops such that Γ ≈ 1
is maintained across the inflated region. An example of the den-
sity structure of such an inflated stellar model is shown in Fig. 1,
where the region with a steeply declining density profile is re-
ferred to as the non-inflated core and the region with a relatively
flat density profile is referred to as the inflated envelope. While
the core radius (rcore) of this model is 25.2 R⊙, the extent of the
inflated envelope is about 1.7 times that of rcore. The profile of
the Eddington factor shows that in the core it is Γ < 1, but in the
envelope Γ ≈ 1. At the surface of the star, Γ drops to 0.82.

To our knowledge, an analytical criterion for inflation is not
available in the literature (however, see Sects. 3.4 and 3.5 in
Owocki 2015) for models at various evolutionary stages, that is,
from hot WR stars (Petrovic et al. 2006) to cool core-hydrogen
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burning red supergiants (Gräfener et al. 2012; Sanyal et al. 2015;
Szécsi et al. 2015). We note that envelope inflation is differ-
ent from the formation of extended envelopes in classical red
supergiants, as those are post-main-sequence stars with a shell-
burning source that is responsible for the envelope expansion,
through the so-called mirror principle (Kippenhahn & Weigert
1990). In this study we follow Sanyal et al. (2015) to determine
whether a stellar model is inflated. Since inflation is related to
high values of the Eddington factor, which in turn implies domi-
nance of radiation pressure over gas pressure, the inflated region
must have a low enough value of β, where β is the ratio of the gas
pressure (Pgas) to the total pressure (P). For all the model grids
except for the Pop III grid, we therefore adopt a threshold value
of β = 0.15 to identify the base of the inflated envelope rcore in
a stellar model, in accordance with Sanyal et al. (2015). For the
Minit = 1000 M⊙ sequences in the Pop III grid, we use a lower
threshold β = 0.1 because the mass averaged value of β (and
the β-value in the centre) drops below 0.15 for some models in
these sequences, as expected for models with extremely high lu-
minosities. For all other model sequences of lower masses in the
Pop III grid, we use β = 0.15. We motivate our choice of using
a threshold value of β to identify the occurrence of an inflated
envelope below.

The equation of hydrostatic equilibrium inside a star is
given as

dP

dr
= −ρg, (5)

where ρ is the density at r. When we write P = Pgas+Prad, where

the radiation pressure is Prad =
1
3
aT 4, this is

−
1

ρg

dPrad

dr
= Γ, (6)

and

−
1

ρg

dPgas

dr
= 1 − Γ. (7)

Therefore, Γ→ 1 leads to a vanishing gas pressure gradient, and
Γ > 1 in the hydrostatic stellar interior merely implies a positive
gas pressure gradient (Joss et al. 1973; Paxton et al. 2013). Using
Eq. (5) in Eq. (7), we obtain

dPgas

dP
=

d(βP)

dP
(8)

= β + P
dβ

dP
(9)

= 1 − Γ. (10)

Locally, for β either constant or slowly varying, which is gen-
erally true in inflated envelopes (Sanyal et al. 2015, cf. Fig. 1),
it is

Γ ≃ 1 − β. (11)

Therefore Γ . 1 implies a low value of β. Since we adopted
β = 0.15 as the inflation criterion, we expect to find inflated
models with Γ > 0.85, and this is indeed the case (Sanyal et al.
2015). Equation (11) was earlier arrived at by Gräfener et al.
(2012), and the validity of the assumption of a constant β in the
inflated envelope was shown in studies by Gräfener et al. (2012)
and Sanyal et al. (2015).

To show that Eq. (11) is consistent with the occurrence of a
flat density profile, Eq. (7) can also be written as

Γ − 1 =
1

ρg

d

dr

(

RρT

µ

)

· (12)

Rearranging Eq. (12) and dividing by ρT on both sides (assum-
ing a constant µ), we obtain

1

Hρ
:=

d ln ρ

dr
=
µ

RT
(Γ − 1)g −

d ln T

dr

=
gµ

RT
(Γ − 1 + ∇β) ,

where Hρ is the density scale height and ∇ is the temperature

gradient defined as ∇ := d ln T
d ln P

. Substituting β = 1 − Γ in the
above expression, we obtain

1

Hρ
=
µg

RT
(∇ + 1)(Γ − 1), (13)

which implies that Hρ → ∞ as Γ → 1. Therefore, when Γ(r) is
close to unity, the density scale height becomes very large and
leads to an extended, flat density profile, which we identify as
a signature of inflation. We furthermore note that a vanishing

density gradient, that is,
dρ

dr
= 0, is equivalent to the condition

V = d ln P
d ln r
= (GMr/r)/(P/ρ) = 1.

Quantitatively, we define inflation in a stellar model as
∆r/rcore := (R⋆ − rcore)/rcore, where R⋆ is the stellar radius
and rcore is the radial co-ordinate where the β value drops be-
low 0.15 for the first time in the stellar interior. Since there is
some arbitrariness in our inflation criterion, only those models
for which our criterion predicts ∆r/rcore > 0.05 are considered to
be inflated.

Langer (1997) showed that if the Eddington factor is defined
in the stellar interior as

Γ′(r) =
κ(r)L(r)

4πcGm(r)
, (14)

that is, taking the total luminosity into account, then the
Schwarzschild criterion for convective instability can be written
in the following form:

Γ′(r) ≥ (1 − β)
32 − 24β

32 − 24β − β2
· (15)

For β ≪ 1, the above inequality reduces to

Γ′(r) ≥ (1 − β). (16)

Since Γ = Γ′ Lrad

L
from Eqs. (4) and (15), the above inequality can

be written as

Γ ≥ (1 − β)
Lrad

L
· (17)

Since Lrad ≤ L everywhere inside the star, from Eqs. (11)
and (16) we conclude that the inflated envelope will always
be convectively unstable. Furthermore, the densities in the sub-
surface convection zones of massive stars are low, and convec-
tion is strongly non-adiabatic. As a consequence, particularly in
the hot models (Teff & 15 000 K), the luminosity carried by con-
vection is much lower than that carried by radiation, and hence
Lrad/L ≈ 1, or Γ ≈ Γ′.
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Fig. 2. Zero-age main-sequence (solid lines) and the terminal-age main-sequence lines (dotted lines) above log (L/ L⊙) > 4 of the analysed stellar
models at different metallicities. The masses of some representative models (black squares) are indicated along the ZAMS. The position of the
TAMS (in the model grid) where they bend towards cooler effective temperatures are marked with coloured dots, and the corresponding initial
masses of these models are labelled alongside.

5. Results

5.1. Hertzsprung-Russell diagram

The HR diagram in Fig. 2 shows the zero-age main-sequence
(ZAMS) and the terminal-age main-sequence (TAMS) of the
analysed non-rotating models. The ZAMS is defined by the con-
dition that 3% of hydrogen (by mass) has been burnt, whereas
the TAMS is defined by the location at which the models reach
the maximum radius over their main-sequence lifetime, that is,
until the central helium mass fraction is <0.98.

The ZAMSs of the different metallicities are located roughly
parallel to one another up to log (L/L⊙) ∼ 6 in the HR diagram ,
such that the Pop III ZAMS has the highest Teff (and smallest ra-
dius) and the MW ZAMS has the lowest Teff (and largest radius)
for corresponding model masses.

The LMC ZAMS reaches a maximum Teff of ∼57 000 K and
then starts to bend towards lower values around log (L/L⊙) ∼
6.6, which corresponds to a mass of ∼200 M⊙. Above this criti-
cal mass the surface temperature of the ZAMS models decreases
for increasing mass. The lower the metallicity, the higher the
luminosity and the effective temperature at which the bend is ex-
pected to be located (Ishii et al. 1999). This feature is not seen
for all the metallicities in Fig. 2 because the initial mass ranges
of the evolutionary sequences do not extend to high enough val-
ues (see Table 1). Nevertheless, an increase in the slope of the
ZAMSs in the upper HR diagram is observed.

The latest OPAL opacities were used to investigate the bend-
ing of the ZAMS by Ishii et al. (1999). The authors computed
models with metallicities ranging from Z = 0.1 to Z = 0.004
and found that the ZAMS curves redwards at sufficiently high
masses for all the metallicities. The solar metallicity ZAMS in
their study had a bend at M ∼ 100 M⊙, which is consistent with
our results.

The redwards curving of the ZAMS is a consequence
of envelope inflation of massive luminous stars, as discussed
in Sect. 4. When the layers in the stellar interior reach the
Eddington limit either because of an opacity bump or because
of a high L/M ratio, the high radiation pressure pushes the lay-
ers outwards such that density and hence opacity decreases, and
the Eddington factor obtains a value .1.

If convection is efficient, then the star does not need to re-
adjust its structure, but in the luminous stars discussed here, the
low densities in their outer layers imply that convective energy
transport within the framework of the standard MLT is not ef-
ficient enough to bring down the Eddington factor below one,
even though the fraction of the total luminosity carried by con-
vection can exceed 90% in the coolest models (cf. Sanyal et al.
2015). Therefore the envelope expands, giving rise to a core-halo
density structure (Fig. 1).

The redward bend is also present in the TAMS lines of all
metallicities. The higher the metallicity, the lower the luminos-
ity at which the bend occurs, similar to the trend expected for
the ZAMS lines. The TAMS, however, curves redwards at a
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Table 3. Model properties (mass, luminosity, effective temperature, and
the classical Eddington factor) at the points marked by filled dots in
Fig. 2 where the TAMSs bend redwards.

Z Minit(M⊙) Mnow (M⊙) log (L/L⊙) Teff [K] Γe

MW 25 23.6 5.27 20 783 0.20

LMC 25 24.4 5.29 24 066 0.21

SMC 30 29.3 5.48 25 409 0.26

I Zw18 34 33.8 5.59 30 787 0.30

PopIII 60 60.0 6.03 37 417 0.47

lower luminosity than the ZAMS. For example, the TAMS for
the LMC bends at log (L/L⊙) ≈ 5.3, whereas the ZAMS bends
at log (L/L⊙) ≈ 6.6. From the mass-luminosity relation for ho-
mologous stars, we know that L ∝ µβ for a fixed mass, where
the exponent β lies in the range ∼1.3 . . . 2 for masses between
100−500 M⊙ on the ZAMS (cf. Fig. 17 in Köhler et al. 2015)
such that higher masses have lower values of β. Therefore, at the
TAMS a model has a higher L/M value than at ZAMS because
of a higher mean molecular weight.

The stellar parameters at the points (marked with filled dots
in Fig. 2) where the TAMS lines bend towards cooler effective
temperatures are noted in Table 3. This feature indicates the on-
set of envelope inflation because below this bend we do not find
any TAMS model to be inflated, but above the bend, we find in-
flated models. With a decrease in metallicity, the opacity in the
stellar envelope decreases (cf. Sect. 5.4) and hence Γ ≈ 1 can
be achieved only with a higher L/M value. Therefore the low-
Z TAMS models show envelope inflation at higher luminosities.
The TAMS extends to temperatures below ∼5000 K, leading to
core-hydrogen burning red supergiant models. We note that the
lowest luminosity at which we identify an inflated model on the
TAMS is higher than the luminosity at which the bend is located.
This might be related to our ad hoc criterion for inflation.

The TAMS lines for the MW, LMC, and I Zw18 models bend
bluewards above log (L/L⊙) of 5.7, 6.0, and 6.8, respectively
(Brott et al. 2011; Köhler et al. 2015). This has not been included
in Fig. 2 for the sake of clarity. The blueward bend occurs be-
cause the mass-loss rates in this part of the HR diagram are high
enough to strip the hydrogen-rich outer layers of the models and
produce helium-rich WR models (Brott et al. 2011; Köhler et al.
2015). Once the helium-rich layers are exposed, the mass-loss
rates increase even further, such that the models evolve towards
higher surface temperatures, towards the helium ZAMS.

5.2. Spectroscopic HR diagram

In the spectroscopic HR (sHR) diagram introduced by Langer &
Kudritzki (2014), instead of the luminosity, the quantity L :=
T 4

eff
/g is plotted as a function of the effective temperature. The

quantity L is proportional to Γe, such that

Γe =
κeL

4πcGM
=
κeσT 4

eff

cg
=
κeσ

c
L , (18)

where the constants have their usual meaning. Hence for solar
hydrogen abundance,

log(Γe) ≃ log(L /L⊙) − 4.6. (19)

Figure 3 shows the maximum Eddington factor Γmax in the inte-
rior of the analysed models for the five grids. Since the iron bump
opacity increases non-linearly (cf. Sect. 5.4) with increasing iron

abundance, that is, with increasing metallicity (Fig. 7), layers
in the stellar interior reach the Eddington limit at a lower L ,
that is, at a lower L/M. This is demonstrated in the different
panels of Fig. 3. Whereas we find models with Γmax > 0.9 for
masses as low as ∼30 M⊙ in the MW grid, the same is achieved
at M ∼ 100 M⊙ in the Pop III grid. Furthermore, an evolutionary
model with a higher initial mass encounters a higher Γmax earlier
in its evolution because of its higher L/M ratio. For example, the
50 M⊙ MW sequence starts to develop super-Eddington layers in
the midst of its main-sequence life, whereas the 80 M⊙ sequence
already has Γmax > 1 on its ZAMS.

In the MW and the LMC grids, there are models with
Γmax > 1 in the Teff range 35−55 kK. These models have the
Fe opacity peak close to their surface where convective energy
transport is inefficient, such that Γmax reaches values above one
(Sanyal et al. 2015). In the temperature range 20−30 kK but at
log (L /L⊙) > 4.4, we also find models with Γmax > 1. These
models are hydrogen deficient, either because of strong wind
mass-loss or because of rotationally induced mechanical mass
loss in the past. The super-Eddington layers in these models are
caused by the helium opacity bump located close to their sur-
face, coupled with inefficient convection. The models with SMC
metallicity or lower do not evolve to have helium-rich envelopes
during their main-sequence evolution, at least not in the mass
and rotational velocity range considered here. For the SMC and
the I Zw18 metallicity, the Fe-opacity peak, although present, is
much weaker than the peak in the MW and the LMC. In other
words, to reach the same value of Γmax, the models with lower
metallicity need to have a higher L/M ratio.

In the 60 M⊙ MW sequence for example, Γmax exceeds unity
very close to the ZAMS, but at Teff < 32 kK Γmax falls below one.
This drop in Γmax is explained by relatively efficient convection
in the envelope as the Fe-bump moves deeper into the star where
densities are relatively higher. The evolution of Γmax versus Teff

for the 60 M⊙ sequence is shown in Fig. 4. The increase of Γmax

at Teff < 14 000 K is explained by strong mass loss that increases
the L/M ratio and the surface helium abundance. However, we
note that Γe increases throughout its main-sequence evolution. A
similar trend exists in other evolutionary sequences in Fig. 3.

None of the Pop III models in the investigated parameter
range have Γmax > 1 at Teff > 10 000 K. Since the Fe-bump is
completely absent, Γ = 1 is never reached. Neither are these
models helium-enriched at their surface because of negligible
wind mass-loss that would have increased their L/M ratio.

The log Γe values shown on the right Y-axis in Fig. 3 gives
little information about the Γmax in the stellar interior. For exam-
ple, the 80 M⊙ MW ZAMS model has super-Eddington layers in
its envelope, but its Γe value is only 0.27. This shows that Γe is
not a good proxy for the true Γ while investigating the structure
and the stability of massive star envelopes.

At the stellar surface the classical Eddington factor can-
not exceed unity if hydrostatic equilibrium is to be maintained.
Therefore Γe = 1 is an impenetrable upper limit (Eddington
1926; Langer & Kudritzki 2014). However, in the LMC grid
there are apparently many models with Γe > 1 (Fig. 3), but their
surface helium mass fraction exceeds Ys = 0.8 (Köhler et al.
2015). The true Γe = 1 for these models is therefore located at a
higher L such that they all lie below it. For example, if X = 0,
then the Γe = 1 line in Fig. 3 shifts upwards by 0.24 dex.

Across all the metallicities, there are models with Γmax > 1
at Teff < 9000 K. This is because of the opacity peak caused
by hydrogen recombination, and hence is not influenced by the
metal content in the star. The Γmax values of these models can be
as high as 6 for the MW models to &8 for the Pop III models,
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Fig. 3. Spectroscopic Hertzsprung-Russell diagrams showing the non-rotating and slowly rotating core-hydrogen burning models in the five grids
corresponding to the different metallicities (see labels). The left Y-axis shows the quantity log(L /L⊙) with L := T 4

eff
/g, whereas the right

Y-axis shows the corresponding values of log(Γe), in all the five panels. The Γe values are computed at the stellar surface considering electron-
scattering opacity with a hydrogen abundance of X = 0.73 (completely ionised), and the black dotted line marks the location Γe = 1. Note that the
assumption of completely ionised hydrogen breaks down for models with Teff below ≈10 000 K. Black, blue, and red dots correspond to models
with Γmax < 0.9, 0.9 < Γmax < 1, and Γmax > 1, respectively. Only the models with log (L /L⊙) > 3.8 have been shown. The black solid line is the
ZAMS, and the masses of some representative models (in units of M⊙) have been indicated.

meaning that in the outer envelope (around the hydrogen recom-
bination temperature) of such a model the luminosity transported
by radiation can be a few times the Eddington luminosity (Sanyal
et al. 2015). The opacities in the hydrogen recobination zone can
be ∼10 times that of the Fe-opacity peak. Hydrostatic equilib-
rium in these super-Eddington layers is maintained by building
up a positive gas pressure gradient and a positive density gradi-
ent (Joss et al. 1973; Sanyal et al. 2015).

It might be expected that these peculiar structures, cou-
pled with the fact that they are located beyond the observed
Humphreys-Davidson (H-D) limit (Humphreys & Davidson
1979) are prone to various instabilities and possibly undergo vi-
olent mass-loss episodes such that it prevents them from staying
long enough on the cool side of the H-D limit. However, in our

hydrodynamic 1D models we find no sign of a super-Eddington
outflow.

5.3. Dependence of envelope inflation on metallicity

The extent of envelope inflation in the analysed models is sum-
marised in the sHR diagrams in Fig. 5. Comparing this with
Fig. 3, we note that barring a few, none of the models with
Γmax < 0.9 are inflated, whereas models with Γmax > 1 all
have inflated envelopes. Therefore, as mentioned in Sect. 4, the
occurrence of inflated envelopes is related to models approach-
ing the Eddington limit (as defined by Eq. (4)) in their interior.
In general, the hotter models are less inflated than the cooler
models for a given L , in agreement with the results obtained
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by Sanyal et al. (2015). This is expected because the effective
temperature is strongly affected by inflation. The strongest infla-
tion is found in models with Teff . 8000 K, for all Z. The most
extreme cases are found in the I Zw18 and the Pop III models,
where ∆r/rcore can increase to a few hundred.

The Eddington limit is either approached with high opacities
or with a high L/M ratio. Models with lower metal abundances,
that is, with a weaker Fe-opacity bump, need to attain a higher
L/M ratio, or a higher Γe, to reach the Eddington limit and in-
flate their envelopes. Therefore inflation starts at higher L as
Z decreases. However, we reiterate that reaching the Eddington
limit is a sufficient but not a necessary condition for envelope in-
flation to occur (cf. Eqs. (11) and (13)) because the gas pressure
gradient might also contribute to inflating the envelope.

Figure 6 marks the regions in the sHR diagram that separate
the non-inflated models from the inflated ones, considering the
same sample as in Fig. 5. For each model grid the Teff range of
the models was divided into 20 equi-spaced bins, and in each bin
the un-inflated model with the highest L was selected. These
data points were then joined, and the resulting line was smoothed
using Bézier splines. These lines do not extend to Teff values
below ∼10 000 K (see Fig. 5) because we did not find any core-
hydrogen burning model that is not inflated in this temperature
range and hence the boundaries cannot be drawn.

The lines for ZMW and ZLMC show a pronounced dip around
Teff ∼ 35 kK. This is because of the influence of the Fe-bump
coupled with inefficient convection, as previously mentioned.
At lower temperatures, convection becomes more efficient, and
therefore these lines move upwards to higher L . For lower
metallicities this dip is not clearly identified because the Fe-
bump is either weak or absent.

In the MW and LMC grids, the models start to develop in-
flated envelopes even on the ZAMS at masses above ∼80 M⊙
and ∼125 M⊙, respectively. At lower metallicities this is also
expected to occur, although at higher masses and hence at
higher L , which is beyond the parameter space explored here.

5.4. Role of opacity in determining the envelope structure

5.4.1. OPAL opacities

The Rosseland mean opacity κ is a function of density, tempera-
ture, and chemical composition such that for a given ρ and T , κ
increases with an increase in metallicity. This is demonstrated in
Fig. 7, where the three opacity peaks caused by partial ionisation

of iron, helium, and hydrogen at their characteristic tempera-
tures are visible. We note that the opacity does not vary linearly
with metallicity around the Fe bump temperature. The slope dκ

dZ
is higher for lower values of Z. In this section we investigate
how the strength of these opacity peaks determines the density
structure of the inflated envelope.

In Fig. 8 we show the OPAL opacities around the Fe-bump
for the MW and LMC metallicities. As mentioned before, in the
inflated envelope the condition Γ ≈ 1 holds true. Let the corre-
sponding opacity be κEdd such that Γ = κEddLrad/4πcGm ≈ 1.
Consider two models with the same L/M but with metallicities
ZMW and ZLMC such that κEdd = 0.6 (dot-dashed line), and as-
sume that the convective efficiency is negligible. At the peak of
the Fe-bump marked by the vertical black line, the MW model
has to decrease its density by two orders of magnitude, from
10−8 g cm−3 to ≈10−10 g cm−3, whereas the LMC model only has
to decrease to ∼10−9 g cm−3 to satisfy the constraint Γ = 1.
Therefore, the higher metallicity model will adjust its envelope
structure such that it has a lower envelope density. In practice,
however, convection may mediate this effect (Sanyal et al. 2015).

5.4.2. Opacity in the inflated envelope

As mentioned before, the opacity bumps caused by the par-
tial ionisation zones at characteristic temperatures play a ma-
jor role in determining the structure of an inflated envelope. As
prototypical examples, we have selected three sequences with
Z = ZLMC and with initial masses of 60 M⊙, 70 M⊙, and 100 M⊙.
The base of the inflated envelope in these models is located
around the characteristic Fe-bump temperature TFe ≈ 170 000 K.
The maximum opacity within the Fe-bump (κmax

Fe
), that is, be-

tween 5 < log(T/K) < 5.5, for the three sequences are shown
in the top panel of Fig. 9 for that part of the evolution where
the models are not helium enriched at the surface, that is, for
Ys < 0.3. At any given value of ∆r/rcore, the higher mass model
has a lower κmax

Fe
because it has a higher luminosity, and hence

needs to decrease its opacity further to maintain κ ≈ κEdd.

The 60 M⊙ sequence, for example, develops a larger inflated
envelope as it evolves, while increasing its L . The opacity
within the Fe-bump and κmax

Fe
therefore decrease in the initial

phase because convection is relatively inefficient. As the model
evolves to cooler effective temperatures, the Fe-bump occurs
deeper inside the star where densities are higher, and convec-
tion becomes efficient. Hence, κmax

Fe
increases at Teff . 25 000 K.

In the case of the 70 M⊙ sequence, however, there is a drop in
κmax

Fe
at Teff < 5000 K. In this phase of the evolution, a high mass-

loss rate (∼10−5 M⊙ yr−1) causes a sharp increase in L . As a
result, Lrad increases in the Fe-bump region. The convective ef-
ficiency does not increase enough (for details, see Appendix A),
however, such that it can prevent κFe from decreasing.

Models with a higher metallicity have a stronger Fe-bump,
the effect of which is seen in the bottom panel of Fig. 9.
While κmax

Fe
for the 80 M⊙ ZMW model with the highest Teff is

∼1.2 cm2 g−1, the same quantity for the 196 M⊙ ZI Zw18 model is
∼0.5 cm2 g−1. The slope of κmax

Fe
versus ∆r/rcore is steeper for

the ZMW evolutionary sequences than for the other sequences at
lower metallicities because of the nature of the OPAL opacities
that we explained in Sect. 5.4.1.

5.5. Mass contained in the inflated envelopes

In this section we investigate the inflated envelope masses of
our models. In Fig. 10 we compare the 80 M⊙ sequences in the
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Fig. 5. Spectroscopic HR diagram showing the metallicity dependence of inflation for the analysed models in our grid. The left Y-axis shows
the quantity log (L /L⊙), whereas the right Y-axis shows the corresponding values of log (Γe). The Γe values are computed assuming a solar
hydrogen abundance (completely ionised). Models marked with open black dots are not inflated, whereas the coloured dots represent models with
inflated envelopes. The colour of the dots indicates the strength of inflation, log (∆r/rcore ). The black line is the ZAMS, and the masses of some
representative models (in units of M⊙) are indicated along it.

MW, LMC, and SMC model grids and show that for a given
Teff , the higher metallicity model has a lower envelope mass.
At relatively high effective temperatures (Teff > 45 000 K), that
is, when the sequences start developing inflated envelopes for
the first time during their evolution, the envelope masses for all
three sequences are similar, but at as they evolve to lower Teff ,
the distinction becomes clear. For example, at Teff = 30 000 K
the 80 M⊙ MW model has a distinctly lower envelope mass than
the corresponding LMC and SMC models, the difference in their
core radii being negligible. The LMC and the SMC models,
however, have comparable envelope masses over the whole Teff

range. This trend is likely related to the relative strength of the
iron opacity peaks for these metallicities (cf. Fig. 7).

For evolutionary sequences of a given metallicity, for in-
stance, ZLMC, the sequences with higher L s have lower envelope
masses (Menv), as shown in the top panel of Fig. 11. For small
inflation, that is, for ∆r/rcore < 0.1, the envelope mass in the
three LMC sequences is comparable, but as ∆r/rcore increases,
the sequences separate out such that for a given ∆r/rcore, the
100 M⊙ sequence with the highest L has the lowest envelope
mass and comparing with Fig. 9, the lowest κmax

Fe
. We note that

for the 70 M⊙ sequence for example, the envelope mass varies
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by more than five orders of magnitude over its main-sequence
lifetime. The drop in Menv near the end of the 70 M⊙ sequence
is caused by its blueward evolution in the HR diagram, which in
turn is caused by strong mass-loss (cf. Sect. 5.3).

In the bottom panel of Fig. 11, several representative se-
quences from the MW, LMC, SMC, and I Zw18 grids are
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Fig. 8. OPAL opacities for two metallicities ZMW and ZLMC , and three
different values of log(ρ[g cm−3]) each, i.e., −8, −9 and −10, as indi-
cated in the plot. The dot-dashed line at κ = 0.6 is the assumed location
of κEdd.

shown that depict how Menv changes with inflation. The higher
metallicity models have a lower envelope mass for a fixed
∆r/rcore. For example, at ∆r/rcore = 1, the 60 M⊙ LMC se-
quence has Menv = 3×10−3 M⊙, while the 60 M⊙ SMC sequence
has Menv = 6× 10−3 M⊙. At high inflation (∆r/rcore > 10), some
of the lines touch each other, which may be related to the differ-
ent L/M ratios of the models induced by mass loss.
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Fig. 9. Top: maximum opacity within the Fe-bump region for three dif-
ferent evolutionary sequences with initial masses of 60, 70, and 100 M⊙
from the LMC grid as a function of ∆r/rcore. The effective tempera-
ture of the model is colour coded. Only the part of the evolution where
Ys < 0.3 has been plotted. Bottom: same as in the top panel, but for four
metallicities.

We investigate the envelope masses of all the inflated mod-
els in Fig. 12. The envelope mass spans several orders of mag-
nitude from ∼10−5 M⊙ to ∼100 M⊙. In general, we find that
Menv increases with a decrease in Teff for a given metallicity.
This increase in Menv is distinctly steeper at Teff . 8000 K (bot-
tom panel of Fig. 12) compared to that at Teff > 10 000 K.
Below 10 000 K, the low-Z models have very massive envelopes
(bottom panel of Fig. 12). The models that contain the hydro-
gen opacity bump show strong density inversions (Sanyal et al.
2015), and because of the sharp rise in density the envelope mass
increases.

At Teff > 10 000 K, there is a spread in Menv over a few or-
ders of magnitude, but the spread is much narrower at the lowest
effective temperatures. This is because the sequences that evolve
to effective temperatures below ∼8000 K do so for a narrow mass
range. At higher initial masses strong mass loss prevents them
from evolving to low surface temperatures, and at lower initial
masses, inflation is not strong enough.

Gräfener et al. (2012) found from analytical estimates that
the inflated envelope mass scales as Menv ∼ R4/M. For con-
stant M and L, this translates into Menv ∼ T−8

eff
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Fig. 11. Top: inflated envelope masses for three sequences from the
LMC grid as a function of ∆r/rcore, such that Ys < 0.3. Bottom: same as
in the top panel, but for four metallicities.

this curve (Fig. 12) is well reproduced by our model grids at
higher Teff , although at Teff < 8000 K the dependence is steeper
than the analytical estimate. We note that the envelope mass esti-
mates of the Minit = 1000 M⊙ and the Minit = 500 M⊙ models in
the Pop III grid (some of these are the black dots located above
the dotted line in Fig. 12) are particularly uncertain because they
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Fig. 12. Mass contained in the envelope of inflated models as a function
of their effective temperatures for the five metallicities considered in
this study. Only models with Ys < 0.3 are shown. The black dotted
line has been drawn to guide the eye (see text). The bottom panel only
shows models with Menv > 10−2 M⊙ and Teff < 30 000 K. The colour
bar on the right represents the fraction of the stellar mass contained in
the inflated envelope.

are sensitive to the choice of the threshold value of β that marks
the location of rcore. Although these models have inflated en-
velopes, the absence of an opacity peak complicates the process
of identifying rcore. A more detailed investigation of the envelope
structures of massive Pop III models is beyond the scope of the
present paper and will be pursued in a forthcoming study.

The envelope mass is determined by both the extent of infla-
tion (∆r/rcore) and the metallicity. As the metallicity increases,
the models with the most massive inflated envelopes (the cool
supergiants) are found at lower masses. This is a consequence
of the applied mass-loss rates. The wind mass-loss prescriptions
used in stellar evolution calculations are functions of luminos-
ity, temperature, mass, radius, and chemical composition of the
model. With an increase in luminosity or mass, the wind mass-
loss rates increase and the most massive stars in our MW and
LMC grids become helium-rich WR stars (Köhler et al. 2015)
and do not become cool enough to contain massive envelopes
(&1 M⊙), as explained in the previous paragraph. At lower Z, this
occurs at higher masses. At Z = 0, models never become helium-
rich at the surface unless they are very fast rotators (Yoon et al.
2012).

6. Discussion and conclusions

We have performed a study of the envelope structures of core-
hydrogen burning massive star models computed with the fol-
lowing metallicities: ZMW, ZLMC, ZSMC, ZI Zw18, and ZPopIII. We
investigated the Eddington factors in their interior and the con-
nection of this factor to envelope inflation as a function of
metallicity.

As expected, we found that the Eddington limit is metallic-
ity dependent such that models with a higher Z reach Γ = 1 in
their interior at a lower mass. While a 30 M⊙ MW model reaches
Γ ≈ 1 in its interior, it requires a 150 M⊙ Pop III model to obtain
similar Eddington factors on the hot side of the HR diagram,
that is, at Teff > 10 000 K. For models with Teff below the hydro-
gen recombination temperature, metallicity has little effect, and
super-Eddington layers can be found down to ∼5 M⊙ models,
although in the post-main-sequence phase (Langer et al. 2015;
Grassitelli et al. 2015a). Proximity to the Eddington limit leads
to envelope inflation in our models. We find inflated models at
all the metallicities investigated, albeit at different L/M-ratios
(Fig. 6). At a higher Z, envelope inflation starts at lower masses
because of higher opacities that help approach Γ ≈ 1. We reiter-
ate that envelope inflation might already start to develop before
reaching the Eddington limit because of the contribution from
the gas pressure gradient (cf. Sect. 4). Envelope inflation is re-
sponsible for the redward bending of the ZAMS and the TAMS
in the upper HR diagram (Fig. 2), which is also supported by ob-
servations, which show that the upper part of the Galactic HR di-
agram is well populated by stars up to Teff ∼ 10 000 K (Castro
et al. 2014). The extent of inflation might be used to infer the
value of αMLT for massive stars by comparing the main-sequence
width of the models with the observational TAMS (Castro et al.
2014; Bestenlehner et al. 2014).

We find that the mass contained in the inflated envelopes can
range from ∼10−6 M⊙ in the hot luminous models to ∼100 M⊙
in the cool supergiant type models across the range of metallici-
ties we investigated. While the observational signatures of these
envelopes needs to be explored further, the envelopes with high
masses (Menv > 1 M⊙) seem to be promising candidates for ex-
plaining the violent LBV eruptions, for example, the 1860 out-
burst η Car, and other η Car analogues (Khan et al. 2015) or
supernova imposters. These models are near the Eddington limit
and have several solar masses in the loosely bound envelope.
The details of the instability that are responsible for the outburst
still need to be investigated. On the other hand, if the inflated
envelopes are lost episodically from the models with low enve-
lope masses, it will cause them to shrink to the non-inflated core
radius, but will not be able to change the bolometric luminosity
appreciably. These models have been put forward to explain the
S-Doradus-type variations by Gräfener et al. (2012) and Sanyal
et al. (2015).

Moriya et al. (2015) proposed that an observational conse-
quence of a supernova progenitor with an inflated envelope is
that it extends the rise time of the supernova shock-breakout sig-
nal. This naturally explains the long (∼50 s) shock-breakout X-
ray signal detected from the Type Ic SN 2008D (Soderberg et al.
2008) that is believed to have had a compact WR progenitor.

Luminous helium stars also show pronounced core-halo
structures, and such models have been investigated in the past
(Ishii et al. 1999; Petrovic et al. 2006; Gräfener et al. 2012;
Tramper et al. 2015; Grassitelli et al. 2016a). The apparent
mismatch in radii between model atmosphere calculations and
stellar interior models of massive Galactic WR stars has been
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claimed to have been reconciled by envelope inflation (Gräfener
et al. 2012).

The inflated models are potentially unstable against the
so-called strange-mode instability (Gautschy & Glatzel 1990;
Glatzel & Kiriakidis 1993) because of low heat capacities in their
dilute envelopes (Glatzel 1994). Glatzel & Kiriakidis (1993) re-
ported that their solar metallicity models with log(L /L⊙) & 4
are unstable to strange-mode oscillations. This result coincides
with the boundary between the inflated and non-inflated mod-
els in our ZMW grid. Furthermore, these oscillations might drive
mass loss from the star (Grott et al. 2005), although Moriya &
Langer (2015) and Grassitelli et al. (2016a) find that mass-loss
dampens the pulsations. The pulsational properties of our mod-
els will be explored in detail in a forthcoming study.

A critical ingredient in the physics of envelope inflation is
convection, that is, how convective energy transport is treated in
these regions. In the literature, stellar models computed with in-
creased convective efficiency show little or no envelope inflation
(Ekström et al. 2012; Yusof et al. 2013). A discussion of the con-
vective efficiencies in our ZLMC models can be found in Sect. 6
of Sanyal et al. (2015). Jiang et al. (2015) performed 3D radi-
ation hydrodynamics simulations of massive star envelopes and
concluded that for a 80 M⊙ ZAMS model, standard MLT over-
estimates the convective flux in the inflated region around the
Fe-bump. In that case, inflation in our 1D models has been un-
derestimated. Jiang et al. (2015) also found turbulent velocities
that exceed the isothermal sound speed, driving shocks in the en-
velope and creating an inhomogeneous clumpy medium, which,
however, does not lead to a break-down of the inflation.

Grassitelli et al. (2016b) recently investigated the role of tur-
bulent pressure (Pturb) in stellar models computed with MW,
LMC, and SMC metallicities, and found that its effect on stellar
structure is negligible regardless of the metallicity (Grassitelli
et al. 2015b). However, the ratio of Pturb to Ptotal in the stellar
envelopes of the hot stellar models decreases for lower metal-
licities at a given temperature and luminosity. This trend is con-
sistent with our results for inflation (Figs. 5 and 6). At higher
metallicities the density in the inflated envelope is lower, which
implies inefficient convection and therefore a large and negative
entropy gradient. Hence the convective velocities and the Mach
number is also higher, which leads to higher turbulent pressure.

Furthermore, Grassitelli et al. (2015b) found a correlation
between macroturbulent velocities in Galactic OB stars and the
fraction of turbulent pressure in the stellar envelope models.
Since the turbulent pressure contribution in the inflated envelope
becomes stronger in the upper HR diagram, high macroturbu-
lent velocities (&50 km s−1, Simón-Díaz 2015; Grassitelli et al.
2015b; Simón-Díaz et al. 2017) might well be a signature of en-
velope inflation in hot massive stars. The conditions in the in-
flated envelope might be inferred through asteroseismic studies
(Aerts et al. 2014), especially if the connection between inef-
ficient convection and high-order non-radial pulsations is con-
firmed (Aerts et al. 2009; Grassitelli et al. 2015a,b).

It might be interesting to study the fate of the inflated en-
velopes in close binaries, since ∼70% of all massive stars are
believed to interact during their lifetimes (Sana et al. 2012). The
loosely bound envelopes might help to stabilise mass-transfer in
close massive binary systems, especially in metal-rich systems
where this is expected to occur at lower masses. In close binaries,
the hydrogen envelope is typically lost from the mass donor that
bares its helium core and increases the L/M ratio. Helium stars
with solar metallicity start to develop inflated envelopes from
∼10 M⊙ (see Fig. 19 in Köhler et al. 2015). Massive Type Ib/c

progenitors in binary systems are thus expected to have inflated
envelopes (Yoon et al. 2010).

Acknowledgements. D. Szécsi was supported by GAČR grant 14-02385S. S.C.Y.
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Appendix A: Evolution of a 70 M⊙ inflated LMC

model

We present the evolution of a typical inflated model, the 70 M⊙
LMC sequence, with respect to its inflated envelope and the
properties around the iron opacity bump. Only that part of the
evolution has been studied where the surface helium mass frac-
tion (Ys) is lower than 0.3.

The maximum value of the opacity around the Fe-bump
(κmax

Fe
; Fig. A.1) and the density at the location of κmax

Fe
(Fig. A.2)

decrease initially as ∆r/rcore increases, because of an increase
in Lrad/M (Fig. A.3). The product of the quantities κmax

Fe
and

Lrad/M, which is proportional to Γ, also initially increases up
to ∆r/rcore ≈ 0.1 (Fig. A.4). Thereafter it starts decreasing with
a decrease in Lrad/M. The Lrad/M decreases in this phase of
the evolution because of a rise in convective efficiency at this
location, shown in Fig. A.5. This is because as Teff of the model
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Fig. A.1. Maximum opacity in the temperature range 5 < log(T/K) <
5.5 as a function of ∆r/rcore for that part of the evolution where Ys < 0.3.
The colour bar indicates the effective temperature of the models.
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Fig. A.2. Variation in density at the position of κmax
Fe

as a function of
∆r/rcore for that part of the evolution where Ys < 0.3. The colour bar
indicates the effective temperature of the models.

continues to decrease, the Fe-bump occurs deeper inside the star
where density is higher and hence convection is relatively ef-
ficient. When convection is capable of transporting the energy,
the radiative luminosity Lrad decreases, and hence the Eddington
factor at this location (ΓFe) decreases. The inflated envelope con-
tinues to increase even though ΓFe decreases to values as low
as 0.91.

At ∆r/rcore & 20, Lrad/M and ΓFe increase again, while κmax
Fe

decreases. Since the star experiences high mass-loss rates at such
low effective temperatures, its L/M ratio increases sharply in
this phase (Fig. A.6), but the convective efficiency does not in-
crease as much. Hence to let the relatively high radiative flux
pass through, the model reduces its opacity, which increases the
value of Γ at that location. We note that at Teff below ∼8000 K
the location of Γmax is in the hydrogen recombination zone and
not within the Fe-bump.
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Fig. A.3. Lrad/M-ratio at the position of κmax
Fe

as a function of ∆r/rcore for
that part of the evolution where Ys < 0.3. The colour bar indicates the
effective temperature of the models.
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Fig. A.4. Value of the Eddington factor at the position of κmax
Fe

(denoted
as ΓFe) as a function of ∆r/rcore for that part of the evolution where Ys <

0.3. The colour bar indicates the effective temperature of the models.
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Fig. A.5. Ratio of convective flux to the total flux at the position of κmax
Fe

as a function of ∆r/rcore for that part of the evolution where Ys < 0.3.
The colour bar indicates the effective temperature of the models.
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Fig. A.6. Evolution of the quantity log(L /L⊙) as a function of
∆r/rcore for that part of the evolution where Ys < 0.3. The colour bar
indicates the effective temperature of the models.
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