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Abstract—Metalorganic vapor phase epitaxial (MOVPE) growth
of GaN on nanopatterned AGOG sapphire substrates was per-
formed, and characteristics of the light-emitting diode (LED) de-
vices grown on patterned sapphire and planar substrates were
compared. The nanopatterned sapphire substrates were fabricated
by a novel process (AGOG) whereby aluminum nanomesas were
epitaxially converted into crystalline Al2 O3 via a two-stage anneal-
ing process. The GaN template grown on the nanopatterned sap-
phire substrate was done via an abbreviated growth mode, where a
15-nm thick, low-temperature GaN buffer layer was used, without
the use of an etch-back and recovery process during the epitaxy. In-
GaN quantum wells (QWs) LEDs were grown on the GaN template
on the nanopatterned sapphire, employing the abbreviated growth
mode. The optimized InGaN QW LEDs grown on the patterned
AGOG sapphire substrate exhibited a 24% improvement in output
power as compared to LEDs on GaN templates grown using the
conventional method. The increase in output power of the LEDs is
attributed to improved internal quantum efficiency of the LEDs.

Index Terms—Dislocation density, InGaN quantum wells, light-
emitting diodes, MOVPE growth, nanoheteroepitaxy, sapphire.

I. INTRODUCTION

SAPPHIRE is most commonly used as the substrate for ni-
tride light-emitting diodes (LEDs) in solid state lighting due

to its physical robustness and high temperature stability. GaN
native substrates are still at present very expensive and not vi-
able for large-scale device production, in particular for address-
ing low-cost, solid-state lighting applications. Direct growth of
high-temperature GaN on sapphire often results in poor film
quality and severe epitaxy film cracking. This is due to the large
lattice mismatch of 16% between wurtzite GaN and c-plane
sapphire. To overcome this, conventional GaN growth on sap-
phire by metalorganic vapor phase epitaxy (MOVPE) employs
low-temperature GaN buffer [1] or AlN buffer [2] layers, prior
to the growth of high-temperature GaN layer. The essence of
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the low-temperature, buffer-layer technique is to reduce the in-
terfacial free energy between the epitaxial layer and the highly
mismatched substrate by using a more compliant softer ma-
terial [3]. To reduce the dislocation density of MOVPE GaN
through the in situ method, hydrogen (H2) etch back of the
low-temperature GaN buffer layer and intentional delay of the
nucleation island coalescence (recovery) is often adopted [4].
The etch-back and recovery technique typically adds 30 to
45 min to the MOVPE GaN growth time, thus adding significant
cost to the epitaxy of nitride-based LEDs.

The threading dislocation density of the GaN template grown
by the conventional approach is still high, in the mid 108–
1010 cm−2 range [5]. High density of threading dislocations
has been linked to failure of lasers [6] and breakdown of p–n
junctions [7]. Hence, for high performance and reliable nitride-
based LEDs and laser diodes, threading dislocation density has
to be reduced. Several approaches have been implemented to
reduce the threading dislocation density in GaN epitaxial lay-
ers, such as lateral epitaxial overgrowth (LEO) [8], pendeo epi-
taxy [9], and cantilever epitaxy [10]. These approaches have
demonstrated reduced dislocation densities in the GaN layers
in the range of 106–107 cm−2 , but the low-defect regions are
only limited to 5–10 µm wide stripe ridges. Recently, Hersee
et al. proposed a technique based on nanoheteroepitaxy (NHE)
of GaN on nanopatterned silicon substrates [11], which leads
to reduction in the dislocation density of the GaN film through
the introduction of compliant substrate surface structures. Other
research groups have also grown III-Nitride LEDs via conven-
tional GaN growth on patterned sapphire substrate for the goal
to increase the light extraction efficiency of LEDs [12]–[15].
However, the approach to enhance the light extraction efficiency
requires relatively deep etch patterns in the range of 1–5 µm,
as well as typical pattern size and center-to-center spacing of 3
and 4 µm, respectively [12]–[15].

In this paper, we present NHE of GaN template grown on
nanopatterned AGOG c-plane sapphire substrate employing a
novel “abbreviated growth mode” by MOVPE. We also com-
pare the device characteristics of nitride LED devices grown
on our current template with those grown on conventional GaN
templates.

The advantages of using nanopatterned sapphire substrates
are twofold: 1) increased internal quantum efficiency of nitride
LEDs with improved reliability from the reduction in dislo-
cation density and 2) ability to utilize the novel abbreviated
growth mode for the epitaxy of GaN that avoids the need for
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Fig. 1. Fabrication process of nanopatterned AGOG sapphire and MOVPE of
GaN on nanopatterned AGOG sapphire substrate.

an etch-back and recovery technique. This, in turn, leads to a
significant reduction in cost and time of the epitaxy. From our
studies, we found that use of the abbreviated growth mode was
important for optimized growth of GaN templates on nanopat-
terned sapphire, and improvements in LED output power were
observed for the InGaN QW LEDs grown on nanopatterned
sapphire substrates.

II. NANOPATTERNING OF SAPPHIRE SUBSTRATE THROUGH

NOVEL AGOG PROCESS

In our approach, instead of patterning the sapphire substrate
via an etching technique [12]–[15], we employed a novel AGOG
process that enables creation of single crystal Al2O3 islands
on the sapphire substrates. The “AGOG” is an acronym for
the process of conversion Al into single crystal sapphire, by
employing aluminum deposition, growth of oxide, and grain
growth [16], [17]. It is the unique process of creating these
nanostructures via oxidation of deposited aluminum (Al) is-
lands to form Al2O3 and subsequently annealing to convert the
islands to single crystal [16], [17]. In our current approach, by
converting nanopatterned Al-metals deposited on sapphire sub-
strate via AGOG process, nanopatterned AGOG sapphire sub-
strate can be realized. The details of the nanopatterning of the
sapphire via the AGOG process and MOVPE epitaxy of the GaN
on the patterned AGOG substrate are presented in Fig. 1, with
the following steps: 1) electron-beam lithography of metallic
nanostructures on sapphire; 2) deposition of 100 nm Al-layer
for lift off; 3) annealing treatment to grow a polycrystalline
oxide; and 4) high-temperature grain growth.

In our experiments, the Al-metal lift off mask patterned by
electron-beam lithography is composed of an array of hexagons
approximately 200 nm wide with center-to-center spacing of
400 nm. In our proof-of-concept experiment, the size of the
patterned AGOG region was limited to 1 mm ×1 mm. A layer
of 100 nm Al was then deposited, followed by the lift off process.
The patterned Al metal on c-plane sapphire underwent two heat
treatments: 1) 450 ◦C oxidation anneal in air for 24 h [scanning

Fig. 2. (a) SEM of aluminum nanostructure array after oxidation at 450 ◦C
and (b) epitaxial conversion to single crystal Al2 O3 after 1200 ◦C anneal.

Fig. 3. Electron backscatter diffraction image of planar sapphire substrate and
nanopatterned region after the AGOG process.

electron microscopy (SEM) image shown in Fig. 2(a)], followed
by 2) 1200 ◦C in air for 24 h to induce grain growth of the
underlying sapphire single crystal to consume the oxide layer
[shown in Fig. 2(b)].

Electron backscatter diffraction (EBSD) was conducted on
the planar sapphire [Fig. 3(a)] and nanopatterned AGOG sap-
phire [Fig. 3(b)] islands. Indexing of the patterns confirmed that
the patterned AGOG nanostructures consisted of sapphire with
the same orientation as the (0001) substrate [see Fig. 3(a) and
(b)]. Further details on this finding have been reported elsewhere
in [16]. The EBSD pattern of the AGOG nanopatterned region is
not visible for cases in which the islands are not converted into
single crystal. Hence, the EBSD pattern of the converted island
in Fig. 3 was from the AGOG nanostructures and not the un-
derlying sapphire substrate. The GaN layer was then grown on
nanopatterned AGOG sapphire, using nanopillar growth mode.
Ideally, the nanopillar growth mode enables the strain to dis-
tribute in three dimensions, which leads to a reduction in strain
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energy and stress-induced defect formation. The dislocations in
the GaN grown on the patterned sapphire islands are terminated
when the GaN film coalesces.

III. MOVPE OF GaN Templates on Nanopatterned Sapphire
Employing Abbreviated Growth Mode

In the conventional GaN template growth, a 30-nm thick,
low-temperature (535 ◦C) GaN buffer layer is grown on c-plane
sapphire, followed by a H2 etch-back process, and a delayed
recovery stage during high-temperature (1080 ◦C) GaN growth.
During the H2 etch-back process, the low-temperature buffer
layer is broken down into micron-sized crystallites from which
the high-temperature GaN can nucleate and grow. This step is
critical for the successful growth of the high-temperature GaN.
The AGOG nanopatterns on the sapphire substrate have much
smaller dimensions at 200 nm. Though the nanoisland size is
not small enough to completely eliminate strain energy, it en-
ables the strain to distribute in three dimensions, which leads to
reduction in strain energy and stress-induced defect formation.
Nonetheless, there is significant surface roughness introduced
by the nanopatterned surface as compared to a standard planar
sapphire substrate.

To investigate whether high-temperature GaN is able to nucle-
ate on nanopatterned sapphire without the presence of a buffer
layer, an experiment was conducted in which high-temperature
GaN growth was carried out directly on a sapphire substrate with
small AGOG nanopatterned regions surrounded by conventional
planar surfaces. Fig. 4(a) and (b) show SEM images of 0.25-µm
thick, high-temperature GaN grown directly on this substrate.
From Fig. 4(a), it was observed that the high-temperature GaN
grows readily on the nanopatterned region of the sapphire. In
contrast, the high-temperature GaN did not nucleate on the ad-
jacent planar region. The scalloped appearance of the bottom
edge of the nanopatterned sapphire in Fig. 4(a) is an artifact due
to imperfect metal lift-off during processing. A higher magni-
fication SEM micrograph of the high-temperature GaN grown
on a nanopatterned region of the sapphire substrate is shown in
Fig. 5. Together, these images confirm that the use of nanopat-
terned AGOG sapphire leads to improvement in the nucleation
process of the GaN without the need for a low-temperature
GaN buffer layer and etch-back and recovery process. However,
closer examination of the high-temperature GaN grown in this
way reveals that the surface has undesirable roughness on the
c-plane surface.

As a compromise between surface quality and speed of
growth, surface morphology studies were conducted using
GaN grown on nanopatterned sapphire by an “abbreviated
growth mode” technique. In this technique, a 15-nm thick,
low-temperature GaN buffer is grown, followed by the growth
of high-temperature GaN without the intermediate etch-back
and recovery process. Fig. 6 shows SEM micrographs of the
nanopatterned and planar sapphire after the growth of 15-nm
GaN buffer layer and 0.1 µm of high-temperature GaN. The
surface morphology of the two regions was very different. With
a thin buffer layer—and with etch-back and recovery processes
bypassed—GaN was preferentially grown on the nanopatterned

Fig. 4. SEM of (a) high-temperature GaN grown directly on the nanopat-
terned region as well as the surrounding planar region, (b) top left corner of
nanopatterned region.

Fig. 5. SEM of 0.25-µm-thick GaN grown directly on nanopatterned sapphire
without a buffer layer.

sapphire region in a similar fashion to the case with no buffer
layer. Despite the relatively thin GaN layer of 0.1 µm, coales-
cence of GaN on the patterned region was significantly advanced
over that of the 0.25-µm-thick GaN grown directly on nanopat-
terned sapphire, resulting in relatively planar material early in
the growth process.

To further investigate the surface morphology evolution dur-
ing GaN growth, studies were also conducted on 0.25-µm thick,
high-temperature GaN grown on a similar nanopatterned sap-
phire substrate with a 15-nm GaN buffer layer. Fig. 7 shows a
SEM micrograph of the GaN grown on a nanopatterned region of
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Fig. 6. SEM of 0.1-µm-thick GaN grown on nanopatterned sapphire and
planar sapphire with a 15-nm buffer layer.

Fig. 7. SEM of 0.25-µm-thick GaN grown on nanopatterned sapphire and
planar sapphire with a 15-nm buffer layer.

the substrate, as well as that grown on the adjacent planar region.
From Fig. 7, we observe that at 0.25 µm the high-temperature
GaN has completely coalesced forming a smooth film on the
nanopatterned sapphire, but not on the planar region. The use
of the abbreviated growth mode on nanopatterned sapphire is
a significant advantage over the conventional approach since it
reduces the epitaxy time, leading to cost reduction. Note that
our abbreviated growth mode is different from the previously
reported [18] GaN growth mode on etched patterned sapphire,
which still require the use of conventional growth method uti-
lizing the etch-back and recovery processes [18].

Fig. 8. Comparison of reflectivity during the growth of n-doped GaN template
using the (a) conventional and (b) thinner buffer layer method without etch-back
and recovery process. The temperature profile is shown for growth employing
abbreviated mode.

IV. GROWTH OF InGaN QW LEDs

As a first step toward fabrication of InGaN quantum well
(QW) LEDs, the successful high-temperature GaN growth con-
ducted on a thin buffer layer without the usual etch-back and
recovery processes was extended to the growth of n-GaN tem-
plates on patterned and planar sapphire substrates. Conventional
growth on planar sapphire was performed for comparison. Dur-
ing the growth of the high-temperature GaN, the molar flow rate
of trimethylgallium (TMGa) was 5.407 µmol/min, and NH3
was used as group V source with a flow rate of 2800 sccm,
corresponding to a V/III ratio of about 3700. Fig. 8 shows a plot
of reflectivity and growth temperature during epitaxial growth
of the n-doped GaN templates. For the conventional growth,
the etch-back and recovery stages are shown in the reflectivity
curve. These growth steps were bypassed during the abbreviated
growth for a savings of approximately 30 min. The GaN tem-
plates grown using the conventional and abbreviated methods
were both 2.8 µm thick.

The InGaN QW LED devices were grown on the three com-
parison GaN templates as follows: abbreviated growth mode on
nanopatterned AGOG sapphire (sample 1), conventional growth
mode on planar sapphire (sample 2), and abbreviated growth
mode on planar sapphire (sample 3). The InGaN QW LED
structures were grown on the comparison GaN templates at the
same time, and the active region consisted of four-period 2.5-nm
In0.15Ga0.85N QW and 12-nm GaN barriers (Tg = 740 ◦C). The
growth of the active regions and barriers employed N2 as the
carrier gas with a flow rate of 2500 sccm. The molar flow rates of
triethylgallium (TEGa) and trimethylindium (TMIn) were 1.104
and 0.613 µmol/min, respectively. The In-content of the InGaN
QW studied here was found to be 15%, as calibrated via X-ray
diffraction.

V. LED DEVICE CHARACTERISTICS

Fig. 9 shows the LED light output power versus injection
current of three comparison LEDs. The LED devices were
measured under continuous wave (CW) conditions at room
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Fig. 9. Comparison of room temperature CW output power—injection current
of In0 .15 Ga0 .85 N QW LEDs grown on three comparison templates (samples 1,
2, and 3).

temperature. The on-wafer output power of the LEDs with an
area of 1.25 × 10−3 cm2 was measured in a dark room. Not sur-
prisingly, the InGaN QWs LED grown using abbreviated growth
mode on planar sapphire (sample 3) had an output power 28%
lower than the LED grown using the conventional method on
planar sapphire (sample 2). However, for the InGaN QWs LED
grown using abbreviated mode on patterned AGOG sapphire
(sample 1), the output power and internal quantum efficiency
were enhanced by 24% in comparison to the conventional LED
(sample 2).

Fig. 10(a) and (b) show cross-sectional transmission elec-
tron microscopy (TEM) images for LED device structures on
GaN template grown on planar sapphire by using conventional
method (sample 2) and LED device structures on GaN tem-
plate grown on nanopatterned AGOG sapphire by using abbre-
viated growth mode (sample 1), respectively. These preliminary
measurements indicate that the threading dislocation density
of the GaN grown on patterned AGOG sapphire is approxi-
mately an order magnitude lower than that of GaN grown on
planar sapphire. The reduction in dislocation density can be
observed in Fig. 10(b); however, it is difficult to provide ac-
curate quantification of the threading dislocation density from
cross-sectional TEM. Future works on plan-view [0001] TEM
measurements [19] on both sample 1 and sample 2 are required
to provide accurate quantification of the dislocation density.

This proof-of-concept experiment demonstrates that the ab-
breviated growth mode on patterned sapphire formed via the
AGOG process shows promise for achieving improved radia-
tive efficiency of InGaN QW LEDs. At this stage, it must be
acknowledged that electron beam patterning of the substrate
is impractical as a production tool. The advantage offered by
the use of patterned AGOG sapphire substrates can be exploited
only when the patterning can be accomplished by large-scale and
low-cost lithography processes (e.g., holography lithography).
Once this is achieved, the thermal processing of the substrates
can be performed as a batch process at relatively low additional
cost.

Fig. 10. Cross-sectional transmission electron microscopy of (a) GaN grown
on planar sapphire using conventional growth and (b) GaN grown on nanopat-
terned sapphire with abbreviated growth mode.

VI. CONCLUSION

In summary, proof-of-concept MOVPE growth experiments
were conducted with GaN template on nanopatterned AGOG
sapphire substrates. The use of patterned AGOG sapphire en-
abled introduction of an “abbreviated growth mode” that signifi-
cantly reduces the epitaxy time for a typical GaN template. This
growth mode is dependent on the patterned sapphire surface for
success. Although a thin-GaN buffer layer is still needed to facil-
itate coalescence of the high-temperature GaN, the conventional
etch-back and recovery steps are no longer required.

Comparison studies were carried out on various InGaN QW
LED devices grown on three comparison GaN templates: abbre-
viated growth mode on nanopatterned AGOG sapphire, conven-
tional mode on planar sapphire, and abbreviated growth mode
on planar sapphire. The output power of the LEDs grown with
the abbreviated mode on the nanopatterned substrate demon-
strated improved optical output power of 24% over the LEDs
grown using the conventional method. This improvement can be
attributed to the increase in radiative efficiency of the material.
Further structural characterizations are still required to provide
a better understanding of the mechanism underlying this im-
provement. In addition to the improved radiative efficiency in
InGaN/GaN LED devices, the abbreviated growth mode of GaN
template on patterned AGOG sapphire—accompanied by large-
scale and low-cost substrate patterning—could potentially lead
to a significant reduction in the growth time and cost for LED
epitaxy.
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