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Using a combination of quantum Monte Carlo (QMC) and exact methods, we study the field-
driven saturation transition of the two-dimensional J-Q model, in which the antiferromagnetic
Heisenberg exchange (J) coupling competes with an additional four-spin interaction (Q) that favors
valence-bond solid order. For small values of Q, the saturation transition is continuous, and is
expected to be governed by zero-scale-factor universality at its upper critical dimension, with a
specific form of logarithmic corrections to scaling (first proposed by Sachdev et al. [Phys. Rev. B
50, 258 (1994)]). Our results conform to this expectation, but the logarithmic corrections to scaling
do not match the form predicted by Sachdev et al. We also show that the saturation transition
becomes first order above a critical coupling ratio (Q/J)min and is accompanied by magnetization
jumps—metamagnetism. We obtain an exact solution for (Q/J)min using a high magnetization
expansion, and confirm the existence of the magnetization jumps beyond this value of coupling
using quantum Monte Carlo simulations.

I. INTRODUCTION

Models of quantum magnetism are a topic of great in-
terest in the quest to understand quantum phase transi-
tions and many body states with strong quantum fluctu-
ations. Studies in this field typically focus on identifying
phases and phase transitions between them as a func-
tion of some coupling ratio. These coupling ratios are
typically difficult or impossible to tune in experimental
systems. In contrast, external magnetic fields are easy
to adjust in experiments, making studies of field-driven
quantum phase transitions particularly relevant. Despite
this fact, such phase transitions have been largely ne-
glected by the theoretical literature. Here, we present a
study of the field-driven saturation transition in a two-
dimensional (2D) quantum antiferromagnet known as the
J-Q model. In this model, a nearest neighbor antiferro-
magnetic Heisenberg exchange of strength J competes
with a four-spin interaction of strength Q, which fa-
vors valence-bond solid order. The form of this term
is −QPi,jPk,l (where Pi,j ≡ 1

4 − Si · Sj and i, j and
k, l denote parallel bonds of an elementary plaquette of
the square lattice). While the Q interaction competes
with the Heisenberg exchange, it does not produce frus-
tration in the conventional sense, allowing numerically-
exact quantum Monte Carlo studies of the physics. We
find that the field-driven saturation transition from the
antiferromagnet to the fully saturated state in the J-Q
model is composed of two regimes: a low-Q continuous
transition and high-Q discontinuous (first order) tran-
sition with magnetization jumps, both of which will be
address here.
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For low Q, we find that the transition is continuous
and is therefore expected to be governed by a zero-scale-
factor universality, which was predicted by Sachdev et al.
in 1994 [1], but until now had not been tested numerically
or experimentally in spatial dimension d = 2 (2D). Al-
though the leading order behavior matches the Sachdev
et al. prediction, we find multiplicative logarithmic vi-
olations of scaling at low temperature. Such violations
are to be expected based on the fact that 2D represents
the upper critical dimension for this transition, but these
scaling violations do not match the form predicted by
Sachdev et al. for reasons that are currently unclear.

At high Q, the saturation transition is first order and
there are discontinuities (jumps) in the magnetization
known as metamagnetism [2–4]. These jumps are caused
by the onset of attractive interactions between magnons
(spin flips on a fully polarized background) mediated by
the Q-term (a mechanism previously established in the
1D J-Q model [2]). We use a high-magnetization expan-
sion to obtain an exact solution for the critical coupling
ratio (Q/J)min where the jump first appears.

II. BACKGROUND

The J-Q model is part of a family of Marshall-positive
Hamiltonians constructed from products of singlet pro-
jection operators [5]. The two-dimensional realization of
the J-Q model is given by

HJQ = −J
∑
〈i,j〉

Pi,j −Q
∑
〈i,j,k,l〉

Pi,jPk,l (1)

where 〈i, j〉 sums over nearest neighbors and 〈i, j, k, l〉
sums over plaquettes on a square lattice as pairs acting
on rows k l

i j and columns j l
i k

[6]. The zero-field J-Q
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model has been extensively studied in both one [2, 7–9]
and two [6, 10–13] spatial dimensions, where it provides a
numerically tractable way to study the deconfined quan-
tum critical point marking the transition between the
Néel antiferromagnetic state and the valence-bond solid
(VBS). The VBS breaks Z4 lattice symmetry to form an
ordered arrangement of local singlet pairs. Here we will
not focus on this aspect of the J-Q model, but instead
add an external magnetic field hz

HJQh = HJQ − hz
∑
i

Szi , (2)

and study the magnetization near the field-driven tran-
sition to saturation. A separate paper [14] will discuss
magnetic field effects in the vicinity of the Néel-VBS
transition (see also Ref. 15). Hereafter we will either
fix the energy scale by (1) setting J = 1 (and thereby
referring to the dimensionless parameters q ≡ Q/J and
h ≡ hz/J) or by (2) requiring J + Q = 1 (and thereby
referring to the dimensionless parameters s ≡ Q/(J +Q)
and h ≡ hz/(J +Q)).

Magnetization jumps are a first-order phase transition
(sometimes called metamagnetism) in which the magne-
tization changes suddenly in response to an infinitesimal
change in the magnetic field [3, 4]. This sort of transition
usually occurs in spin systems with frustration or intrin-
sic anisotropy [16–24], but recent work [2, 15, 25, 26] has
shown that metamagnetism occurs in the 1D J-Q model,
which is both isotropic and unfrustrated. The magne-
tization jumps in the 1D J-Q model are caused by the
onset of attractive interactions between magnons (flipped
spins against a fully polarized background) mediated by
the four-spin interaction [2]. In the 1D case the criti-
cal coupling ratio qmin can be determined exactly using
a high-magnetization expansion [2]. Here we build on
previous previous work [2] to include the 2D case.

Zero-scale-factor universality, first proposed by
Sachdev et al. in Ref. 1, requires response functions
to obey scaling forms that depend only on the bare
coupling constants, without any nonuniversal scale
factors in the arguments of the scaling functions. It
applies to continuous quantum phase transitions that
feature the onset of a nonzero ground state expectation
value of a conserved density [1, 2]. The saturation
transition in the J-Q model for q < qmin is just such
a situation [2], although the 2D case is at the upper
critical dimension of the theory, so we expect to find
(universal) multiplicative logarithmic corrections to the
zero-factor scaling form.

Outline: The methods used in this chapter are summa-
rized in Section III. In Section IV, we discuss a schematic
phase diagram of the 2D J-Q model. In Section V, we fo-
cus on the onset of a magnetization jump at qmin, where
the saturation transition becomes first order, and derive
an exact result for the value of qmin. In Section VI we dis-
cuss the universal scaling behavior near the continuous
saturation transition, focusing on tests of the zero-scale-
factor prediction as well as the presence of multiplicative

logarithmic corrections expected at the upper critical di-
mension (d = 2). Our conclusions are discussed in Sec-
tion VII.

III. METHODS

For the exact solution for qmin we have used Lanc-
zos exact diagonalization [27] of the two-magnon (flipped
spins on a fully polarized background) Hamiltonian,
which we derive in an exact high-field expansion. The
large-scale numerical results obtained here were gen-
erated using the stochastic series expansion quantum
Monte Carlo (QMC) method with directed loop updates
[28] and quantum replica exchange. This QMC program
is based on the method used in our previous work [2].
The stochastic series expansion is a QMC method which
maps a d-dimensional quantum problem onto a (d + 1)-
dimensional classical problem by means of a Taylor ex-
pansion of the density matrix ρ = e−βH , where the extra
dimension roughly corresponds to imaginary time in a
path-integral formulation [27]. In the QMC sampling,
the emphasis is on the operators that move the world-
lines rather than the lines themselves. The method used
here is based on the techniques first described in Ref. 28.

In addition to the standard updates, we incorpo-
rated quantum replica exchange [29, 30], a multicanonical
method in which the magnetic field (or some other pa-
rameter) is sampled stochastically by running many sim-
ulations in parallel with different magnetic fields and pe-
riodically allowing them to swap fields in a manner that
obeys the detailed balance condition. To further enhance
equilibration we used a technique known as β-doubling,
a variation on simulated annealing. In β-doubling simu-
lations begin at high temperature and the desired inverse
temperature is approached by successive doubling of β;
each time β is doubled a new operator string is formed
by appending the existing operator string to itself [31].
A detailed description of all of these techniques can be
found in Chapter 5 of Ref. 15.

IV. PHASE DIAGRAM

In Fig. 1, we present a schematic zero-temperature
phase diagram of the 2D J-Q model. The h-axis of
Fig. 1 corresponds to the well-understood 2D Heisenberg
antiferromagnet in an external field, and the q-axis cor-
responds to the previously-studied [6, 10–13, 32] zero-
field J-Q model, which for q < qc has long-range anti-
ferromagnetic Néel order in the ground state. At finite
temperature O(3) spin-rotation symmetry (which is con-
tinuous) cannot be spontaneously broken (according to
the Mermin-Wagner Theorem [33]), so there is no long-
range spin order; instead there is a ‘renormalized clas-
sical’ regime with the spin correlation length diverging
exponentially as T → 0 like ξ ∝ e2πρs/T [34]. At qc, the
zero-field J-Q model undergoes a quantum phase tran-
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FIG. 1. Cartoon phase diagram of the 2D J-Q model in an
external field at zero temperature. The different phases and
critical points are explained in the text.

sition to the valence-bond solid (VBS) state. The off-
axes area of Fig. 1 has not previously been studied; we
here focus on the region around the field-driven satura-
tion transition, hs(q). The region around the deconfined
quantum critical point, qc, will be addressed in a forth-
coming publication [14].

Starting from the Néel state (q < qc) on the q-axis,
adding a magnetic field forces the antiferromagnetic cor-
relations into the XY plane, producing a partially polar-
ized canted antiferromagnetic state. At finite tempera-
ture, there is no long-range Néel order, but the addition
of a field permits a BKT-like transition to a phase with
power-law spin correlations. For q > qc, the ground state
has VBS order. This state has a finite gap, so it survives
at finite temperature and is destroyed by the magnetic
field only after it the closes spin gap. The destruction of
the VBS recovers the canted antiferromagnetic state (or
partially polarized spin disordered phase for T > 0).

We here will focus on the saturation transition in
the high-field region of the phase diagram. The system
reaches saturation (where all spins are uniformly aligned
in the +z direction) at h = hs(q). For q < qmin, this
transition is continuous and the saturation field is given
by hs(q ≤ qmin) = 4J (in this regime hs(q) is a dashed
line). For q > qmin the saturation transition is first order
(i.e. metamagnetic) and there are macroscopic discon-
tinuities in the magnetization (in this regime hs(q) is a
solid line). The point qmin denotes the onset of metam-
agnetism, here the magnetization is still continuous, but
the magnetic susceptibility diverges at saturation (corre-
sponding to an infinite-order phase transition).

V. METAMAGNETISM

Magnetization jumps (also known as metamagnetism)
can appear due to a variety of mechanisms including
broken lattice symmetries, magnetization plateaus [20],
localization of magnetic excitations [35–37], and bound

states of magnons [2, 18, 20]. It has previously been
established that magnetization jumps occur in the J-Q
chain caused by the onset of a bound state of magnons
[2, 25, 26]; this is the first known example of meta-
magnetism in the absence of frustration or intrinsic
anisotropy. To understand the mechanism for metam-
agnetism, we consider bosonic spin flips (magnons) on a
fully polarized background. These magnons are hardcore
bosons that interact with a short-range repulsive inter-
action in the Heisenberg limit. The introduction of the
Q-term produces an effective short-range attractive inter-
action between magnons. At qmin, this attractive force
dominates and causes pairs of magnons to form bound
states.

A. Exact Solution for qmin

We will now find qmin for the 2D J-Q model using the
procedure developed for the J-Q chain in Ref. 2. Let us
define bare energy of an n-magnon state, Ēn, as

En(J,Q, h) = Ēn(J,Q)− nh/2. (3)

We can then define the binding energy of two magnons
as

Ξ(q) ≡ 2Ē1 − Ē2. (4)

The Q term is nonzero only when acting on states where
there are exactly two magnons on a plaquette, so it does
not contribute to the single-magnon dispersion, which
has a tight-binding-like form [2]. We can therefore solve
analytically for the single-magnon energy, Ē1 = −4J .
The two-magnon energy, Ē2 corresponds to the ground
state in the two magnon sector, and must be determined
numerically. Since this is only a two-body problem, rel-
atively large systems can be studied using Lanczos exact
diagonalization to obtain Ē2 to numerical precision.

In Fig. 2 we plot the binding energy of two magnons,
Ξ(q, L), for 0 ≤ q ≤ 1 and L = 4, 8, 12, 16. For all sizes
the binding energy becomes positive around q ≈ 0.417.
We can also see that Fig. 2 strongly resembles the anal-
ogous figure for the J-Q chain (see Fig. 6 of Ref. 2).
For q < qmin finite size effects result in an underes-
timate of the binding energy and for q > qmin finite
size effects cause an overestimate of the binding energy.
Around qmin these effects cancel out and the crossing is
nearly independent of system size (in the 1D case the
crossing is exactly independent of L). Using a brack-
eting procedure, we can extract qmin(L) to numerical
precision. Table I contains a list of qmin(L) for select
L × L systems with L ≤ 24. qmin converges exponen-
tially fast in L, so based on these modest sizes we know
qmin(L = ∞) = 0.41748329 to eight digits of precision.
Although we do not plot it here, the exponential con-
vergence of qmin(L) can be seen from the underlines in
Table I, which indicate the digits which are converged to
the thermodynamic limit; the number of underlined dig-
its grows linearly with L. Note here that qmin is not the
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FIG. 2. Binding energy Ξ(q, L) plotted against q for several
system sizes calculated using exact diagonalization. The thin
black line represents Ξ = 0. Inset: zoomed-in view of crossing
point.

TABLE I. qmin(L) calculated to machine precision for select
L× L systems using Lanczos exact diagonalization. The un-
derlined portions of the numbers represent the digits that are
fully converged to the thermodynamic limit.

L qmin

4 0.413793103448

6 0.417287630402

8 0.417467568061

10 0.417481179858

12 0.417482857341

14 0.417483171909

16 0.417483250752

18 0.417483274856

20 0.417483283375

22 0.417483286742

24 0.417483288198

same as qc (the Néel-VBS transition point), and these
two phase transitions are governed by completely differ-
ent physics.

In Fig. 3 we plot the ground state probability density
in the two magnon sector as a function of separation of
the magnons in the x-direction, rx (with ry = 0). Here
we consider a small (18×18) system in order to make the
features at the boundary easier to distinguish on the scale
of the figure. For q = 0, we can see that the probability
density takes on the form of a free particle with periodic
boundary conditions in rx, ry, with a single excluded site
at rx = ry = 0. In the continuum limit, this corresponds
to a repulsive delta potential. For q > qmin the wave-
function takes on the exponentially-decaying form of a
bound state. At q = qmin (the crossover between re-
pulsive and attractive interactions) the wavefunction be-
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FIG. 3. Probability density of magnon separation in the x-
direction for ry = 0, |ψ(rx, ry = 0)| in the two-magnon sector
of the J-Q model; calculated using Lanczos exact diagonal-
ization.

comes flat with an exponentially-decaying short-distance
disturbance of the form ψ ∝ 1 − ae−rx/b (this was con-
firmed by further data not depicted here). This exponen-
tial disturbance explains why the finite size effects vanish
exponentially near qmin. This form of the wavefunction
in the 2D case stands in contrast to the flat wavefunc-
tion in the 1D J-Q model, where the bulk wavefunction
at qmin is perfectly flat and qmin is exactly independent
of L for L > 6 [2].

The onset of attractive interactions between magnons
has previously been found to cause metamagnetism
[2, 18, 20], but bound pairs of magnons are not a suf-
ficient condition to guarantee the existence of a macro-
scopic magnetization jump. The magnetization could, for
example, change by steps of ∆mz = 2, but never achieve
a macroscopic jump [20, 38]. For a true jump to occur,
the point qmin must be the beginning of an instability
leading to ever larger bound states of magnons. In the
next section we will confirm numerically that a macro-
scopic magnetization jump does in fact occur in the full
magnetization curves obtained via quantum Monte Carlo
simulations. It will not be possible to detect the onset of
the magnetization jump (which is initially infinitesimal)
by directly examining the magnetization curves due to
finite-temperature rounding. Instead in Section VI we
will examine the scaling of the magnetization near sat-
uration and find that a qualitative change in behavior
consistent with the onset of a different universality class,
occurs at the predicted value of qmin.
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B. Quantum Monte Carlo Results

In Fig. 4, we plot the magnetization density,

m =
2

L2

∑
Szi , (5)

of the 2D J-Qmodel as a function of external field for sev-
eral different values of 0 ≤ s ≤ 1 where s is defined such
that J = 1− s and Q = s such that J +Q = 1. Here
we use a 16 × 16 lattice with β = 4. Ordinarily, QMC
can study much larger systems than this, but as was ob-
served in our previous work [2, 25], the J-Q model with
a field is exceptionally difficult to study, even when using
enhancements such as β-doubling and quantum replica
exchange (both used here). We have compared to larger
sizes and finite size effects do not qualitatively affect the
results on the scale of Fig. 4. For s = 0 (the Heisenberg
limit), the magnetization is linear in h for small fields,
and smoothly approaches saturation at h = 4J . When
s = 0.2, corresponding to a coupling ratio of q = 0.25, the
magnetization curve begins to take on a different shape:
shallower at low field and steeper near saturation. This
trend continues as s increases: for s ≥ 0.8, there is a
clear discontinuity. Although the jump should appear
for q ≥ qmin = 0.417, which corresponds to smin = 0.294,
this is difficult to distinguish in the QMC data. At qmin,
the jump is infinitesimal, and even when the jump is
larger, such as for s = 0.4 and s = 0.6, it is hard
to clearly distinguish due to finite temperature effects,
which round off the discontinuity in the magnetization.
These results are nonetheless consistent with the value of
qmin predicted using the exact method, and demonstrate
that a macroscopic magnetization jump does in fact oc-
cur. We will discuss more evidence for qmin ≈ 0.417 from
the critical scaling of the magnetization near saturation
in Section VI.

VI. ZERO-SCALE-FACTOR UNIVERSALITY

In the J-Q model, magnetization near saturation is
governed by a remarkably simple zero-scale-factor uni-
versality for q < qmin (where the saturation transition is
continuous) [1, 2]. Here, ‘zero-scale-factor’ means that
the response functions are universal functions of the bare
coupling constants and do not depend on any nonuniver-
sal numbers [1]. Zero-scale-factor universality applies to
low-dimensional systems where there is a quantum phase
transition characterized by a smooth onset of a conserved
density [1]. Typically this is applied to the transition
from the gapped singlet state of integer spin chains to a
field-induced Bose-Einstein condensate of magnons (exci-
tations above the zero magnetization state). In the J-Q
model, we instead start from the saturated state with
h > hs, and consider flipped spins on this background—
magnons—as h is decreased below hs. In the 1D case, the
zero-factor scaling form applies for all q < qmin at suffi-
ciently low temperature, and is violated by a logarithmic
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s=0.6

s=0.8

s=1.0

FIG. 4. Magnetization density of the 2D J-Q model as
function of external field, h, for a range of different val-
ues of s defined such that J = 1 − s and Q = s. Here
s = 0, 0.2, 0.4, 0.6, 0.8, 1 with β = 4 correspond to q =
0, 0.25, 0.67, 1.5, 4,∞ respectively (with non-constant β). Re-
sults from QMC with quantum replica exchange.

divergence at exactly qmin [2]. The 2D J-Q model is
at the upper critical dimension of this universality class,
so we expect multiplicative logarithmic violations of the
zero-factor scaling form for all q. We will describe the
universal scaling form and its application to the satura-
tion transition in the 2D J-Q model and then show that
the low-temperature violations of the scaling form do not
match the prediction in Ref. 1.

In two spatial dimensions, the zero-factor scaling form
for the deviations from saturation (δ 〈m〉 ≡ 1 − 〈m〉) is
given by Eq. (1.23) of Ref. 1:

δ 〈m〉 = gµB

(
2M

h̄2β

)
M(βµ) (6)

Where M is the bare magnon mass (which is M = 1
when J = 1), and µ represents the field, µ ≡ hs − h. For
q ≤ qmin, the saturation field is hs = 4J (which can be
determined analytically from the level crossing between
the saturated state and the state with a single flipped
spin [2]). We set h̄ = 1 and δ 〈m〉 = gµB 〈n〉 to define
the rescaled magnon density:

ns(q, βµ) ≡ β 〈n〉
2

=M(βµ) (7)

We emphasize again that these magnons are spin flips on
fully polarized background, so n→ 0 corresponds to the
saturated state. The field is also reversed from the usual
case (of a gapped singlet state being driven to a polarized
ground state by applying a uniform field). Thus, in the
present case, h > hs produces a negative µ, which means
n → 0, and h < hs corresponds to a positive µ and a
finite density of magnons.
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FIG. 5. (Top) The zero-scale-factor-rescaled magnon density
[Eq. (7)] at h = hs, µ = 0 calculated using QMC with quan-
tum replica exchange. The bright green line is a fit to the
log-corrected scaling form Eq. (12). (Bottom) A zoomed-in
view.

At the saturation field, µ = 0, the scaling form in
Eq. (7) predicts that the density takes on a simple form:

〈n〉 = 2M(0)T (8)

At this same point the rescaled density, ns, becomes in-
dependent of temperature:

ns(q, 0) ≡ β 〈n〉
2

=M(0) (9)

In our case there are two spatial dimensions and z = 2
imaginary time dimensions, so the total dimensionality
is d = 4, which is the upper critical dimension of the
zero-scale-factor universality [1]. At low temperatures,
we therefore expect to see multiplicative logarithmic vio-
lations of this scaling form, which should be universal as
well.

In Fig. 5, we plot the rescaled magnon density at satu-
ration, ns(q, µ = 0), as a function of temperature for two
different sizes, 32×32 and 64×64. Here we use the exact

value of the saturation field hs(q ≤ qmin) = 4J . These
sizes are large enough that finite size effects only become
important at low temperature; the results for the two dif-
ferent sizes overlap completely for T ≥ 0.1, but exhibit
some separation at lower temperature depending on the
value of q. From simulations of 96 × 96 and 128 × 128
systems (not depicted here) we know that the 64 × 64
curve for q = qmin is converged to the thermodynamic
limit within error bars.

If there were no corrections to Eq. (7) the lines in Fig. 5
would exhibit no temperature dependence. Instead, we
observe violations of the scaling form for all q. For q = 0,
there is some non-monotonic behavior, with a local min-
imum around T = 0.35; at low temperatures, ns(T ) ap-
pears to diverge like log(1/T ), which on this semi-log
scale manifests as a straight line. For q = 0.1 and 0.2, the
behavior is similar, although the whole curve is shifted
upwards. For q = 0.3, the local minimum in ns(T ) ap-
pears to be gone. The divergence for q < qmin looks
log-linear, but it is difficult to distinguish between differ-
ent powers of the log by fitting alone. At q = 0.4 and
q = qmin = 0.4174833, finite size effects become more
important, and it appears that the log has a different
power.

A. Behavior around qmin

We can also use the low-temperature behavior of ns
in Fig. 5 to verify our prediction of qmin (from the high-
magnetization expansion discussed in Section V A). At
qmin, the transition is no longer the smooth onset of a
conserved density, therefore the zero-scale-factor univer-
sality does not apply (not even with logarithmic correc-
tions). For all q < qmin, the low-temperature divergence
appears to obey a form log

(
1
T

)
, or some power of it.

At q = qmin the divergence of ns(qmin, T ) takes on a
qualitatively different form that appears to diverge faster
than log

(
1
T

)
. This confirms the value of qmin predicted

by the high-magnetization expansion, even though no
sign of a discontinuity can be observed in the magnetiza-
tion curves themselves due to finite-temperature round-
ing (see Fig. 4).

B. Low-temperature scaling violations

Sachdev et al. [1] derive a form for the logarithmic
violations of the zero-scale-factor universality that occur
at the upper critical dimension. At µ = 0 (saturation,
h = hs) they predict that the magnon density will take
on the form

〈n〉 =
2MkBT

4π

[
log

(
Λ2

2MkBT

)]−4
(10)

(see Eq. (2.20) of Ref. 1). Where Λ is an upper (UV)
momentum cutoff. We can plug this into Eq. (7) to find
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a prediction for the log-corrected form of the rescaled
magnon density:

ns(µ = 0) =
M

4π

[
log

(
Λ2

2MkBT

)]−4
. (11)

This form should also be universal, but the UV cutoff
should depend on microscopic details.

For simplicity we will restrict our analysis to the
Heisenberg limit (Q = 0). Setting the magnon mass,
M = 1 (the bare value) and introducing a fitting pa-
rameter, a, we can attempt to fit our QMC results for
ns(q = 0, T → 0) to the form

ns = a

[
log

(
Λ2

T

)]−4
. (12)

Automatic fitting programs were unable to find suitable
values of a and Λ (in the low temperature regime where
the divergence appears), so we manually solved for a
and Λ using two points: ns(T = 0.04) = 0.278 and
ns(T = 0.10) = 0.2604, finding a = 2.65354 × 106 and
Λ = 1.7× 10−13. We plot the resulting curve as a bright
green line in Fig. 5. Although this appears to produce
a good fit to the rescaled numerical data at low T , the
fitting parameters do not make physical sense. The pref-
actor is fixed by the theory to be a = M/(4π) ≈ 0.08, yet
the fitted value is huge: a ≈ 106 (7 orders of magnitude
too large). Worse yet, the UV cutoff, Λ, is extremely
small (10−13), much smaller than any other scale in this
problem. In zero-scale-factor universality, there should
be no renormalization of bare parameters, but even al-
lowing for renormalization of the mass, M (perhaps due
to being at the upper critical dimension), it is not pos-
sible for Eq. (12) to match the data while maintaining a
physically sensible (i.e. large) value of the UV cutoff Λ.

On close inspection, the fit in Fig. 5 bears a remarkable
resemblance to a linear log T divergence. Indeed, since
T � Λ2, we can expand Eq. (12) in a Taylor series around
small u = log T and we find an expression

ns =
a

(log Λ2)4

[
1 + 4

log T

log Λ2
+ 10

(
log T

log Λ2

)2

+ · · ·

]
(13)

that is linear in log T to first order and converges rapidly
because log Λ2 ≈ −58. Considering this fact and the un-
physical parameters required to make the Sachdev form
fit the data, it is clear that Eq. (11) does not accurately
describe the violations of the zero-scale-factor universal-
ity at its upper critical dimension. The apparent fit is
instead a roundabout approximation of the true form,
which is (approximately) proportional to log

(
1
T

)
to some

positive power, although the exact power is difficult to
determine from fitting. The reasons for the failure of the
form predicted in Ref. 1 are unclear at this time.

VII. CONCLUSIONS

Here we have presented a numerical study of the two-
dimensional J-Q model in the presence of an external

magnetic field, focusing on the field-induced transition
to the saturated (fully polarized) state. Building on a
previous version of this study which focused on the 1D
case [2, 25], we have found that the saturation tran-
sition is metamagnetic (i.e. has magnetization jumps)
above a critical coupling ratio qmin. The existence of
metamagnetism in the J-Q model is surprising because
all previously-known examples of metamagnetic systems
had either frustration or intrinsic anisotropy. This tran-
sition is caused by the onset of bound states of magnons
(flipped spins against a fully polarized background) in-
duced by the four-spin Q term. The same mechanism
can explain presence of metamagnetism in a similar ring-
exchange model [24]. We have determined qmin using
an exact high-magnetization expansion (see Ref. 2). Al-
though it is not possible to directly observe the onset
of the magnetization jump in the QMC data, we do see
an apparent change in universal scaling behavior at qmin

(Fig. 5) which most likely corresponds to the presence of
an infinitesimal magnetization jump which goes on to be-
come the macroscopic jump we see at high q and matches
the results of our exact calculation. We cannot exclude
the possibility that there is some intermediate behavior,
like a spin nematic phase [39] between q ≈ 0.417 and
some higher-q onset of metamagnetism, but we believe
this is unlikely.

For q < qmin, the saturation transition is continuous
and is governed by a zero-scale-factor universality at its
upper critical dimension [1]. This universality has al-
ready been shown apply to the 1D case [2]. We have
presented the first-ever numerical test of the zero-scale-
factor universality in two dimensions. We found that the
low-temperature scaling violations do not obey the form
proposed by Ref. 1 and instead appear to diverge as some
positive power of log T as T → 0.

There are still some important unanswered questions
here that need to be addressed in future studies. It is
still unclear why the scaling violations to not match the
form predicted by Ref. 1 or what should be the correct
form of the violations. In a preliminary report [15, Ch. 3]
we considered an alternative form of the violations based
on an analogy to the scaling of the order parameter in
the 4D Ising universality class (also at its upper critical
dimension). This universality matches the leading-order
scaling predictions of the zero-scale-factor universality,
and produced a better but not fully convincing agreement
with the scaling violations observed in our QMC results
and the theoretical basis for the analogy was weak. Fur-
ther theoretical work is required to determine the correct
form of the scaling violations. Once the proper form of
the scaling violations is established it should be checked
over the full range of its validity 0 ≤ q < qmin. At qmin,
the zero-scale-factor universality does not apply, but it
is not currently clear what universal behavior should ap-
pear. Finally, we have not discussed the behavior of this
system at low fields; this aspect of the J-Q model includ-
ing the field effect near the deconfined quantum critical
point qc [32] will be addressed in a forthcoming publica-
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tion [14].
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