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Abstract

Background: Exposure to environmental tobacco smoke (ETS) leads to higher rates of pulmonary diseases and

infections in children. To study the biochemical changes that may precede lung diseases, metabolomic effects on

fetal and maternal lungs and plasma from rats exposed to ETS were compared to filtered air control animals.

Genome- reconstructed metabolic pathways may be used to map and interpret dysregulation in metabolic

networks. However, mass spectrometry-based non-targeted metabolomics datasets often comprise many

metabolites for which links to enzymatic reactions have not yet been reported. Hence, network visualizations that

rely on current biochemical databases are incomplete and also fail to visualize novel, structurally unidentified

metabolites.

Results: We present a novel approach to integrate biochemical pathway and chemical relationships to map all

detected metabolites in network graphs (MetaMapp) using KEGG reactant pair database, Tanimoto chemical and

NIST mass spectral similarity scores. In fetal and maternal lungs, and in maternal blood plasma from pregnant rats

exposed to environmental tobacco smoke (ETS), 459 unique metabolites comprising 179 structurally identified

compounds were detected by gas chromatography time of flight mass spectrometry (GC-TOF MS) and BinBase

data processing. MetaMapp graphs in Cytoscape showed much clearer metabolic modularity and complete content

visualization compared to conventional biochemical mapping approaches. Cytoscape visualization of differential

statistics results using these graphs showed that overall, fetal lung metabolism was more impaired than lungs and

blood metabolism in dams. Fetuses from ETS-exposed dams expressed lower lipid and nucleotide levels and higher

amounts of energy metabolism intermediates than control animals, indicating lower biosynthetic rates of

metabolites for cell division, structural proteins and lipids that are critical for in lung development.

Conclusions: MetaMapp graphs efficiently visualizes mass spectrometry based metabolomics datasets as network

graphs in Cytoscape, and highlights metabolic alterations that can be associated with higher rate of pulmonary

diseases and infections in children prenatally exposed to ETS. The MetaMapp scripts can be accessed at http://

metamapp.fiehnlab.ucdavis.edu.
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Background
Exposure to environmental tobacco smoke (ETS) during

fetal development can cause serious health consequences in

later stages of life to increase the risk of respiratory disease

and susceptibility [1-4]. Biochemical studies suggest that

ETS can alter cell signaling and metabolic functions that

can impair normal cellular growth and morphology in lung

tissues [5,6]. Environmental tobacco smoke exposure has

also been associated with abnormal fetal development [7,8].

However, the exact biochemical changes in different organs

of ETS-exposed animal models are not understood on the

systems level.

Among the functional genomics technologies, metabo-

lomics may better assist in understanding physiology on

systems level, because the metabolome is the ultimate out-

come of biochemical networks and close to disease phe-

notypes. Metabolic perturbations can be investigated on

the levels of genomic topology, gene expression or proteo-

mics, aided by functional ontology interpretation [9] or

pathway mapping [10]. However, changes on gene and

protein levels may not lead to actual changes in metabolic

fluxes and abundance levels, the realm of metabolomic

techniques. Data acquisition and statistical analysis of

metabolomic data have undergone extensive advancement

in the past 10 years [11,12], but interpretation of meta-

bolic data is much less straightforward than that with gen-

omic and proteomic data sets. Unlike in gene and protein

expression studies, no single technology platform can com-

pletely cover all metabolites present in organisms. Physico-

chemical properties of complex lipids, volatiles, primary

metabolites and exogenous components such as vitamins

and food phytochemicals are too different to be analyzed

by a single device. Nevertheless, a good default approach is

to target the most conserved part of metabolism, called pri-

mary metabolic pathways that list well known intermedi-

ates such as metabolism of carbohydrates, amino acids,

fatty acids, hydroxyl acids, nucleotides, purines and related

compounds. Quantitative analysis of common primary

metabolites is most useful to understand major physio-

logical consequences, e.g. growth [13] and diseases [14], as

many primary metabolic pathways are well studied with re-

spect to regulatory aspects of associated genes and

enzymes. Indeed, most primary metabolites are captured in

standard biochemical pathway databases such as MetaCyc

[15] or the KEGG LIGAND repository [16] while biochem-

ical knowledge repositories for lipid, secondary and volatile

metabolism are far less advanced. Most primary metabo-

lites have molecular masses below 550 Da which makes

them amenable to data acquisition using gas chromatog-

raphy (GC) and mass spectrometry (MS) after derivatiza-

tion [17], albeit with notable exceptions such as di- and

triphosphates (e.g. ATP, NADPH, fructose-1,6-bispho-

sphate) or selected other compounds (e.g. beta-carotene,

betaine, S-adenosylmethione).

To cover these compounds, hydrophilic interaction

chromatography/electrospray tandem MS [18] and capil-

lary electrophoresis/MS [19] have been used which focus

on hydrophilic metabolites and thus complement

separations based on lipophilic interactions (reverse

phase liquid chromatography/MS) [20]. Each platform

faces technical limitations which yet constrain reporting

more than 200 identified primary metabolites per data

set, as well as additional metabolic signals that refer to

unknown and potentially novel metabolic intermediates.

GC/MS can be considered as most mature because large

mass spectral repositories have been compiled under

standard data acquisition procedures to annotate small

molecules, most prominently the NIST and Wiley librar-

ies that cover more than 250,000 compounds. Metabo-

lites are distinct in their three-dimensional structure

(e.g. glucose, galactose, mannose) and thus need to be

referred to by both mass spectra and standardized

chromatographic retention which led to the develop-

ment of small target libraries [21,22]. These libraries

support metabolomic databases such as BinBase [23]

that automatically process raw data files into input

data sets for statistical comparisons, e.g. in cancer biol-

ogy [24], plant biology [25], microbial studies [26,27]

or metabolism of subcellular compartments [28]. Sub-

sequently, the observed differential regulation of metabo-

lites needs to be interpreted based on biochemical and

physiological background information, both from pathway

repositories [29,30] and literature databases like the human

metabolome database HMDB [31]. While many metabo-

lites can be mapped to overall metabolic modules, e.g.

using KEGG LIGAND metabolic maps [24], it was noticed

that many metabolites could not be mapped to any known

metabolic pathways or reactions available in the KEGG

database. Beyond the mere extension of genomic recon-

struction databases, e.g. by pathway gap analysis [32] or

community curation efforts [33], the presence of non-

mapped metabolites may be explained by substrate and re-

action promiscuity of enzymes [34,35]. In addition, even for

the best studied organism like Escherichia coli, 40% of the

genes are still not annotated with any cellular function [36].

For newly sequenced organisms, the number of non-anno-

tated genes and thus uncertainty about presence of meta-

bolic pathways is certainly even higher. Therefore, to map,

to visualize and to interpret altered metabolic levels with

respect to biochemical networks remains a formidable

bottleneck in metabolomics.

Due to the sparse nature of metabolomic coverage and

the presence of unaccounted metabolic signals in meta-

bolomic data sets, efforts have been undertaken to utilize

the inherent data structure beyond statistical compari-

sons. The Pearson’s correlation matrix of metabolomic

data was used to represent the metabolic relationships in

a network context [37]. It was shown that the existence
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of such correlation pairs actually reflects biochemical

regulation [38,39]. However, translating a correlation link

into a biochemical link is not straightforward as correla-

tions may not only be driven by the action of enzymes

but also other factors, e.g. transcription regulators.

Another approach is to investigate the topological struc-

ture of network graphs, for example based on contrast-

ing, comparing and correlating multiple nodes

simultaneously [40] using static or dynamic networks

[41]. However, while expression-based metabolite net-

works may shed light on hidden structures in data sets,

biochemistry-based network graphs of metabolic reac-

tions can serve as input to develop structural and

organization models [42], leading to insights into evolu-

tionary relationships [43-45], establish metabolic routes

in a large metabolic networks [46] or predict cellular

growth in microorganisms [47].

While the standardized methods for data acquisition

and improved data processing have enabled generation

of high quality and reliable metabolomics datasets,

methods that would assist biological interpretation are

confined only to metabolic pathway mapping using bio-

chemical knowledgebases. Among those methods, bio-

chemical visualization of metabolomics datasets using

pathway diagrams showed several bottlenecks that

should be overcome for biological interpretation of the

statistical pattern within data. A genome sequence with

its annotation and mRNAs and proteins with their ex-

pression values can be overlaid on static pathway dia-

grams to highlight sequence inferred presence/absence

of a pathway or sub pathway in an organism, and to

visualize mRNA/protein inferred increase/decrease in

metabolic flux in multiple pathways. However, metabolo-

mics datasets do not contain all the metabolites pre-

dicted in a genome constrained metabolic network, not

all the identified metabolites in a metabolomics datasets

can be mapped to pathway diagrams and 2/3 of the

detected metabolites are unknowns. Metabolites are all

different and cannot be sequenced from a linear code ar-

rangement of building blocks, unlike genes, transcripts

and proteins. Furthermore, metabolites can be members

of many different reactions, as they reflect the ultimate

output phenotype of the underlying complex regulatory

and enzymatic network. Therefore, a biochemical

visualization approach for metabolomics is required that

is independent of genome sequence, and that can

visualize all the metabolites in a metabolomics dataset,

include all the known biochemical reactions for identi-

fied metabolites, yield customizable layout and efficiently

visualize differential alteration in metabolite levels to

assist biological interpretation. We here present an ap-

proach to integrate network graphs based on biochem-

ical reactions with chemistry-based graphs. Differential

expression of all the detected metabolite nodes is

superimposed onto the graph to aid the biological inter-

pretation of perturbations in metabolic networks.

Results and discussion
41% of all detected metabolites were significantly

regulated under exposure to secondhand smoke

GC-TOF MS based metabolomics of maternal and fetal

lungs and maternal blood plasma extracts yielded over

700 distinct signals per chromatogram which were auto-

matically deconvoluted and submitted to our open

source BinBase mass spectral processing database. Bin-

Base filters out noisy signals that are not positively

detected in at least 50% of at least one study design

class, excludes known artifacts from data export, adds

potentially novel compounds that had never been

detected before, annotates spectra by retention index/

mass spectral matching to libraries of authentic stan-

dards and finally exports a high confidence data matrix

for statistical and biochemical analysis, including KEGG

and PubChem identifiers for each metabolite. Intensity

values for compounds that were absent in some samples

but positively detected in others are replaced by target

ion signal intensities at the expected peak retention time,

minus the lowest noise signal in local neighborhood, en-

suring that a complete data matrix was available. Over-

all, 459 metabolites were detected in a consistent

manner over all chromatograms, of which 179 were

structurally identified. Between 285–377 metabolites

were positively detected per organ (Figure 1A) using the

stringent BinBase quality criteria. The far majority of all

compounds were detected in at least two organs, verifyin

the conserved nature of metabolism and the suitability

for comparison of metabolic effects of treatments with

environmental tobacco smoke (ETS) between animals

and between organs. Consequently, one-way ANOVA

comparisons were conducted for each metabolite be-

tween ETS-treated and control organs (p< 0.05, n = 8

per group in dams, n = 46 per group for fetuses). With

notable exceptions, ETS treatment led to downregulation of

metabolite concentrations for most compounds (Additional

file 1: Table S1). Interestingly, the largest number of signifi-

cantly regulated metabolites under ETS treatment was

found for fetal lung metabolites (Figure 1B), despite the fact

that maternal lungs were much more directly exposed than

the embryo itself. Indeed, few compounds were found to be

significantly regulated in more than one organ, indicating a

highly specific and organ-dependant metabolic response to

ETS exposure. Only 7% of the compounds were detected

exclusively in blood but not in lung tissues. Moreover, the

Venn diagram (Figure 1B) clearly shows that very few meta-

bolic alterations were apparent in blood plasma and even

fewer of these were shared with changes in either maternal

or fetal lungs. This finding demonstrates that differential ex-

pression of lung metabolites was indeed directly associated

Barupal et al. BMC Bioinformatics 2012, 13:99 Page 3 of 15

http://www.biomedcentral.com/1471-2105/13/99



with tissue-specific changes in cellular regulation in lungs

and not conferred by potential contamination with blood

metabolites. Overall, 189 of the total of 459 metabolites

were significantly different in at least one organ (41%). Each

individual compound can be visualized in bar diagrams, e.g.

for hypoxanthine and orotic acid which are involved in pur-

ine and pyrimidine pathways (Figure 1C, D). Tables or bar

charts are hard to navigate with respect to functional rela-

tionships, especially when hundreds of variables are investi-

gated. How can we depict all metabolic changes while

simultaneously keeping visual clarity of and superimposing

biochemical organization?

Mammalian biochemical databases poorly covered the

detected metabolome

Mapping all metabolites to biochemical pathways appears

to be a logical approach for further structuring and finally

interpreting the observed metabolic changes. A range of

databases and tools have been developed over the past

10 years [48-50]. Accordingly, we have matched all 179

identified metabolites against seven biochemical repositories

and additional chemical databases (Additional file 2: Table

S2) to evaluate how many of these compounds were cov-

ered by biochemical knowledgebases. We deemed enzyme

reaction databases most relevant that referred to mamma-

lian biochemistry such as HumanCyc [15], Biochemical

Genetic and Genomic knowledgebase BiGG [51], Reactome

[50] and the Edinburgh Human Metabolic Network

(EHMN) [52]. Surprisingly, 30-53% of all identified metabo-

lites could not be mapped this way (Figure 2) although most

compounds were supposed to be genuine endogenous lung

metabolites and not e.g. derived from gut microbial metab-

olism (like hippuric acid) or food constituents (like sitos-

terol), detected solely in blood plasma. This finding

indicated that genomic-reconstructed mammalian pathway

databases are far from complete. We therefore queried glo-

bal reaction pathway databases (MetaCyc and KEGG) that

would encompass also non-mammalian genomes and

reduced the loss biochemical coverage to only 15-24% of

the structurally identified metabolites (Figure 2). These

Figure 1 Overview analysis of metabolomic data and differential metabolic regulation for fetal lungs, and maternal blood plasma and

maternal lungs of rats exposed to environmental tobacco smoke (ETS) compared to filtered-air (FA) exposed animals. (A) High

confidence detection (BinBase) and overlap of metabolites among all three tested organs. (B) Number of differentially altered metabolites

(p< 0.05), and overlap of significant differences among three organs. (C&D). Exemplary box and whisker plots of two metabolites that were

found significantly altered in three organs.
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compounds may be due to enzyme substrate or reaction

promiscuity [53]. In the next step we searched ligand and

chemical databases which did not directly refer metabolites

to reactions or enzymes: KEGG Compound, MetaCyc

Compound, ‘Chemicals of Biological Interest’ ChEBI [54],

Human Metabolome database HMDB [31] and the largest

freely available chemical repository, PubChem [55]. Only in

PubChem, all compounds were referenced whereas in other

databases, 9-16% of the identified metabolites were not cat-

alogued. The majority of missing compounds were com-

posed of lipids, sugars and sugar conjugates, pointing to

current lack of knowledge of substrate and reaction specifi-

city for many mammalian enzymes.

Biochemical mapping leads to loss of structural clarity

Even without those compounds missing from a specific

biochemical database, it might still be helpful to display the

overall metabolic dysregulation of ETS-impaired lung me-

tabolism on biochemical pathways, either by using available

direct visualization tools or by network graphs. Some tools

such as MetaCyc are focused on single pathways but do

not readily facilitate matching overview results on ‘all Meta-

Cyc pathways’. We have first used seven publicly available

direct ‘global’ visualization tools [50,56-61], (Additional file

3: Table S3). Tools were straightforwardly usable and in-

deed provided the capabilities as referenced. However,

results were not satisfying due to several drawbacks: first,

all tools had static visualization layouts which were defined

by the boundaries of the genes (or proteins, metabolites, re-

spectively) encoded in the tools, but not based on the actual

input, here: the 179 structurally identified metabolites. A re-

cently reported tool, MetExplore [60], uses all MetaCyc

pathways for global mapping of metabolites. Unfortunately,

it does not yield images but only returns lists of associated

pathways, and not connections between these. Alterna-

tively, the KEGG Atlas global map of 128 independent

pathways [58] can be used. However, global pathway map-

ping approaches all suffer from lack of visual clarity because

typical metabolomic data sets (such as the rat ETS data set

used here) are sparsely populated. In cells, metabolic regu-

lation focuses fluxes towards end products and some pools

of intermediate branch points, but metabolic regulation

does not lead to accumulation of many pathway intermedi-

ates which are therefore missing from data sets (Additional

file 4: Figure S4), in addition to constraints given by the

particular metabolomic platform used for data acquisition.

Furthermore, 45% of our identified metabolites could not

be mapped onto this KEGG Atlas global map because, only

a fraction of the 371 reference pathway maps in the KEGG

database are summoned in the Atlas global map (Add-

itional file 4: Figure S4). In order to obtain an overall

complete and structurally clear graphical view of mapping

metabolites to pathways, alternative strategies need to be

taken. Such graphs need to be able to adapt flexibly to the

input data while displaying all input metabolites in a bio-

chemically relevant overview. In order to aid biological

interpretations, views should facilitate superimposing results

of statistical analyses and focus on dysregulated pathway

modules while also displaying all encompassed pathways.

Additional discussion and comparison of various pathway

Figure 2 Data representation of a total of 179 identified metabolites from the rat environmental tobacco smoke metabolomics study

by querying various bioinformatics databases. Databases were queried using KEGG and PubChem identifiers in addition to individual

compound names.
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mapping tools are given in [62]. Ultimately, graphical path-

way mapping visualizations serve biologists to draw conclu-

sions or new hypotheses that would otherwise be difficult to

obtain. The purpose of tools like MetaMapp is therefore to

map data to biochemical modules to facilitate biological

interpretations. Secondly, MetaMapp may be used to inte-

grate metabolomic data with data from other Omics plat-

forms, but it is not aimed at using graphs to predict fluxes

or to predict enzymatic reactions for novel metabolites [63].

Instead of using static global maps, we have therefore tested

using Cytoscape for visualization of biochemical pathway

databases. While this approach certainly enables large over-

views and zooming functionality, overall graph structures

are determined by the high number of entities in pathway

databases. In global KEGG pathway graphs, 4688 metabo-

lites are present (2010 version, excluding the drug-like com-

pounds), which led to densely packed, hairball-type

visualizations that are unsuitable if 179 metabolites are

matched (Additional file 5: Figure S5). The only exception

returning a visually clear graph was by employing the KEGG

pathway query that returned a list of 137 of our 179 ETS-

study metabolites. Linking those 137 metabolites based on

association with pathway maps as edges yielded a custo-

mized graph (Additional file 5: Figure S5) that proximately

clustered metabolites according to biochemical neighbor-

hood. However, the observed clustering was not very strong,

and a range of compounds were found as isolated groups of

nodes. In addition, 42 metabolites were not visualized as

these were not present in the KEGG PATHWAY database.

When using the KEGG reactant pair database, a total of

149 metabolites were mapped on a global view in a uni-

partite graph (Additional file 5: Figure S5, e). As this

visualization was reflecting all metabolites comprised in

the KEGG reactant pair database, the network graph still

appeared very dense despite some emergence of biochem-

ical modules based on overall reaction distances [64,65] in

which the ETS-study metabolites were clustered. A bio-

chemically superior approach is utilizing the information

content of substrate/product reactant pairs for which the

majority of atoms are shared, and indeed, metabolic path-

ways are best analyzed using atomic reconstruction map-

ping [66,67]. Using reactant pairs as founding parameter

of metabolic pathways [68,69] is essential to derive bio-

chemically relevant conclusions, unlike efforts that only

utilize network topology data. In addition, reconstruction

of pathways that are based on reactant pairs assists in

identifying pathway gaps that can be filled in by assigning

reactions from enzyme paralogs or orthologs of yet not-

annotated enzymes [70].

Chemical network graphs yield cluster resembling

biochemical modules

While these initial networks were encouraging, they failed

in visual clarity, strength of biochemical clustering and

completeness of mapping our detected metabolites. We

have therefore explored adding a radically different ap-

proach: if biochemistry refers to the conversion of chem-

ically similar compounds by catalytic enzymes, it appears

logical to associate all compounds directly by their chem-

ical similarity. Clusters of chemical similar compounds

should then resemble biochemical modules. The struc-

tures of all 179 identified metabolites can be encoded in

molfiles which can be decomposed into substructures

(Figure 3, labeled in colors) which are defined by a 881-bit

publicly available set of substructures (ftp://ftp.ncbi.nlm.

nih.gov/pubchem/specifications/pubchem_fingerprints.

txt) in PubChem. The presence and count of all of these

substructures define a matrix which was subjected to dis-

tance calculation utilizing the Tanimoto formula [71],

yielding a pair-wise chemical similarity matrix among all

studied metabolites. While we have used here only 179

variables, this approach can be easily extended to next

generation metabolomics data sets that may encompass

many more identified metabolites. These similarity ma-

trixes can be visualized in Cytoscape graphs by applying

thresholds of similarity scores to define network edges

(Additional file 6: Figure S6). Tanimoto coefficients run

from 0 to 1 from ‘no similarity’ to ‘identical structure’. At

high threshold settings (0.9), scattered graphs were

obtained with many isolated compounds. Even at very low

thresholds (0.5), compounds were found in isolation of

the network, while clusters begin to disappear into densely

packed patterns. At 0.7 Tanimoto coefficient thresholds,

clear metabolite clusters resulted (Additional file 7: Figure

S7). Isolated compounds were connected to the network

by its single closest similar compound (see Methods).

Resulting clusters of fatty acids, organic acids, sugars,

sugar alcohols, phosphates, amino acids, nucleotides, pur-

ines and aromatics indeed were similar to patterns yielded

by KEGG RPAIR matching networks. Most importantly,

such chemical similarity network graphs can map metabo-

lites that lack reaction annotation in any biochemical data-

base. However, there were compounds that are known to

be biochemically closely related (members of the tricarb-

oxylic acid cycle, TCA) that were not found in close prox-

imity in chemical similarity networks (Figure 4A and

additional file 7: Figure S7). Succinic, aconitic and fumaric

acid had higher chemical similarity to fatty acids than to

hydroxyl acid s, and thus were placed in proximity to the

fatty acid cluster. Hence, solely relying on chemical simi-

larities fails to generate reactant pair networks that are

fully suitable for enzymatic interpretations [63].

MetaMapp integrated network graphs display all

metabolites while maintaining biochemical organization

In order to resolve the shortcomings of both mapping

approaches, we therefore combined KEGG reactant pairs

and Tanimoto chemical similarity tools into a novel
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method, MetaMapp (Figure 3). We have first mapped all

identified metabolites of our ETS study against the presence

in the KEGG reactant pair database for single-step conver-

sions. 101 of 179 metabolites were returned in this query.

Subsequently, a simple interaction format (.sif) network

graph was constructed and visualized in Cytoscape.

Cytoscape enables adding further node or edge metadata

for visualization purposes, such as statistical significance in-

formation or magnitude of regulation. Results for the

MetaMapp graphs are given in Figure 4, showing zoom-ins

that highlight the improved biochemical interpretability

from Tanimoto chemical similarity networks to MetaMapp

graphs. Complete Cytoscape session files are given as

additional information S8. As demonstrated by Figure 4A,

TCA metabolites were scattered into different clusters of

nodes using chemical similarity alone. The combination of

biochemical reactant pair mapping (red edges) and chem-

ical similarity (blue edges, Figure 4B) into one MetaMapp

graph, however, correctly clustered the TCA metabolites

into one group, separate from fatty acids, hydroxyl acids

and sugar acids.

In order to display our data set in a truly comprehen-

sive manner, we lastly aimed at adding the 280 unknown

metabolite signals that could not yet structurally identi-

fied using the Fiehnlib or NIST mass spectral libraries.

Electron ionization mass spectra of similar structures

are known to cluster [72-74]. Hence, mass spectra of

unknowns can be mapped against all other compounds,

bringing unknown metabolites into proximity of bio-

chemically relevant groups of nodes in networks. Using

the NIST mass spectral similarity algorithm [75] at a for-

ward similarity threshold of 700, and integrating sif files

from biochemical, chemical and mass spectral similarity

networks (yellow edges), all 459 metabolites of the lung

and blood metabolome of ETS-treated rats were inte-

grated (Figure 4C). Cytoscape does not provide capabil-

ity to define one network as host or primary grid and

further networks as additions; hence, overall biochemical

clarity suffered by adding unknowns using mass spectral

similarity. Nevertheless, TCA metabolites were still

retained in close proximity (Figure 4C), giving biochem-

ical relevance to three-tiered MetaMapp networks when

aiming to classify differentially regulated metabolites of

unknown structure into chemical classes and potential

biochemical modules. In comparison to other ways of

visualization of metabolome data, such as direct

Figure 3 Schema of network integration and visualization using MetaMapp and Cytoscape. For biochemical mapping, the KEGG reactant

pairs database was used. Chemical similarity mapping was performed using 881- substructure fingerprints within the PubChem database.

MetaMapp tools then integrated biochemical and chemical similarity matrix files to visualize the network in Cytoscape. Attribute files such as fold-

changes and statistical thresholds were added to inform about metabolic regulation in case/control studies.
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biochemical mapping or mere statistical visualizations

(e.g. bar diagrams, heatmaps or multivariate Partial Least

Square plots), three-tiered MetaMapp networks appear to

structurally organize information in a biochemically rele-

vant way while enabling to overlay the network structure

with further metadata, most importantly the significance

and magnitude of class-wise statistics.

MetaMapp provides several advantages. First, it is inde-

pendent of the technology utilized to identify metabolomic

profiles, be these mass spectrometry- or NMR-based. This

Figure 4 MetaMapp zoom-ins for results of mapping metabolomic data using three different approaches, focusing on the

biochemically strongly related TCA cycle metabolites as example (highlighted with bold labels and red nodes). Identified metabolites are

represented by circle nodes; unknown metabolites by square nodes. Red edges denote KEGG reactant pair links; blue edges symbolize Tanimoto

chemical similarity at T> 700; yellow edges give mass spectral similarity> 700. Cytoscape session files are given as additional information S8,

including metabolite names that have been left out of the network graphs for visual clarity. (A) Mapping 179 identified metabolites solely using

Tanimoto chemical similarity as input data. (B) Integration of KEGG reactant pair information with the Tanimoto chemical similarity matrix

(threshold T> 700). (C) Integration of KEGG reactant pair information with the Tanimoto chemical similarity matrix of all 179 identified

metabolites and the mass spectral similarity matrix of all 459 compounds, including unknowns (squared nodes, exemplified with BinBase

database identifier numbers).
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means that data from different metabolomics platforms can

be readily integrated and visualized to infer biological con-

clusions. The only requirement is that all chemical struc-

tures are associated with machine encoded chemical

structures. Second, MetaMapp is not constrained by gen-

omics information. All detected metabolites can be straight-

forwardly mapped across studies or species, enabling

mapping of metabolites that originated from diet or gut

microbes along with compounds that stem from mamma-

lian enzymes. Third, the MetaMapp layout is not static and

is automatically updated according to the input list of com-

pounds; hence, MetaMapp graphs enable high biochemical

clarity despite a large number of metabolic nodes. However,

MetaMapp also had shortcomings, some of which may be

partly resolved in further extensions: (a) MetaMapp cannot

be used to compute fluxes, or to compute enzymatic reac-

tions, between metabolites. (b) MetaMapp is scalable to

some extent, but any network graph may get blurred when

adding large numbers of nodes; in our case, this was

observed by adding too many unknowns using MS similar-

ity. (c) MetaMapp is most useful for visualizing case/control

comparisons. Visual clarity suffers when statistical results

are added from additional comparisons, and we therefore

suggest using multiple two-way graphs for displaying data

from more complex biological study designs.

Fetal lung metabolism is more affected by environmental

tobacco smoke than metabolism in organs of dams

Changes in the fetus lung metabolic networks in com-

parison to metabolic impairments in the organs of dams

were subsequently visualized in MetaMapp graphs and

interpreted in the context of biological functions. As sta-

ted above, 189 of the total of 459 metabolites were sig-

nificantly different in at least one organ (41%) when

comparing ETS- challenged rats to rats in control condi-

tions. Using MetaMapp, the results of statistical tests

were now superimposed to the biochemical network

structure for comparing metabolic alterations in fetal

lungs and dams’ lung and plasma.

In Figure 5, mapping metabolomic data is high-

lighted for all three rat organs, displaying only sig-

nificantly altered metabolites (p< 0.05) while not

labeling the unchanged compounds. For clarity,

metabolites of unknown structure have been excluded.

The 179 identified metabolites were clustered into

five major network clusters (see, e.g., the fetal lungs

metabolomic network, top graph in Figure 5): amino

acids and amines in the upper left corner, fatty acids

in the lower left corner, purines and pyrimidines in

the upper right corner, carbohydrates in the lower left

corner and dicarboxylic and hydroxyl acids in the

center of the graph. Few intermediate metabolites

were interspersed in the graph, including metabolites

comprising the TCA cycle that was biochemically

correct found to connect the fatty acid cluster to the

amino acid cluster.

In all three organs, most of the affected compounds

were down-regulated under ETS-stress, as indicated by

the blue-colored nodes in the networks. By far the largest

number of differences was observed in fetal lung tissues

(78 compounds, compared to 29 and 9 metabolites in

lungs and plasma of dams). 68% (13/19) of the detected

free fatty acids were dysregulated in fetal lungs, compared

to only 8% (3/19) of the free fatty acids in the lungs of

dams. Fatty acids are important components of pulmonary

surface-active lipids and alveolar membranes [76]. Both

components are critical in the breathing process and indi-

cate that important metabolic building blocks for lung de-

velopment were found down regulated. It has been shown

that significant de-novo fatty acid biosynthesis is per-

formed in the developing fetal lungs [77], in addition to

hepatic metabolism [78]. Decreased amounts of those fatty

acids in the developing fetal lung hence may lead to

impaired lung function after birth. Moreover, a round 50%

of purines/pyrimidines were dysregulated in both fetal and

dams lungs (all metabolomic result data are given in

Additional file 1: Table S1). Purines and pyrimidines are

required for DNA and RNA biosynthesis and are linked

through their ribose units to the pentose phosphate cycle,

which also generates reducing power by NAPDH produc-

tion. A decreased level of these metabolites can generally

indicate a lower rate of cell division [79]. Conversely, uric

acid was among the few compounds found to be increased

in fetal lungs. As uric acid is a metabolite known for its

antioxidant properties in the respiratory tract [80], its

increased concentration might indicate that fetal lungs

were already under oxidative stress prior to birth. The

only further elevated compounds were metabolites dir-

ectly related to energy metabolism, i.e. glucose, glucose-6-

phosphate and the ketone body 3-hydroxybutyrate. Higher

levels of glucose and glucose-6-phosphate can be inter-

preted by lower fluxes through glycolysis and the pentose

phosphate pathway [81], because fewer amounts of struc-

tural carbon backbones are needed for biosynthesis in cell

division. Antioxidant defense, energy metabolism, nucleo-

tide production and fatty acid metabolism are co-ordinated

with the cell cycle [82,83] and hence support the notion of

lower rates of cell division in ETS-challenged fetal lungs.

In addition, other critical parts of lung metabolism were

impaired as well. The MetaMapp graph for fetal lung dysre-

gulation (Figure 5) shows that several amino acid pools

were down-regulated, among them proline levels. Proline is

one of the most important building blocks of lung collagen,

a structural protein for connective tissues that provides

mechanical stability and elasticity to the pulmonary tissues.

Similarly, isoleucine was reduced, an amino acid that is

found enriched in the lung surfactant protein B. Next, both

glycocyamine and its anabolic product creatine/creatinine
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Figure 5 MetaMapp visualization of metabolomic data highlighting the differential metabolic regulation in fetal lungs, maternal blood

plasma and maternal lungs of rats exposed to environmental tobacco smoke compared to filtered-air exposed animals. Red edges

denote KEGG reactant pair links; blue edges symbolize Tanimoto chemical similarity at T> 700; unknowns are left out of these graphs for visual

clarity. Metabolites found significantly up- regulated under exposure to environmental tobacco smoke (p< 0.05) are given as red nodes and

labeled by BinBase names; blue nodes give down-regulated metabolites. Node sizes reflect fold change. Metabolites that were not found to be

differentially regulated were left unlabeled for visual clarity. Red edges denote KEGG reactant pair links; blue edges symbolize Tanimoto chemical

similarity at T> 700.
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were found at lowered levels in fetal lungs. Creatine and

creatinine are needed to supply energy in muscles.

Decreased amounts may impair lung muscle contractions.

Newborns of ETS-exposed dams, thus, appear to be born

with compromised lung metabolism that may impact the

lung surfactant and membrane fluidity system, lung flexibil-

ity and lung muscular strength. In humans, epidemiological

studies show similar effects of environmental tobacco

smoke. In-utero exposure to cigarette smoking adversily

affects tidal flow volume in healthy newborn babies [84]. It

was also observed that smoking during pregnancy causes

altered height to weight ratio [85] in newborns. These

findings support the underlying hypothesis of our

study that second hand smoke may impact the devel-

opment of fetal lungs in a highly critical phase of life,

just a day before birth. In comparison to fetal lung me-

tabolism, far fewer changes in blood plasma were

observed, excluding the possibility that changes seen in

fetal lungs were directly conferred by changes in blood

plasma or by contamination of the fetal lung tissues

with plasma. Indeed, only allo-inositol and hippuric acid,

a product of gut metabolism for detoxifying aromatics

were found decreased in both blood and fetal lungs.

Conclusions
We have developed an improved way to visualize all

detected metabolites in metabolomics studies (Meta-

Mapp) that can comprise both identified and unknown

compounds while maintaining the modular organization

of metabolites in biochemical pathways. As MetaMapp

outputs are seamlessly compatible with the open-source

platform Cytoscape, visualization of next generation

metabolomics datasets with an increased number of

identified metabolites and integration with genomics

and protemics data sets can be easily achieved. By apply-

ing this approach on metabolic responses of ETS in the

lungs of dams and their respective unborn offspring

(fetuses) as well as in blood plasma we have demon-

strated that such network graphs enable rapid over-

views on all statistically significant metabolic changes

in different organs, including their biochemical con-

text. The down-regulation of critical biochemical

substrates in perinatal lung metabolism, most notably

purines and pyrimidines, free fatty acids and specific

amino acids, may lead to a compromised lung system

impaired in a range of vital structural components

such as surfactant proteins and lipids, connective tis-

sues and alveolar membranes that are required to

provide mechanical stability and elasticity to the pul-

monary tissues. Hence, we propose that metabolic

changes during this critical phase of development of

a life supporting organ may affect lung morphogen-

esis which ultimately may lead to respiratory com-

promise and disease in later stages of life.

Methods
Environmental tobacco smoke exposure

Timed pregnant Sprague Dawley rats were purchased

from Zivic Laboratories (Zeleniople, PA). Viviparous fe-

male rats were time-mated over a 12 hour window to

insure a narrow gestational time among dams for this

study. Conception was confirmed by the presence of a vis-

ible vaginal plug. Dams were shipped to the Center for

Health and the Environment (UC Davis) on gestation day

3. Exposure to aged and diluted sidestream cigarette

smoke as a surrogate to ETS was begun on gestation day

5. Dams were housed two per plastic cage on TEK-chip

pelleted paper bedding using a 12 hours light/12 hours

dark cycle. Animals during non-exposure hours had access

to water and laboratory rodent diet 5001 (ad libitum). In

compliance to Reporting In Vivo Experiments" (ARRIVE)

guidelines, all animals were handled according to the U.S.

Animal Welfare Acts, and all procedures were performed

under the supervision of the University Animal Care and

Use Committee (University of California, Davis). Dams

were randomly divided into groups exposed to filtered air or

to ETS in Hinners-type inhalation chambers. Humidified

3R4F research cigarettes (Lexington, KY) were used. An

automatic metered puffer was used to smoke cigarettes under

Federal Trade Commission conditions (35 ml puff, 2 seconds

duration, 1 puff per minute). The smoke was collected in a

chimney, diluted with fresh air and delivered to whole body

exposure chambers. Exposure to smoke was for 6 hours/day,

7 days/week from gestation day 5 to gestation day 20 at a tar-

get concentration of total suspended particulate (TSP)

of1mg/m^3Dams and their respective unborn offspring

(fetuses) were studied at gestation day 20 of pregnancy.

Metabolomic data acquisition and statistics

Rats were sacrificed one day before term (gestation day

19). Dams lungs were perfused using PBS (Phosphate

buffer saline) while fetal lungs were too small for this

procedure and contained residues of blood plasma. Lung

tissues were prepared from liquid-nitrogen frozen status

by grinding in 2 ml Eppendorf tubes for 2 minutes at

25 s-1 using 20 mm i.d. metal balls in a MM300 ball mill

(RETSCH, Germany). Subsequent extraction was carried

out using 1 ml of an one phase mixture of degassed iso-

propanol/acetonitrile/water (3:3:2) at −20°C for 5 min.

Tubes were centrifuged for 30 s at 14,000 g and the

supernatant was collected and concentrated to complete

dryness. Samples were derivatized for GC-TOF-MS ana-

lysis as previously published [21]. BinBase database pro-

cessing results and metabolite annotation matrices [21]

were downloaded from the SetupX database [86], com-

pliant to the recommendations by the metabolomics

standards initiative (MSI); experiment id SX-394122.

Reports contained deconvoluted mass spectra, retention in-

dices, unique ions, standard compound identifiers and
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compound names, class annotations and KEGG and

PubChem compound identifiers (CIDs); see Additional file

1: Table S1. Data were used without further normalization.

Student t-tests between ETS treated groups and filter aired

groups were calculated in MS Excel 2007 using p< 0.05 as

significance threshold. Fold changes were calculated by

dividing the median of metabolites in ETS group by the

median of metabolites in filter aired group. No multiple

testing correction was applied as the focus here was not to

identify biomarkers but to have a large set of potential

changes to be highlighted in pathways. Directions of alter-

ation were determined including fold changes. An output

file was saved as a Cytoscape node attribute file for up-

regulated, down-regulated and unchanged metabolites.

Bioinformatics database queries

Nine small-molecule and pathway databases were quer-

ied in order to find the maximum substance coverage in

each database and to obtain functional information.

KEGG and PubChem identifiers of the identified meta-

bolites were mapped against bioinformatics databases in

batch modes using various web tools available as KEGG,

PubChem, HMDB [31], MetaCyc [15] and ChEBI [54]

websites. Additional databases such as Reactome,

EHMN, and BIGG- UCSD were downloaded as BioPax

or SBML file format. Mapping was performed in

Cytoscape using the advance search option. Biochem-

ical and chemical metabolic relationships between

metabolites were utilized to construct metabolomics net-

work graphs. Species-specific reaction networks were

downloaded from their respective database, i.e. Reactome

[50] (http://Reactome.org/download/index.html), Human-

Cyc (www.biocyc.org) and EHMN [52] (http://wwwtest.

bioinformatics.ed.ac.uk/wiki/PublicCSB/EHMN) for mam-

malian reactions which were downloaded from their web-

sites as systems biological markup language files (SBML).

BIGG-UCSD [51] was received as SBML format from Dr.

Palsson’s laboratory, UCSD (http://systemsbiology.ucsd.

edu/In_Silico_Organisms/Other_Organisms). Global reac-

tion networks were constructed by parsing the reaction in-

formation from a text file downloaded from KEGG (ftp://

ftp.genome.jp/pub/KEGG/ligand/reaction/reaction.lst) and

MetaCyc databases (www.metacyc.org). Atomic mapping

of reaction network was constructed by parsing the KEGG

RPAIR text file (ftp://ftp.genome.jp/pub/KEGG/ligand/

rpair/rpair). Parsed information was converted into

Cytoscape SIF (simple interaction format) network

file format and visualized in Cytoscape version 2.6.

Metabolites-pathway relationships were extracted from a

text file downloaded from the KEGG database (ftp://ftp.

genome.jp/pub/kegg/pathway/map/cpd_map.tab). The in-

formation was converted into Cytoscape SIF file format.

Results of KEGG pathway mapping for a given list of

KEGG ids were converted into SIF file format using text

pad, which is a useful text editor for windows operating

systems.

MetaMapp graph construction and cytoscape

visualization

PubChem CIDs were utilized to obtain molfile encoded

structures from PubChem using batch entrez online utility

http://www.ncbi.nlm.nih.gov/sites/batchentrez. A 881 bit

long substructure fingerprint is pre-calculated and stored

for each compound entry in PubChem. Pair-wise Tanimoto

chemical similarity co-efficients [71] among metabolites

were calculated using the substructure fingerprints of input

metabolites. The similarity co-efficient ranges between 0.0

and 1.0; high score reflects high similarity between two

metabolites. Using online structure clustering tools of Pub-

Chem, pair wise matrices were subjected to a single linkage

clustering algorithm that clustered the chemical com-

pounds according to their chemical similarities. The simi-

larity matrix was then downloaded from the website and

converted into SIF formatted networks (Additional file 8:

S8) using MetaMapp scripts using thresholds of 0.5, 0.6,

0.7, 0.8 and 0.9. A pair wise mass spectral similarity matrix

was calculated by the BinBase database using the NIST

similarity co-efficient. The matrix was subjected to a hier-

archical clustering algorithm in the TMEV software. The

mass spectral similarity network was constructed by Meta-

Mapp scripts using 500, 600, 700, 800 and 900 similarity

thresholds. Cytoscape was utilized to visualize the differen-

tial statistics output on network graphs. All the network

graphs were imported into Cytoscape [87], and visualized

using the ‘organic layout’ algorithm. Organic layout com-

putes the node position in a graph on the basis of node de-

gree and clustering co-efficient. An increase in clustering

co-efficients means that the nodes are highly similar to each

other, placing those nodes into a single cluster with short

edges. As our objective was also to retrieve clusters of

structurally similar metabolites, we have chosen to use the

organic layout. Node and edge attributes were imported

and mapped to nodes and edges. Statistical results were

mapped as node color; fold changes were mapped as node

size. All MetaMapp tools have been automated and can be

accessed from http://metamapp.fiehnlab.ucdavis.edu.

Additional Files

Additional file 1: Table S1. Results of Analysis of variance (ANOVA) for all

459 metabolites detected in the rat environmental tobacco smoke exposure

study, compliant to MSI-recommendations (Metabolomics standard including

international chemical identifier keys (InChI), PubChem and KEGG database

identifiers and retention index and quantification ion information.

ETS=Environmental Tobacco smoke exposed, FA= filtered air exposed.

Additional file 2: Table S2. Bioinformatics databases that were queried for

identified metabolites.

Additional file 3: Table S3. A list of web tools for pathway mapping analysis

of a list of metabolites associated with KEGG or PubChem Identifiers.

Additional file 4: Figure S4. KEGG Atlas Global Map visualization. Mapped
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metabolites are highlighted as black nodes yielding an overall sparse

coverage of the graph. 45% of the identified metabolites in the rat ETS

study were not covered by the KEGG Atlas Global Map.

Additional file 5: Figure S5. Mapping the 179 identified metabolites of

the rat ETS study on biochemical network graphs using various publicly

available tools and databases. See method section for details on

construction of these graphs. (a) Edinburgh human metabolic network;

(b) HumanCyc; (c) Reactome; (d) BIGG-UCSD; (e) KEGG RPAIR network; (f)

MetaCyc reaction DB; (g) Cytoscape network using only the 137

metabolites retrieved from the KEGG pathway repository; (g) Cytoscape

network of the 137 metabolites retrieved from the KEGG pathway on all

metabolites comprised in the KEGG pathway repository.

Additional file 6: Figure S6. Impact of Tanimoto chemical similarity

thresholds on visual appearance and clarity of metabolomic networks in

Cytoscape without addition of KEGG reactant pair information. Nodes are

metabolites and edges are chemical similarity links. (a) Network without

any similarity threshold; (b) using a Tanimoto threshold of 0.9; (c) using a

Tanimoto threshold of 0.8; (d) using a Tanimoto threshold of 0.7; (e)

using a Tanimoto threshold of 0.6; (f) using a Tanimoto threshold of 0.5;

(g) linking all metabolites to the two most Tanimoto-similar compounds;

(h) combining data matrices from networks (d) and (g).

Additional file 7: Figure S7. A MetaMapp network graph displaying

labels for all the identified metabolites. Nodes are metabolites, red edges

are KEGG RPAIR links and blue edges denote chemical similarity links.

Additional file 8: S8. A zip file containing the input Tanimoto chemical

similarity matrix, ANOVA output, KEGG Ids, CID pairs and Cytoscape

session files for all 179 identified metabolites. The session files can be

opened directly into Cytoscape.
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