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This essay recounts my personal journey towards a deeper understanding
of the mathematical foundations of algorithmic music composition. I do not
spend much time on specific mathematical algorithms used by composers;
rather, I focus on general issues such as fundamental limits and possibilities,
by analogy with metalogic, metamathematics, and computability theory. I
discuss implications from these foundations for the future of algorithmic com-
position.

In 1983, when I was a returning undergraduate majoring in comparative religion at
the University of Washington, I attended a lecture on fractals by Benoit Mandelbrot,
discoverer of the set named after him (Mandelbrot 1982; Peitgen et al. 2004). Briefly,
given the quadratic recurrence equation zn+1 = z2n + c, the Mandelbrot set consists of all
points c in the complex plane for which z, starting with z = 0, does not approach infinity
as the equation is iterated. Then, given some particular point c in the Mandelbrot set,
there is a Julia set consisting of all points z for which zn does not approach infinity
as the equation is iterated. Mandelbrot showed slides illustrating how any point in the
Mandelbrot set can be used as the generating parameter of a Julia set, and how a plot
of the neighborhood near a point in the Mandelbrot set closely resembles the plot of the
corresponding Julia set (Lei 1990) (this has recently been proved (Kawahira and Kisaka
2018)). In short, the Mandelbrot set serves as a parametric map of all Julia sets. By
now there is an extensive literature on the Mandelbrot set and Julia sets, and research
continues.

There are several features of the Mandelbrot set/Julia set duality that are important
for a deeper understanding of algorithmic composition not just for these fractals, but for
all methods of algorithmic composition.

Incomputability The Mandelbrot set, properly speaking, is not recursively computable,
i.e. not Turing computable (Blum and Smale 1993). The plots that we make of
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the set are approximations. Note that incomputability in analysis is related to
but not identical with incomputability in logic and theoretical computer science.
Hertling showed that although the Mandelbrot set is not recursively computable, it
is nevertheless recursively enumerable (Hertling 2005); given enough time, one can
approximate the actual set as closely as one likes. However, Braverman proved that
some Julia sets are not even recursively enumerable (Braverman and Yampolsky
2006, 2009).

Computational irreducibility Although any Julia set approximately resembles the neigh-
borhood of the Mandelbrot set near its generating parameter, almost every Julia
set is the chaotic attractor of its generating equation. Therefore, the orbit of the
Julia equation is computationally irreducible in the sense of Wolfram (Wolfram
1985), as proved by Zwirn (Zwirn 2015). The orbit of the equation cannot be
determined by examining the equation, and it cannot except in trivial cases be
determined even by mathematically analyzing the equation. In order to know the
orbit, it is necessary to actually iterate the equation, that is, to run a program
that computes the iterations. Even then, we can only obtain an approximation.

Already at the time of Mandelbrot’s lecture, I was developing an interest in computer
music and algorithmic composition, in particular, algorithmic composition based on
fractals. What occurred to me during the lecture is that if I zoomed into a plot of the
Mandelbrot set, searching for interesting-looking regions, I could then plot the Julia set
for a point in that region, and I could then somehow translate that Julia set into a
musical score (Gogins 1992a). In general, the 2-dimensional plot is mapped more or less
directly onto a 3-dimensional piano-roll type score, with the x axis representing time,
the y axis representing pitch, and the z axis representing instrument.

By iterating this process, I could approach more and more closely to some sort of mu-
sically interesting pattern. This is a form of what I have termed parametric composition.
Since then I have implemented several variations of this idea in software for composing:

Map orbits in Julia sets to musical sequences This was trivial to implement, but the
generated music is also trivial.

Map plots of Julia sets to musical scores This also was trivial to implement, and the
generated music is much less trivial, but there are problems with how the plot
of the Julia set can best be mapped to a musical score, due to a dimensional
mismatch. I discuss this further below.

“Mandelbrot set” for iterated function systems (IFS) I proved that this method is
universal (Gogins 1992a, In preparation), that is, capable of directly generating
any finite score, but the method depends on specifying more than just two param-
eters, and generating a parametric map (an analogue of the plot of the Mandelbrot
set in the complex plane) for dozens or hundreds of parameters requires the use of
a Hilbert index (Patrick, Anderson, and Bechtel 1968).
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A Hilbert index maps an N -dimensional space, such as a plane, cube, or hypercube,
to a 1- or 2-dimensional sequence of numbers. The index is constructed in such
a way that neighboring points in the N -dimensional space have nearby indices in
the 1- or 2-dimensional sequence.

The key idea behind a Hilbert index is to recursively subdivide the N -dimensional
space into smaller planes, cubes, or hypercubes, called cells. Each cell is assigned
a unique index based on its position within the overall space. The subdivision
process continues recursively until a desired level of detail is reached.

To determine the Hilbert index of a specific point in the N -dimensional space,
start with the largest cell that contains the point, level j = 0. Then, working in
arithmetic to the base N , subdivide that cell into N sub-cells for level 1, and select
the sub-cell that contains the point. If it is the kth sub-cell at level j, then add
((k + 1)/N)−j to the index. Repeat this process recursively until the smallest cell
containing the point is reached. The index of that cell is the Hilbert index for the
point.

Hilbert indices work because all metric spaces have the same cardinality; therefore,
there is always a one-to-one mapping between points in any N -dimensional space
and points on the real line or complex plane.

Here, the N -dimensional space consists of points defined by the N parameters of
some compositional algorithm, and the index consists of complex numbers in some
subset of the complex plane.

In my experience to date, computing parametric maps quickly becomes computa-
tionally intractable. This is not because of the indexing, but because of the time
required to evaluate all the pieces for each point in the index. The algorithms
that I have used rely on recursive subdivision of the problem, where nodes at each
level of recursion perform about the same amount of work. It then follows from
the master theorem of algorithmic analysis (Bentley, Haken, and Saxe 1980; Dr-
mota and Szpankowski 2013) that the run time for computing a parametric map of
such an algorithm is O(n), which is linear time. Looking up the set of parameters
for a given point in the map, however, is only O(log n) or, for multi-dimensional
searches, O(nc), 0 < c < 1.

I have now added to my list of mathematical things with fundamental implications
for algorithmic composition:

Universality Not only is it indeed possible to write a computer program that can generate
any possible score as precisely as one likes, but it is also possible to greatly compress
the amount of information required to represent the score. This, of course, is one
of the fundamental motivations for pursuing algorithmic composition.

Mappability Compositional algorithms that are controlled by numerical parameters are
mappable in the sense that a Hilbert index (Patrick, Anderson, and Bechtel 1968;
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Hamilton and Rau-Chaplin 2007) on the plane for those parameters, even multi-
dimensional parameters, can be colored by some feature of interest in the corre-
sponding scores. This is an analog of the Mandelbrot set. Features in such maps
reveal geometric features of the parameters, because the Hilbert index guarantees
that points close together in the Hilbert curve are close in the ordering of the
multidimensional data. We must not skip over the critical initial assumption, that
“features of interest” are in some way objective (such as tempo or tuning system).
Above all, musical value must be assumed to be objective, at least in the sense
that a given composer will consistently assign the same value to a given piece.

Dimensional mismatch The plot of a Julia set is a fractal in the complex plane. Its
Hausdorff dimension is 2 and the complex plane has topological dimension 2. Map-
ping either an orbit in the set, or a plot of the set, to a musical score is frustrating.
It can be done heuristically, e.g. by filtering the plot, but it would be better if
either a musical score had dimension 2, or a Julia set had higher dimensionality,
i.e. to directly represent not just pitch and time but also, e.g., loudness and choice
of instrument. However, as previously mentioned, such dimensional mismatches
can be overcome in a mathematically elegant way using Hilbert indices.

Computational intractability To plot a parametric map of, e.g., IFS that directly rep-
resent musical scores is conceptually simple but, in practice, takes much too long
to compute given the number of explorations a composer must try in order to find
a good piece.

Before further exploring the mathematical foundations of algorithmic composition,
I will provide some additional background relating to different software systems for
algorithmic composition, and to artificial intelligence, which can also be used to compose
music.

Methods of Algorithmic Composition

Algorithmic composition is the use of computer software to write musical compositions
that would be difficult or impossible to write without software. It does not, for example,
include the use of notation software to write down music that one hears in one’s head (as
that can be done with paper and pencil), nor does it include the use of audio workstation
software to record and even overdub music that one improvises (as that can be done with
a tape recorder). In other words, algorithmic composition consists of all compositionl
techniques that are idiomatic to the computer. Of course, there is not just one method of
algorithmic composition (Fernández and Vico 2013; Ariza 2023). A recent summary can
be found in (McLean and Dean 2018). However, there is an obvious overlap with a more
generic notion of process music or generative music, including Mozart’s musical dice
game (humdrum.org 2023), the minimalism of Steve Reich (Reich 2023; Schwarz 1980)
and Philip Glass (Potter 2002; Glass 2015), and the generative work of Brian Eno (Eno
2023). The commonality between algorithmic composition and process music is precisely
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the simplicity and clarity of the means versus the complexity and unpredictability of the
results; in other words, yet again, irreducibility.

Here I should clarify this idea of irreducibility. It is not a binary choice, it is a spectrum.
The minimum of irreducibility occurs when the composer simply writes down what he
or she hears in his or her imagination. The maximum occurs when the composition is
generated in an entirely random way, so that there is absolutely no way for the composer
to predict, better than chance, any particular note or sequence of notes; but even then,
there is a degree of musical intelligibility in that the texture of one random variable
(e.g. white noise) can easily be distinguished from the texture generated by another
random variable (e.g. brown noise). In the middle of the spectrum is an area where the
composer does have some degree of insight into the kind of music that will be generated,
even though the details cannot be predicted. This is the most interesting and most
useful degree of computational irreducibility.

Hiller and Isaacson’s Illiac Suite (Lejaren A. Hiller and Isaacson 1957) is the first
piece of what can unambiguously be called computer music, and it is an algorithmic
composition assembled using a toolkit of stochastic note generators and music trans-
formation functions, as detailed in their book Experimental Music (Hiller and Isaacson
1959). This can be called the toolkit approach to algorithmic composition. The com-
poser programs a chain of generators, including random variables, and transformations,
including serial transformations, to produce a chunk of music. The chunks can then
be edited by hand. Multiple chunks can be assembled into a composition by hand.
The toolkit approach lives on in contemporary software systems such as Open Music
(C. A. Agon, Gerard Assayag, and Bresson 2008), Common Music (Taube 2023, 2021),
and many others. This is to date the most successful and widely used method of algo-
rithmic composition.

The more recent method of algorithmic composition known as live coding can be
considered a variant of the toolkit approach. A live coding system for music consists
of.a toolkit of routines that are assembled into a music-generating graph during a live
performance by interpreting real-time commands in a domain-specific language. Live
coding systems have tools and commands for both high-level representations of music
(notes, loops, chords, scales, musical transformations, etc.) and sound synthesis (oscil-
lators, envelope generators, filters, etc.). An overview of the field can to some extent
be gleaned from the TOPLAP web site (toplap.org 2023) and the Oxford Handbook of
Algorithmic Composition (McLean and Dean 2018). I have some experience with Tidal-
Cycles (computer platform, Haskell implementation) (McLean et al. 2023) and Strudel
(a JavaScript version of TidalCycles, Web browser platform, JavaScript implementation)
(Roos et al. 2023).

Some composers, such as myself, prefer to use an algorithm, such as a Lindenmayer
system (Prusinkiewicz and Lindenmayer, 1996 [1991]; Prusinkiewicz 1986; Gogins 1992b)
or iterated function system (IFS) (Barnsley, 1993 [1988]; Gogins 1991) that will generate
an entire piece based on fractals or other mathematical methods, without further editing
or assembling. This can be called the fractal approach to algorithmic composition.

Recently it has become possible to compose music using generative pre-trained trans-
formers (GPTs) trained with large language models (LLMs). This can be called the
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machine learning approach to computer music. (I prefer the term machine learning to
artificial intelligence because the software is not intelligent, but it is trainable and so in
some sense it is learning.) I discuss only LLMs as they are currently the most influen-
tial method of machine learning. Briefly, the approach is based on emulating biology,
specifically, on simulating at a high level of abstraction the behavior of nerve cells. A
neural network is built up consisting of layers of simulated neurons that connect with
each other; the connections have tunable weights or parameters that control the output
behavior of neurons in one layer given inputs from connected neurons in other layers.
The weights are adjusted during training to maximize the value of the result according
to some objective fitness function. This value corresponds to the color assigned to the
parameter point of a Julia set in a Mandelbrot set. In a GPT, an attention mechanism
(Vaswani et al. 2017) (as each token in the input prompt is processed, a new context
or summary of model weights is used in place of the entire model) and other heuristic
mechanisms have been found to increase the power of the network. In particular, the
attention mechanism makes it possible to train the network on a very large body of
data without much human intervention. For more detail, see (Zhang et al. 2023) and
OpenAI’s paper on their current LLM architecture (OpenAI 2023a). For working ex-
amples of how ChatGPT can be used to compose music, see Jukebox (OpenAI 2023b),
Gonsalves (Gonsalves 2021), and Ocampo et al. (Ocampo et al. 2023).

Although it is early days for machine learning, contemporary experience has led to
a number of reviews and critical studies of the capabilities and limitations of machine
learning. From the skeptical side, see (Dale 2021). For an amusing and instructive series
of dialogues between all sides, see (Aaronson 2023). This experience makes it possible to
identify a few more important things about the mathematical foundations of algorithmic
composition:

Computational opacity All agree that ChatGPT can generate amazing, even spooky,
results without anyone understanding much about what is going on in the neural
network. We have a perfect understanding of each component in the GPT, be-
cause these components are actually quite simple, but we have no idea at all how
something like ChatGPT can conduct a fact-filled conversation with one in perfect
English. The details are scattered through billions of neural network weights in
the LLM. Computational opacity is a form of computational irreducibility, but
it goes far beyond irreducibility because, with computational opacity, we cannot
obtain even a partial understanding of the actual computations performed by the
software. We have taken one irreducible program (the GPT) and used it to build
another irreducible program (the LLM)! Even though an untrained GPT is com-
putationally irreducible, we still have a perfect understanding of how it actually
works; but it seems very likely that we will not, at least in practice, ever obtain
even a partial understanding of how the trained GPT, i.e. the LLM, actually
works.

Hallucination Refers to the tendency of LLMs to generate factually incorrect responses
to prompts. It is a reminder that the software has no sense of reality and no means
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of comparing what it generates with the real world. I suspect that hallucinations
arise from the human mistakes, conflicting goals, and outright lies represented in
the training data. Ways of dealing with hallucinations are being investigated; for
one approach, see (Christiano et al. 2017).

Unoriginality LLMs generate responses to prompts based on high-dimensional correla-
tions that the LLMs have automatically discovered in the training data – data
that we have provided. This is a self-referential situation. When we converse
with ChatGPT we are looking at ourselves in a mirror; and in fact, in a fun-house
mirror.

Artistic Results and Procedures

To date, not many pieces of algorithmically composed music have become popular or
influential, even among composers and aficionados of art music and experimental music.
A few of the pieces that have been influential include Iannis Xenakis’ La Légende D’Eer
(Xenakis 2005) and Gendy 3 (Xenakis 1995), Charles Dodge’s Viola Elegy (Dodge,
April 1994), and some of Brian Eno’s works (Eno 2023; Eno and Chilvers 2023). I have
my own idiosyncratic list of different algorithmic composition systems, with my own
choice of representative pieces (Gogins 2019).

The actual procedures followed by composers for algorithmic composition vary by
genre, by composer, and by the software used. It is difficult to get a handle on the
actual practices of any composers, let alone algorithmic composers. Composing can be
a communal effort, as in much contemporary popular music, but art music is usually
rather private, and algorithmically composed music even more so. However, IRCAM has
published a series of books with chapters by composers on how they have used Open-
Music (C. Agon, Gérard Assayag, and Bresson 2006-2016, 2006a, 2006b, 2016). These
are very useful. Profiles of composers in Computer Music Journal also can be useful.
Here I will explain the general procedure that I myself follow.

I start with some kind of mathematical system that can be used to generate a set of
musical notes, a score. The system needs to generate complex structure that can be
changed by varying a relatively small number of numerical parameters. It’s often useful
to select a recursive algorithm that, as the number of iterations approaches infinity,
approaches a fixed point that is a fractal.

Such generative algorithms generally reflect processes in Nature that produce fractal-
like forms, such as the patterns on seashells or the branching of plants. I have used
chaotic dynamical systems, Lindenmayer systems, iterated function systems, and other
systems.

Generally speaking, how to set the parameters in order to obtain a desired result is
more or less opaque. This is well-known as the inverse problem (Graham and Demers
2021; Tu et al. 2023). But actually this is another form, once again, of computational
irreducibility, meaning in this case that it is not intuitive how to infer the structure of an
algorithm even after closely inspecting its results. On the one hand this is a fault of the
method; but on the other hand, and even more so, it is a virtue. In this way, and only in
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this way, can we generate scores that we would not otherwise be able to imagine. This,
of course, is another fundamental motivation for pursuing algorithmic composition. And
it’s the most important motivation. This kind of algorithmic composition actually

amplifies our musical imagination.
Now the question arises, how can such opaque methods be used to compose good

music? It is difficult but by no means impossible, and here is the usual way I do it.
The parameters generally have a global effect on the final structure, that is, on the

generated score. For example, an iterated function system consists of a number of affine
transformations that are repeatedly applied to a set. Changing just one element of one
transformation matrix can easily change every note in the generated score.

So, I pick one parameter and change its value, then listen to the result. I change the
value again, and listen to the second result. Then, I choose the value that I prefer. I
make more changes and listen again. Eventually I will find a value for that parameter
that is more or less optimal – a sweet spot in the parameter space.

Then I pick another parameter and change its value in the same way, until I have a
second sweet spot. During this process, the effect of the first parameter will probably
change, so I go back to the first parameter and search again for the “sweet spot.”

This can be repeated for any number of parameters, but it is a tedious process and
does not make sense for more than a few parameters.

This procedure amounts to a sort of binary search through a set of possible parameter
values so vast – indeed infinite – that a linear search is simply out of the question. But a
binary search is far more efficient than a linear search. Furthermore, finding two or three
“sweet spots” in a small set of controlling parameters – each of which has global effects
on the entire score – can produce a surprisingly large improvement in the musicality of
the result.

I see here an analogy with the way in which LLMs work. There are repeated searches
in a parameter space equipped with with a fitness function (as with the attention mech-
anism) at increasing levels of refinement (as with gradient descent).

I have known a number of composers, some quite well. Few algorithmic composers sim-
ply “hear music in their heads” and write software to render it, although that certainly
happens. Most fool around producing various experimental chunks of music, refine them
more or less as I have described, and assemble some of them into a finished composition.

Before I proceed to look at this kind of production from a mathematical point of view,
I will summarize what I have learned about the mathematical foundations:

Incomputability The set of possible musical compositions (assuming that some pieces
either last an infinitely long time, or that between any two pieces is a continuous
path consisting of variations between the pieces) is recursively incomputable.

Universality In spite of the incomputability of compositions, they are recursively enu-
merable, so it is possible to approximate any possible composition as closely as one
likes.

Irreducibility Compositional algorithms that have a strong analogy to Julia sets are
computationally irreducible.
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Opacity Compositional algorithms based on machine learning are not only computa-
tionally irreducible, but also computationally opaque in that we have essentially
no insight into the meaning of the steps followed by the LLM.

Mappability Compositional algorithms are mappable. This ultimately is because the
compositions can be ordered in some way, either as sets of scores, or as sets of
generating parameters.

Intractability Producing a useful map of some subset of compositions is very compute-
intensive.

Hallucination LLMs that are supposed to provide true or useful outputs sometimes just
make stuff up. But this means that material generated by an LLM in response to a
prompt cannot be trusted to be true or useful. It is necessary for a person, indeed
an expert, to evaluate the material. It is by no means clear at this time whether
an expert equipped with a LLM is more productive for creative work than that
same expert without the LLM.

Unoriginality LLMs work by discovering high-dimensional correlations in large bodies
of training data. This means that LLMs can select, summarize, and vary but they
cannot generate an output that is not correlated with the training data. In other
words, there is a limit to their originality. However, it is by no means clear at this
time whether that limit is well below, or well above, the creativity of experts in
the field from which the training data was drawn.

I will now put forward some conjectures based on these foundations.

Limitations

At this time and for the foreseeable future, no form of artificial intelligence is conscious
or has its own goals. Therefore, for the foreseeable future, human composers must and
will play a irreplaceable role in algorithmic composition. This involves selecting a subset
of possible compositions to study, evaluating the musical quality of each composition
in the subset, and varying the parameters or prompts that generate the pieces. This
follows from hallucination and unoriginality.

Incomputability, irreducibility, and opacity set objective limits on how much under-
standing composers can gain into the working of their algorithms and of the music
generated by them. This is both a limitation and an advantage. In practice, it is not
possible to determine in advance just where those limits lie.

Sophisticated forms of algorithmic composition are compute-intensive, and can be
computationally intractable.

Prospects

Computer power will continue to increase. This will most likely make algorithmic com-
position both more productive and more important.
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There is a similarity between a composer’s experience with a toolkit of algorithms,
the transformation of prompts into responses by an LLM, and exploring the parametric
map of a fractal compositional algorithm. In all cases, starting with an initial sketch,
a final composition is approached by a descending, zigzag search through a space rep-
resenting musical possibilities of differing value, until the search comes to rest in some
local optimum.

Every method that establishes a more musically compact and/or intelligible ordering
of a space of musical possibilities will make algorithmic composition more productive. As
an example, excluding non-musical elements from the space of possibilities can be very
helpful, because sounds that human beings consider to be musical occupy a vanishingly
small part of the parameter space of universal compositional algorithms. However, it is
possible to literally change the mathematical basis of the parameter space to represent
only musically pertinent features. For example, rather than representing scores as notes
on piano rolls, e.g. planes or cubes, one can represent scores as more or less fleeting
chord progressions in chord spaces (Gogins 2006, In preparation).

Every method that speeds up the search process will make algorithmic composition
more productive. In particular, the growth of live coding demonstrates that the toolkit
approach to algorithmic composition has a future. The underlying reason is that live
coding supports faster searching, due to concise commands and immediately audible
feedback. Spending time doing live coding also increases the composer’s insight into the
tools.

In Sum

The main result here is that the major approaches to algorithmic composition — trial
and error with a toolkit of algorithms, live coding, exploration of fractals, and machine
learning — share this fundamental business of zigzagging down a slope on a landscape of
evaluations to rest in a local optimum. This result is proved by the simple fact that the
generated music and/or the parameters used to generate it can be ordered. The dimen-
sionality of the musical space is secondary, as it can be reduced to one or two dimensions
by means of a Hilbert index. Note that searching for solutions or optimizations in many
domains is known to be computationally expensive.

Future developments in artificial intelligence may have a significant impact on algo-
rithmic composition. For example, machine learning has been applied to solving the
inverse problem for discovering the parameters of fractal algorithms (Tu et al. 2023). It
might then be possible to represent an existing score, or scores, as fractal parameters
and then work with these parameters to vary or interpolate between such pieces. This
does not overcome computational irreducibility, as it substitutes the opacity of machine
learning for the irreducibility of the inverse problem, yet it still might be very useful.

Algorithmic compositions based on current LLMs are easier to produce, but will not
usually be musically original; while algorithmic compositions based on toolkits, live
coding, or fractals can be musically original, but are inherently more difficult to produce.

As for algorithmic compositions based on fractals, sometimes an analytical under-
standing of the mathematics can be used as a guide to composition, but this tends in
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my experience to be of limited use. More often, the only way to penetrate the fog of
incomputability, irreducibility, opacity, and intractability is to explore the geometrical
order in a subset of compositions. This can be done either by trial and error, or by
literally plotting a map of the subset of compositions. One might say that with trial and
error one plots a sparse map of fully defined features in a territory, and with a parametric
map one explores a densely mapped territory with partially defined features.

Progress in algorithmic composition seems likely to depend on speeding up the com-
poser’s workflow, whether in parametric composition, in live coding, in algorithmic com-
position toolkits, or in machine learning; and, even more so in the long run, on defining
more musically compact and intelligible spaces of musical possibility.
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