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Abstract 

The functional profile of metagenomic samples allows the understanding of the role of 

the microbes in their environment. Such analysis consists of assigning short sequencing 

reads to a particular functional category. Normally, manually curated databases are 

used for functional assignment where genes are arranged into different classes. 

Sequence alignment has been widely used to profile metagenomic samples against 

curated databases. However, this method is time consuming and requires high 

computing resources. Although several alignment free methods based on k-mer 

composition have been developed in the recent years, they still require a large amount 

of memory. In this paper, MetaMLP (Metagenomics Machine Learning Profiler) a 

machine learning method that represents sequences into numerical vectors 

(embeddings) and uses a simple one hidden layer neural network to profile functional 
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categories is proposed. Unlike other methods, MetaMLP enables partial matching by 

using a reduced alphabet to build sequence embeddings from full and partial kmers. 

MetaMLP is able to identify a slightly larger number of reads compared to Diamond (one 

of the fastest sequence alignment method) as well as to perform accurate predictions 

with 0.99 precision and 0.99 recall. MetaMLP can process 100M reads in around 10 

minutes in a laptop computer which is 50x faster than Diamond. MetaMLP is free for 

use, available at https://bitbucket.org/gaarangoa/metamlp/src/master/.  

Introduction 

The wide and rapid adoption of next generation sequencing techniques (NGS) such as 

metagenomics in the analysis of microbial diversity, antibiotic resistance, and other 

functional profiling analysis creates a gap between scalability and processing efficiency. 

In other words, large amounts of data require the design of computational tools that are 

both accurate and fast.  Sequence comparison algorithms such as BLAST (1), FASTA 

(2), HMMER (3), PSI-BLAST (4) were created with the aim to find correspondence of 

the sequence distribution in two or more sequences. BLAST is to date the most popular 

and trusted tool for sequence alignment. However, it is well known that BLAST does not 

escalate well when comparing millions of sequences. The reason is that BLAST uses a 

computationally demanding strategy consisting of a seed and extend algorithm (5). 

Although, sequence alignment is considered the gold standard approach for sequence 

analysis, there are several cases where this technique can produce dubious results (6). 

For instance, alignment-based methods assume that homologous sequences share a 

certain degree of conservation. Although this assumption is considered to be true when 
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analyzing conserved domains, organisms such as viruses that exhibit a high degree of 

mutation, challenge this collinearity principle.  When analyzing short sequences (e.g., 

Illumina sequencing reads), the percentage of identity does not guarantee correctness. 

Highly identical sequences do not imply homology (7). In the opposite case, sequences 

with less than 30% identity can potentially be considered as homologous (8).  

 

DIAMOND (9), BLAT (10), USEARCH (11), and RAPSearch (12) are alternatives to 

BLASTX that can run much faster but with a loss of sensitivity. Particularly, the dramatic 

speed up of DIAMOND its (20,000X) is achieved by using a double indexing strategy, 

spaced seeds (longer seeds where not all positions are used) and a reduced alphabet. 

In detail, DIAMOND implements a seed and extend algorithm that first indexes both 

query and reference sequences. Then, the list of seeds in both the query and reference 

are linearly traversed to determine all the matched seeds with their locations. Finally, 

seeds are extended by using the Smith-Waterman algorithm (13).   

 

Alignment-free methods have been proposed as an alternative to quantify the sequence 

similarity without performing any sequence alignment (6,14). These methods do not use 

the seed and extend paradigm. Therefore, their computational complexity is often linear 

and only depends of the query sequence length. In next-generation sequencing, several 

alignment-free strategies have been developed for different applications, including 

transcript quantification (kallisto (15), sailfish (16), Salmon (17), RNA-Skim (18)), variant 

calling (ChimeRScope (19), FastGT (20)), de-novo genome assembly (minimap (21), 
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MHAP (22)), and the profiling of metagenomics taxonomy by using a kmer matching 

approach (Kraken (23), Mash (24), CLARK (25), stringMLST (26)).   

 

The word embeddings technique is one of the most successful learning methods 

applied in natural language processing (NLP) where words can be represented as a 

numerical vectors. For instance, the Word2vec technique (27) uses a shallow two-layer 

neural network to train and aggregate word embeddings by using the continuous bag of 

words (CBOW) approach. Thus, identifying semantic associations between a target 

word given its context. The concept of using word vectors for representing protein/DNA 

sequences is not new and has been explored before. For instance, DNA2Vec (28), 

explores the associations between variable length kmers to generate an embedding 

space that proved to correlate with sequence alignment. Yang et. al., (29) explores the 

performance of word embeddings for classification of protein functions compared with 

classical representation techniques. Yan et. al., demonstrated that kmer embeddings 

outperformed other techniques. However, in both studies, embeddings are learnt in an 

unsupervised way. This means, that the embeddings are learnt first and then the 

classifier is built by using those embeddings.  In this paper, MetaMLP, an alignment-free 

method that uses word embeddings to represent target protein databases is proposed 

for the functional profiling of metagenomic samples. The strategy behind MetaMLP 

relies on the CBOW model. However, the target word is replaced by the label or 

functional class of the sequence and the context words corresponds to the kmers and 

fragmented kmers. Therefore, MetaMLP is a novel strategy that uses a combination of 

hash indexing, six open reading frame translation, a reduced amino acid alphabet and 
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an embedding representation to process metagenomic data. In addition, MetaMLP was 

built up on top of the C++ FastText (30) library and its composed of two main stages: 

MetaMLP-index that process protein sequences to build a machine learning model and 

MetaMLP-classify to annotate reads from metagenomic DNA sequence libraries.  

Methods 

The overall structure of MetaMLP is shown in Figure 1 and consists of two main 

components: A) An indexing stage that process protein reference sequences into a 

word vector representation to train a classifier and B) A prediction stage that process 

short sequencing reads and classifies them into one to the predefined classes from the 

reference database. 

Indexing Protein Reference Databases 

Reference Database Preprocessing 

To increase the chances of detecting sequences with mismatches, the reference 

proteins are first transformed into their equivalent 10 amino acid alphabet version using 

the murphy.10 alphabet representation used in rapsearch (A [KR] [EDNQ] C G H [ILVM] 

[FYW] P [ST]) (31). Then, kmers of a fixed length are extracted from each protein 

sequence. However, to consider all kmers within a sequence, a sliding window of one 

amino acid is used. Thus, each protein comprises k versions, each one corresponding 

to a different starting location [1, …, k]. Thereafter, a ‘sentence’ of kmers is extracted by 

taking 3 to 5 consecutive kmers (equivalent of reads of 100 to 150 bp) (see Figure 1A). 

At the same time, a table with unique kmers is built and stored to later be used for 
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filtering sequences that diverge greatly from the reference database during the 

prediction stage. 

 

Training 

MetaMLP uses the FastText implementation of the continuous bag of words (CBoW) 

technique to learn the semantic relations between protein sequences and their labels. 

Thus, proteins are represented as a series of kmer sentences (analog to sentence of 

words in text documents). Then, it decomposes each kmer within the sentences into a 

numerical representation (kmer vector) (see Figure 1A). Later, it computes the average 

of the kmer vectors and passes it to a single hidden layer neural network. Finally, it 

outputs the probability distribution over the established classes by using a softmax 

layer. In addition, MetaMLP enables the bag of n-grams feature from FastText to 

capture partial information from the kmers. These n-grams are sub sequences from the 

kmers passed along with the full size kmer allowing to identify kmers with partial 

matching.  

Prediction of Short Sequencing Read  

MetaMLP is designed to efficiently profile metagenomic samples with millions of reads 

from short sequencing libraries against a target reference database. As reads are made 

of nucleotides, MetaMLP first translates each sequence into six reading frames. Then, 

for each reading frame a random kmer is selected from its sequence and checked 

against the hash table that was built during the indexing stage. If a kmer is found in the 

hash table, all kmers are subtracted from the read and classified using the trained 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569970doi: bioRxiv preprint 

https://doi.org/10.1101/569970
http://creativecommons.org/licenses/by-nc-nd/4.0/


CBoW model. If not, a new random kmer is selected from the read at a different 

position. This process is repeated to a maximum number of tries defined by the user. If 

more than one reading frame gets classified, MetaMLP picks up the reading frame with 

the highest classification probability (see Figure 1B).  

 

Once a full metagenomic dataset is processed, MetaMLP counts the number of reads 

per class using a minimum probability cutoff defined by the user and reports the 

absolute abundance table. Additionally, MetaMLP also reports a fasta file containing the 

read name along with its classifications, probabilities and sequence. This file is useful 

for cases where MetaMLP is used as a filter to target a particular functional classes. 

Databases 

Pathway Reference Database 

Bacterial protein sequences from the Universal Protein Resource (UniProt) were 

downloaded and filtered by only proteins that have been manually curated, reviewed 

and contained evidence at the protein level. In total 20,161 proteins were obtained and 

4,105 of those were annotated to at least one pathway. Lastly,  pathways with less than 

50 proteins were discarded to get a total of 3,216 proteins and 21 different pathways 

(see Supplementary Table S1).  

 

Antibiotic Resistance Database 

MetaMLP was trained to identify short reads associated to Antibiotic Resistance Genes 

(ARGs) from metagenomic short sequencing data. Thus, the DeepARG-DB-v2 
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database (32) containing a total of 12,260 sequences distributed through 30 antibiotic 

categories was downloaded. However, only antibiotic resistance categories with at least 

50 protein sequences were considered for downstream analysis. Thus, a total of 12,147 

proteins and 14 categories were used to train the MetaMLP model (see Supplementary 

Table S2).  

 

Gene Ontology Reference Database 

Protein sequences associated to the biological process response to stress 

(GO:0006950) were downloaded from UniProt website. However, only bacterial curated 

sequences and biological processes with at least 100 sequences were considered for 

downstream analysis (see Supplementary Table S3).  In addition, the GO database 

comprises proteins with multiple associated labels. For instance, the protein sequence 

Q55002 is associated to response to antibiotic (GO:0046677) and translation 

(GO:0006412). Therefore, reads from this protein would be classified to both categories. 

However, as MetaMLP uses a softmax layer for prediction, it will distribute the 

probability between both categories. In an ideal scenario, both classes would have a 

probability of 0.5. This database was used to test the ability of MetaMLP to represent 

sequences associated to multiple labels.  

True Positive Dataset 

The pathway database was used to build a true positive database. Because MetaMLP 

uses amino acid sequences for training and nucleotide sequences for querying, it was 

necessary to identify the corresponding nucleotide sequences for each one of the 
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proteins in the pathways database. Therefore, UniProt identifiers were cross referenced 

against the RefSeq database and a list of gene candidates were found. Then, those 

candidates were aligned to the protein sequences using diamond BlastX with a 90% 

identity and a 90% overlap. If multiple alignments were obtained at this criteria, the best 

hit was selected as the representative gene sequence for the target protein sequence. 

Thus, each entry in the database contained a respective gene sequence. Finally, the 

pathway database was randomly splitted into training (80%) and validation (20%). The 

training set was used to tune the model whereas the validation set was exclusively used 

to test the method after the training was done. Therefore, the validation set was never 

used during training process. Note that the training set corresponds to amino acid 

sequences whereas the validation set consists of nucleotide sequences. To simulate a 

library of short sequence reads, sequences of 100bp long were randomly subtracted 

from each nucleotide sequence from the validation dataset. Thus, a total of 35,751 short 

reads were generated.  

 

Diamond is currently one of the widely used tools for metagenomic analysis. Therefore, 

to test the performance of MetaMLP, diamond BlastX with the best hit approach was 

used. Diamond was run by using a sequence alignment identity of 80%, whereas 

MetaMLP was set with a minimum probability of 0.8. Precision, Recall and F1 score 

were computed to measure the performance of both approaches.  
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False Positives Dataset 

To test the ability of MetaMLP to filter out sequences that are not associated to any of 

the selected pathways (false positives), a synthetic dataset was constructed by using 

the same number of reads from the true positive dataset. However, each nucleotide 

position on this dataset was randomly selected. This negative dataset was then ran 

against MetaMLP and the best hit approach using Diamond with default parameters. 

Precision, recall and F1 score were computed to measure the performance of both 

methods.  

Time and Memory Profiling  

To evaluate the time performance and memory footprint of MetaMLP, a dataset of 100k, 

1M, 10M and 100M reads were built by randomly subtracting reads from a real 

metagenomic soil sample of 407,645,066 reads. This sample is under the SRA 

accession number SRR2901746 and corresponds to a 250bp long read sample from 

the Illumina HiSeq 2000 sequencer. Along with MetaMLP, diamond was also ran with 

the same datasets. Both methods ran with only one enabled CPU in the same linux 16.4 

environment.  

Functional annotation of Metagenomic Datasets 

MetaMLP was used to profile four different environments comprising a total of 68 

metagenomic samples through the functional composition analysis including: Pathways 

detection, response to stress, and antibiotic resistance composition. The 68 public 

available metagenomes were downloaded from the Sequence Read Archive (SRA) from 
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the  National Center for Biotechnology Information (NCBI) spanning four different 

environments as follows: 10 soil (S), 15 human gut (HG), 15 freshwater (FW) and 28 

wastewater (WW) samples (see Supplementary Table S4 for details).  Results from 

MetaMLP were compared against the best hit approach using Diamond BlastX with an 

identity of 80%.  

For the GO reference database, MetaMLP was run with a permissive 0.5 minimum 

probability to retrieve multiple classifications. Relative abundance results were 

compared against those obtained using sequence alignment with diamond BlastX at an 

80% identity cutoff.  

Availability of MetaMLP 

Source code for MetaMLP is available at 

https://bitbucket.org/gaarangoa/metamlp/src/master/  

Results and Discussion 

The sequence embedding strategy allows MetaMLP to represent amino acid sequences 

into numerical vectors (embedding dimension) by taking into account the distribution of 

the kmers in the protein sequence as well as their labels. Thus, MetaMLP uses the 

supervised embedding implementation from FastText to learn these numerical vectors 

and minimize the inner distance within members of a class and maximize the outer 

distance to other classes. For instance, proteins that belong to Beta-lactamase class 

are expected to cluster together and keep distant from members of other classes. 

Figure 2 shows the distribution of the MetaMLP embeddings in a two dimensional space 
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generated by using the t-SNE algorithm (33). For targeted databases such as the ARG 

categories or pathways database, MetaMLP clustered categories according to their 

labels with a representative cohesion and separation (silhouette score: 0.56 and 0.62 

for pathways and ARGs, respectively ) (See Figure 2A-B). Interestingly, in a complex 

classification problem represented by the GO database where proteins contain multiple 

labels, MetaMLP show a consistent distribution over the clusters and its corresponding 

categories. Clusters shown in Figure 2C describes the relationship among different 

biological processes involved in response to stress. For example, proteins responding 

to antibiotics are also associated to other biological process such as response to toxic 

substances, pathogenesis, defense to virus, chemotaxis, response to DNA damage, 

among others. Such associations can be clearly seen from the embeddings 

visualization. Therefore, the embedding strategy adopted in MetaMLP is also suitable 

for representing reference databases where proteins contains multiple labels. 

Detection of True Positive Hits 

The pathways database was used to assess the ability of MetaMLP to 1) discriminate 

between pathway-like reads and 2) to evaluate the performance of  MetaMLP on 

classifying short sequences from a particular pathway. To compare the performance of 

MetaMLP, the best hit approach using Diamond BlastX was used. In total, MetaMLP 

was able to identify 10,433 (29%) pathway-like reads out of the total 35,751 with a 

probability greater than 0.8, whereas, the baseline approach was able to identify 8,695 

(24%) reads out of the 35,751. This means MetaMLP was able to identify 5% more 

reads than the best hit approach at 80% identity. Further, both methods were compared 
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on their positive predictions to evaluate their performance for discriminating reads from 

a particular pathway. As expected, the sequence alignment approach at 80% identity 

performed with a high average precision (0.99) and recall (1.00) (see Supplementary 

Table S5) whereas MetaMLP was also near to a perfect prediction with a 0.99 average 

precision and 0.99 average recall (see Supplementary Table S6) indicating the potential 

of the kmer vectors to represent protein sequences to profile metagenomes. It is also 

worth mentioning that MetaMLP and the best hit approach didn’t perform well for three 

categories (Aromatic compound metabolism, Bacterial outer membrane biogenesis, and 

xenobiotic degradation). Interestingly, the best hit approach was not able to identify any 

read from the bacterial outer membrane biogenesis when MetaMLP obtained a 1.00 

precision but a low 0.13 recall indicating a high sensitivity of MetaMLP in discriminating 

true positives from this category but failing for false negatives. In terms of relative 

abundance, the comparison of the read counts between the best hit approach and 

MetaMLP was very close with a correlation of 0.988, indicating that MetaMLP can 

correctly characterize the  composition of the pathways in the simulated dataset (see 

Supplementary Figure S1).  

Detection of False Positives Hits 

A false positive is a negative sample predicted as positive. For instance, a read that 

does not belong to any pathway class is predicted to particular pathway. In this false 

positive scenario, MetaMLP was tested against the number of predicted random reads 

by counting how many out of the 35,751 negative reads were classified in any 

pathways. As result, MetaMLP classified only 2 reads (0.005%) out of the 35,751 
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negative reads indicating a very low false positive rate. As expected, the best hit 

approach didn’t produce any relevant alignment.  

Time and Memory Usage of MetaMLP 

The main advantage for building up a classifier instead of performing a sequence 

alignment is the improvement over the speed for making the annotations. Results have 

shown that MetaMLP keeps an almost identical level of sensitivity compared to 

Diamond BlastX. However, the strength of MetaMLP relies on its speed. Table 1 shows 

the speed benchmarking over datasets with different number of reads. Note that 

MetaMLP is >50x times faster than Diamond for all the sample sizes. MetaMLP 

produces very similar results in terms of relative abundance using the ARGs database 

and pathway database with a correlation of 0.951 and 0.953, respectively (See 

Supplementary Figure S2). Note that in this test, MetaMLP identified 35% more ARG-

like reads (253,370) compared to the number of reads (186,736) detected from 

Diamond BlastX. In addition, MetaMLP is also memory efficient depending mostly on 

the size of the reference database. For instance, it requires a minimum ram memory of 

1.0Gb to run the pathways database, 1.2Gb when using the ARGs database and 2.8Gb 

if using the GO database. When processing 100M reads, it required 1.7Gb in total with 

the pathways database whereas Diamond BlastX required 6.68Gb. The low memory 

usage in MetaMLP is a consequence of its classification strategy where reads are 

loaded in chunks of 10,000 reads for efficient I/O rate. Therefore, MetaMLP can be run 

in any personal computer without the need of using a big cluster with high amount of 

RAM memory.  
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Functional Annotation of Different Environments 

MetaMLP was run over the 67 real metagenomic samples processing a total of 

2,186,933,071 reads. Of those reads MetaMLP was able to predict 2,343,026 as ARG-

like reads in 710 minutes using only once CPU, whereas Diamond BlastX identified 

2,003,050 reads taking a total of 5,256 minutes using 20 CPUs. Thereafter, the average 

correlation of the abundances between Diamond and MetaMLP was of 0.94 (0.88 log 

transformed abundance). Interestingly, human gut microbiota and wastewater were the 

two environments where both methods had the highest correlation respect their log 

transformed abundance (0.96, 0.93 respectively) whereas soil and freshwater had each 

a correlation of 0.83.  

  

Observation of MetaMLP Annotations against an extensive Metagenomics Study 

An extensive study carried out by Pal et. al., (34), uses over >800 metagenomic 

samples spanning several environments with a sequence alignment strategy at a 90% 

identity cutoff for annotation. This study (named Pal800 for simplicity) shown that the 

human gut microbiota is one of the environments with the highest relative abundance 

compared to other microbiomes (soil, wastewater and freshwater). Concordantly, when 

MetaMLP was run over the 68 real metagenomic samples using the GO database, it 

also profiled the human gut microbiome as the highest relative abundance for the 

response to antibiotic process (see Supplementary Figure S3). Note that Pal800 used a 

curated ARG database and therefore it didn’t consider the induction of false positives. 

However, the GO database only provides a general overview of the functional 

composition of those environments. Therefore, a more detailed analysis was obtained 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2019. ; https://doi.org/10.1101/569970doi: bioRxiv preprint 

https://doi.org/10.1101/569970
http://creativecommons.org/licenses/by-nc-nd/4.0/


by looking at the results from MetaMLP using the specialized ARGs database. As result, 

the same trend was observed when comparing both analysis (MetaMLP, Pal800). For 

example, the tetracycline category had the highest relative abundance in the human 

microbiome, sulfonamide shows the highest relative abundance in the wastewater 

environment, the relative abundance of the beta-lactamase class was higher in the 

freshwater compared to the wastewater and both are higher than human gut and soil 

environments. Pal800 also performed a composition profile of the mobile genetic 

elements present in the microbiomes. It shown that wastewater, freshwater and soil 

environments had a higher relative abundance compared to the human gut. 

Interestingly, for MetaMLP the GO response to stress database conveyed a similar 

trend in relative abundance for the biological process “establishment of competence for 

transformation” (Transformation Supplementary Figure S3).  This term is associated to 

genetic transfer between organisms and is described by the GO consortium as the 

process where exogenous DNA is acquired by a bacterium. In overall, despite only 

using 67 real metagenomes, the functional annotation carried out by MetaMLP 

described a very similar trending for relative abundances when compared to the Pal800 

study indicating a real scenario usage of MetaMLP. 

Conclusions 

MetaMLP is an alignment-free method for profiling metagenomic samples to specific 

target group of proteins (e.g., ARGs, pathways, GO terms) using a machine learning 

classifier. It uses sequence embeddings to represent protein/DNA sequences as 

numerical vectors and a linear classifier to discriminate between protein functions. 
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Results show that MetaMLP identifies more reads than the widely used best hit 

approach (sequence alignment with identity >80%) and has a good performance as the 

sequence alignment method. Remarkably, MetaMLP is around 50x faster than 

DIAMOND aligner, the most widely used sequence alignment tool for metagenomic 

datasets. MetaMLP can be trained using any collection of protein sequences (reference 

database) and keeps a very low memory footprint for the specialized databases used in 

this paper. Finally, MetaMLP is open sourced and freely available at  

https://bitbucket.org/gaarangoa/metamlp/src/master/.  
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Figures Legends 

 

Figure1: Overview of MetaMLP. A) Indexing reference databases where proteins are 

used to train the machine learning model. B) Once a model is trained, it will be used 

later to profile short sequencing reads to produce a relative abundance profile and the 

individual predictions for each read.  
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Figure 2: MetaMLP embeddings representation in two dimensional space for the 

pathways, ARGs and GO response to stress databases.  

 

 

Number of Reads MetaMLP Diamond 

100,000 9 s 38 s 

1,000,000 27 s 6 m 

10,000,000 1 m 67 m 

100,000,000 14 m 714 m 

 

Table 1: Time profiling of MetaMLP compared to Diamond BlastX over different sample 

sizes.    
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