
Metamodel-Based Model Conformance and
Multiview Consistency Checking

RICHARD F. PAIGE

University of York, UK

PHILLIP J. BROOKE

University of Teesside, UK

and

JONATHAN S. OSTROFF

York University, Canada

Model-driven development, using languages such as UML and BON, often makes use of multiple
diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting
different views of a system of interest, may be inconsistent. A metamodel provides a unifying
framework in which to ensure and check consistency, while at the same time providing the means to
distinguish between valid and invalid models, that is, conformance. Two formal specifications of the
metamodel for an object-oriented modeling language are presented, and it is shown how to use these
specifications for model conformance and multiview consistency checking. Comparisons are made in
terms of completeness and the level of automation each provide for checking multiview consistency
and model conformance. The lessons learned from applying formal techniques to the problems of
metamodeling, model conformance, and multiview consistency checking are summarized.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods

General Terms: Design, Languages, Verification

Additional Key Words and Phrases: Metamodeling, multiview consistency, formal methods, auto-
mated verification

ACM Reference Format:
Paige, R. F., Brooke. P. J., and Ostroff, J. S. 2007. Metamodel-based model conformance and mul-
tiview consistency checking. ACM Trans. Softw. Engin. Method. 16, 3, Article 11 (July 2007), 49
pages. DOI = 10.1145/ 1243987.1243989 http://doi.acm.org/10.1145/1243987.1243989

This research was partially supported by the National Sciences and Engineering Research Council
of Canada, and by the European Commission under IST # 51173.
Authors’ addresses: R. F. Paige, Department of Computer Science, University of York, Heslington,
York YO10 5DD, UK; email: paige@cs.york.ac.uk; P. J. Brooke, School of Computing, University
of Teesside, Middlesbrough, TS1 3BA; email: p.j.brooke@tees.ac.uk; J. S. Ostroff, Department of
Computer Science and Engineering, York University, Toronto, Ontario, Canada; email: jonathan@
cs.yorku.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1049-331X/2007/07-ART11 $5.00 DOI 10.1145/1243987.1243989 http://doi.acm.org/
10.1145/1243987.1243989

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

2 • R. F. Paige et al.

1. INTRODUCTION

Modeling languages such as UML 2.0 [Object Management Group 2003b] and
BON [Walden and Nerson 1995] form the basis of model-driven approaches
to building software systems. The Model-Driven Architecture (MDA) initiative
of the OMG [Object Management Group 2003a] makes modeling languages
the primary tool of developers in all stages of the systems engineering process
whether carrying out requirements engineering, system modeling, deployment,
implementation, testing, or transformation. The modeling languages used dur-
ing model-driven development must be carefully designed, supportable and
supported by tools, and understandable and explainable to developers and do-
main experts.

A modeling language is typically described using one or more metamodels
[Object Management Group 2003b], which are used to define the syntax of the
language, the well-formedness constraints it must obey, and the semantics of
the language’s constructs. Most often, metamodels are constructed to represent
abstract syntax and well-formedness constraints, though some efforts are be-
ginning to appear on metamodels of language semantics [Xactium 2006] and
concrete syntax [Fondement and Baar 2005].

Metamodeling is now accepted as a critical part of the design of modeling
languages [Evans et al. 2005]: without a precise, consistent, and validated
metamodel specification, it is difficult to explain a language, build tools to sup-
port it and produce consistent and unambiguous models. The importance of
metamodeling is reflected in the literature, for example, the recent workshop
on metamodeling for support of MDA [Evans et al. 2003], the substantial ef-
fort placed on reengineering the metamodel of UML for version 2.0 [Object
Management Group 2004b], the emphasis on metamodeling in Eclipse via the
Eclipse Modeling Framework [Budinsky et al. 2003] and the focus of the EU
Integrated Project MODELWARE, wherein metamodeling pervades all aspects
of the project. Metamodeling is also widely accepted as a nontrivial task espe-
cially for industrial-strength languages which have large and complex syntaxes
and semantics and often make use of multiple cross-cutting views. A view is a
description that represents a system from a particular perspective (e.g., system
architecture, behavior, contract, deployment), and thus includes a subset of the
system’s elements (e.g., modules). A view is often represented using a separate
diagram, for example, class diagrams for structure, communication diagrams
for system behavior (though standards such as IEEE 1471 [IEEE 2000] do
not require this). Consider, for example, the simple system model presented in
Figure 1, which illustrates two commonly used views each represented using a
separate diagram.

On the left is a class diagram in BON syntax and on the right is a dialect
of UML 2.0 communication diagrams. These represent the same system but
from different perspectives, the architectural and the behavioral. A third view,
represented by contracts, is also included in the left diagram; these contracts
represent additional information about the services provided by classes and
the conditions under which they can be used. It is important for developers to
know and to be able to check that these views do not contain any contradictory

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 3

Fig. 1. Diagrams presenting a multiview model.

information before attempting to implement them. In this particular example,
there are two inconsistencies that need to be detected: a routine that does not
exist (in end room) is called, and a precondition is not true before a routine is
called. We return to this example later in Section 4. More complex and realistic
examples showing the value of multiview consistency checking are discussed
in, MODELWARE [2005].

The contribution of this article is a comparison of two metamodeling ap-
proaches that can be used to detect inconsistencies like the ones contained in
Figure 1. The approaches differ in terms of their completeness (i.e., the kinds
of inconsistencies that can be detected) and the level of automation provided.
We make this more precise in the next section.

1.1 Model Conformance and Multiview Consistency Checking

The presence of a clearly specified, understandable, tool-supported metamodel
for a modeling language makes it feasible to carry out model conformance and
multiview consistency checking (MVCC). A metamodel captures the syntax and
semantics of all the modeling concepts in a language (e.g., concepts such as
classes, objects, procedures, processes, documents, and services) and thus pro-
vides the context needed for expressing well-formedness constraints for models
and on multiple views. With model conformance, a model is checked that it
satisfies the constraints captured in the metamodel, that is, that the model is
indeed a valid instance of the metamodel. With MVCC, it is shown that two or
more diagrams, each presenting a different view, do not contradict each other
according to a set of (metalevel) rules. As we shall see shortly, it is possible to
unify the definitions of MVCC and model conformance checking.

The constraints encoded in a metamodel in turn lead us to a precise definition
of model conformance and multiview consistency as follows.

Formally, model conformance, that is, checking that a model satisfies the
well-formedness constraints of a language, and multiview consistency checking
can be defined as follows. Let L be a modeling language, and MM a metamodel
for L. Let M be a model expressed in the language L. MM consists of a set

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

4 • R. F. Paige et al.

of constraints which can conceptually be partitioned into those capturing the
abstract syntax of L, and the semantics of L, that is, MM =̂ SYNTAX ∪ SEM.
The semantic constraints can conceptually be partitioned into those that define
the semantics of a single view (e.g., class diagrams in UML) and those that de-
fine the consistency of multiple views.1 Thus, if v1 and v2 are views expressible
in language L, then

SEM =̂ ∀v1 ∈ L • SVC(v1) ∧
∀v1, v2 ∈ L | v1 �= v2 • MVC(v1, v2),

where SVC(v1) is the set of semantic constraints on the view v1, and
MVC(v1, v2) is the set of semantic constraints on the two views v1, v2.

The notion of model M conforming to the metamodel MM is defined as
follows.

conforms(M , MM) =̂ ∀c ∈ MM • M sat c,

that is, the model M satisfies each well-formedness constraint c of the meta-
model MM. Note that if the model M consists of two or more views (e.g., a
class diagram and a statechart in UML) then conforms(M , MM) will estab-
lish that (a) M conforms to the metamodel and (b) the views are mutually
consistent.

Of course, steps (a) and (b) can be separated, that is, the definitions of con-
formance and multiview consistency can be constructed independently, and
this may be useful in specifying the behavior of separate conformance and
consistency-checking tools. Our definition suggests that, for metamodel-based
approaches, it is appropriate to unify the notions of model conformance and
multiview consistency at least conceptually.2 It also implies that mathematical
techniques can play a substantial role in these processes.

In practice, a variety of different views are used in model-driven development
[Object Management Group 2004b]. Most widespread are the views presented
by a variety of UML 2.0 diagrams: class diagrams (i.e., a structural view), state
charts (i.e., a behavioral view pertaining to the properties of a single class
or object), communication diagrams (i.e., a behavioral view pertaining to the
properties of more than one object), and executable code. Class contracts, for
instance, pre and postconditions of routines of a class, can also be considered as
views, though they are not usually represented using diagrams and are often
integrated within other views (e.g., in Catalysis [D’Souza and Wills 1998] and in
BON). As well, different versions of the same kind of diagram can be perceived
as presenting different views of a system which must be consistent. Concep-
tually, there is no difference between multiview consistency checking when
applied to different kinds of diagrams versus different versions of diagrams
and similar techniques can be used for each, for example, see MODELWARE
[2005]. However, additional model management problems exist when dealing

1In practice, separating single view and multiview consistency constraints may be challenging, but
in principle it is possible, and, moreover, it offers a discipline for constructing languages.
2Additional techniques will likely be needed for non-MVCC, for example, for checking consistency
between refinement steps in MDA [Object Management Group 2003a; Paige et al. 2005].

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 5

with different versions of models such as the need to carry out model merging.
We do not discuss this related topic further in this article.

Most of the previous work on metamodel-based multiview consistency, dis-
cussed in Section 2, has focused on class diagrams and state charts and very
little research has examined the use of contracts, that is, pre and postconditions
on messages appearing in sequence diagrams, unlike the work in this article.
Contracts are of increasing importance in model-driven development; they are
supported by a number of languages and methodologies, such as UML 2.0 and
Catalysis, as well as the recent Architecture Analysis and Design Language
(AADL) standard [Society of Automotive Engineers 2005], which makes use of
a contract annex for improving the precision of modeling and improving the
capabilities for analysis. As such, it is important to address their impact on
multiview consistency checking.

1.2 Aims of This Article

This article contributes a detailed comparison of using two different (tool-
supported) approaches to metamodeling, model conformance, and multiview
consistency checking, including contracts. The work applies to any modeling
language, such as UML 2.0 with OCL and BON, that supports views presented
by class diagrams, and communication diagrams and that also supports use of
contracts for capturing detailed behavior of objects. In particular, we contribute
techniques and comparisons of approaches used for handling the consistency
issues raised by using contracts in the diagrams. By including contracts, we
implicitly introduce a third view, that which describes the behavior of classes
of objects.

We have focused on these views because they present more challenges—
particularly when considering contracts—than other views and also because
there is less related work. There is nothing in the approaches presented and
compared in this article that prevent them from being extended to additional
views (e.g., deployment, business rules). The extension process may be made
easier by having a clear understanding of how to construct metamodels and
carry out consistency checking for the structural and behavioral views discussed
earlier.

We present this synthesis in order to suggest guidelines and recommend
practices on the development of modeling languages. Our aim is to provide
pragmatic advice to users and developers of modeling languages on useful ways
in which to carry out metamodeling and metamodel-based conformance and
multiview consistency checking in a practical, tool-supported way, based on the
use of formal techniques. This advice in turn could influence decisions on the
techniques used to construct and validate metamodels and language designs,
in the future.

To this end, we compare and contrast two approaches to metamodeling for
object-oriented languages: one approach uses the PVS specification language
[Owre et al. 1999], while the second uses Eiffel [Meyer 1992] as a specification
language, that is, we make use of Eiffel’s declarative specification techniques,
particularly agents (discussed in Section 2) for expressing metamodels. Both

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

6 • R. F. Paige et al.

Table I. Criteria for Comparison of Metamodeling and MVCC Approaches

—Understandability is the extent to which the descriptions used are understandable to a
reasonably experienced software engineer who has modeling language but not necessarily
formal methods experience.

—Correctness is the extent to which metamodel descriptions have been checked against
their specifications.

—Completeness is the extent to which all features of the modeling language (including
multiview consistency constraints) are supported in the metamodeling approach.

—Maintainability is the extent to which the descriptions support extension, refactoring, and
wholesale modification.

—Tool construction is the extent to which tools are available to support producing the
descriptions.

—Tool-based V&V is the extent to which tools are available to assist in verifying and
validating the descriptions.

—Automation in MVCC is the extent to which multiview consistency checking can be
carried out automatically.

approaches also support model conformance checking. The two languages used
for metamodeling and checking in these approaches, theorem proving and
object-oriented programming, respectively, are very different and have advan-
tages and disadvantages which we attempt to draw out in our discussion. We
choose PVS as it is representative of the state-of-the-art in theorem-proving
technology. We choose Eiffel as it is representative of the state-of-the-art in
executable object-oriented languages that support contracts; an alternative to
Eiffel might be Spec# [Microsoft 2006], but it is still under development.

We use these metamodel specifications to carry out a comparison of two
approaches to metamodel-based multiview consistency checking and describe
the advantages and disadvantages of the approaches. We particularly focus on
the lessons learned in terms of the completeness of the approaches, that is, does
the approach support all elements of the modeling language in full—and in
terms of the level of automation offered in checking the conforms relation, that
is, for carrying out conformance and multiview consistency checking.

It is important to note that when comparing the two approaches to meta-
modeling, we are not attempting a like-for-like comparison, that is, attempting
to use the same approach for metamodeling in both PVS and Eiffel. Instead, we
will consider best practices with each technology, focusing on the typical way
in which an engineer might use PVS or Eiffel for metamodeling, model confor-
mance, and multiview consistency checking. Since the approaches offered are
as one would expect quite different, we will need to identify criteria in order
to have a common basis for comparison. These will be precisely specified in
Sections 3 and 4; an informal summary of the criteria that will be used is in
Table I. There is a level of subjectivity in comparisons involving these criteria;
the aim of the comparison is to provide general guidance on how to construct
metamodels, as well as how to select metamodeling languages and multiview
consistency-checking approaches.

We are not aiming at a comprehensive overview of the field; in particular, we
do not consider all aspects of consistency checking in the domain of the MDA.
We omit refinement-based consistency in MDA, though many of the techniques
in this article, we claim can be extended to handle this (see Paige et al. [2005] for

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 7

more details on this). Further, we are focusing on metamodel-based techniques
since these are critical and widely used in the model-driven development com-
munity rather than fully considering the problems of model conformance and
consistency.

The comparisons will be carried out using the BON modeling language
[Walden and Nerson 1995] as an exemplar (see Section 2). BON is concise
enough so as to convey and cover all of the language within this article. BON
provides three views: a static view presented by class diagrams, a dynamic
view presented by a dialect of collaboration diagrams, and a behavioral view
presented using contracts (pre and postconditions of routines, plus invariants
of classes). Contracts effectively subsume the information that is often pre-
sented using state diagrams (e.g., in UML 2.0) in some modeling languages.
Contracts are widely used in object-oriented programming and are also used
via OCL in UML 2.0. However, while contracts increase the expressiveness
of a modeling language, they introduce additional challenges for metamodel-
ing and multiview consistency checking. Integrating support for contracts into
metamodeling and MVCC approaches is one of the key contributions of this ar-
ticle. While our arguments and presentation are framed in terms of BON and
its diagrams, they can easily be generalized to apply to UML as well, as we
discuss in Section 2.

We start with an overview of BON, and also describe other related recent
work in metamodeling and multiview consistency checking. As well, we relate
BON to UML in order to broaden the scope of the work; we summarize the
key differences between BON and UML. We then describe two approaches to
metamodeling and model conformance for BON and compare and contrast the
results. The metamodels are next used in two approaches to multiview consis-
tency checking. At key points while presenting the metamodels and techniques,
we briefly explain how the techniques could apply to UML as well. A summary
of our findings and a discussion conclude the article.

2. BON AND RELATED WORK

2.1 BON

BON [Walden and Nerson 1995] is an object-oriented method, consisting of a
modeling language and development process for building reliable systems. It is
supported by a number of tools, including Visio and EiffelStudio. Its language
has been designed to work seamlessly and reversibly with Eiffel: BON diagrams
can automatically be produced from Eiffel code, and Eiffel code can be generated
from BON diagrams. There are three main parts to BON’s language. The first,
class interfaces, is demonstrated with an example in Figure 2(a).

The name of the class is at the top of of Figure 2(a). The middle section is made
up of features (attributes or routines). Routines are either functions (returning
a value) or procedures (effecting state changes) and may have preconditions
(denoted using a ? in a box, which are assertions that must be true before any
call to the routine) and postconditions (denoted using a ! in a box, which are
assertions that must be true after the routine body has executed). At the bottom

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

8 • R. F. Paige et al.

Fig. 2. BON syntax for interfaces and relationships.

of the class is its invariant, a set of assertions that must be true before and after
each client call to a function or procedure. Assertions are written in BON’s
first-order dialect of predicate logic, which includes propositions, universal and
existential quantifiers, type interrogation, and reference types (along with the
usual arithmetic and boolean operators and values).

The second part of BON is the class diagram notation. Class diagrams con-
sist of classes organized in clusters (drawn as a dashed rounded rectangle in
Figure 2(b)), which interact via two kinds of relationships.

—Inheritance. Inheritance defines a subtype relationship between child and
one or more parents. The inheritance relationship is drawn between classes
CHILD and ANCESTOR in Figure 2(b) with the arrow directed from the
child to the parent class. In this figure, classes have been drawn in their
compressed form as ellipses with interface details hidden. Inheritance can
also be drawn so that the source or target is a cluster (a set of one or more
classes or other clusters), for instance, as drawn between AGGREGATE and
CLUSTER in Figure 2(b). In this particular example, the inheritance arrow
indicates that AGGREGATE inherits behavior from one or more classes in
CLUSTER.

—Client-Supplier. There are two client-supplier relationships, association and
aggregation. Both relationships are directed from a client class to a supplier
class; the relationship has an optional label. With association, the client class
has a reference to an object of the supplier class. With aggregation, the client
class contains an object of the supplier class. The aggregation relationship
is drawn between classes CHILD and AGGREGATE in Figure 2(b), whereas
an association is drawn from ANCESTOR to class SUPPLIER.

The third part of BON’s language is dynamic diagrams (similar to commu-
nication diagrams in UML 2.0). The syntax for these diagrams is very similar

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 9

Fig. 3. BON dynamic diagram.

to UML; it is used to depict objects, messages sent between objects, and se-
quencing information, where a message corresponds to a potential routine call
on a target object. An example is shown in Figure 3. Rectangles represent ob-
jects, while dashed arrows represent messages. Four objects are anonymous in
Figure 3, whereas object outer is of class GROUP. Each message has a number
that is cross-referenced to a scenario box; this box indicates the routine that is
bound to the message and which is invoked when the message is received by the
target. Messages are sent (and hence routines invoked) in the order indicated
by the message numbers. When a message is received and before its corre-
sponding routine is invoked, the precondition of this routine should be true;
note that this is not guaranteed, but it must be checked (e.g., by the sender
of the message). Typically such diagrams are not used to capture exceptional
behavior (e.g., what a system does if a precondition fails on sending a message)
but exceptions can be described in a similar way to other scenarios (e.g., by
adding additional messages).

2.1.1 BON, UML, and Domain-Specific Modeling. BON was chosen as the
language of discourse in this article because of its size and conciseness and
also because of its integrated support for contracts. However, the lessons and
observations made in this article apply to UML 2.0 as well and also to domain-
specific modeling languages, such as the aforementioned AADL. To help clarify
this, we now briefly contrast BON with UML and domain-specific modeling.

BON is equivalent to a profile of UML 2.0, consisting of a subset of class
diagrams, the Object Constraint Language (OCL), and communication dia-
grams. BON purposely omits all other diagrams to maintain semantic coher-
ence [Walden and Nerson 1995; Meyer 1997].

BON class diagrams are equivalent to UML class diagrams, omitting UML
aggregation (which is inexpressible in BON). BON provides a single concept,
the class, which subsumes UML’s interface, abstract class, and class. BON uses
stereotypes on classes to denote variants of the general-purpose class concept;
this allows specification of interface-like concepts. BON supports only a small
set of fixed stereotypes unlike UML. Aggregation is omitted because it cannot
be mapped directly into a programming language [Walden and Nerson 1995];
UML composition in contrast, can be mapped into Eiffel’s expanded types or
C++’s variables and is supported in BON via its aggregation notation (this is

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

10 • R. F. Paige et al.

admittedly confusing, but the short of it is that BON aggregation is equivalent
to UML composition).

BON dynamic diagrams are semantically equivalent to UML 2.0 communica-
tion diagrams, omitting guards. UML’s concept of guards are subsumed in BON
within the contracts of individual routines. Constraints on repetition of mes-
sages in UML are expressed either using routine contracts or by using multi-
messages (i.e., messages that are sent to multiple objects simultaneously); the
former is preferred. A syntactic novelty with BON dynamic diagrams is that it
provides precise rules for flattening or expanding collections of messages using
clusters; this is helpful for improving the readability of diagrams.

BON’s contract language is very similar to OCL 2.0, though there are some
differences in the type systems (BON does not provide direct equivalents to
many of OCL’s built-in types). BON is also based on two-valued predicate logic,
whereas OCL supports three-valued logic. OCL also provides mechanisms for
relating constraints with UML state charts. A detailed comparison of the con-
tract languages is outside of the scope of this article, but the reader is referred
to Paige and Ostroff [1999a] and Spencer [2005]. The former contrasts BON
with UML and OCL in detail, while the latter implements a substantial subset
of OCL using Eiffel’s contract language (which is effectively a subset of BON).

BON can also be viewed as a domain-specific modeling language for Eiffel.
BON has been designed (a) to be useful for visually representing substantial
parts of Eiffel programs, and (b) so that each BON concept maps seamlessly and
reversibly to an Eiffel concept (i.e., each concept in BON has a direct equivalent
in Eiffel). This makes it straightforward to implement code generators and
reverse engineering tools for BON, but it raises questions about using BON
for analysis, as it omits a number of modeling constructs that UML provides.
However, the BON contract language (a dialect of first-order predicate logic)
is considered suitably rich and expressive to mitigate for the (visual) modeling
constructs omitted from the language [Walden and Nerson 1995].

2.2 Eiffel

Eiffel is an object-oriented programming language [Meyer 1997]; it provides
constructs typical of the object-oriented paradigm, including classes, objects,
inheritance, associations, composite (expanded) types, generic (parameterised)
types, polymorphism and dynamic binding, and automatic memory manage-
ment. It has a comprehensive set of libraries, including data structures, GUI
widgets, and database management system bindings, and the language is in-
tegrated with .NET.

A short example of an Eiffel class is shown in Figure 4. The class CITIZEN
inherits from PERSON (thus defining a subtyping relationship). It provides
several attributes, for example, spouse, children which are of reference type
(spouse refers to an object of type CITIZEN, while children refers to an object
of type SET[CITIZEN]); these features are publicly accessible (i.e., are exported
to ANY client). Attributes are of reference type by default a reference attribute
either points at an object on the heap, or is void. The class provides one ex-
panded attribute, blood type. Expanded attributes are also known as composite

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 11

Fig. 4. Eiffel class interface.

attributes; they are not references, and memory is allocated for expanded at-
tributes when memory is allocated for the enclosing object.

The remaining features of the class are routines, that is, functions (like
single, which returns true if and only if the citizen has no spouse) and
procedures (like divorce, which changes the state of the object). These routines
may have preconditions (require clauses) and postconditions (ensure clauses).
Finally, the class has an invariant, specifying properties that must be true
of all objects of the class at stable points in time, that is, before any valid
client call on the object. In writing the invariant of CITIZEN, we have used
Eiffel’s agent notation. Agents are a way to encapsulate operations in objects;
the operation can then be invoked on collections (e.g., a set or linked list)
when necessary. Two built-in agents in Eiffel are for_all and there_exists,
which can be used to implement quantifiers over finite data structures. In
this example, one agent is used in the class invariant: for_all iterates over
all elements of children and returns true if its body, applied to each element,
returns true. The body is a boolean expression which returns true if and only
if the current citizen is a child of one of its parents. In other words, the agent
expression is true if and only if all children have links to their parents.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

12 • R. F. Paige et al.

Fig. 5. The BON metamodel, abstract architecture.

Other facilities offered by Eiffel but not demonstrated here include dynamic
dispatch, multiple inheritance, and static typing. We refer the reader to Meyer
[1992] for full details on these and other features.

2.2.1 Eiffel as a Formal Specification Language. Eiffel is a wide-spectrum
language [Meyer 1997; Paige and Ostroff 1999b, 2004] suitable for both pro-
gramming and lightweight formal specification. It has been designed to support
seamless development, where one language is used throughout the develop-
ment process. Eiffel is not a small language, but a subset of it can be identified
and applied for formal specification. An Eiffel formal specification is written
using only the following constructs.

—Classes and class interfaces (containing routine signatures and attributes).
—Local variables of routines
—Boolean expressions (including agents)
—Routine calls of the form o. f , where o is a variable or attribute, and f a

routine
—Assignment statements in routine bodies
—Sequential composition of routine calls and assignment statements
—Preconditions and postconditions of routines, and class invariants

All other Eiffel constructs are excluded. This subset is roughly similar to the
subset identified in the Eiffel Refinement Calculus [Paige and Ostroff 2004],
which allows Eiffel formal specifications to be refined to programs. A formal
semantics for these constructs can be found in Paige and Ostroff [2004].

2.3 Overview of the BON Metamodel

The BON metamodel was specified in BON itself in Paige and Ostroff [2001],
keeping with the approaches followed in the UML community. We give a sum-
mary of the metamodel in this section, focusing on the key components and
packages. This metamodel will be used for comparing different approaches in
later sections.

Figure 5 contains an abstract depiction of the BON metamodel. BON mod-
els are instances of the class MODEL. Each model has a set of abstractions.
The two clusters, representing abstractions and relationships, will be detailed
shortly.

The class MODEL possesses a number of features and invariant clauses
that will be used to capture the well-formedness constraints of BON mod-
els. These features are depicted in Figure 6, which shows the interface for
MODEL. We will not provide all the details of the individual clauses of the

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 13

Fig. 6. Interface of class MODEL.

class invariant of MODEL, though examples will be considered in the following
sections.

The relationships cluster describes the four basic BON relationships (includ-
ing messages between objects) as well as constraints on their use. The details
of the cluster are shown in Figure 7.

Covariant redefinition3 is used in Figure 7 to capture well-formedness con-
ditions, for instance, that inheritance can connect only static abstractions.

Invariants are written on classes representing inheritance and aggregation
relationships to express that these relationships cannot be self-targeted.

The abstractions cluster describes the abstractions that may appear in a
BON model. It is depicted in Figure 8.

ABSTRACTION is a deferred class: instances of ABSTRACTIONs cannot
be created. Classification is used to separate all abstractions into two sub-
types, static and dynamic abstractions. Static abstractions are CLASSes and
CLUSTERs. Dynamic abstractions are OBJECTs and OBJECT CLUSTERs.
Clusters may contain other abstractions according to their type, that is, static
clusters contain only static abstractions.

The features cluster describes the notion of a feature that is possessed by a
class. Features have optional parameters, an optional precondition and post-
condition, and an optional frame. The pre and postcondition are assertions.
Query calls may appear in assertions; the set of query calls that appear in an
assertion must be modeled in order to ensure that the calls are valid according
to the export policy of a class. Each feature will thus have a list of accessors,

3Covariant redefinition allows types to be replaced by descendents in a child class; this applies to
both the types of parameters and the type of function result. This is permitted in both BON and
Eiffel. It should be contrasted with no variance in Java, and partial covariance (for function results
only) in C++.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

14 • R. F. Paige et al.

Fig. 7. The relationships cluster.

Fig. 8. The abstractions cluster.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 15

Fig. 9. BON metamodel, features cluster.

which are classes that may use the feature as a client. A call consists of an
entity (the target of the call), a feature, and optional arguments. The frame is
a set of attributes that the feature may modify. Figure 9 depicts the cluster.

2.3.1 Summary. This section has summarized the BON metamodel, pri-
marily to illustrate that the BON language, while smaller than UML, still pro-
vides useful modeling constructs and is nontrivial from a metamodeling per-
spective. This (semiformal) summary attempts to promote understandability
by diagrammatically expressing well-formedness constraints and by allowing
projection of abstract views of the metamodel. In this sense, this mimics the
approach taken in the OMG to metamodeling UML.

The main disadvantage with specifying the BON metamodel in BON directly
is that the language’s semantics is not fully and formally defined (parts of the
language are formalized in Paige and Ostroff [1999b]), and there are as of yet
no tools that can be used to directly check the correctness of the invariants and
assertions contained within the classes. This criticism only partly applies to
the UML 2.0 metamodel: while a full formal semantics for UML 2.0 does not
yet exist, the fact that UML 2.0 is defined in terms of MOF, and there are tools
that partly support MOF, means that partial checking of the UML metamodel
can be carried out automatically.

Given the lack of formal semantics and the need to use translation to obtain
verification and validation capabilities, the value of using BON to express its
metamodel directly is circumscribed. A second, related disadvantage is that it is
difficult to use the metamodel, as specified, to carry out multiview consistency
checking because of a lack of formal semantics and automated tool support. A
final disadvantage is that it is difficult to validate and verify the metamodel
expressed directly in BON. The advantage of using BON (or other visual lan-
guages) to express metamodels is that the results are generally more easily
understood than other representations.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

16 • R. F. Paige et al.

2.4 Related Work on OO Metamodeling and Multiview Consistency Checking

Our focus in this article is specifically on metamodeling and consistency check-
ing in the domain of object-oriented and systems modeling, and this guides
our overview of related work. There has been much recent related work on
OO metamodeling and on using these metamodels to carry out conformance
checking and checking the consistency of multiple views. More general work
on consistency, for instance, for requirements [Finkelstein et al. 1994], for han-
dling and managing inconsistency using model checking [Chechik et al. 2003]
and general XML-based tool support [Gryce et al. 2002] is discussed elsewhere
and is outside our scope.

Work on OO metamodeling has been dominated by work on UML. This work
can generally be categorized into that which presents semi-formal approaches to
metamodeling—for example, using UML 2.0 itself [Object Management Group
2004b], the Meta-Object Facility [Object Management Group 2004a], or even
other semiformal modeling languages such as BON [Paige and Ostroff 2001],
and that based on formal approaches to metamodeling, for instance, using
Object-Z to specify the UML metamodel [Kim and Carrington 2004], PVS [Paige
et al. 2003b], OCL [Object Management Group 2004b], XMF-Mosaic [Xactium
2006], MML [Clark et al. 2001a], Executable UML [Mellor and Balcer 2002],
and the template-based approaches to specification in Z [Amalio et al. 2004].
The semiformal modeling work tends to be more complete (in terms of support-
ing different diagrams) than the formal-based work. The formal-based work
tends to focus on supporting specific views, for example, class diagrams and
statecharts—or proves incomplete specifications of several views. The formal-
based metamodeling work has a number of similarities to efforts made on formal
modeling of object-oriented systems, for example, using Spec# [Microsoft 2006],
JML [Leavens et al. 2005], or algebraic specification languages such as CASL
[Bidoit and Mosses 2004], though these languages are generally used to reason
about programs rather than metamodels and language definitions.

The general view in the UML community is that using a semiformal mod-
eling language (such as UML, or MOF) to capture a metamodel is preferable
to using formal techniques since more developers, particularly, tool builders,
will be able to construct, interpret, and implement a metamodel expressed in
UML as opposed to, for example, a formal language such as Z or PVS where
there are substantial differences between the domains of discourse. Even so,
it is generally more difficult to reason about and analyze metamodels that are
specified using a semiformal language like UML. Some reasoning and analysis
is possible with languages such as XMF-Mosaic and OCL, predominantly via
simulation techniques, though the former is only supported by a single tool, and
the latter is frequently only supported for a subset. The OCLE tool (discussed
later) [Chiorean 2005] provides very rich support for OCL currently and sup-
ports the entire language. In general, for semiformal metamodels, it is difficult
to verify and validate the specifications because of a lack of a formal semantics
or because of limited simulation and execution mechanisms.

There is less related work on using OO metamodels for model conformance.
In part, this is because many tools for OO modeling treat the metamodel as

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 17

a specification for user interface constraints, that is, the interface for the tool
attempts to prevent illegal models from being constructed. However, tools such
as Visio [Microsoft 2005], which allow rule checking to be turned off and on
as desired, require an explicit encoding of well-formedness rules in some form.
Some specific related work on OO metamodeling and model conformance is
described in the following.

—The OCLE tool [Chiorean 2005] supports OCL 2.0 and UML 1.5 and provides
the means to check UML models against the metamodel constraints and more
general rules. It is a stand-alone modeling tool that can be interfaced with
other tools via XML and XMI specifications. For practical use, the tool could
be used as a backend to a full-featured modeling tool, providing rule-checking
facilities via simulation. There may be challenges in terms of linking feedback
from OCLE simulations to such a modeling tool.

—Similarly, the Kent Modeling Framework (KMF) [Akehurst et al. 2004] sup-
ports the metamodel for OCL 2.0 and provides parsing, simulation, and exe-
cution facilities. The framework aims to provide a full-featured, open-source
package for modeling based on UML-compatible metamodels and concep-
tually can be used for conformance and consistency checking by specifying
metamodel rules in OCL and executing them against models.

—XMF-Mosaic [Xactium 2006] is a self-contained metaobject programming en-
vironment that provides among other things an implementation of the UML
metamodel. The tool can be instantiated with metamodels and thereafter
supports the construction of models that conform to the metamodel. The tool
supports an executable dialect of OCL—XOCL, and thus also provides the
means for checking UML diagrams against the metamodel via simulation
and execution. The emphasis with XMF is tool customization based on meta-
modeling techniques as well as expressing language transformations and
supporting the QVT proposal.

—Similarly, MMT [Clark et al. 2001b], a stand-alone metamodeling tool for
MOF-compliant languages, provides support for a subset of OCL and enables
checking instances of the metamodel against one or more rules captured in
the metamodel. MMT appears to have been deprecated by the development
of XMF-Mosaic.

—The Dresden OCL toolkit [Hussman et al. 2000] supports compilation of OCL
constraints; it has been integrated into the Argo/UML tool. In principle, it
could be used to help validate the UML metamodel expressed in UML and
OCL.

—The KeY project [Ahrendt et al. 2005] offers an extension of the Together
ControlCentre case tool that provides theorem-proving technology for check-
ing OCL constraints. As with the Dresden OCL toolkit, it could be applied to
metamodel validation.

—The USE stand-alone tool [Richters and Gogolla 2000] is an OCL simula-
tor that can be used to execute OCL constraints against model snapshots.
Used in batch mode, it can be applied to carry out model validation and

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

18 • R. F. Paige et al.

verification. It has been recently updated to support substantial parts of OCL
2.0 and as such can be used for validating and testing parts of the UML meta-
model. USE is distinctive as it is one of the few pieces of work that reports
on how to check models against the metamodel using semiautomated tool
support.

Work related to metamodeling and conformance checking arises in the do-
main of multiview consistency. The basic problem is to ensure that separate
descriptions of an OO system are mutually consistent, that is, that informa-
tion in one description does not contradict information contained in a separate
description.

Many solutions have been presented for this problem. The recent series of
workshops on consistency checking in the context of UML [Huzar et al. 2002,
2003, 2004; Kuzniarz et al. 2005] demonstrate techniques that consider differ-
ent system views (particularly static and behavioral) and different lightweight
and heavyweight techniques for implementing consistency checking. Some of
these approaches require use of specialized tools such as xlinkit [Gryce et al.
2002], a general-purpose rule-based tool for consistency-checking documents
based on XML—or mathematical languages, for example, [Marcano and Levy
2002]—for expressing the well-formedness constraints that establish multiview
consistency.

Lightweight approaches to consistency checking are desirable and have been
explored, but a limitation with most of these is that they are invariably in-
complete, covering parts of a language (e.g., statecharts and class diagrams in
UML). The work of Bhaduri and Venkatesh [2002] suggests the use of mes-
sage sequence charts and model checking for multiview consistency checking.
They express the semantics of the object life-cycle and scenario views as a la-
beled transition system, thus enabling the use of a model checker to identify
inconsistencies. The advantage of this approach is that the model checking
will be automatic, however, there are limitations on what can be expressed
in terms of properties and models. In an alternative approach, UML model
consistency is checked via the Sherlock tool [Sourrouille and Caplat 2002],
wherein actions, models, and a knowledge base are combined. This approach
is particularly promising as it also considers extensions to UML profiles that
target specific problem domains. Krishnan [2000] considers OCL contracts in
the context of UML and formalises multiview consistency in PVS. Krishnan
[2000] requires users to formally unroll sequencing of method calls arising in
sequence diagrams, which can be very awkward for large sequence and collab-
oration diagrams; an alternative approach is presented in Section 4. Work at
IBM Haifa has studied metamodel extensions for consistency checking in the
context of Rational’s XDE tool Huzar et al. [2004]. This work is similar in scope
to what we present in the next section.

A key limitation that can be identified from this work is that much of it does
not consider contracts, that is, method pre and postconditions, when carrying
out multiview consistency checking; Krishnan [2000] is an exception but is
difficult to use. Both approaches to metamodeling and multiview consistency
checking presented in the next sections consider contracts in different ways.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 19

3. METAMODELING IN PVS AND EIFFEL

We now contrast two approaches to specifying the metamodel for BON; the
metamodel was semiformally specified in an earlier section. We contrast two for-
mal specifications: one written in PVS and one in Eiffel. Both these metamodels
are formal as they are specified in languages with both formal syntax and se-
mantics, and have tools to support checking models against the metamodel.
What is interesting and different about the two formal metamodels is (a) their
design; (b) the executability of the resulting spcifications, and (c) their com-
pleteness. Again, we are not attempting a like-for-like comparison of meta-
model specifications: we will construct the metamodels using the best practices
available for PVS and Eiffel. As such, some differences in terms of how well-
formedness constraints are captured will arise.

There is, of course, an issue with producing the PVS and Eiffel descriptions
of the BON metamodel, particularly, how do we show that these formal descrip-
tions accurately capture the metamodels and well-formedness constraints? We
answer this in two parts: first, by systematically presenting the PVS and Eiffel
specifications and clearly relating them to the BON specifications in Section 2.3
(i.e., by making the relationships between descriptions clear and obvious), and
second by analyzing the descriptions using the PVS theorem prover and type
checker. Being able to successfully use the PVS and Eiffel metamodels for
conformance and multiview consistency checking gives us greater confidence
(though certainly no guarantee) of the accuracy of our descriptions. We intend,
in the future, to implement the transformations from BON to PVS and Eiffel
using standardized transformation tools, but again this is no guarantee of cor-
rectness. However, by following it we can reduce the likelihood of introducing
errors.

3.1 Metamodel Specification in PVS

The disadvantages that were apparent with the metamodel specified in BON
were primarily due to the lack of a formal semantics for the BON language.
These disadvantages can be alleviated by using a different language with a
formal semantics. In this section, we present a formal specification of the BON
metamodel in the PVS specification language. We present the PVS version of
the metamodel selectively, and attempt to give the flavor of using PVS for this
purpose. We note that PVS is a general purpose theorem-proving environment,
and as such it is not tailored for metamodeling.

3.1.1 Theory of Abstractions. To express the cluster of abstractions in PVS,
we introduce a new nonempty type and a number of subtypes, effectively mim-
icking the inheritance hierarchy presented in Figure 8. A similar technique
could be used for expressing the UML 2.0 concept of Classifier [Object Man-
agement Group 2004b] and its subtypes or implementations if one desired to
use PVS to express the UML 2.0 metamodel. This information is declared in
the PVS theory abs_names. Note that this specification includes both static lan-
guage constructs (like classes) as well as dynamic constructs (like objects), thus
supporting both class and dynamic diagrams from BON.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

20 • R. F. Paige et al.

abs_names: THEORY
BEGIN

ABS: TYPE+

% Static and dynamic abstractions.
STATIC_ABS, DYN_ABS: TYPE+ FROM ABS

% Instantiable abstractions
CLASS, CLUSTER: TYPE+ FROM STATIC_ABS
OBJECT, OBJECT_CLUSTER: TYPE+ FROM DYN_ABS

END abs_names

The PVS theory abstractions then uses abs_names to introduce further mod-
eling concepts as well as the constraints on abstractions that appear in models.
Further concepts that we need to model include features and entities (that ap-
pear in calls), calls themselves, and parameters and arguments to routines.
Primitive BON classes, for example, INTEGER, are modeled as PVS constants,
objects of CLASS type. We also define conversions so that the type checker can
automatically convert BON primitives into PVS types.

We must now describe constraints on abstractions. In the BON version of the
metamodel, these took the form of features and class invariants. In the UML
2.0 metamodel [Object Management Group 2004b], these generally take the
form of OCL constraints. In PVS, the well-formedness constraints will appear
as functions, predicate subtypes, and axioms.

For example, a number of constraints will have to be written on features.
To accomplish this, we introduce a number of functions that will let us ac-
quire information about a feature such as its properties, precondition, and
postcondition.4

feature_pre, feature_post: [FEATURE -> bool]

% Properties of a feature.
deferred_feature, effective_feature, redefined_feature: [FEATURE -> bool]

% The set of classes that can legally access a feature.
accessors: [FEATURE -> set[CLASS]]

We now provide examples of axioms which define the constraints on BON
models. The first example ensures that all features of a class have unique names
(BON does not permit overloading based on feature names or signatures).

feature_unique_names: AXIOM
(FORALL (c:CLASS): (FORALL (f1,f2:FEATURE):

(member(f1,class_features(c)) AND member(f2,class_features(c)))
IMPLIES (feature_name(f1) = feature_name(f2)) IMPLIES f1=f2))

Here is an example of specifying that an assertion is valid according to the
export policy used in a model. The axiom valid_precondition_calls ensures
that (a) all calls in a precondition are legal (according to the accessor list for
each feature) and (b) all calls in the precondition are queries.

4The approximate equivalent of this information in UML 2.0’s metamodel is contained in the notion
of behavioral feature, and as such a similar approach could be used to construct this part of the
UML metamodel.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 21

valid_precondition_calls: AXIOM
(FORALL (c:CLASS): (FORALL (f:FEATURE): member(f, class_features(c)) IMPLIES

(FORALL (call:CALL): member(call, calls_in_pre(f)) IMPLIES
QUERY_pred(f(call)) AND call_isvalid(f(call)))))

3.1.2 Theory of Relationships. The theory of relationships mimics the re-
lationships cluster in the BON version; it defines the three basic relationships
and the well-formedness constraints that exist in BON.5 To express the rela-
tionships in PVS, we introduce a new nonempty type and a number of subtypes.
As with abstractions, we mimic the inheritance hierarchy that was presented
in Figure 7.

rel_names: THEORY
BEGIN

% The abstract concept of a relationship.
REL: TYPE+

% Instantiable relationships.
INH, C_S, MESSAGE: TYPE+ FROM REL
AGG, ASSOC: TYPE+ FROM C_S

END rel_names

The rel_names theory is then used by the relationships theory. In BON, all
relationships are directed (or targetted). Thus, each relationship has a source
and a target, and these concepts are modeled using PVS functions.

relationships: THEORY
BEGIN

IMPORTING rel_names, abstractions

% Examples of the source and target of a relationship.
inh_source, inh_target: [INH -> STATIC_ABS]
cs_source, cs_target: [C_S -> STATIC_ABS]

Now we can express constraints on the functions; once again; these corre-
spond to invariants in BON and well-formedness constraints in OCL. We give
one example of relationship constraints that inheritance relationships cannot
be self-targeted.

% Inheritance relationships cannot be directed from an abstraction to itself.
inh_ax: AXIOM (FORALL (i:INH): NOT (inh_source(i)=inh_target(i)))

The theory of relationships is quite simple because many of the constraints
on the use of relationships are global constraints that can only be specified
when it is possible to discuss all abstractions in a model (e.g., that there are no
circularities in a chain of inheritance relationships). Thus, further relationship
constraints will be added in the next section where we describe constraints on
models themselves.

3.1.3 The Metamodel Theory. The PVS theory metamodel uses the two pre-
vious theories of abstractions and relationships to describe the well-formedness
constraints on all BON models. Effectively, the PVS theory metamodel mimics

5In UML 2.0 terms, this theory would be used to implement parts of the dependency package in
the UML superstructure.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

22 • R. F. Paige et al.

the structure of the BON model in Figure 5, and captures the invariants on
class MODEL.

metamodel: THEORY
BEGIN
IMPORTING abstractions, relationships

% A BON model consists of a set of abstractions.
abs: SET[ABS]
rels: SET[REL]

Now we must write constraints on how models can be formed from a set of
abstractions. The complete details are in Paige and Ostroff [2001]. We present
two examples. The first constraint we write ensures that inheritance hierar-
chies do not have cycles; a similar constraint, written in OCL, appears in the
UML 2.0 metamodel in Object Management Group [2004b]. We express this by
calculating the inheritance closure, the set of all inheritance relationships that
are either explicitly written in a model or that arise due to the transitivity of
inheritance in BON.

inh_closure: SET[INH]

% Closure axiom #1: any inheritance relationship in a model is also
% in the inheritance closure.
closure_ax1: AXIOM

(FORALL (r:INH): member(r,rels) IMPLIES member(r,inh_closure))

% Closure axiom #2: all inheritance relationships that arise due to
% transitivity must also be in the inheritance closure.
closure_ax2: AXIOM

(FORALL (r1,r2:INH):
(member(r1,rels) AND member(r2,rels) AND inh_source(r1)=inh_target(r2))
IMPLIES (EXISTS (r:INH): member(r,inh_closure) AND

inh_source(r)=inh_source(r2) AND inh_target(r)=inh_target(r1)))

% Inheritance relationships must not generate cycles.
inh_wo_cycles: AXIOM

(FORALL (i:INH): member(i,inh_closure) IMPLIES
NOT (EXISTS (r1:INH): (member(r1,rels) AND i/=r1) IMPLIES

inh_source(i)=inh_target(r1) AND inh_target(i)=inh_source(r1)))

The second example is an axiom demonstrating a well-formedness constraint
on clusters: all clusters in a model are disjoint or nested (again, a similar con-
straint appears in the UML metamodel with respect to packages). The third
example shows that bidirectional aggregation relationships are forbidden. This
is equivalent to the UML metamodel constraint that bidirectional compositions
are forbidden.

% All clusters in a model are disjoint.
disjoint_clusters: AXIOM

(FORALL (c1,c2:CLUSTER): (member(c1,abst) AND member(c2,abst)) IMPLIES
(c1=c2 OR empty?(intersection(cluster_contents(c1),cluster_contents(c2)))))

% No bidirectional aggregation relationships are allowed.
no_bidir_agg: AXIOM

(NOT (EXISTS (r1,r2:AGG): (member(r1,rels) AND member(r2,rels))
IMPLIES (cs_source(r1)=cs_target(r2) AND cs_target(r1)=cs_source(r2)))

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 23

Fig. 10. Model conformance checking.

3.1.4 Model Conformance Checking in PVS. Model conformance, that is,
checking the sat relation in Equation (1), resolves to proving a conjecture in
PVS. The conjecture is that an encoding of a BON model (written as a set of
PVS expressions) satisfies all axioms that capture metamodel well-formedness
constraints. An identical approach could be applied directly to UML model con-
formance, that is, showing that a UML model satisfies the well-formedness
constraints of its metamodel. This is illustrated by the following example. Con-
sider the BON model in Figure 10.

We show how to check that this model does not conform to the metamodel
of BON because there is a violation of the export policy of at least one class
in the model. Note that m is a private feature of class C; thus the call c.m in
the invariant of B is illegal. Similarly, the call a.b.w in class C is illegal in the
precondition of m, because w is accessible only to the client A. We would like to
show that this model does not conform to the BON metamodel. We will show
that, as an example, the invariant of B is not well-formed. To prove that the
model is not well-formed, we show that the class invariant for B is ill-formed by
positing that the model in Figure 10 cannot exist. The full conjecture contains
a number of terms that are not relevant to the proof (they can be found in Paige
and Ostroff [2000]) but which would be included in a completely mechanical
derivation of the conjecture. We only include terms relevant to the proof in this
presentation due to space constraints.

info_hiding: THEORY
BEGIN
IMPORTING metamodel

a, b, c: VAR CLASS
h, w, m: VAR QUERY
call1, call2, call3: VAR CALL

test_info_hiding: CONJECTURE
(NOT (EXISTS (a,b c: CLASS): EXISTS (h,w,m:QUERY):
EXISTS (call1,call2,call3: CALL):
member(c,accessors(h)) AND member(a,accessors(w)) AND
empty?(accessors(m)) AND f(call1)=h AND f(call2)=w AND
f(call3)=m AND member(call1,calls_in_pre(m)) AND
member(call2,calls_in_pre(m)) AND member(call3,calls_in_inv(b))))

END info_hiding

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

24 • R. F. Paige et al.

To prove the conjecture, we first skolemize three times, then flatten. We
introduce the axiom valid_class_invariant and substitute class B and call
call3 for the bound variables of this axiom. We use typepred to bring the type
assumptions on m into the proof, and then one application of grind proves the
conjecture automatically. The model is therefore invalid according to the well-
formedness constraints of the metamodel.

Considerable expertise with PVS is necessary in discharging the conjecture,
particularly in terms of selecting instantiation and skolem constants. However,
strategies can be defined to automate parts of the process, though user guidance
for selecting skolem constants is likely to always be necessary.

We should point out what happens with contracts when carrying out model
conformance checking: all well-formedness constraints that are related to
contracts are checked. These constraints effectively check the static well-
formedness of contracts, for example, that the assertions are syntactically well-
formed, functions that are called in contracts are accessible, etc. Nothing per-
taining to dynamic (or behavioral) well-formedness is checked; this is one of the
tasks for multiview consistency checking.

3.1.5 Summary. The advantages of expressing the BON metamodel in
PVS are as follows.

—Tool Support. The PVS type checker and theorem prover can be used to verify
and validate the metamodel, particularly for consistency, but also for correct-
ness via proving that models satisfy the metamodel [Paige and Ostroff 2001].

—Formality. The semantics of the PVS specification of the metamodel is for-
mally defined, and this semantics is implemented in the PVS toolkit. This
provides stronger guarantees as to the soundness of the PVS specification
and, therefore, the metamodel itself.

—Completeness. All aspects of the BON metamodel can be expressed in
PVS.

The disadvantages are as follows.

—Understandability. The PVS specification is more difficult to understand
than the BON specification of the metamodel. PVS is not object-oriented
so it is more difficult to provide an architectural view of the metamodel
that omits constraint detail. As well, the only structuring mechanism in
PVS is the imports statement; thus, PVS specifications are generally flatter
than object-oriented specifications since much of the hierarchical structure
in the metamodel presented in the previous section is captured in PVS using
type hierarchies which do not present themselves in the overall theory struc-
ture. This can substantially impede understanding of large specifications like
the BON metamodel.

—V&V. Validating the metamodel in PVS corresponds to encoding BON mod-
els as PVS constants and proving that the models satisfy (or fail to satisfy)
the axioms in the metamodel. This process can be partly automated, but
it is certainly not fully automatic. Additional proofs in Paige and Ostroff
[2001] demonstrate that in many instances user intervention and guidance

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 25

is needed. Further experiment on validation is continuing via the PVS ground
evaluator which allows simulation.

In general, the PVS version of the metamodel should be preferred to the
BON version in terms of available automated tool support for expressing the
metamodel and validating it, and for its completeness. However, it falls short
in understandability and general usability. As well, there are challenges in
using the PVS version for multiview consistency checking, which we discuss in
Section 4.

3.2 Metamodel Specification in Eiffel

A key advantage of the BON metamodel specified in PVS is that tools can be
used to validate and verify it. However, these tools are complex, expensive to
use, and typically require user interaction and intervention. We now present a
formal specification of the BON metamodel in Eiffel. Eiffel, while a program-
ming language, can also be used as a declarative specification language via
its agent technology. We illustrate this technology throughout the following
section. It is important to emphasise that we are not simply writing Eiffel
programs to encode models, metamodels, and well-formedness constraints.
Rather, we use Eiffel to declaratively specify (albeit in an executable form) these
artifacts.

We do not attempt to reformulate the PVS version of the metamodel in Eiffel
rather we will present an Eiffel specification that conforms to the best prac-
tices of using Eiffel and which attempts to exploit Eiffel’s existing tool support
(particularly compilers, debuggers, testing frameworks, and class libraries) as
well as its language facilities.

Eiffel is an object-oriented language, and as such the structure of the meta-
model specification in Eiffel will directly reflect the structure of the metamodel
in BON. This is a result of the seamless integration of BON and Eiffel that
has been designed into the two languages. As we did with PVS, we present the
metamodel specification selectively, and attempt to give the flavor of applying
Eiffel for this purpose.

3.2.1 Expressing the Metamodel Structure. Each class in the BON diagram
in Section 3.1 is expressed directly as an Eiffel class; this is straightforward and
produces a set of classes with routines, attributes, routine signatures. Each re-
lationship in the BON diagram in Section 3.1 is expressed directly as an Eiffel
relationship or as an attribute: BON inheritance is expressed as Eiffel inher-
itance, associations are expressed as Eiffel reference attributes, and aggrega-
tions are expressed as expanded attributes. Two additional elements need to be
added: encoding BON assertions (pre and postconditions and class invariants)
as Eiffel agents, and the second is infrastructure needed to initialize objects and
provide setter and getter routines. The user of the metamodel in Eiffel need not
know about this infrastructure—a single routine call is provided to set up the
objects. This infrastructure is essential as Eiffel is a programming language
and objects must have memory allocated for them; in contrast, no allocation is
explicitly necessary in a specification language like PVS.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

26 • R. F. Paige et al.

Much of this infrastructure is added as private features of class MODEL.
The added routines are as follows.

—A constructor (creation procedure) make which allocates memory for the set-
based data structures used to encode models. This constructor implements
a Factory Method [Gamma et al. 1995] which calls default constructors on
each attribute.

—Accessor and mutator routines for each attribute.
—A prepare routine which ensures that all data structures are initialized. This

routine is invoked by the user after they have constructed their model, that is,
when they wish to test the metamodel and check conformance. It effectively
provides a facade for initializing the model, hiding the infrastructure required
by Eiffel from the user. This routine in turn invokes a number of private
routines that set up different data structures for use in conformance and
consistency checking.

Additional attributes were added as private features in order to simplify some
agent expressions; see Paige et al. [2004] for some details.

3.2.2 Expressing Assertions. This is the most challenging part of express-
ing the metamodel in Eiffel and requires capturing BON assertions using Eiffel
agents.6 BON’s assertion language is more expressive than Eiffel (because in
BON quantifiers can be written on arbitrary domains, whereas in Eiffel agents
must be applied to finite data structures). In general, to translate a BON asser-
tion into Eiffel, we can introduce a model of BON’s SET type, following Meyer
[2003]. However, given that the BON metamodel makes use of finite sets, and
the metamodel assertions are computable, all assertions in the BON version of
the metamodel can be translated to Eiffel. Assertions are expressed as follows.

—Each invariant clause in a class in the BON metamodel is translated to a
boolean-valued function in Eiffel. For example, the clause no inh cycles in
class MODEL in the BON diagram is translated to a boolean function in the
Eiffel class model, and a call to the function appears in the invariant for
MODEL.

—Each pre and postcondition is encoded as a predicate agent. Thus, the Eiffel
class representing a ROUTINE includes two attributes, as follows.

pre : PREDICATE [ROUTINE, TUPLE [ANY]]
post : PREDICATE [ROUTINE, TUPLE [ANY, ANY]]

The precondition is encoded as a predicate agent that takes a tuple, consisting
of the state of the agent as argument. The state includes arguments for the
routine, as well as any attributes used by the routine. The postcondition takes
a pre and poststate as arguments.

6Obviously we could encode assertions indirectly and programmatically, but we choose to use agents
to make it easier to validate that the agent expressions correctly implement the original BON
assertions.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 27

Fig. 11. Invariant: no cycles in the inheritance graph.

—Each occurrence of the quantifiers ∀ or ∃ in BON is translated to the Eiffel
agent for_all or there_exists, respectively. (In general, each BON assertion
must be computable to translate to Eiffel.)

—Bound variables introduced in postconditions and invariants to represent
intermediate state are instead represented using local variables (we show an
example shortly). These local variables are local to an agent, and as such are
not accessible or visible to clients of a routine, thus preserving encapsulation.

We provide three examples of metamodel constraints: the constraint estab-
lishing cycle-free inheritance graphs in a class diagram, the constraint express-
ing that there are no bidirectional aggregations, and the constraint establishing
model covariance, that is, that any redefined routines that appear in the class
diagram modify the routine signatures covariantly (as required by Eiffel and
BON). The first two constraints appear in the UML metamodel (as discussed
in Section 3.1), but the third does not and is distinctive to BON.

3.2.3 No Cycles in the Inheritance Graph. In the BON metamodel, this
was captured by defining a private attribute, closure, which contains the tran-
sitive closure of the graph defined by inheritance relationships in the class
diagram. The same approach is used in Eiffel. The invariant in Eiffel class
MODEL includes a call to the boolean routine shown in Figure 11. This should
be contrasted with the PVS specification of the same constraint in Section 3.2.

In this invariant, there are two agents iterating over the closure set. The
final Result line in the second (inner) agent says that it is not the case that
there are two inheritance relationships where the source of one is the target
of the other (and vice versa). If this condition is violated for any pair of classes
in the closure, there is a cycle. This is a declarative rather than operational
specification of the cycle-free property.

The closure set is calculated by an invocation of the prepare routine. In this
routine, an additional agent iterates across the set of all inheritance relation-
ships and adds any implicit inheritance relationships that arise due to transi-
tivity to the closure set.

3.2.4 No Bidirectional Aggregations. This constraint is similar to the one
found in UML on part-of relationships, that is, that an object cannot recursively
contain itself. The specification in Eiffel is as shown in Figure 12.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

28 • R. F. Paige et al.

Fig. 12. Invariant: no bidirectional aggregations.

This constraint has a structure similar to that in Figure 11. It requires two
agents iterating over the set of all aggregations, this time applying a function
to check if there are any cycles in the aggregation graph. Note that this time a
transitive closure operation does not need to be applied since aggregations in
BON are not transitive.

3.2.5 Model Covariance. The last example is more complex and shows how
to capture the covariant redefinition concept in Eiffel using agents. Recall co-
variant redefinition from Meyer [1992]. Consider the following routine in a class
A:

r(x : X) : Y

and suppose r is redefined (overridden) in class B which is a descendent of A.
The new signature of r in B is

r(x : U) : W

For the redefinition to be valid in BON, class U must be a (not necessarily
proper) descendent of X , and W must be a (not necessarily proper) descendent
of Y . We capture this as follows in Eiffel. First, we define a routine subtype
which, given two classes, returns true if and only if the second is a subtype (a
descendent) of the first. This can be easily expressed using an agent iterating
over the transitive closure of the inheritance graph. We can then define a routine
covariant as in Figure 13. The routine returns true if and only if the second
argument covariantly redefines the first.

The definition of covariant appears to be complex but can be easily explained.
The first line generates an anonymous integer sequence and iterates across it
using an agent. The agent checks that each pair of parameters in the feature
arguments are covariant, and then, if the feature is also a query (tested by the
assignment attempts), it is tested to determine whether the result type of the
functions is covariantly redefined.

This function can then be used in a class invariant of MODEL which checks
that each redefined feature of each class is covariantly redefined. Note that this
must be a property of the MODEL and not the metaclass CLASS, as it requires

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 29

Fig. 13. Routine: covariant redefinition specified in Eiffel.

access to the inheritance graph: a routine may covariantly redefine another
routine from an indirect parent. To express this invariant, we use an agent
that iterates across the set of all classes in MODEL, pulling out each redefined
feature. It then checks that the redefinition obeys the covariance specification
in Figure 13.

3.2.6 Model Conformance in Eiffel. The obvious way to carry out model
conformance checking in Eiffel is to simulate a model against the metamodel
encoding previously presented. Thus, a BON model is encoded in Eiffel as a
reference structure (consisting of objects and references between objects), and,
once constructed, the metamodel rules are executed to determine whether the
reference structure is a valid instantiation of the metamodel. If a rule evaluates
to false, then the runtime system of Eiffel will inform the user as to which well-
formedness rule has failed.

It is most convenient, though not required, to encode the model using a unit
test and unit testing framework. This allows multiple models to be encoded
simultaneously and run automatically. The testing framework that we use,
ETest, also provides documentation facilities indicating which well-formedness
rules have failed (if any) and where. It is important to note that the model
conformance-checking process is fully automated in Eiffel.

Consider Figure 14, which shows a class diagram possessing a cycle in its
inheritance graph (labels are for reference only). This model is not well-formed
and should violate the invariant no inheritance cycles of class MODEL.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

30 • R. F. Paige et al.

Fig. 14. Model conformance example: cycles in an inheritance graph.

Fig. 15. Unit test for metamodel validation.

By encoding the model as a unit test, we can easily simulate the model
against the metamodel to show that it is not well-formed. This will give as a
fully automated way to check the sat relation in Equation (1). An excerpt from
the unit test that can be used to simulate the BON model in Figure 14 against
the metamodel is shown in Figure 15.

The unit test in no_inh_cycles can be explained as follows. First, entities for
each element of the model are declared and created; relevant attributes of these
entities are then populated, for example, the name of each class, the source and
target of each inheritance relationship. These elements are all added to the
model m, and a call to m.prepare constructs the infrastructure for the model.
On this call, the clause no inheritance cycles fails with an object configuration
showing (e.g.) that the transitive closure of the graph contains an inheritance
relationship from B to A and also from A to B.

Executing the unit test generates a runtime exception which is caught by
the exception handling facilities built into ETest. This result is documented in
the HTML report generated by ETest.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 31

Once again, static well-formedness constraints related to contracts (e.g.,
that assertions are syntactically well-formed) are checked during model con-
formance checking. No behavioral well-formedness is checked at this stage. We
discuss this in more detail in Section 4.

3.2.7 Summary. The advantages of using Eiffel for expressing the BON
metamodel are as follows.

—Understandability. The structure of the Eiffel system is directly mapped from
the semiformal specification of the metamodel in BON, that is, it is class-
based. Eiffel tools can be used to project different views of the Eiffel system,
for example, to hide class interface details so that only the structure of the
metamodel, that is, classes and relationships, can be viewed.

—Tool Support. Standard programming tools can be used to construct, exe-
cute, verify, and validate the metamodel, for instance, compilers, IDEs, class
libraries, debuggers, and unit testing frameworks. The feedback provided
during construction and verification is familiar to programmers, and as such
a new conceptual model of development does not need to be learned.

—Testing. The metamodel is easy to test, using standard unit, regression, and
system-level techniques. In this particular case, the ETest unit testing frame-
work was applied. This framework, tailored to testing in Eiffel, made it possi-
ble to target specific well-formedness constraints in the metamodel for testing
and identified failures of specific constraints during the testing process.

The disadvantages to using Eiffel are listed below.

—Implementation Detail. It is necessary to include implementation detail in
the Eiffel version, specifically for initializing data structures (i.e., object allo-
cation and cloning), all of which can be omitted in the BON and PVS versions.
Fortunately, much of this detail can be hidden using Eiffel’s information hid-
ing facilities, but it is necessary to include it: someone using the metamodel
can ignore this implementation detail, but someone wanting to change the
metamodel (or develop a new metamodel) will need to use it.

—Completeness. All well-formedness constraints in the BON metamodel can
be expressed in Eiffel, though one tiny subset of them—consisting of four
constraints—must be slightly restricted. The restriction arises with captur-
ing contracts, that is, pre and postconditions of routines. The Eiffel version
of the metamodel does capture contracts, using predicate agents to encode
each contract, but these are restricted to the expressiveness constraints of
Eiffel itself, that is, the contracts must be computable and expressible within
Eiffel’s boolean expression syntax. Thus, for example, BON quantifiers over
arbitrary types cannot be expressed in Eiffel. In general, this is not a sub-
stantial restriction for metamodeling, because agents can be used to capture
quantified expressions over finite structures, but it does mean that the PVS
version of the metamodel expresses more.

This raises the question of whether a language used for metamodeling
should be more expressive than the languages being metamodeled. Clearly
there are trade-offs: while PVS is more expressive than BON (and Eiffel)

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

32 • R. F. Paige et al.

Table II. Informal Comparison of Metamodeling
Approaches (• = least, • • • = most)

Quality Factor Metamodeling Approach
BON PVS Eiffel

Understandability • • • • • • •
Correctness • • • • ••
Completeness • • • • • • ••
Maintainability • • • • • • •
Construct via tools • • • • ••
V&V via tools • • • • • • •

and can capture all constraints, it does not provide fully automated model
conformance checking or type checking, where Eiffel does. The question must
be answered in the context of how the metamodel is intended to be used.

We will return to the issue of encoding contracts in the next section when
we discuss multiview consistency checking. It is here that one of the key
distinctions between using PVS and Eiffel becomes apparent.

3.3 Overall Comparison

While, it is difficult to objectively compare all aspects of the metamodels just
presented, we attempt a comparison in terms of the factors described and
present a relative comparison. The results are summarized in the Table II;
we include the specification of the BON metamodel from Section 2.3 for com-
pleteness and interest.

The comparisons are relative, and a substantial degree of subjectivity is
inherent in the matrix. However, the table is meant to provide a coarse-grained
comparison of the approaches, so as to give metamodelers some approximate
guidance. The quality factors for comparison are, in more detail, as follows.

—Understandability is the degree to which the metamodel specification is com-
prehensible to a suitable, experienced tool-builder and metamodel user. Un-
derstandability assumes a reasonable amount of expertise in modeling, not
formal methods or metamodeling. Clearly, the BON version of the metamodel
will be understandable to the largest number of developers (engineers famil-
iar with UML will have no difficulty learning BON). Similarly, the Eiffel
version of metamodel will also be understandable to many developers as it
is written in a programming language; admittedly, Eiffel’s agent syntax does
require some adjustment, but it is effectively just an iterator, and as such is
compatible with the standard object-oriented programmer’s toolkit. The PVS
version of the metamodel requires substantial formal methods expertise and
is the most challenging to understand of the three.

—Correctness is the degree to which correctness of the metamodel specification
can and has been checked, either automatically or semiautomatically. Note
that a score of ••• does not imply that the specification is unchecked, merely
that less checking is feasible or has been carried out than with the other
approaches. The PVS version of the metamodel has been partly checked via
proof, as reported in Paige and Ostroff [2001], and this process is repeatable.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 33

The Eiffel version has been partially tested and additional testing can be car-
ried out. The BON version has been constructed via BON-compatible CASE
tools, but beyond the syntax and partial lightweight semantic checking that
these tools support, no additional correctness checking has been carried out.

—Completeness is the degree to which the metamodel description captures all
the well-formedness constraints of the BON language. We claim that the
BON and PVS descriptions are complete (though this has not been proved).
The Eiffel description is incomplete since Eiffel’s predicate agent syntax is
restricted to the use of boolean expressions that can be written in Eiffel.

Though we claim that both the BON and PVS descriptions are complete, we
prefer the PVS description in this respect because it is possible to use the PVS
theorem prover to detect incompleteness. An example of this was reported in
Paige and Ostroff [2001], where, because a requirement was not captured,
a conjecture expressed in PVS turned out to be impossible to prove (though
the PVS prover itself did not indicate that the conjecture was unprovable).
Of course, there are other reasons to prefer the BON (or Eiffel) descriptions
over the PVS version.

—Maintainability is the degree to which the metamodel specification supports
extension, refactoring, and wholesale modification. The BON and Eiffel ver-
sions have an advantage due to their component-based style of specification
and their use of patterns. However, even using good object-oriented design
practice may be insufficient for promoting extensibility and wholesale mod-
ification, for instance, as suggested with the pUML proposal for UML 2.0
[Evans et al. 2005], which recommended adding templates and frameworks
as first-class language concepts.

—Constructed via Tools is the degree to which tools are available to assist in
constructing the specification (e.g., diagramming tools, smart editors with
syntax checking and highlighting, autocode generation). The BON and Eiffel
versions were constructed using CASE tools and integrated development en-
vironments, whereas the PVS version was constructed using a text editor.

—V&V via Tools is the degree to which tools are available to assist in verifying
and validating the correctness of the specification. With PVS this can be
carried out via theorem proving, whereas unit testing can be used for Eiffel.
No such support exists for BON directly. Note that while both Eiffel and PVS
support verification and validation, the PVS version should be considered
more powerful since it makes use of proof as opposed to testing, while also
supporting simulation via its ground evaluator.

4. METAMODEL-BASED MULTIVIEW CONSISTENCY CHECKING

Metamodels are intended to be used indirectly by modelers applying the model-
ing language, and directly, by tool builders constructing diagramming tools for
modelers. The tool builder, in particular, will need to be able to understand the
metamodel, and he guaranteed that it is correct (since they will not want to sub-
stantially modify their tools due to corrections made to the metamodel). They
will also need extensibility capabilities so that language-revision processes can
be accommodated and directly linked to tool-revision processes. The relative

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

34 • R. F. Paige et al.

importance of these metamodel quality factors can be used in a specific context
to decide the best metamodeling approach to use for a specific language.

A metamodel can form the basis of any approach to multiview consistency
checking: a metamodel captures the essential concepts in a model and defines
(or can be used to define) the rules that establish that different views of the
model contain no contradictions. The rules for multiview consistency checking
(which are expressed within a metamodel) must be correct, understandable,
and extensible as well, for them to be of value to tool builders.

One particular aspect of a tool builder’s remit is to establish capabilities in
their tool for multiview consistency, either by providing consistency-checking
capabilities, or model-synchronization capabilities. In a language like UML,
where a large number of diagrams representing the same system from different
perspectives can be produced, multiview consistency is a critical and challeng-
ing problem. There are several approaches that can be taken for metamodel-
based view consistency checking, but they can be contrasted in terms of two
desirable criteria.

—Automation is the extent to which the views can be checked for consistency by
automated measures. Clearly, the more views that are present in the meta-
model, the more challenging it is to provide an automated scheme. All UML
tools and approaches to multiview consistency checking are only semiauto-
matic. The Eiffel-based approach we present here is fully automatic.

—Completeness is the degree to which all multiview consistency constraints
can be captured, based on the metamodel specification available. For exam-
ple, we will see that the Eiffel-based metamodeling approach suffers from
incompleteness in its provisions for view consistency, while providing a fully
automatic approach. All UML tools are incomplete in terms of their support
for multiview consistency checking since they all support only a limited set
of views (e.g., class diagrams and statecharts, like the Executable UML tools
[Mellor and Balcer 2002]), or do not fully consider the metamodel constraints,
particularly those involving contracts (discussed in more detail later).

Based on the metamodel specifications from the previous section, we now
present, compare, and contrast two distinct approaches to multiview consis-
tency checking in terms of the factors just discussed, in the context of BON’s
class and dynamic diagrams. A novelty of the two approaches presented here is
that they include support for checking contracts for consistency (albeit in quite
different ways).

Consider the BON dynamic diagram shown earlier in Figure 3. Suppose that
each of messages 1–4 have been bound to routines in a BON class diagram. In
order to check that the dynamic diagram is consistent with a class diagram, the
following four constraints must be checked (there are additional constraints in
MVCC, but these are essential ones).7

(1) Object-Class. Each object appearing in the dynamic diagram must have
a corresponding class in a class diagram which acts as the object’s type.

7Many of these constraints appear in consistency checking in UML [MODELWARE 2005].

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 35

This constraint links the abstractions appearing in the two different BON
views. Note that without this constraint, an object may have a type that
does not appear in a system model (thus making it impossible to compile
and implement the model). Such a constraint also appears in UML 2.0,
linking class and communication diagrams.

(2) Message-Feature. Each message in the dynamic diagram is bound to a rou-
tine, and a call to that routine is permitted based on the list of accessors
provided with each routine. (To paraphrase, if a message in a dynamic di-
agram corresponds to a call or for object o and routine r, then r must be
exported to the client class, that is, the class of the object that sends the
message to o.) A similar but not identical constraint appears in UML 2.0:
messages may be bound to operations in UML.

(3) Message-Class. Each routine bound to a message must actually belong to
the target class of the message (i.e., routines that are called must exist).
This ensures that if a message is sent from one object to another, there is
a connection between the two objects. According to Gao [2004], connections
can arise due to direct associations between the objects’ classes, can be
due to indirect associations (i.e., a chain of more than one association), or
can be due to compositions of inheritance relationships and associations.
In this article, we consider only direct associations and direct inheritance
relationships; see Gao [2004] for extensions to indirect associations and
more complex relationships. This constraint also appears in UML 2.0 for
intramodel consistency checking.

(4) Contract-Consistency. The constraint in (2) establishes that each message
in a dynamic diagram corresponds to a routine call. The routines that are
called must be enabled (i.e., their preconditions must be true) for the dy-
namic diagram to be consistent with a class diagram. A precondition, can
only be true if the sequence of previous calls to routines established a system
state that satisfies the precondition, that is, the postconditions of previous
calls combine to enable the current precondition of interest. To check this,
an initial state, init, must be provided (by the developer), and init must en-
able the first message in the dynamic diagram. Successive messages must
be enabled by the sequence of message calls that precede it. This constraint
does not appear in the UML 2.0 metamodel, but it is discussed in Krishnan
[2000] in the context of OCL and UML.

These four constraints turn out to be fundamental in establishing that the
class diagram views and the dynamic diagram views are consistent; the con-
straints will need to be implemented by the multiview consistency approaches
that we now present. Once again, we will present approaches to checking these
constraints that follow the best practices of using PVS and Eiffel; we will discuss
alternative approaches as appropriate.

4.1 A PVS Approach to Multiview Consistency

Building on the PVS specification of the BON metamodel in Paige and Ostroff
[2001], the PVS theories were extended in Paige et al. [2002, 2003b] in three

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

36 • R. F. Paige et al.

directions in order to support multiview consistency and the four constraints
discussed previously:

—to include additional features to project different views of a system. While this
information was present in the original metamodel from Paige and Ostroff
[2001], it was not explicitly easily accessible;

—to include constraints to establish that projected views were consistent;
—to include the semantics of routines in order to carry out MVCC checking

involving pre and postconditions.

Referring to the rules discussed in the previous section, (1)–(3) are reasonably
straightforward to capture in PVS once the aforementioned projection functions
are defined. These functions are not difficult to define [Paige et al. 2003b] for
details. Formalizing the notion of routine specification and the corresponding
consistency constraint for (4) is much more challenging. The complication does
not arise in expressing a routine specification directly, but in combining rou-
tine specifications: PVS requires explicit specification of a function’s domain
(possibly using an uninterpreted type) in order to support type checking, that
is, a routine specification’s state must be formally specified. The formulation
of routine specifications is therefore aimed at being able to (sequentially) com-
pose them. The formalization of specifications of a routine requires a new type,
SPECTYPE, which is a record containing the initial and final state variables of a
specification along with the value of the specification; initial and final state are
sets of entities. The functions oldstate and newstate produce the entities asso-
ciated with a routine (given the class in which the routine arises), specifically
the parameters, local variables, and accessible attributes. It is also necessary
to introduce a new type for specifications so that the frame of a specification
can be expressed.

SPECTYPE: TYPE+ =
[# old_state: set[ENTITY], new_state: set[ENTITY],

value: [set[ENTITY], set[ENTITY] -> bool] #]

oldstate, newstate: [ROUTINE, CLASS -> set[ENTITY]]

A specification can now be defined in terms of the new type.

spec: [ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE]

spec_ax: AXIOM
(FORALL (rou1:ROUTINE): (FORALL (c:CLASS):

(member(rou1,class_features(c)) IMPLIES
(spec(rou1,oldstate(rou1,c),newstate(rou1,c)) =

(# old_state := oldstate(rou1,c), new_state := newstate(rou1,c),
value := (LAMBDA (o:{p1:set[ENTITY] | p1=oldstate(rou1,c)}),

(n:{p2:set[ENTITY] | p2=newstate(rou1,c)}):
feature_pre(rou1,o) IMPLIES feature_post(rou1,o,n)) #)))))

The spec_ax axiom states that, for a routine, the prestate and poststate of
a specification are those of the routine, and the value of the specification is a
function from pre and poststate to a boolean where the boolean is true if and
only if the precondition implies the postcondition.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 37

We can now express the view-consistency constraint (4) in PVS; this is chal-
lenging and has two parts. The first part, enabling the first message in the
dynamic diagram, can be done as follows. init is translated to a function map-
ping a model and a class (which should be the class from which execution begins)
to a boolean. The enabling of the first message is formalized as an axiom.

init: [MODEL, CLASS -> bool]

views_consistent_ax1: AXIOM
(FORALL (mod1:MODEL): FORALL (c:CLASS):
LET
loc_spec:SPECTYPE = (spec(init(mod1)(c),oldstate(init(mod1)(c)),

newstate(init(mod1)(c))) IN
value(loc_spec)(old_state(loc_spec),new_state(loc_spec)) IMPLIES
feature_pre(calls_model(mod1)(0),

oldstate(calls_model(mod1)(0),
object_class(msg_target(sequence_model(mod1)(0))))))

A local variable is declared, constructing a specification for the initializing
predicate init. Then, it is stated that the initial state must imply the prestate
of the first message.

The second part is even more challenging. The complexity lies in formalizing
the definition of sequential composition: an explicit specification of the state of
a routine is required so as to capture the frame of each specification and to be
able to define an intermediate state. Sequential composition can be formalized
in PVS as follows, using function seqspecs. It takes as argument two variables
of type SPECTYPE and returns a SPECTYPE result, representing the sequential
composition of the arguments.

seqspecs(s1,s2:SPECTYPE): SPECTYPE =
(# old_state := old_state(s1),

new_state := new_state(s2),
value := (LAMBDA (o:{p1:set[ENTITY] | p1=old_state(s1)}),

(n:{p2:set[ENTITY] | p2=new_state(s2)}):
(EXISTS (i: set[ENTITY]): value(s1)(o,i) AND value(s2)(i,n)))

#)

seqspecs must be lifted to apply to a finite sequence of specifications in order
to formalize constraint (4). This is expressed as recursive function seqspecsn.
A MEASURE must be provided in order to generate proof obligations for ensuring
termination of recursive calls.

seqspecsn(seq1:{f:finseq[SPECTYPE]|length(f)>=1}): RECURSIVE SPECTYPE =
IF length(seq1)=1 THEN seq1(0)
ELSIF length(seq1)=2 THEN seqspecs(seq1(0),seq1(1))
ELSE seqspecs(seq1(0),seqspecsn(^(seq1,(1,length(seq1))))) ENDIF
MEASURE
(LAMBDA (seq1:{f:finseq[SPECTYPE]|length(f)>=1}): length(seq1))

To complete the PVS formalization of constraint (4), it is helpful to define a
function to convert a sequence of messages into a finite sequence of SPECTYPEs.
This function, convert, extracts the routines from the messages and produces
specifications from them by repeated application of function spec. Its details
can be found in Paige et al. [2002].

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

38 • R. F. Paige et al.

Now the remaining view-consistency constraint can be formally expressed
in PVS.
views_consistent_ax2: AXIOM
(FORALL (mod1:MODEL): FORALL (c:CLASS):

(FORALL (i:{j:nat|0<j & j<length(calls_model(mod1))}):
LET
loc_spec:SPECTYPE =

seq(spec(init(mod1)(c),oldstate(init(mod1)(c)),
newstate(init(mod1)(c)),

(seqspecsn(convert(sequence_model(mod1)^(0,i-1))))
IN
(value(loc_spec)(old_state(loc_spec),new_state(loc_spec)) IMPLIES
feature_pre(calls_model(mod1)(i),

oldstate(calls_model(mod1)(i),
object_class(msg_target(sequence_model(mod1)(i))))))))

The structure of this axiom is similar to the axiom establishing that the first
message is enabled by the initial state. This axiom first declares a local variable,
loc_spec, which is the result of sequentially composing the first i specifications
in messages in the model. This specification must then imply the precondition
of the routine of message i + 1 in the model.

4.1.1 Using the PVS Theories. To use the PVS theories for proving view
consistency, a BON model can be specified as a PVS conjecture, following the
approach presented in Paige and Ostroff [2001]. These conjectures effectively
posit that the model can exist. They must therefore satisfy the multiview consis-
tency constraints as specified in the metamodel. PVS can then be used to import
the view-consistency axiom previously presented, and one can then attempt to
prove or disprove that the axiom is satisfied by the models. This is identical to
the approach used in demonstrating conformance, that is, that Equation (1) is
satisfied.

In general, it is typically easier to attempt to prove that a model does not
satisfy the view-consistency constraint. This is because it means that the BON
models can be expressed as a nonexistence conjecture, thus allowing automatic
skolemization to be used in simplifying the conjecture.

A lengthy example demonstrating this approach is in Paige et al. [2003b]
where a model consisting of a class and a dynamic diagram is shown to be con-
sistent against the metamodel and multiview consistency constraints. The PVS
proof is long and laborious (which is why we omit it) and requires a clever selec-
tion of skolem constants in order to succeed. Other examples and case studies
that we have carried out suggest to us that a general strategy for using PVS
to carry out view consistency checking is possible, but, in the most nontrivial
cases, it will be extremely difficult to automatically choose skolem (or instanti-
ation) constants as part of this process, and it seems that user intervention is
unavoidable.

Succeeding with multiview consistency checking in PVS requires substantial
expertise in not only using the PVS theorem prover, but also in interpreting the
proof obligations and subgoals generated by PVS. These are typically difficult
to interpret, in part because of PVS’s syntax, but, in this particular application
domain, they appear to be more difficult to understand because they refer to
metalevel constraints.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 39

4.2 An Eiffel Approach to Multiview Consistency

In Section 3, the BON metamodel was specified in Eiffel, using the program-
ming language’s agent technology. This resulted in a declarative and executable
specification of the well-formedness constraints for BON. The metamodel en-
compassed both BON class diagrams (with their concomitant features and re-
lationships) as well as BON dynamic diagrams (i.e., objects, clusters of objects,
and messages). Based on the metamodel, three of the four multiview consis-
tency constraints can be specified and directly expressed in Eiffel; the fourth is
best handled indirectly (though we comment on handling it entirely within the
Eiffel metamodel in the sequel).

Unlike the PVS version of the metamodel, the multiview consistency con-
straints in Eiffel are distributed over the specification. That is, constraints are
expressed as invariants of classes; in the PVS version, the constraints were ax-
ioms belonging to the metamodel theory. Some constraints in the Eiffel version
will therefore apply directly to classes, messages, and objects, while others will
apply to the MODEL class as a whole.

An example of a consistency constraint that applies directly to a message
is constraint message-feature, constraint (2), described earlier. This multiview
consistency constraint is captured in the invariant of class MESSAGE as
follows. First, the invariant of MESSAGE includes the following boolean
expression.

bound_routine /= Void implies access_granted

which states that if the message is bound to a routine then access must be
granted to that routine to the invoking class. The definition of access_granted
is given below.

access_granted: BOOLEAN is

local o, p: E_OBJECT; ec: E_OBJECTCLUSTER;

do

o ?= source

if (o/=Void) then

p ?= target

if (p/=Void) then

Result := bound_routine.accessors.has(o.static_type) or

bound_routine.accessors.has(bound_routine.any_accessor)

else

ec ?= target

Result := ec.contains.there_exists(agent ecce(?))

end

end

end

The routine extracts the source and target of the message, using Eiffel’s as-
signment attempt operator (similar to casting in Java). If the target is an object,
then it ensures that the class of that object has given permission to the invoking
class to call the routine. If the target is a multiobject (i.e., a cluster of objects),
then an agent is invoked to check that some object in this set provides access.

Multiview consistency constraints (1) and (3) can also be specified in Eiffel
in a similar way. Moreover, checking that constraints (1)–(3) hold resolves

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

40 • R. F. Paige et al.

to model conformance checking; an example in Section 4.2.2 demonstrates
this.

Constraint (4) is challenging, as it involves routine pre and postconditions.
The Eiffel metamodel already captures routine pre and postconditions using
predicate agents (see Section 3.2.2). There are several approaches for checking
this constraint.

(1) Mimic the PVS approach, that is, simulate theorem proving in Eiffel. Such
an encoding would make use of predicate agents and provide a way to eval-
uate sequential compositions of agents. Of course, the limitation with this
is that only those predicates that can be expressed in Eiffel’s agent syntax
can be captured.

We have experimented with this approach. Encoding sequential compo-
sition of agents can be done but it is nontrivial to write and is particularly
difficult to use. Users of the metamodel must reexpress contracts at the
metalevel, making the contracts difficult to write, debug, and understand.
The metalevel encoding of contracts, in particular, means that users of the
metamodel must explicitly understand and use the metalevel encoding of
BON variables, objects, pointer dereferencing, and intermediate states that
are expressed in Eiffel.

Given this encoding, contract consistency can be checked but not fully
automatically. Moreover, the results are less informative than with PVS.
What is produced with this approach is a sequence of agents which can
then be invoked on an initial state (conceptually identical to the initial
state provided in the PVS approach). This produces a true or false result,
whereas with PVS one also obtains a set of undischarged proof obligations
when the constraint cannot be proven. This suggests to us that, while the
approach provides partial automation, easier-to-use approaches should be
developed. This is not the best way to use Eiffel.

(2) Reflection. Make use of reflection techniques to extract pre and postcondi-
tions from the Eiffel metamodel and then make use of an external theorem
prover in much the same manner as in Section 4.1. This approximate ap-
proach motivates the work in Taligheni [2004].

(3) Exploit Eiffel’s executability. The PVS approach trades off completeness
with automation: MVCC is not fully automatic, but all constraints can be
checked. One of Eiffel’s strengths is its executability while still maintaining
abstract specification capabilities. Thus, an alternative to the first option
is to include routine implementations which can be invoked as messages
are sent. Thus, contracts are again encoded as agents, but the metaclass
ROUTINE also includes a new feature called implementation. This feature
is invoked during the MVCC. MVCC in this case resolves to generating
code from the metalevel encoding of the BON class diagram, generating an
implementation of a dynamic diagram that instantiates objects and calls
routines and running the dynamic diagram against the class diagram.

We should also refer to related work on the BON Design Tool (BDT) [Taligheni
and Ostroff 2003] which provides simulation facilities for BON contracts. This

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 41

Fig. 16. Refinement structure for contract-consistency scheme.

technology integrated with the Eiffel metamodel would be an alternative to the
Eiffel encoding of contracts previously discussed. BDT relies on fully automated
theorem proving behind the scenes in order to carry out simulation. Efforts are
continuing on integrating the metamodel in Eiffel with BDT.

The last approach is the most compatible with Eiffel’s best practices and is
the one that we describe in more detail now.

4.2.1 A Transformational Approach to Multiview Consistency Checking.
The basic approach that we are advocating is to generate unit tests from dy-
namic diagrams based on the metamodel encoding discussed earlier. Executable
Eiffel code can be generated from the metamodel encoding of class diagrams as
well. The unit tests can then be executed against the generated code to check for
consistency. If the test drivers run successfully, we infer that the code and the
unit tests, and hence the dynamic diagrams and class diagrams, are consistent.8

We remind the reader that this approach is only used for checking constraint
(4), that is, contractual consistency. The remaining multiview constraints can
be handled directly by conformance checking and do not require any transfor-
mation technology to be applied.

This is an indirect consistency check: effectively, the unit tests are viewed as
a refinement of dynamic diagrams and the executable code as a refinement of
class diagrams. This is depicted as in Figure 16. The stereotype <<derive>>

on the dependencies indicates that the source of the dependency can be auto-
matically derived (and is therefore automatically consistent) from the target.
The stereotype <<consistent-refine>> indicates that a consistency-checking
process must take place. Note that the dependency between the executable work
products (the source code and the unit test) is a refinement of dependency be-
tween the models; the implementation of the consistency checking algorithm
must guarantee this. The dependency between class diagrams and code is stan-
dard code generation; the dependency between unit tests and dynamic diagrams
is to be presented shortly.

Generating Eiffel code from the metalevel encoding of class diagrams is
straightforward. Generating unit tests from dynamic diagrams is slightly more

8Assuming the correctness of the code and test generation algorithms.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

42 • R. F. Paige et al.

complex. The simplifying assumption that we made earlier in article, that
we handle only direct associations and inheritance relationships, will allow
a generic and reasonably straightforward generation algorithm. Gao [2004]
considers the general problem.

Given that a dynamic diagram typically refines a scenario of use in an object-
oriented model, it is useful to be able to specify conditions that should be true
when a scenario ends. We thus add a final state to the metamodel: when the
sequence of message calls in the dynamic diagram ends, the final state should be
reached. We already include an initial state for a dynamic diagram (see the PVS
version). We currently require that the initial and final state specifications be
in the Eiffel assertion language, and thus that they are machine checkable and
executable. They will therefore be expressed as check statements (similar to C’s
assert) in Eiffel. Given the expressive power of Eiffel, this is a not unreasonable
restriction.

We have considered two (generally equivalent) approaches to transforming
dynamic diagrams into unit tests. We describe one in detail, and briefly outline
the second. The first approach uses a syntax-directed algorithm to generate a
single Eiffel class, CONSISTENCY TEST, which implements a unit test. This
class is inherited from the Eiffel unit-testing framework, ETest. The class pos-
sesses a creation routine, make, that is executed when CONSISTENCY TEST
is instantiated. The creation routine executes a sequence of feature calls gen-
erated according to the sequence of messages appearing in the class diagram.
If guards appear on messages, the feature calls will be prefixed with suitable
if-then-else structures, or loop-end structures, in the case where an iterative
multiplicity constraint is provided.

Two challenges arise with the refinement process of dynamic diagrams into
an Eiffel unit test.

(1) New Messages. These indicate the creation of a new object of the type of the
recipient of the message. Each object in the dynamic diagram is mapped
into an entity in Eiffel. However Eiffel classes may have many constructors/
creation routines, and unlike languages such as C++ and Java, constructors
can have any name. Even when dealing with a language like C++ and Java,
which force constructors to have the same name as the class, will require
dealing with a choice of multiple constructors in order to distinguish argu-
ment types. Thus, user assistance will be necessary in general to select the
appropriate constructor to execute as a result of a new message. In the test-
driver generation algorithm presented shortly, user assistance is obtained
through the use of select features, for example, select_create_feature.
This user assistance simply takes the form of selecting a feature from a
specified, automatically generated list.

(2) Underspecified Messages. A message in the dynamic diagram may be an-
notated with the name of the feature that should be called in response.
In this case, the feature call is added directly to the test driver. In general
though, a message can be underspecified: names or types of arguments may
not be provided, or messages may be overloaded, or the specific target of
the message may not be precisely constrained. The last case arises when

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 43

Fig. 17. Algorithm for generating unit tests from the dynamic diagram.

a multiobject appears in the collaboration diagram. In all of these cases, it
is best to ask for assistance from the user to indicate which feature to call
in response to a message or to specify the name of an object that should
be the recipient of the message. This is the purpose of select_feature in
Figure 17 which provides the user with a choice of features from which one
must be selected.

It is important to point out that the generated unit test is not sufficient
for full test coverage of the system—it is to be used for checking multiview
consistency. For test coverage, the dynamic diagram would have to be refined
to include exceptional conditions. Providing that modelers are able to extend
their collaboration diagrams to include exceptional cases, the approach can be

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

44 • R. F. Paige et al.

used to generate tests for functional and integration testing as well. However,
we suggest that in practice this approach is not sensible since the collaboration
diagrams will quickly become large, cumbersome, and difficult to understand.
A pragmatic approach might be to extend the generated unit tests to carry out
more detailed functional and integration testing, that is, to modify the unit
tests directly.

We can now use the metamodel encoding of BON class and dynamic dia-
grams to express the unit-test generation algorithm. This appears as part of
the definition of class GENERATOR.

The algorithm works informally as follows. First, declaration header infor-
mation is generated for the unit test (i.e., name of test class and standard Eiffel
syntax), then declarations for objects in the dynamic diagram. A check state-
ment (i.e., an assert) is generated to test the validity of the initial state of the
system. Then, the messages in the diagram are looped over. Each message is
tested to see if it has a guard or multiplicity constraints, and suitable Eiffel
if-then-else statements or loop statements are generated. Then a feature call
is generated; this may require consulting the user to select either a default cre-
ate statement or one of several possible create routines. Finally, all branches
in the generated code (i.e., loops or selections) are closed, and a final check is
generated on the final state of the system. The algorithm is interactive in the
general case, but if users have specified features for each message (i.e., they
have refined away nondeterminism) then the unit test generation is automatic.
Any interactions would be limited to selecting a method from a drop-down list
of options.

Running the unit test, and hence carrying out the MVCC, is a simple matter
of compiling and executing the generated code, including the unit test, using
the unit test as the root class [Meyer 1997] of the system. The root class con-
tains a method from which execution must start. Examples of MVCC using this
approach can be found in Paige et al. [2003a] and Gao [2004].

An alternative approach to transformation is demonstrated in Paige et al.
[2005] where the Atlas Transformation Language (ATL) [Bezivin et al. 2003]
is applied. This approach allows transformations, defined in terms of a set
of rules, to be defined with explicit reference to a pair of metamodels. As a
result, the rules are concise and abstract. It is easier to maintain and modify
the ATL version of the transformation than the Eiffel algorithm in Figure 17,
and thus future extensions of the approach will likely be based on the ATL
transformation.

4.2.2 Example: Using Eiffel for Multiview Consistency Checking. We now
demonstrate how to use Eiffel for MVCC with an example, which shows how to
check constraints (1)–(3), that is, all but contract consistency. Using Eiffel for
MVCC is very similar to how we use the language for model-conformance check-
ing. This is not surprising since the multiview consistency rules are encoded at
the metalevel. A short example illustrates the process.

Consider once again the diagrams shown earlier in Figure 1. These diagrams
present a model of part of a simple maze game with the class diagram presenting
a structural view, and the dynamic diagram presenting a behavioral view. These

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 45

Fig. 18. Unit test for multiview consistency.

Table III. Comparison of View
Consistency Approaches (• = least,

• • • = most)

Quality Factor MVCC approach
PVS Eiffel

Automation • • • •
Completeness • • • ••

views are inconsistent according to the metamodel of BON. We test this by
writing the unit test that is excerpted in Figure 18. This unit test encodes both
the class diagram and the dynamic diagram as Eiffel reference structures. The
test is then executed in order to check the well-formedness rules.

The routine views_consistent is a boolean-valued function that belongs to
the same class as the previous example; thus, the results of running this unit
test will appear in the HTML tables that are generated by ETest. As it turns
out, the unit test fails, because it atempts to invoke a routine, in end room that
does not exist in class MAZE GAME. This is easy to repair. After repairing this,
we can experiment and introduce an additional inconsistency by modifying the
export policy of routine is end room, that is, by exporting this routine only to
class ROOM. In this case, the unit test fails again since the constraint message-
feature will not hold.

The dynamic diagram in Figure 1(b) assumes that routines have been as-
sociated with messages. In general, dynamic diagrams in BON can be used
informally, for example, to refine use case scenarios, and such an association
cannot be assumed.

4.3 Comparison

Table III summarises the view consistency approaches in terms of the quality
factors discussed earlier.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

46 • R. F. Paige et al.

Once again, the comparisons are subjective and are based on experience
and careful analysis of the approaches. As we would perhaps expect, the PVS
approach offers the most complete solution to multiview consistency check-
ing. Consistency constraints can be specified in PVS as axioms (or even con-
jectures), and the theorem prover can be used to verify that a model obeys
the axioms. However, the PVS approach is lacking in terms of automation,
invariably user intervention is required to help discharge a proof (particu-
larly for choosing instantiations of quantified variables). The Eiffel approach
to view consistency checking is fully automatic but incomplete—some consis-
tency constraints, particularly those BON contracts that cannot be translated to
Eiffel—cannot be checked using the Eiffel approach in the same way as the PVS
approach.

The comparison in terms of completeness is a representation of the current
state-of-play. We expect to make progress on moving the completeness of the
Eiffel approach closer to PVS by building the Eiffel metamodel as a .NET appli-
cation and using its reflection capabilities to extract predicates which can then
be passed along to a theorem prover for external verification.

5. SUMMARY AND CONCLUSIONS

We have presented and contrasted two different approaches to metamodeling
the BON language. Comparisons of the approaches were based on a number
of identified quality factors that are of interest to metamodelers and users of
metamodels. The metamodel specifications were thereafter used in presenting
approaches to multiview consistency checking, and these were in turn con-
trasted in terms of their completeness and level of automation.

An obvious conclusion of this work is that no one approach to metamodeling,
and hence multiview consistency checking, is sufficient: a trade-off between
levels of automation and completeness will have to be made. As well, issues of
understandability, usability, and scalability must also be taken into account.
A further concern is maintainability. Given the substantial efforts put into re-
vising UML over the past few years, with its corresponding changes in the
underlying metamodel and supporting tools, it is highly desirable for a meta-
model to be maintainable, amenable to change. To this end, it will be useful if
metamodeling can be done in an agile way, accepting that change to language
specifications is inherent in the process and that the supporting tools that we
use to write and verify and validate metamodels support agile development as
well. We have explored these issues further in Paige et al. [2004] where we
applied an agile process for building a small metamodel.

Another observation from this work is that, for metamodeling, we should not
always prefer a more expressive metamodeling language to a less expressive
one. PVS is more expressive than both BON and Eiffel and can capture all well-
formedness rules; however, what it offers in completeness, it loses in terms of
automation and ease-of-use. Eiffel, as a metamodeling language, is incomplete
and yet it can be used to capture and check almost all well-formedness rules
automatically. Moreover (as we discuss in the next paragraph), we have prelim-
inary evidence to suggest that the Eiffel approach is more scalable. Whether we

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 47

should prefer a more expressive language to a less expressive one will depend
on how we want to use the metamodel in other tasks.

Our aim in this article was to provide guidelines and recommendations to
metamodelers and language designers in terms of the factors that they should
consider when constructing metamodels and view consistency-checking facili-
ties. It would be useful to broaden the comparison to include additional quality
factors and a more quantitative set of comparisons. For example, some measure
of maintainability or extensibility in terms of change metrics would be useful
to include as would measures of the size of models and metamodels that are
feasible to check using the PVS and Eiffel approaches. While we do not yet have
conclusive data about scalability of either approach, our initial indications are
that the Eiffel approach scales easily and maintains the ability to automatically
check conformance and multiview consistency (up to the limitations noted ear-
lier). In part, this is due to the object-oriented characteristics of Eiffel, but is
also because of its executability. We plan to carry out further case studies with
PVS, particularly to produce proof strategies, to assess the scalability of the
theorem-proving approach.

Our future work is taking an agile approach to extending the Eiffel specifi-
cation of the metamodel to more detailed consistency checking; in this sense,
we are building up a relatively simple method of consistency checking to more
complex tasks. There are two directions to this research: supporting contracts
in more detail (as discussed in Section 4), and supporting additional views.
We plan to first add a statechart view to the metamodel, basing this work
on the new Event library available with Eiffel. In this manner, an event-
driven model of concurrency and distribution will underpin the multiview
metamodel.

REFERENCES

AHRENDT, W., BAAR, T., BECKERT, B., BUBEL, R., GIESE, M., HAHNLE, R., MENZEL, W., MOSTOWSKI, W.,
ROTH, A., SCHLAGER, S., AND SCHMITT, P. 2005. The KeY tool. J. Softw. Syst. Model. 4, 1.

AKEHURST, D., PATRASCOUI, O., AND SMITH, R. 2004. The Kent modelling framework user guide.
http://www.cs.kent.ac.uk/projects/kmf.

AMALIO, N., STEPNEY, S., AND POLACK, F. 2004. Modular UML semantics: Interpretations in Z based
on templates and generics. In Formal Aspects of Component Software, International Workshop
(FACS’03). UNU/IIST.

BEZIVIN, J., DUPE, G., JOUAULT, F., PITETTE, J., AND ROUGUI, J. 2003. First experiments with the ATL
model transformation language. In Workshop on Generative Techniques in the Context of MDA.
http://www.softmetaware.com/oopsla2003/mda-workshop.html.

BHADURI, P. AND VENKATESH, R. 2002. Formal consistency of models in multi-view modeling. In
Workshop on Consistency Problems in UML-Based Software Development.

BIDOIT, M. AND MOSSES, P. D. 2004. CASL user manual. Lecture Notes in Computer Science, vol.
2900 (IFIP Series). Springer-Verlag.

BUDINSKY, F., STEINBERG, D., MERKS, E., ELLERSICK, R., AND GROSE, T. 2003. The Eclipse Modelling
Framework. Addison-Wesley.

CHECHIK, M., DEVEREAUX, B., EASTERBROOK, S., AND GARFINKEL, A. 2003. Multi-valued symbolic
model checking. ACM Trans. Softw. Engin. Method. 12, 4.

CHIOREAN, D. 2005. OCLE 2.0 User Manual. http://lci.cs.ubbcluj.ro/ocle/.
CLARK, T., EVANS, A., AND KENT, S. 2001a. The metamodelling language calculus: Foundation

semantics for UML. In Proceedings of the Fundamental Aspects of Software Engineering. Lecture
Notes in Computer Science, vol. 2029, Springer-Verlag.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

48 • R. F. Paige et al.

CLARK, T., EVANS, A., AND KENT, S. 2001b. MMT programmer’s guide. www.dcs.kcl.ac.uk/staff/
tony/docs/ProgrammersGuideToMMT.pdf.

D’SOUZA, D. AND WILLS, A. 1998. Objects, Components and Frameworks with UML. Addison-
Wesley.

EVANS, A., MASKERI, G., MOORE, A., SAMMUT, P., AND WILLANS, J. 2005. A unified superstructure for
UML. J. Object Techn. 4, 1.

EVANS, A., SAMMUT, P., AND WILLANS, J. 2003. Proceedings of the metamodelling for MDA workshop.
Tech. rep., University of York.

FINKELSTEIN, A., GABBAY, D., HUNTER, A., KRAMER, J., AND NUSEIBEH, B. 1994. Inconsistency handling
in multi-perspective specification. IEEE Trans. Softw. Engin. 20, 8.

FONDEMENT, F. AND BAAR, T. 2005. Making metamodels aware of concrete syntax. In European
Conference on MDA (ECMDA’05). Lecture Notes in Computer Science, vol. 3748, Springer-Verlag.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns. Addison-Wesley.
GAO, Y. July 2004. Multi-view consistency checking of BON software description diagrams. MSC

thesis, York University, Canada.
GRYCE, C., FINKELSTEIN, A., AND NENTWICH, C. 2002. Xlinkit: Lightweight consistency checking for

the UML. In Workshop on Consistency Problems in UML-based Software Development.
HUSSMAN, H., DEMUTH, B., AND FINGER, F. 2000. Modular architecture for a toolset supporting OCL.

In Proceedings of UML 2000. Lecture Notes in Computer Science, vol. 1939, Springer-Verlag.
HUZAR, Z., KUZNIARZ, L., REGGIO, G., AND SOURROUILLE, J. 2002. Workshop on Consistency Problems

in UML-Based Software Development. http://www.ipd.bth.se/UML2002.
HUZAR, Z., KUZNIARZ, L., REGGIO, G., AND SOURROUILLE, J. 2003. Workshop on Consis-

tency Problems in UML-Based Software Development. http://www.ipd.bth.se/consistencyUML/
UML2003Workshop.asp.

HUZAR, Z., KUZNIARZ, L., REGGIO, G., AND SOURROUILLE, J. 2004. Workshop on Consistency Problems
in UML-Based Software Development. http://uml04.ci.pwr.wroc.pl/.

IEEE. 2000. IEEE Std. 1471-2000 Recommended Practice for Architectural Description of Soft-
ware Intensive Systems. standards.ieee.org.

KIM, S. AND CARRINGTON, D. 2004. Using integrated metamodeling to define OO design patterns
with Object-Z and UML. In Proceedings of the Asia-Pacific Software Engineering Conference.
IEEE, 257–264.

KRISHNAN, P. 2000. Consistency Checks for UML. In Proceedings of the 7th Asia-Pacific Software
Engineering Conference. IEEE, 162–169.

KUZNIARZ, L., REGGIO, G., AND SOURROUILLE, J. 2005. Workshop on Consistency in Model-Driven
Engineering. http://www.ipd.bth.se/consistencyUML/CoMoDE

LEAVENS, G., POLL, E., CLIFTON, C., CHEON, Y., RUBY, C., COK, D., MUELLER, P., AND KINIRY, J. 2005.
JML Reference Manual. http://www.cs.iastate.edu/ leavens/JML/jmlrefman/.

MARCANO, R. AND LEVY, N. 2002. Using B formal specification for analysis and verification of
UML/OCL models. In Workshop on Consistency Problems in UML-Based Software Development.

MELLOR, S. AND BALCER, M. 2002. Executable UML. Addison-Wesley.
MEYER, B. 1992. Eiffel—The Language 2nd ed. Prentice Hall.
MEYER, B. 1997. Object Oriented Software Construction 2nd ed. Prentice Hall.
MEYER, B. 2003. Towards practical proofs of class correctness. In Proceedings of the 3rd Inter-

national Conference of B and Z Users (ZB’03). Lecture Notes in Computer Science, vol. 2651,
Springer-Verlag.

MICROSOFT. 2005. Microsoft Visio Web resource. http://office.microsoft.com/en-gb/
FX010857981033.aspx.

MICROSOFT. 2006. Spec# programming system. http://research.microsoft.com/specsharp/.
MODELWARE. 2005. D1.5: Model composition definition—consistency rules. http://www.

modelware-ist.org.
OBJECT MANAGEMENT GROUP. 2003a. MDA guide version 1.0.1.
OBJECT MANAGEMENT GROUP. 2003b. UML Standard Guide 1.5.
OBJECT MANAGEMENT GROUP. 2004a. MOF Meta-Object Facility Specification 1.4.
OBJECT MANAGEMENT GROUP. July 2004b. UML 2.0 working documents. www.omg.org.
OWRE, S., SHANKAR, N., RUSHBY, J., AND STRINGER-CALVERT, D. 1999. PVS Language Reference.

pvs.csl.sri.com.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

Metamodel-Based Model Conformance and Multiview Consistency Checking • 49

PAIGE, R., BROOKE, P., AND OSTROFF, J. 2004. Specification-driven development of an exe-
cutable metamodel. In Proceedings of Workshop in Software Model Engineering. http://www.
metamodel.com/wisme-2004/present/6.pdf.

PAIGE, R., BROOKE, P., AND OSTROFF, J. 2005. Lightweight metamodeling, conformance, and view
consistency checking. http://www.cs.york.ac.uk/∼paige/trlwmm.pdf.

PAIGE, R., KOLOVOS, D., AND POLACK, F. 2005. Refinement via Consistency Checking in MDA. In
Proceeding of Refinenet Workshop, ENTCS.

PAIGE, R. AND OSTROFF, J. 1999a. A Comparison of BON and UML. In Proceedings of Unified
Modeling Languages (UML’99). Lecture Notes in Computer Science, vol. 1723, Springer-Verlag.

PAIGE, R. AND OSTROFF, J. 1999b. Developing BON as an industrial-strength formal method. In
Proceedings of World Congress on Formal Methods. Lecture Notes in Computer Science, vol. 1708,
Springer-Verlag.

PAIGE, R. AND OSTROFF, J. 2001. Metamodelling and conformance checking with PVS. In Proceed-
ings of Fundamental Aspects of Software Engineering. Lecture Notes in Computer Science, vol.
2029, Springer-Verlag.

PAIGE, R. AND OSTROFF, J. 2004. ERC: An object-oriented refinement calculus for Eiffel. Formal
Aspects Comput. 16, 1.

PAIGE, R. AND OSTROFF, J. 2000. Precise and formal metamodeling with BON and PVS. Tech. rep.
2000-03, York University.

PAIGE, R., OSTROFF, J., AND BROOKE, P. 2002. Checking the consistency of class and collaboration
diagrams using PVS. In Proceedings of Rigorous Object-Oriented Methods 4 (ROOM4). British
Computer Society.

PAIGE, R., OSTROFF, J., AND BROOKE, P. 2003a. A test-based and agile approach to checking the
consistency of class and collaboration diagrams. In Proceedings of UK Software Testing Research
Workshop.

PAIGE, R., OSTROFF, J., AND BROOKE, P. 2003b. Theorem proving support for view consistency check-
ing. L’Objet 9, 4.

RICHTERS, M. AND GOGOLLA, M. 2000. Validating UML models and OCL constraints. In Proceed-
ings of Unified Modeling Languages (UML’00). Lecture Notes in Computer Science, vol. 1939,
Springer-Verlag.

SOCIETY OF AUTOMOTIVE ENGINEERS. 2005. Architectural Analysis and Design Language (AADL)
Standard. http://www.aadl.info.

SOURROUILLE, J. AND CAPLAT, G. 2002. A pragmatic view about consistency checking of UML mod-
els. In Workshop on Consistency Problems in UML-Based Software Development.

SPENCER, G. 2005. OCL to Eiffel. MSC Thesis. http://www.cs.york.ac.uk/library/.
TALIGHENI, A. 2004. Contractual consistency between BON static and dynamic diagrams. MSC

Thesis, York University, Canada.
TALIGHENI, A. AND OSTROFF, J. 2003. The BON Development Tool. In Proceedings of Eclipse Tech-

nology Exchange.
WALDEN, K. AND NERSON, J.-M. 1995. Seamless Object Oriented Software Architecture. Prentice

Hall.
XACTIUM. 2006. XMF-Mosaic User Guide (prerelease version 0.1.) www.xactium.com.

Received July 2005; revised May 2006; accepted December 2006

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 3, Article 11, Publication date: July 2007.

