
Metamodel-based Test Generation for Model Transformations: an
Algorithm and a Tool

Erwan Brottier1, Franck Fleurey2, Jim Steel2, Benoit Baudry2, Yves Le Traon1
1France Télécom R&D

2, av. Pierre Marzin - 22 307 Lannion Cedex – France
{erwan.brottier, yves.letraon}@francetelecom.com

2IRISA- 35042 Rennes Cedex – France
{ffleurey, jsteel, bbaudry}@irisa.fr

Abstract

In a Model-Driven Development context (MDE),
model transformations allow memorizing and reusing
design know-how, and thus automate parts of the
design and refinement steps of a software development
process. A model transformation program is a specific
program, in the sense it manipulates models as main
parameters. Each model must be an instance of a
“metamodel”, a metamodel being the specification of a
set of models. Programming a model transformation is
a difficult and error-prone task, since the manipulated
data are clearly complex. In this paper, we focus on
generating input test data (called test models) for
model transformations. We present an algorithm to
automatically build test models from a metamodel.

1 Introduction
MDE represents a significantly new approach to the

development of software systems. However, while
much work has been done on techniques for using
MDE, there remain many challenges for the process of
software validation, and in particular software testing,
in a MDE context. Since model transformations are
core mechanisms of MDE for building software from
design to finally code, they impact strongly on the
software development process. In that sense, making
model transformations trustable is an obvious target in
order to improve the reliability of automation during
the development, what MDE advocates.

A model transformation is implemented as a regular
program. As such, one argues that it may be designed,
implemented and tested as any other program. We
claim that in the same way testing techniques have
been adapted to the OO paradigm, testing techniques

must now be defined for the emergent Model-Oriented
paradigm.

In fact, significant differences exist between the
model-oriented paradigm and the previous ones.
Indeed, model transformation programs (MTP)
manipulate complex data structures that have no
comparison with the data of traditional programming
paradigm, such as string or integer. This key difference
makes existing test techniques hard to use, especially
for test data generation techniques.

Moreover, top-level specification formalisms can be
reasonably used by functional test techniques: data
structures are described as metamodels. A MTP is thus
a good candidate for functional testing techniques
(black box testing) and in particular automatic test data
generation. Indeed, the input and output domains are
described precisely by metamodels.

The test data that must be generated to test a
transformation are input models. We also call them test
models. The practical task of manually building and
editing models for testing is especially tedious (the
structure of the data is complex, models are difficult to
manage, there is no tooling for testing, etc). Moreover,
there are no precise stopping criteria to formally ensure
that the transformation has been sufficiently tested.
The generation of test models should then be
automated to avoid the task of manually building them.

The contribution of this paper is about the automatic
generation of test models, being given a metamodel
describing the input domain of a model transformation.
An algorithm is defined to automate test model
generation. The algorithm takes a metamodel and
fragments of models as an input and produces a set of
test models. The model fragments are either provided
by the tester or derived from the metamodel. They
specify parts of the metamodel that should be
instantiated with particular values that are interesting

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

for testing. The algorithm then consists in combining
model fragments and completing them to build valid
instances of the metamodel. The various strategies
used to combine and complete a model to make it
conformant to its metamodel are presented as well as
the limitations of this algorithm.

Section 2 presents the MDE approach. Section 3
introduces a 3-step process for test data generation for
model transformation, details the adaptation of
partition testing to this specific issue and explains the
notion of model fragments. In section 4, an algorithm
is defined that generates models using model
fragments. At last, section 5 presents some related
work.

2 Background on MDE

The goal of MDE [1] is to move away from
traditional role of models (e.g., UML diagrams) as
blueprints for conversion into software by
programmers, to a situation in which models are used
as first-class development artefacts. In MDE, models
are automatically transformed to other models and
system code. In fact, MDE presents the more general
view of systems which are described by models and
relationships between them. In addition, these are
managed automatically with mapping technologies
such as code generators.

To perform this approach, MDE is based on the
model oriented paradigm, which extends the object
oriented paradigm and provides dedicated features for
handling models correctly. It advocates above all the
use of models, metamodels and specific programs
called model transformations for easily manipulating
them.

As it was the primary motivation for MDE, the
domain of software development remains the main
application of MDE. Its principles are represented in
Figure 1, where the artifacts marked “M” are models,
those marked “L” are languages, “MT” are model
transformations, and “S” are specifications. After the
developer has created a design in the form of a series
of models, she then uses model transformations for
successively refining these models, and eventually
translating them into code. The model transformation
programs are implemented in some transformation
language which forms part of an overall MDE
framework (e.g. QVT standard [2], Kermeta [3]). They
are written by a transformation developer who may or
may not be the same as the software developer.

The following sections present firstly a more
thorough examination of the definitions of models,
metamodels and model transformations. This includes
the presentation of an example that will be used
throughout the paper. Secondly, we introduce the task
of model transformations test in the MDE context.

Trans formation

Framework
Developper

Trans formation
Developper

Transformation
User

... ...
...

...

T
1

LL

L

L

T2

S
1

S
2

Explicit output
meta-model(s)

MT

Text generation
transformation
(code, doc, ...)

• mode l repos itories
• modelling tools
• MT language
• MT runtime
• MT Framework
• e tc

Requirements

... ...
...

MM

... M

Co de

models

Run
MT

provides

provides

provides

Figure 1 – Model-Driven Engineering Software Development Approach

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

2.1 Models and metamodels

A model is a collection of objects and relationships
between the objects that, together, provide a
representation of some real part of a system. For
example, a simple state machine diagram, such as the
one in the Figure 2, might be represented in a human-
friendly manner as labelled ellipses with oriented
arrows between them.

Ellipses and arrows are a graphical representation of
respectively states and transitions. A state can be
composed of sub states.

3 4
1 2

ev1

y

Figure 2 – A state machine diagram sample

For handling properly models and, by this way,
automatically manipulating them, MDE has proposed
the notion of metamodel, which defines a modeling

language for a particular domain. It defines the
concepts, called classes, and their properties that
describe the domain (attributes and associations). A
property can be either a class attribute or an association
(relationship) between two classes.

Figure 3 – Possible State Machine Metamodel

Figure 3 shows a possible metamodel that describes
the concepts and relationships needed for expressing
simple state machine diagrams, such as the one
presented in Figure 2. Obviously, if we need more
information about state machine like temporal
constraints, we have to improve the metamodel for
handling these well.

Figure 2 displays a human-friendly representation of
an instance of our metamodel but it does not highlight
the conformance to its metamodel. Figure 4 shows a
representation of the same state machine, following the
MDE representation under the form of an objects
diagram. Each relation is an instance of a metamodel
association and each object is an instance of a
metamodel class. In addition, relations verify the
constraints on the association cardinalities.

Metamodelling is thus used to describe a specific
modelling “language”, with classes for each of the
concepts used in it. The metamodel of the Figure 3 is a
simplified excerpt of the UML metamodel which
allows describing other domains such as class or
activity diagrams.

Metamodels are described with respect to a given
“language”. The OMG has proposed the Meta-Object
Facility (MOF) [4] which is considered as a meta-
metamodel. As a language, the MOF very closely
resembles UML class modelling, with packages,
classes, attributes and associations. A metamodel is
thus a model itself. The metamodel of the Figure 3 can
be described like the model of the Figure 4, according
to the MOF. Like any language in MDE, MOF is

described by a model, which is itself. This self
description is analogous to defining an EBNF grammar
for describing EBNF and prevents an endless
progression.

: Composite

label = 3

: State

label = 1

: Transition

event = ‘y’

: Composite

label = 4

: Transition

event = ‘’

: Transition

event=’ev1’

: State

label = 2

: Transition

event = ‘’

target
source

ownedState

target
target

source

source

target

source

ownedState

Figure 4 – A representation of our state machine

model as an instance of the metamodel

2.2 Model transformations

Since we can properly define modelling languages
such as our state machine metamodel and others, it
becomes possible to define automatic processes
between these. For example, we can imagine a process
that transforms a state machine into a class diagram for
documentation purposes or into code for

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

implementation purposes. A mapping must be done
between the state machine metamodel and the UML
metamodel in the first case, or an object oriented
language metamodel in the second case (a simple
pretty printer has to be defined for finally obtaining the
code in a textual form). Such a mapping can be
described by a model transformation.

A model transformation describes relationships
between two or more models, by defining relations
between elements in their metamodels. Model
transformation (MT) is, essentially, a specification for
a model transformation program. Model transformation
programs (MTPs) take models and ensure that the
elements in the models correspond to the relations
defined by a certain model transformation.

A MT is close to the specification of an operation.
The first element of specification is a textual
description of the effect the MT has to perform. This
description is usually written in natural language and
documents it. The second element is a set of
parameters. Each of these parameters has a direction
(in, out, in/out) and a type (simple type like object
oriented primitive type or a metamodel). The two last
elements of specification are pre and post conditions,
which are expressed using the Object Constraint
Language (OCL). The pre condition expresses
constraints on the input parameters of the MT in order
to specify the valid input data of the transformation.
The post condition specifies the effect of the MT by
linking input and output parameters.

The Figure 5 shows the specification of the
SM2DOC model transformation that takes as an input
a state machine model and produces as an output a
UML class diagram model.

:Transformation

name = SM2DOC

Pre : OCLExpression Post : OCLExpression

stateChart : Parameter

direction = in
type = state machine model

docUML : Parameter

direction = out
type = UML model

Figure 5 – The SM2DOC model transformation

specification

In 2001, OMG issued a Request for Proposals [2]
for a standardised language for defining MTs. A wide
variety of languages have been proposed, from
imperative languages to rule-based logic-like
languages, and hybrids of the two like Kermeta [3].

In the following, we detail the process to generate
test models as inputs for testing a MTP.

3 A process for automatic test data
generation

In [5], different activities have been identified for
the test data generation in the context of MT testing.
They are displayed in Figure 6 in terms of a three-step
process:

Partitions

Model
fragments

Input
models

Effective MM

1

2

3

Partitions

Model
fragments

Input
models

Effective MM

1

2

3
Figure 6 – A 3-step process for automatic test
data generation for model transformation

Step 1: from the effective metamodel to partition of
simple types. This step decomposes into equivalence
classes the domains of all simply typed attributes and
association cardinalities which appear in the actual
input metamodel classes (called effective metamodel).

Step 2: from partitions to model fragments. Based
on the list of partitions, this activity produces model
fragments, which are “test objectives” on the input
domain for the test model generation. The significance
of the generated model fragments highly depends on
the strategy that is used to combine values.

Step 3: generation of models to exhibit model
fragments. The goal of this step is to generate models
from the model fragments. This is the subject of this
paper.

Test
Models

Generator

(,.,.,.)

Model
fragments

set

In : Input MM
(conforms to MOF)

Test models
(conforms to In)

...

Model
Fragments
Generator

Test
Models

Generator

(,.,.,.)

Model
fragments

set

In : Input MM
(conforms to MOF)

In : Input MM
(conforms to MOF)

Test models
(conforms to In)

...

Test models
(conforms to In)

...........

Model
Fragments
Generator

Figure 7 – The inputs of the test model

generation algorithm

The contribution of this work is an algorithm for
enabling the automation of this generation. Figure 7
illustrates the process for test model generation. It
shows that the proposed model generator takes a set of
model fragments and a metamodel as inputs in order to
compute test models which are conformant to the input
metamodel. Step 1 and 2 are related to the
identification of test objectives, in the form of “model-
fragments”. Ideally, the model-fragments are deduced

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

automatically from the metamodel, based on the
partitions and a given test criterion. In this paper, we
assume they are provided by the tester and we do not
present the test criteria to produce them automatically.

In the following of this section, we detail the notion
of effective metamodel, partitions and model
fragments.

3.1 Effective metamodel

Generating test data to cover the input domain of a
program can only be achieved with precise and
accurate description of this domain. In the context of
MTs, the input metamodel provides such a description.
However, the input metamodel for a transformation is
usually larger than the actual metamodel used by the
transformation. For example, a transformation on a
UML class diagram takes the UML metamodel as an
input metamodel, but it only manipulates the sub-part
that describes the structure of class diagrams. We
define the effective metamodel (EMM) as the exact
input metamodel that is relevant to the MT. The
effective metamodel can be seen as the input type for
the transformation. In this paper, we assume that an
effective metamodel is available. Obtaining this EMM
is beyond the scope of this paper (in [5], we gave clues
on the different strategies that can be applied to
automatically identify the EMM).

The first step of the process (Figure 6) consists in
building a partition for properties of the EMM whose
type is primitive (boolean, integer, string): the
attributes of the EMM classes and the multiplicities on
associations.

3.2 Partitions for metamodel coverage

In the particular context of software testing,
partitions have been used for defining category-
partition testing [6]. This technique consists in defining
equivalence classes on the input domain of the
software and then testing the program with one value
from each class. It has been adapted to test UML
models in [7], and we also adapt it to test MTs. In this
specific case, the input domain is defined by the input
metamodel of the MT. A precise definition of a
partition is given below.

Definition – Partition. A partition of a set of
elements is a collection of n subsets A1, …,
An such as A1, …, An do not overlap and the
union of all subsets forms the initial set.
These subsets are called equivalence classes.

Our adaptation of category-partition testing consists
in defining partitions for those properties in the input
metamodel whose type is primitive (e.g. attributes and
multiplicity of associations). In [5] we propose two
techniques for generating meaningful partitions:
default partitioning and knowledge-based partitioning.
The first technique consists of defining, a priori, a
partition based on the structure or the type of the data.
For a string attribute this may be {{null}, {""}, {s /
|s|>0}}, and for a [0..1] multiplicity it would be {{0},
{1}}. Knowledge-based partitioning consists of
extracting representative values from the MT itself.
These values can be provided by the tester or
automatically extracted from the specification of the
MT.

Since a partition is defined for a property of a class,
it is noted Part(C::P), where C is a class and C::P a
property P of C. Moreover, a partition defines a set of
equivalence classes over the set of possible values for a
property, so Part(C::P) = {ECi | i∈ [1..#eqClasses]},
where ECi is an equivalence class for C::P and
#eqClasses is the number of equivalence classes.

To illustrate the proposed technique, Figure 8
displays the partitions that are obtained using a default
partitioning policy for the metamodel of the Figure 3.

Figure 8 – Partitions for simple state machine

metamodel

Once equivalence classes are defined, they can be
combined to define model fragments (step 2).

3.3 Model fragments

An important notion for generating models for
testing is to have criteria to qualify models. In this
work, we consider that a model is relevant for testing if
it contains interesting object structures. The quality of
input models then directly depends on the definition of
the “interesting object structures”. We call such object
structures model fragments. This paper does not focus
on the selection of model fragments, which is
considered as being provided by the tester to feed the
test generation algorithm. A generated set of test
models must cover every model fragment specified by
the criterion.

Transit ion::event { { ""} , { "evt 1"} , { *} }
Transit ion::source { 1}
Transit ion::t arget { 1}

AbstractState::labe l { { 0} , { 1 } , { > 1} }
AbstractState::# conta iner { { 0} , { 1 } }

Abst ractState::# incomingTransit ion { { 0} , { 1 } , { > 1} }
AbstractState::# outgoingTransit ion { { 0} , { 1 } , { > 1} }

State::isFina l { { t rue} , { false} }
State::isInit ia l { { t rue} , { false} }

Com posite::# ownedStat e { { 0} , { 1 } , { > 1} }

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

The model fragments are specified using the
partitions previously defined (step 2 of the Figure 6).
All the proposed test criteria ensure that all the
partitions for the metamodel properties are exhibited
by model fragments. They differ from each other by
the way they combine properties to specify object
structures. Depending on the testing strategy which is
adopted, it is possible to find a trade-off between the
number and the efficiency of test data using either of
the criteria.

The following concepts and notations are used:
• a model fragment MF is a set of object

fragments: MF = {object-fragments}. It
specifies that at least one of the input models
must include all these object fragments

• an object fragment OF specifies a partial
instance of a class C. It relates equivalence
classes with properties. It is a set of property
constraints, that associate a property Pj of a
class C to an equivalence class ECk: OF =
{(C::Pj, ECk)}j,k.

Example:
A possible model fragment MF for the state

machine is given by the following list of object
fragments:

MF = {{ (AbstractSate ::outgoingTransition, {1}),
(AbstractState ::label, {>1}),
(AbstractState ::container, {0})},
{(Composite ::ownedState, {1})}, {(Transition ::event,
{“ev1”})}}

Figure 9 displays an objects diagram that conforms

to this model (1) and the corresponding graphical
elements of a state machine (2). The goal of the test
model generator is to complete this partial view of a
model to make it conformant to the state machine
metamodel. One possible resulting model is the one
presented previously in Figure 2 and Figure 4.
Depending on the test strategy, a test model may
integrate one or several model fragments.

2

ev1
(1) (2)

: Composite

: Transition

event=’ev1’

: AbstractState

label = 2

ownedState = 1

outgoingTransition = 1

 Figure 9 – Model fragment

The last step for test data generation consists in
generating models that cover all the identified
model fragments.

4 Test data generation: generation of
input models

In this section we present an algorithm that
generates a set of test models which include a set of
model fragments. The algorithm is presented in Figure
10 in pseudo-code form. Besides this constant
behaviour, the algorithm provides variation points that
have strong effects on the resulting test models. They
are presented in Table 1 and the references to them in
the algorithm pseudo-code show when they are
precisely used. We provide different strategies for each
one (in the second column of the table).

The first variation point is the size of generated
models (1 in Table 1). Each generated model covers at
least one model fragment. At one extreme, one can
imagine a single model that covers all object
fragments, resulting in a single very large test model.
At the other, one might have a separate model for each
model fragment, resulting in a very large set of test
data. Clearly, the former will provide problems for
fault localization, while the latter will provide
problems of scalability. For this reason, a test model
generation algorithm should find an appropriate trade-
off between these extremes. The “size of models”
variation point allows the user to control the size of the
input models generated by the algorithm. Each model
is thus iteratively grown by including model fragments
until it reaches the specified limit or can not become
bigger (line 5 in Figure 10). The “max objects number”
strategy considers the size of a model as the number of
instances of classes it contains and allows expressing
an upper limit. Similarly, the “min model fragments
number” strategy allows expressing a lower limit about
the covered model fragment.

After each object fragment is covered, a process is
applied to the model to ensure its conformance to its
metamodel. This completion process is also a variation
point (2 in Table 1). It continues to grow the model
until it is conformant to its metamodel. We have
developed the “naïve” strategy without heuristics but it
was not sufficient. For example, if two concepts in the
input metamodel are linked by a bidirectional
association with cardinality upper than one, the
algorithm may not stop. In fact, issues concerning
possible infinite cycle between instances of concepts
are not correctly treated by this implementation. To
deal with this issue, we have developed the “path”
strategy which uses Tarjan’s algorithm for avoiding
cycle issues.

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

input : set of model fragments S, meta-model MM
output : set of models L conformed to MM
while there are uncovered model fragments in S do
{ create an empty model M

while the model size limit is not reached (1) and M still can grow do
{ choose an uncovered model fragment MF in S

for each object fragment OF in MF do
{ find an object O which is instance of the class partially specified by OF (3)

for each constraint CT defined in OF on the property P do
{ if P is an attribute (value partition case) then

choose a value and set it to P in O (5)
else (multiplicity partition case)
{ choose a cardinality N according to CT (5)

if the type of P is a class then
find N objects with a P type and set them to P in O (3)

else find N values in the partition of P and set them to P in O (5)
}}

add O to M
completion of M until it is conformed to MM (2, 4)

}}
mark MF as covered
add M to L}

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

input : set of model fragments S, meta-model MM
output : set of models L conformed to MM
while there are uncovered model fragments in S do
{ create an empty model M

while the model size limit is not reached (1) and M still can grow do
{ choose an uncovered model fragment MF in S

for each object fragment OF in MF do
{ find an object O which is instance of the class partially specified by OF (3)

for each constraint CT defined in OF on the property P do
{ if P is an attribute (value partition case) then

choose a value and set it to P in O (5)
else (multiplicity partition case)
{ choose a cardinality N according to CT (5)

if the type of P is a class then
find N objects with a P type and set them to P in O (3)

else find N values in the partition of P and set them to P in O (5)
}}

add O to M
completion of M until it is conformed to MM (2, 4)

}}
mark MF as covered
add M to L}

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Figure 10 – Pseudo-code for model generation algorithm

When the algorithm is going to handle one
constraint specified in an object fragment (line 9 to 18
in the algorithm), it has to choose values for the
constrained property.

This choice is done in two steps:
1. Selection of an equivalence class in the

partition.
2. Selection of a value in this equivalence class.
These choices follow the variation point 5 of Table

1. The “default” strategy selects randomly an
equivalent class and a value in it. The “limits” strategy
selects an equivalent class at random too, but the value
is picked from the equivalent class limits. The “cycle”
strategy selects one after the other each equivalent
class, following a round trip, and then picks a value at
random.

Besides, when a constraint is on the cardinality of an
association, the algorithm has to select several
instances of the class to assign to the concerned
property. These instances can be either created or
chosen among the ones contained in the model under
construction. This selection is done by the “Object
choice” points of variation (3, 4 in Table 1). We use it
twice in the test generation process: it is first used
during the model fragment coverage part of the
algorithm (line 9 to 18 in the algorithm) and the other
is used during the completion part (line 20 in the
algorithm). For example, by running the algorithm with
the set of model fragments used as an example in the
section 3.3, the state machine of the Figure 2 can not

be obtained with the “always create” strategy of this
variation point.

To sum up, there are a number of points in this
algorithm at which various strategies can be applied to
control characteristics of the generated models.

Table 1 – Strategies for the algorithm

 Variation points Provided strategies

1 Size of models max objects number

min model fragments number

2 Model completion naive

path

3 Object choice

(during model fragment
coverage)

always create

reuse whenever possible

new object for each OF

4 Object choice

(during model completion)

always create

reuse whenever possible

5 EC choice in partition
and value choice in EC

default

limits

cycle

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

{{(AbstractState::label, 0)}} {{(Composite::ownedState, #0)}} {{(Transition::source, #1)}}
{{(Transition::event, *)}} {{(AbstractState::outgoing, #1)}}

{{(Composite::ownedState, #>1)}} {{(AbstractState::label, 1)}} {{(AbstractState::incoming, #>1)}}
{{(Transition::event, “”)}} {{(State::isFinal, true)}}

{{(State::isFinal, true), (State::isInit, false), (AbstractState::container, 1),
(AbstractState::outgoing, 0), (AbstractState::incoming , 1), (AbstractState::label, 1)}}
{{(Transition::event, *), (Transition::source, 1), (Transition::target, 1)}}
{{(State::isFinal, false), (State::isInitial, true), (AbstractState::label, 1),
(AbstractState::container, 1), (AbstractState::outgoing, 1), (AbstractState::incoming, >1)}}
{{(Transition::event, "ev1"), (Transition::target, 1), (Transition::source, 1)}}
{{(AbstractState::label, *), (AbstractState::outgoing, 0), (AbstractState::incoming, >1),
(AbstractState::container, 0), (Composite::ownedStates, 1)}}

1.

2.

3.

Figure 11 – Sample object fragments

4.1 Example

To illustrate the algorithm, we use a simple
example of MT for the flattening of composite state
charts. As shown in Figure 3, the input metamodel for
this transformation consists of four classes. The
partitions for the properties of this metamodel are
displayed in Figure 8. We propose in the Figure 11
three samples of model fragments.

Figure 12 – Generated state machines

Figure 12 displays the models, in this case state
machines, obtained by applying the algorithm with
these model fragments. Each uses a size limit strategy
of a minimum five model fragment per generated
model. Models A, B and C correspond to the first list
of model fragments using objects reuse strategies of
“reuse whenever possible”, “new object for each
object fragment” and “always create” respectively.
Models D, E and F show the models generated using
the same strategies for the second set of model
fragments. Model G shows the model generated for

the third set of model fragments using a “reuse
whenever possible” strategy.

4.2 Observations and limitations

It is clear from the generated models that the choice
of strategies used in applying the algorithm has a
strong effect on the nature of the resulting test data.
These strategies can therefore serve as a way to tailor
the generated models to the specific testing needs. For
example, easy diagnosis is aided by smaller, more
discrete, input models that might be generated by
using an “always create” reuse strategy in combination
with a small size limit. On the other hand, test suite
minimisation may be achieved using a “reuse
whenever possible” strategy, since this strategy will
tend to generate the smallest number of models needed
to cover all model fragments.

In model G we can see that a composite state
contains two states with the same labels, and also a
transition from an inner state to its containing state.
These are valid patterns according to the metamodel
but may violate a static well-formedness rule (e.g.
expressed in OCL). The fact that our generator can not
deal with static constraints associated to the input
metamodel is an important issue for testing. Indeed,
test models need to conform to the input metamodel
but also satisfy the constraints to be valid input for
testing.

Dealing with such constraints in the general case
becomes a constraint logic programming (CLP)
problem and is beyond the scope of this work.
However, some simple constraints such as uniqueness
of attribute values by providing extra information to
the models generator. Alternatively, a crude approach
of post-generation checking and acceptance/rejection,
while inefficient, might prove effective. Work is
currently underway to validate the algorithm and

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

qualify choices of strategies using empirical studies.
We also plan adapting AI algorithms such as the
bacteriologic algorithm [8] to take the constraints into
account during the generation process.

4.3 The test generation tool

A prototype tool, called OMOGEN (autOmatic
MOdel GENerator), has been implemented at France
Télécom (Figure 13). It is now possible to
automatically generate test data from a metamodel and
a set of model fragments.

Figure 13 – OMOGEN, a test model generator

for model transformations

To evaluate the efficiency of our approach, we will
measure the quality of the generated models thanks to
mutation techniques applied on MTPs [9]. To ease
future case studies, we already have implemented such
a system linked to OMOGEN to automatically
produce statistics about the fault detection power of
our approach. The Figure 14 presents the process
which is performed by our statistics system.

OMOGEN

test
models

Mutation
Analysis

mutation
verdict

Statistic
Generator

Figure 14 – automation of case study processes

5 Related work

Several works consider MTs as an essential feature
in model-driven development (MDD) [1, 10, 11].
However, there are few works concerned with the

validation of these particular programs. As such, this
section summarizes works on the broader topic of
testing in a MDD context. Among these works, three
categories appear: validation for MTs [12, 13, 14],
testing models [7, 15] and testing software which is
developed following an MDD approach [16, 17]. The
following identifies particular works in these three
domains.

As stated earlier, the validation of MTs has not
been studied much yet. In [14], the authors present the
testing issues they have encountered when developing
a MT engine, and what solutions they have adopted.
They note the similarity between this task and that of
testing transformations themselves, and address a
number of mainly technical issues associated with
using models as test data. The use of coverage criteria
for the generation of test data is discussed as a
possibility, although in their study the criteria are
applied by hand, and not in a systematic, generalised
way such as we present here.

In [13], Lin et al., identify all the core challenges
for MT testing, and propose a framework that relates
the different activities. The problem of test data
generation is not addressed here. The authors focus
more particularly on the problem of model comparison
which is necessary for the oracle. They give a first
algorithm inspired by graph matching algorithms. An
example illustrates the different steps for testing. In
[12], Küster considers rule-based transformations and
addresses the problem of the validation of the rules
that define the MT, i.e. syntactic correctness,
convergence and termination of the set of rules.

An important testing activity in a MDD
development cycle is the validation of models that
drive the development of an application. In [7],
Andrews et al. propose test criteria for executable
UML design models. These criteria are based on the
class and collaboration diagrams. The criteria on the
class diagrams define different configurations which
have to be covered on the model. These configurations
are then instantiated to build the set of interacting
objects used to test the model. In a complementary
way, the criteria on the collaboration diagram define
the scenarios to test the model. In [15] Goggola et al.
adapt the UML validation tool USE to test UML and
OCL models. The principle for the technique is to
define properties that should be verified on the model.
The tool then checks whether it is possible to generate
snapshots from the model that verify the property.

The last activity related to this work is the
adaptation of testing techniques for applications
developed in a MDD context. In [16], Rutherford et al.
report an experiment to generate test code in parallel
with a system whose development is model-driven.
The experiment uses a generative programming tool

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

called MODEST. The paper reports the costs and
benefits of developing additional templates for test
code for the MODEST tool, so it can generate as much
test code as possible. The reported benefits were that
developing templates for test code enhanced the
development process and allowed the developers to be
more familiar with the code generated by MODEST.
The costs are evaluated with an analysis of the
complexity of templates for test-code generation.

In [17], the authors also explicitly address the
problem of test generation in a MDE context and
propose to develop model-driven testing. In particular,
this work focuses on the separation between platform
independent models and platform specific models for
testing. The generation of test cases from models, as
well as the generation of the oracle, are considered to
be platform independent. The execution of the test
cases in the test environment is platform specific. A
case study based on model-driven development of web
applications illustrates the approach.

6 Conclusion

With the emergence of model-driven development,
model transformations appear as core assets for reuse.
It thus becomes crucial to provide adequate techniques
to test these model transformations. The generation of
input test models has been addressed in this paper: an
algorithm that builds test models from the input
metamodel and a set of object fragments has been
proposed and a prototype has been developed. It
implements several strategies which have an important
impact on the resulting test models. The presented tool
is under evaluation for testing specific model
transformations at France Télécom, which are used to
automatically assist the migration of a large scale
information system. Future work will focus on the
experimental validation of the generated test models.
In particular, we will study the efficiency of the test
models in terms of fault detection power, by applying
mutation analysis on MTPs [9].

7 References

[1] J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois,
and D. Pollet. Reflective model driven engineering.
Proceedings of UML'03 (Unified Modeling Language), San
Francisco, CA, USA, October 2003.

[2] OMG. MOF 2.0 Q/V/T OMG Revised submission.
Accessed on: 2005 2005.

 http://www.omg.org/cgi-bin/doc?ad/05-03-02

[3] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel.
Weaving executability into object-oriented meta-languages.
Proceedings of MoDELS'05, Montego Bay, Jamaica,
October 2005. LNCS.

[4] OMG. MOF 2.0 Core Final Adopted Specification.
Accessed 2005.

 http://www.omg.org/cgi-bin/doc?ptc/03-10-04
[5] F. Fleurey, J. Steel, and B. Baudry. Validation in

Model-Driven Engineering: Testing Model Transformations.
Proceedings of MoDeVa'04 (Model Design and Validation
Workshop associated to ISSRE'04), Rennes, France,
November 2004.

[6] T.J. Ostrand and M.J. Balcer. The category-
partition method for specifying and generating functional
tests. Communications of the ACM, 1988. 31(6): 676 - 686.

[7] A. Andrews, R. France, S. Ghosh, and G. Craig.
Test adequacy criteria for UML design models. Software
Testing, Verification and Reliability, 2003. 13(2): 95 -127.

[8] B. Baudry, F. Fleurey, Y. Le Traon, and J.-M.
Jézéquel. An Original Approach for Automatic Test Cases
Optimization: a Bacteriologic Algorithm. IEEE Software,
2005. 22(2): 76-82.

[9] J.-M. Mottu, B. Baudry, and Y. Le Traon.
Mutation Analysis Testing for Model Transformations.
Proceedings of ECMDA'06 (European Conference on Model
Driven Architecture), Bilbao, Spain, July 2006.

[10] D. Varro and A. Pataricza. Generic and Meta-
Transformations for Model Transformation Engineering.
Proceedings of UML'04 (Unified Modeling Language),
Lisbon, Portugal, October 2004.

[11] S.R. Judson, R. France, and D.L. Carver. Model
Transformations at the Metamodel Level. Proceedings of
Workshop in Software Model Engineering associated to
UML'03, San Francisco, CA, USA, October 2003.

[12] J.M. Küster. Definition and Validation of Model
Transformations. Software and Systems Modeling, 2006. to
appear.

[13] Y. Lin, J. Zhang, and J. Gray. A Testing
Framework for Model Transformations, in Model-driven
Software Development - Research and Practice in Software
Engineering. 2005, Springer.

[14] J. Steel and M. Lawley. Model-Based Test Driven
Development of the Tefkat Model-Transformation Engine.
Proceedings of ISSRE'04 (Int. Symposium on Software
Reliability Engineering), Saint-Malo, France, November
2004.

[15] M. Gogolla, J. Bohling, and M. Richters.
Validation of UML and OCL Models by Automatic
Snapshot Generation. Proceedings of UML'03 (Unified
Modeling Language), San Francisco, CA, USA, October
2003.

[16] M.J. Rutherford and A.L. Wolf. A case for test-
code generation in model-driven systems. Proceedings of
The second international conference on Generative
programming and component engineering, Erfurt, Germany,
September 2003.

[17] R. Heckel and M. Lohmann. Towards Model-
Driven Testing. Electronic Notes in Theoretical Computer
Science, 2003. 82(6).

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

