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Abstract 
 

In a Model-Driven Development context (MDE), 
model transformations allow memorizing and reusing 
design know-how, and thus automate parts of the 
design and refinement steps of a software development 
process. A model transformation program is a specific 
program, in the sense it manipulates models as main 
parameters. Each model must be an instance of a 
“metamodel”, a metamodel being the specification of a 
set of models. Programming a model transformation is 
a difficult and error-prone task, since the manipulated 
data are clearly complex. In this paper, we focus on 
generating input test data (called test models) for 
model transformations. We present an algorithm to 
automatically build test models from a metamodel.  

1 Introduction 
MDE represents a significantly new approach to the 

development of software systems. However, while 
much work has been done on techniques for using 
MDE, there remain many challenges for the process of 
software validation, and in particular software testing, 
in a MDE context. Since model transformations are 
core mechanisms of MDE for building software from 
design to finally code, they impact strongly on the 
software development process. In that sense, making 
model transformations trustable is an obvious target in 
order to improve the reliability of automation during 
the development, what MDE advocates. 

A model transformation is implemented as a regular 
program. As such, one argues that it may be designed, 
implemented and tested as any other program. We 
claim that in the same way testing techniques have 
been adapted to the OO paradigm, testing techniques 

must now be defined for the emergent Model-Oriented 
paradigm.  

In fact, significant differences exist between the 
model-oriented paradigm and the previous ones. 
Indeed, model transformation programs (MTP) 
manipulate complex data structures that have no 
comparison with the data of traditional programming 
paradigm, such as string or integer. This key difference 
makes existing test techniques hard to use, especially 
for test data generation techniques. 

Moreover, top-level specification formalisms can be 
reasonably used by functional test techniques: data 
structures are described as metamodels. A MTP is thus 
a good candidate for functional testing techniques 
(black box testing) and in particular automatic test data 
generation. Indeed, the input and output domains are 
described precisely by metamodels. 

The test data that must be generated to test a 
transformation are input models. We also call them test 
models. The practical task of manually building and 
editing models for testing is especially tedious (the 
structure of the data is complex, models are difficult to 
manage, there is no tooling for testing, etc). Moreover, 
there are no precise stopping criteria to formally ensure 
that the transformation has been sufficiently tested. 
The generation of test models should then be 
automated to avoid the task of manually building them. 

The contribution of this paper is about the automatic 
generation of test models, being given a metamodel 
describing the input domain of a model transformation. 
An algorithm is defined to automate test model 
generation. The algorithm takes a metamodel and 
fragments of models as an input and produces a set of 
test models. The model fragments are either provided 
by the tester or derived from the metamodel. They 
specify parts of the metamodel that should be 
instantiated with particular values that are interesting 
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for testing. The algorithm then consists in combining 
model fragments and completing them to build valid 
instances of the metamodel. The various strategies 
used to combine and complete a model to make it 
conformant to its metamodel are presented as well as 
the limitations of this algorithm. 

Section 2 presents the MDE approach. Section 3 
introduces a 3-step process for test data generation for 
model transformation, details the adaptation of 
partition testing to this specific issue and explains the 
notion of model fragments. In section 4, an algorithm 
is defined that generates models using model 
fragments. At last, section 5 presents some related 
work. 

2 Background on MDE 

The goal of MDE [1] is to move away from 
traditional role of models (e.g., UML diagrams) as 
blueprints for conversion into software by 
programmers, to a situation in which models are used 
as first-class development artefacts. In MDE, models 
are automatically transformed to other models and 
system code. In fact, MDE presents the more general 
view of systems which are described by models and 
relationships between them. In addition, these are 
managed automatically with mapping technologies 
such as code generators. 

To perform this approach, MDE is based on the 
model oriented paradigm, which extends the object 
oriented paradigm and provides dedicated features for 
handling models correctly. It advocates above all the 
use of models, metamodels and specific programs 
called model transformations for easily manipulating 
them. 

As it was the primary motivation for MDE, the 
domain of software development remains the main 
application of MDE. Its principles are represented in 
Figure 1, where the artifacts marked “M” are models, 
those marked “L” are languages, “MT” are model 
transformations, and “S” are specifications. After the 
developer has created a design in the form of a series 
of models, she then uses model transformations for 
successively refining these models, and eventually 
translating them into code. The model transformation 
programs are implemented in some transformation 
language which forms part of an overall MDE 
framework (e.g. QVT standard [2], Kermeta [3]). They 
are written by a transformation developer who may or 
may not be the same as the software developer. 

The following sections present firstly a more 
thorough examination of the definitions of models, 
metamodels and model transformations. This includes 
the presentation of an example that will be used 
throughout the paper. Secondly, we introduce the task 
of model transformations test in the MDE context.  
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Figure 1 – Model-Driven Engineering Software Development Approach 

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00  © 2006



2.1 Models and metamodels 

A model is a collection of objects and relationships 
between the objects that, together, provide a 
representation of some real part of a system. For 
example, a simple state machine diagram, such as the 
one in the Figure 2, might be represented in a human-
friendly manner as labelled ellipses with oriented 
arrows between them. 

Ellipses and arrows are a graphical representation of 
respectively states and transitions. A state can be 
composed of sub states. 

 

3 4 
1 2 

ev1 

y 

 
Figure 2 – A state machine diagram sample 

For handling properly models and, by this way, 
automatically manipulating them, MDE has proposed 
the notion of metamodel, which defines a modeling 

language for a particular domain. It defines the 
concepts, called classes, and their properties that 
describe the domain (attributes and associations). A 
property can be either a class attribute or an association 
(relationship) between two classes. 

 
Figure 3 – Possible State Machine Metamodel 

Figure 3 shows a possible metamodel that describes 
the concepts and relationships needed for expressing 
simple state machine diagrams, such as the one 
presented in Figure 2. Obviously, if we need more 
information about state machine like temporal 
constraints, we have to improve the metamodel for 
handling these well. 

Figure 2 displays a human-friendly representation of 
an instance of our metamodel but it does not highlight 
the conformance to its metamodel. Figure 4 shows a 
representation of the same state machine, following the 
MDE representation under the form of an objects 
diagram. Each relation is an instance of a metamodel 
association and each object is an instance of a 
metamodel class. In addition, relations verify the 
constraints on the association cardinalities. 

Metamodelling is thus used to describe a specific 
modelling “language”, with classes for each of the 
concepts used in it. The metamodel of the Figure 3 is a 
simplified excerpt of the UML metamodel which 
allows describing other domains such as class or 
activity diagrams. 

Metamodels are described with respect to a given 
“language”. The OMG has proposed the Meta-Object 
Facility (MOF) [4] which is considered as a meta-
metamodel. As a language, the MOF very closely 
resembles UML class modelling, with packages, 
classes, attributes and associations. A metamodel is 
thus a model itself. The metamodel of the Figure 3 can 
be described like the model of the Figure 4, according 
to the MOF. Like any language in MDE, MOF is 

described by a model, which is itself. This self 
description is analogous to defining an EBNF grammar 
for describing EBNF and prevents an endless 
progression. 
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Figure 4 – A representation of our state machine 

model as an instance of the metamodel 

2.2 Model transformations 

Since we can properly define modelling languages 
such as our state machine metamodel and others, it 
becomes possible to define automatic processes 
between these. For example, we can imagine a process 
that transforms a state machine into a class diagram for 
documentation purposes or into code for 
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implementation purposes. A mapping must be done 
between the state machine metamodel and the UML 
metamodel in the first case, or an object oriented 
language metamodel in the second case (a simple 
pretty printer has to be defined for finally obtaining the 
code in a textual form). Such a mapping can be 
described by a model transformation. 

A model transformation describes relationships 
between two or more models, by defining relations 
between elements in their metamodels. Model 
transformation (MT) is, essentially, a specification for 
a model transformation program. Model transformation 
programs (MTPs) take models and ensure that the 
elements in the models correspond to the relations 
defined by a certain model transformation. 

A MT is close to the specification of an operation. 
The first element of specification is a textual 
description of the effect the MT has to perform. This 
description is usually written in natural language and 
documents it. The second element is a set of 
parameters. Each of these parameters has a direction 
(in, out, in/out) and a type (simple type like object 
oriented primitive type or a metamodel). The two last 
elements of specification are pre and post conditions, 
which are expressed using the Object Constraint 
Language (OCL). The pre condition expresses 
constraints on the input parameters of the MT in order 
to specify the valid input data of the transformation. 
The post condition specifies the effect of the MT by 
linking input and output parameters. 

The Figure 5 shows the specification of the 
SM2DOC model transformation that takes as an input 
a state machine model and produces as an output a 
UML class diagram model. 

 
 

:Transformation 

name = SM2DOC 

Pre : OCLExpression Post : OCLExpression

stateChart : Parameter 

direction = in 
type = state machine model 

docUML : Parameter 

direction = out 
type = UML model 

 
Figure 5 – The SM2DOC model transformation 

specification 

In 2001, OMG issued a Request for Proposals [2] 
for a standardised language for defining MTs. A wide 
variety of languages have been proposed, from 
imperative languages to rule-based logic-like 
languages, and hybrids of the two like Kermeta [3]. 

In the following, we detail the process to generate 
test models as inputs for testing a MTP. 

3 A process for automatic test data 
generation 

In [5], different activities have been identified for 
the test data generation in the context of MT testing. 
They are displayed in Figure 6 in terms of a three-step 
process:  

Partitions

Model
fragments

Input 
models

Effective MM

1

2

3

Partitions

Model
fragments

Input 
models

Effective MM

1

2

3  
Figure 6 – A 3-step process for automatic test 
data generation for model transformation 

Step 1: from the effective metamodel to partition of 
simple types. This step decomposes into equivalence 
classes the domains of all simply typed attributes and 
association cardinalities which appear in the actual 
input metamodel classes (called effective metamodel).  

Step 2:  from partitions to model fragments. Based 
on the list of partitions, this activity produces model 
fragments, which are “test objectives” on the input 
domain for the test model generation. The significance 
of the generated model fragments highly depends on 
the strategy that is used to combine values.  

Step 3: generation of models to exhibit model 
fragments. The goal of this step is to generate models 
from the model fragments. This is the subject of this 
paper. 
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Figure 7 – The inputs of the test model 

generation algorithm 

The contribution of this work is an algorithm for 
enabling the automation of this generation. Figure 7 
illustrates the process for test model generation. It 
shows that the proposed model generator takes a set of 
model fragments and a metamodel as inputs in order to 
compute test models which are conformant to the input 
metamodel. Step 1 and 2 are related to the 
identification of test objectives, in the form of “model-
fragments”. Ideally, the model-fragments are deduced 
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automatically from the metamodel, based on the 
partitions and a given test criterion. In this paper, we 
assume they are provided by the tester and we do not 
present the test criteria to produce them automatically. 

In the following of this section, we detail the notion 
of effective metamodel, partitions and model 
fragments. 

3.1 Effective metamodel 

Generating test data to cover the input domain of a 
program can only be achieved with precise and 
accurate description of this domain. In the context of 
MTs, the input metamodel provides such a description. 
However, the input metamodel for a transformation is 
usually larger than the actual metamodel used by the 
transformation. For example, a transformation on a 
UML class diagram takes the UML metamodel as an 
input metamodel, but it only manipulates the sub-part 
that describes the structure of class diagrams. We 
define the effective metamodel (EMM) as the exact 
input metamodel that is relevant to the MT. The 
effective metamodel can be seen as the input type for 
the transformation. In this paper, we assume that an 
effective metamodel is available. Obtaining this EMM 
is beyond the scope of this paper (in [5], we gave clues 
on the different strategies that can be applied to 
automatically identify the EMM).  

The first step of the process (Figure 6) consists in 
building a partition for properties of the EMM whose 
type is primitive (boolean, integer, string): the 
attributes of the EMM classes and the multiplicities on 
associations. 

3.2 Partitions for metamodel coverage 

In the particular context of software testing, 
partitions have been used for defining category-
partition testing [6]. This technique consists in defining 
equivalence classes on the input domain of the 
software and then testing the program with one value 
from each class. It has been adapted to test UML 
models in [7], and we also adapt it to test MTs. In this 
specific case, the input domain is defined by the input 
metamodel of the MT. A precise definition of a 
partition is given below.  

Definition – Partition. A partition of a set of 
elements is a collection of n subsets A1, …, 
An such as A1, …, An do not overlap and the 
union of all subsets forms the initial set. 
These subsets are called equivalence classes.  

Our adaptation of category-partition testing consists 
in defining partitions for those properties in the input 
metamodel whose type is primitive (e.g. attributes and 
multiplicity of associations). In [5] we propose two 
techniques for generating meaningful partitions: 
default partitioning and knowledge-based partitioning. 
The first technique consists of defining, a priori, a 
partition based on the structure or the type of the data. 
For a string attribute this may be {{null}, {""}, {s / 
|s|>0}}, and for a [0..1] multiplicity it would be {{0}, 
{1}}. Knowledge-based partitioning consists of 
extracting representative values from the MT itself. 
These values can be provided by the tester or 
automatically extracted from the specification of the 
MT.  

Since a partition is defined for a property of a class, 
it is noted Part(C::P), where C is a class and C::P a 
property P of C. Moreover, a partition defines a set of 
equivalence classes over the set of possible values for a 
property, so Part(C::P) = {ECi | i∈ [1..#eqClasses]}, 
where ECi is an equivalence class for  C::P and 
#eqClasses is the number of equivalence classes. 

To illustrate the proposed technique, Figure 8 
displays the partitions that are obtained using a default 
partitioning policy for the metamodel of the Figure 3. 

  

 
Figure 8 – Partitions for simple state machine 

metamodel 

Once equivalence classes are defined, they can be 
combined to define model fragments (step 2).  

3.3 Model fragments 

An important notion for generating models for 
testing is to have criteria to qualify models. In this 
work, we consider that a model is relevant for testing if 
it contains interesting object structures. The quality of 
input models then directly depends on the definition of 
the “interesting object structures”. We call such object 
structures model fragments. This paper does not focus 
on the selection of model fragments, which is 
considered as being provided by the tester to feed the 
test generation algorithm. A generated set of test 
models must cover every model fragment specified by 
the criterion. 

Transit ion::event { { ""} ,  { "evt 1"} ,  { *} }
Transit ion::source { 1}
Transit ion::t arget { 1}

AbstractState::labe l { { 0} ,  { 1 } ,  { > 1} }
AbstractState::# conta iner { { 0} ,  { 1 } }

Abst ractState::# incomingTransit ion { { 0} ,  { 1 } ,  { > 1} }
AbstractState::# outgoingTransit ion { { 0} ,  { 1 } ,  { > 1} }

State::isFina l { { t rue} ,  { false} }
State::isInit ia l { { t rue} ,  { false} }

Com posite::# ownedStat e { { 0} ,  { 1 } ,  { > 1} }
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The model fragments are specified using the 
partitions previously defined (step 2 of the Figure 6). 
All the proposed test criteria ensure that all the 
partitions for the metamodel properties are exhibited 
by model fragments. They differ from each other by 
the way they combine properties to specify object 
structures. Depending on the testing strategy which is 
adopted, it is possible to find a trade-off between the 
number and the efficiency of test data using either of 
the criteria. 

The following concepts and notations are used: 
• a model fragment MF is a set of object 

fragments: MF = {object-fragments}. It 
specifies that at least one of the input models  
must include all these object fragments 

• an object fragment OF specifies a partial 
instance of a class C. It relates equivalence 
classes with properties. It is a set of property 
constraints, that associate a property Pj of a 
class C to an equivalence class ECk: OF = 
{(C::Pj, ECk)}j,k.  

 
Example:  
A possible model fragment MF for the state 

machine is given by the following list of object 
fragments: 

MF = {{ (AbstractSate ::outgoingTransition, {1}), 
(AbstractState ::label, {>1}), 
(AbstractState ::container, {0})}, 
{(Composite ::ownedState, {1})}, {(Transition ::event, 
{“ev1”})}} 

 
Figure 9 displays an objects diagram that conforms 

to this model (1) and the corresponding graphical 
elements of a state machine (2). The goal of the test 
model generator is to complete this partial view of a 
model to make it conformant to the state machine 
metamodel.  One possible resulting model is the one 
presented previously in Figure 2 and Figure 4. 
Depending on the test strategy, a test model may 
integrate one or several model fragments.  

 
 

2 

ev1
(1) (2) 

: Composite 

 

: Transition 

event=’ev1’ 

: AbstractState 

label = 2 

ownedState = 1 

outgoingTransition = 1 

 
 Figure 9 – Model fragment 

The last step for test data generation consists in 
generating models that cover all the identified 
model fragments. 

4 Test data generation: generation of 
input models 

In this section we present an algorithm that 
generates a set of test models which include a set of 
model fragments. The algorithm is presented in Figure 
10 in pseudo-code form. Besides this constant 
behaviour, the algorithm provides variation points that 
have strong effects on the resulting test models. They 
are presented in Table 1 and the references to them in 
the algorithm pseudo-code show when they are 
precisely used. We provide different strategies for each 
one (in the second column of the table). 

The first variation point is the size of generated 
models (1 in Table 1). Each generated model covers at 
least one model fragment. At one extreme, one can 
imagine a single model that covers all object 
fragments, resulting in a single very large test model. 
At the other, one might have a separate model for each 
model fragment, resulting in a very large set of test 
data. Clearly, the former will provide problems for 
fault localization, while the latter will provide 
problems of scalability. For this reason, a test model 
generation algorithm should find an appropriate trade-
off between these extremes. The “size of models” 
variation point allows the user to control the size of the 
input models generated by the algorithm. Each model 
is thus iteratively grown by including model fragments 
until it reaches the specified limit or can not become 
bigger (line 5 in Figure 10). The “max objects number” 
strategy considers the size of a model as the number of 
instances of classes it contains and allows expressing 
an upper limit. Similarly, the “min model fragments 
number” strategy allows expressing a lower limit about 
the covered model fragment. 

After each object fragment is covered, a process is 
applied to the model to ensure its conformance to its 
metamodel. This completion process is also a variation 
point (2 in Table 1). It continues to grow the model 
until it is conformant to its metamodel. We have 
developed the “naïve” strategy without heuristics but it 
was not sufficient. For example, if two concepts in the 
input metamodel are linked by a bidirectional 
association with cardinality upper than one, the 
algorithm may not stop. In fact, issues concerning 
possible infinite cycle between instances of concepts 
are not correctly treated by this implementation.  To 
deal with this issue, we have developed the “path” 
strategy which uses Tarjan’s algorithm for avoiding 
cycle issues. 
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input : set of model fragments S, meta-model MM    
output : set of models L conformed to MM
while there are uncovered model fragments in S do
{ create an empty model M

while the model size limit is not reached (1) and M still can grow do
{ choose an uncovered model fragment MF in S

for each object fragment OF in MF do
{ find an object O which is instance of the class partially specified by OF (3)

for each constraint CT defined in OF on the property P do
{ if P is an attribute  (value partition case) then

choose a value and set it to P in O (5)
else (multiplicity partition case)
{ choose a cardinality N according to CT (5)

if the type of P is a class then 
find N objects with a P type and set them to P in O (3)

else find N values in the partition of P and set them to P in O (5)
}}

add O to M
completion of M until it is conformed to MM (2, 4)

}}
mark MF as covered
add M to L}

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

input : set of model fragments S, meta-model MM    
output : set of models L conformed to MM
while there are uncovered model fragments in S do
{ create an empty model M

while the model size limit is not reached (1) and M still can grow do
{ choose an uncovered model fragment MF in S

for each object fragment OF in MF do
{ find an object O which is instance of the class partially specified by OF (3)

for each constraint CT defined in OF on the property P do
{ if P is an attribute  (value partition case) then

choose a value and set it to P in O (5)
else (multiplicity partition case)
{ choose a cardinality N according to CT (5)

if the type of P is a class then 
find N objects with a P type and set them to P in O (3)

else find N values in the partition of P and set them to P in O (5)
}}

add O to M
completion of M until it is conformed to MM (2, 4)

}}
mark MF as covered
add M to L}

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 
Figure 10 – Pseudo-code for model generation algorithm 

When the algorithm is going to handle one 
constraint specified in an object fragment (line 9 to 18 
in the algorithm), it has to choose values for the 
constrained property.  

This choice is done in two steps:  
1. Selection of an equivalence class in the 

partition. 
2. Selection of a value in this equivalence class. 
These choices follow the variation point 5 of Table 

1. The “default” strategy selects randomly an 
equivalent class and a value in it. The “limits” strategy 
selects an equivalent class at random too, but the value 
is picked from the equivalent class limits. The “cycle” 
strategy selects one after the other each equivalent 
class, following a round trip, and then picks a value at 
random. 

Besides, when a constraint is on the cardinality of an 
association, the algorithm has to select several 
instances of the class to assign to the concerned 
property. These instances can be either created or 
chosen among the ones contained in the model under 
construction. This selection is done by the “Object 
choice” points of variation (3, 4 in Table 1). We use it 
twice in the test generation process: it is first used 
during the model fragment coverage part of the 
algorithm (line 9 to 18 in the algorithm) and the other 
is used during the completion part (line 20 in the 
algorithm). For example, by running the algorithm with 
the set of model fragments used as an example in the 
section 3.3, the state machine of the Figure 2 can not 

be obtained with the “always create” strategy of this 
variation point. 

To sum up, there are a number of points in this 
algorithm at which various strategies can be applied to 
control characteristics of the generated models.  

Table 1 – Strategies for the algorithm 

 Variation points Provided strategies 

1 Size of models max objects number 

min model fragments number 

2 Model completion naive 

path 

3 Object choice  

(during model fragment 
coverage) 

always create 

reuse whenever possible 

new object for each OF 

4 Object choice  

(during model completion) 

always create 

reuse whenever possible 

5 EC choice in partition 
and value choice in EC 

default 

limits 

cycle 
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{{(AbstractState::label, 0)}} {{(Composite::ownedState, #0)}} {{(Transition::source, #1)}} 
{{(Transition::event, *)}} {{(AbstractState::outgoing, #1)}}

{{(Composite::ownedState, #>1)}} {{(AbstractState::label, 1)}} {{(AbstractState::incoming, #>1)}}
{{(Transition::event, “”)}} {{(State::isFinal, true)}}

{{(State::isFinal, true), (State::isInit, false), (AbstractState::container, 1), 
(AbstractState::outgoing, 0), (AbstractState::incoming , 1), (AbstractState::label, 1)}}
{{(Transition::event, *), (Transition::source, 1), (Transition::target, 1)}}
{{(State::isFinal, false), (State::isInitial, true), (AbstractState::label, 1), 
(AbstractState::container, 1), (AbstractState::outgoing, 1), (AbstractState::incoming, >1)}}
{{(Transition::event, "ev1"), (Transition::target, 1), (Transition::source, 1)}}
{{(AbstractState::label, *), (AbstractState::outgoing, 0), (AbstractState::incoming, >1), 
(AbstractState::container, 0), (Composite::ownedStates, 1)}}

1.

2.

3.

 
Figure 11 – Sample object fragments 

4.1 Example 

To illustrate the algorithm, we use a simple 
example of MT for the flattening of composite state 
charts. As shown in Figure 3, the input metamodel for 
this transformation consists of four classes. The 
partitions for the properties of this metamodel are 
displayed in Figure 8. We propose in the Figure 11 
three samples of model fragments. 

 
Figure 12 – Generated state machines 

Figure 12 displays the models, in this case state 
machines, obtained by applying the algorithm with 
these model fragments. Each uses a size limit strategy 
of a minimum five model fragment per generated 
model. Models A, B and C correspond to the first list 
of model fragments using objects reuse strategies of 
“reuse whenever possible”, “new object for each 
object fragment” and “always create” respectively. 
Models D, E and F show the models generated using 
the same strategies for the second set of model 
fragments. Model G shows the model generated for 

the third set of model fragments using a “reuse 
whenever possible” strategy. 

4.2 Observations and limitations 

It is clear from the generated models that the choice 
of strategies used in applying the algorithm has a 
strong effect on the nature of the resulting test data. 
These strategies can therefore serve as a way to tailor 
the generated models to the specific testing needs. For 
example, easy diagnosis is aided by smaller, more 
discrete, input models that might be generated by 
using an “always create” reuse strategy in combination 
with a small size limit.  On the other hand, test suite 
minimisation may be achieved using a “reuse 
whenever possible” strategy, since this strategy will 
tend to generate the smallest number of models needed 
to cover all model fragments. 

In model G we can see that a composite state 
contains two states with the same labels, and also a 
transition from an inner state to its containing state. 
These are valid patterns according to the metamodel 
but may violate a static well-formedness rule (e.g. 
expressed in OCL). The fact that our generator can not 
deal with static constraints associated to the input 
metamodel is an important issue for testing. Indeed, 
test models need to conform to the input metamodel 
but also satisfy the constraints to be valid input for 
testing. 

Dealing with such constraints in the general case 
becomes a constraint logic programming (CLP) 
problem and is beyond the scope of this work. 
However, some simple constraints such as uniqueness 
of attribute values by providing extra information to 
the models generator. Alternatively, a crude approach 
of post-generation checking and acceptance/rejection, 
while inefficient, might prove effective. Work is 
currently underway to validate the algorithm and 
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qualify choices of strategies using empirical studies. 
We also plan adapting AI algorithms such as the 
bacteriologic algorithm [8] to take the constraints into 
account during the generation process. 

4.3 The test generation tool 

A prototype tool, called OMOGEN (autOmatic 
MOdel GENerator), has been implemented at France 
Télécom (Figure 13). It is now possible to 
automatically generate test data from a metamodel and 
a set of model fragments. 

 
Figure 13 – OMOGEN, a test model generator 

for model transformations 

To evaluate the efficiency of our approach, we will 
measure the quality of the generated models thanks to 
mutation techniques applied on MTPs [9]. To ease 
future case studies, we already have implemented such 
a system linked to OMOGEN to automatically 
produce statistics about the fault detection power of 
our approach. The Figure 14 presents the process 
which is performed by our statistics system. 
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test 
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Figure 14 – automation of case study processes 

5 Related work 

Several works consider MTs as an essential feature 
in model-driven development (MDD) [1, 10, 11]. 
However, there are few works concerned with the 

validation of these particular programs. As such, this 
section summarizes works on the broader topic of 
testing in a MDD context. Among these works, three 
categories appear: validation for MTs [12, 13, 14], 
testing models [7, 15] and testing software which is 
developed following an MDD approach [16, 17]. The 
following identifies particular works in these three 
domains. 

As stated earlier, the validation of MTs has not 
been studied much yet. In [14], the authors present the 
testing issues they have encountered when developing 
a MT engine, and what solutions they have adopted. 
They note the similarity between this task and that of 
testing transformations themselves, and address a 
number of mainly technical issues associated with 
using models as test data. The use of coverage criteria 
for the generation of test data is discussed as a 
possibility, although in their study the criteria are 
applied by hand, and not in a systematic, generalised 
way such as we present here.  

In [13], Lin et al., identify all the core challenges 
for MT testing, and propose a framework that relates 
the different activities. The problem of test data 
generation is not addressed here. The authors focus 
more particularly on the problem of model comparison 
which is necessary for the oracle. They give a first 
algorithm inspired by graph matching algorithms. An 
example illustrates the different steps for testing. In 
[12], Küster considers rule-based transformations and 
addresses the problem of the validation of the rules 
that define the MT, i.e. syntactic correctness, 
convergence and termination of the set of rules. 

An important testing activity in a MDD 
development cycle is the validation of models that 
drive the development of an application. In [7], 
Andrews et al. propose test criteria for executable 
UML design models. These criteria are based on the 
class and collaboration diagrams. The criteria on the 
class diagrams define different configurations which 
have to be covered on the model. These configurations 
are then instantiated to build the set of interacting 
objects used to test the model. In a complementary 
way, the criteria on the collaboration diagram define 
the scenarios to test the model. In [15] Goggola et al. 
adapt the UML validation tool USE to test UML and 
OCL models. The principle for the technique is to 
define properties that should be verified on the model. 
The tool then checks whether it is possible to generate 
snapshots from the model that verify the property.  

The last activity related to this work is the 
adaptation of testing techniques for applications 
developed in a MDD context. In [16], Rutherford et al. 
report an experiment to generate test code in parallel 
with a system whose development is model-driven. 
The experiment uses a generative programming tool 
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called MODEST. The paper reports the costs and 
benefits of developing additional templates for test 
code for the MODEST tool, so it can generate as much 
test code as possible. The reported benefits were that 
developing templates for test code enhanced the 
development process and allowed the developers to be 
more familiar with the code generated by MODEST. 
The costs are evaluated with an analysis of the 
complexity of templates for test-code generation. 

In [17], the authors also explicitly address the 
problem of test generation in a MDE context and 
propose to develop model-driven testing. In particular, 
this work focuses on the separation between platform 
independent models and platform specific models for 
testing. The generation of test cases from models, as 
well as the generation of the oracle, are considered to 
be platform independent. The execution of the test 
cases in the test environment is platform specific. A 
case study based on model-driven development of web 
applications illustrates the approach. 

6 Conclusion 

With the emergence of model-driven development, 
model transformations appear as core assets for reuse. 
It thus becomes crucial to provide adequate techniques 
to test these model transformations. The generation of 
input test models has been addressed in this paper: an 
algorithm that builds test models from the input 
metamodel and a set of object fragments has been 
proposed and a prototype has been developed. It 
implements several strategies which have an important 
impact on the resulting test models. The presented tool 
is under evaluation for testing specific model 
transformations at France Télécom, which are used to 
automatically assist the migration of a large scale 
information system. Future work will focus on the 
experimental validation of the generated test models. 
In particular, we will study the efficiency of the test 
models in terms of fault detection power, by applying 
mutation analysis on MTPs [9].  
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