
Metamodeling: An Emerging
Representation Paradigm
for System-Level Design
Alberto Sangiovanni-Vincentelli

University of California, Berkeley

Sandeep Kumar Shukla

Virginia Polytechnic and State University

Janos Sztipanovits

Vanderbilt University

Guang Yang

National Instruments

Deepak A. Mathaikutty

Intel

�MODEL-BASED DESIGN continues to gain wide ac-

ceptance in software, systems, and control engi-

neering.1 Clearly demonstrating this trend is the

growing number of tools addressing diverse needs

of different industries or engineering domains. In

the automotive industry, Simulink and Stateflow

are widely used in control system design and

some aspects of code generation.2 In the aerospace

industry, Matrixx (http://www.ni.com/matrixx) is

used for software architecture modeling and code

generation. In the process and instrumentation in-

dustry, LabView (http://www.ni.com/labview) has a

strong foothold. In SoC and multiprocessor SoC

(MPSoC) design, SystemC (http://www.systemc.org)

and related simulation and code generation tool

suites are appearing. During the past five years,

the Unified Modeling Language (UML) has been shift-

ing from a design documentation notation to a

model-based design platform for software engineer-

ing.3 Today, modeling languages and model-based

analysis methods and tools are being

developed in all conceivable engineer-

ing domains.

Model-based methods’ fundamen-

tal appeal is that they let system

designers use abstractions matching

their primary design concerns rather

than be constrained by properties

of the implementation technology

they choose. Not surprisingly, a con-

trol engineer achieves more effective

results by using a modeling language designed

for defining and composing control systems

(such as Simulink or Stateflow) than by using

Cþþ, which might be the controller’s implementa-

tion language. In many engineering domains��
and particularly in cyber-physical systems (http://

www.cra.org/ccc/cps.php), where the systems

are inherently heterogeneous��the model-based

design process comprises a range of models repre-

senting different aspects of system behavior. The

automated design process proceeds by refining, inte-

grating, and analyzing these models in a complex

flow. This complex, iterative model construction

process is combined with model analysis to establish

required properties and model transformations

for integrating models, extracting information for

analysis, or translating them into code. The rich-

ness of the model-based development process is

formally captured by the platform-based design

concept.4,5

Metamodeling

Editor’s note:

The use of metamodeling in system design allows abstraction of concepts

germane to a number of varying modeling domains, and provides the abil-

ity of exploiting meta-information for a variety of system design tasks such

as analysis, verification, synthesis, and test generation. This article pro-

vides an overview of emerging metamodeling techniques and their

applications.

��Tim Cheng, IEEE Design & Test editor in chief

0740-7475/09/$25.00 �c 2009 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers54

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

The basic tenets of platform-based design are as

follows:

� The design progresses in precisely defined ab-

straction layers.

� Each abstraction layer is defined by a design plat-

form. A design platform represents a family of

designs that satisfies a set of platform-specific

constraints.

� Designs on each platform are represented by

platform-specific design models. A complete de-

sign is obtained by a designer’s creating platform

instances via composing platform components

and by mapping the platforms in the design flow

onto subsequent abstraction layers.

Building, analyzing, and manipulating models

are central to model-based design. Necessarily, the

design process requires extensive tool support. De-

velopment of methods and tools are predicated on

the precise specification of design platforms. Be-

cause a platform expresses a family of designs, the

design platforms can be specified formally as mod-

eling languages or as models of computation. A

model of computation is a mathematical formalism

that describes the computation and communication

semantics of actors. Actors are basic computational

elements that process data and communicate with

one another to implement the intended computa-

tion. The computation semantics define how actors

act, and the communication semantics define how

they react. In a broad sense, MoCs address the be-

havioral modeling and compositional aspects in

model-based design. Examples of common MoCs

are finite-state machines, synchronous data flows,

and discrete-event systems. Each has restricted be-

havioral semantics that make modeling��and,

more important, model analysis and verification

tasks��easier. Modeling languages define a repre-

sentation method for expressing designs. Reflecting

the richness of engineering design tasks, modeling

languages span a wide range from informal graphi-

cal notations, such as the object modeling tech-

nique (OMT),6 to formal textual languages, such

as Alloy for software modeling.7

However, a single universal modeling lan-

guage or MoC will not suit all domains. Thus,

domain-specific modeling languages (DSML) and

MoCs have emerged. Domain specificity creates

two fundamental challenges: potential insularity

and lack of communication across domains, and

higher development costs. Metamodeling (http://

www.metamodel.com/staticpages/index.php?page=

20021010231056977) and metaprogrammable tools

have emerged as responses to these challenges.8-10

As research, methodology, and tool development

for embedded-system design progress, a framework

based on metamodels will unquestionably emerge

as the standard. Accordingly, the goal of this article

is to introduce metamodeling developments relevant

to system-level design of electronic systems. We focus

on approaches we have developed that form the

basis for much of the research work in the US.

Metamodeling has two basic interpretations.

The common interpretation refers to the modeling

of modeling languages including the languages’

concrete syntax (notations), abstract syntax, and

semantics. Metamodels determine the set of valid

models that can be defined with models’ lan-

guage and behavior in a particular domain. Generic

functions in model-based design such as model

building, model transformation, and model man-

agement are supported by metaprogrammable

tools. The tools’ core functions are independent

from the particular DSMLs and can be instantiated

using metamodels.

The second, less traditional interpretation relates

to the use of models of computation for system de-

sign and has a strict semantics connotation. For this

reason, we refer to this interpretation as a semantics

metamodel. Although MoCs are powerful in captur-

ing specific designs, embedded electronic systems

are inherently heterogeneous. Hence, their model-

ing requires multiple MoC-specific models, thus

making the overall system’s analysis problematic

because its behavior is not a priori expressible in

a mathematical formalism that can be inferred

from the components’ MoCs. Metamodeling in

this context is a way to uniformly abstract away

MoC specificities while consolidating MoC com-

monalities in the semantics metamodel. This meta-

modeling results in a mechanism to analyze and

design complex systems without renouncing the

properties of the components’ MoCs. This meta-

modeling concept lets us compare different models

of computation, provide mathematical machinery

to prove design properties, and support platform-

based design. It forms the basis of several actor-

based design environments such as Ptolemy II

and Metropolis.9,11

55May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Domain-specific modeling languages
Modeling languages play fundamental roles in

model-based design. These roles can be divided

into three categories:

� Unified (or universal) modeling languages, such as

UML and Modelica, are broadly designed to offer

adopters the advantage of remaining in a single-

language framework, independent of application

domain. Necessarily, the core language constructs

are tailored more toward an underlying technology

(for example, object modeling) rather than to a par-

ticular domain��even if extension mechanisms,

such as UML profiling, allow customizability.

� Interchange languages, such as the Hybrid System

Interchange Format (HSIF), permit model sharing

across analysis tools (hybrid system analysis). In-

terchange languages are optimized for providing

specific quantitative analysis capabilities in design

flows by facilitating tool integration. The lan-

guages are optimized to cover concepts related

to an analysis technology.

� Domain-specific modeling languages (DSMLs)

specify a design platform, including the concepts,

relationships, and well-formedness constraints

linked to the application domain they address.

They are optimized to be focused: the modeling

language should offer the simplest possible formu-

lation that is sufficient for the modeling tasks.

Noting these distinctions among modeling lan-

guages reveals an essential aspect of model-based de-

sign: we cannot assume that a single ‘‘universal’’

modeling language will fill all roles. A single language

would defeat model-based design’s purpose and fun-

damental advantage: creating abstraction layers in de-

sign flows. However, domain specificity creates two

fundamental challenges:

� Precise, formal specification of DSMLs. Without rig-

orous specification of modeling languages, design

flows disintegrate into loosely coupled regimes

(such as software component architecture design,

timing analysis, or system-level architecture de-

sign) formed around tool suites developed and

used in relative isolation. Because practical design

requires iteration across these regimes, the sep-

aration is costly, and it unavoidably leads to

inconsistencies.

� Tool infrastructure for model-based design. Devel-

opment of dedicated modeling and model

analysis tool suites for rapidly changing applica-

tion domains is cost prohibitive. Without resolving

the dichotomy between domain specificity and

reusability, model-based design will be restricted

to slowly changing and relatively large application

domains where a viable tool market can form.

Many relevant efforts have addressed these chal-

lenges, of which metamodeling is one major approach.

An early metamodeling example is the case data inter-

change format (CDIF) standard developed for informa-

tion interchange among CAD tools.12 Progress in

metamodeling has led to the emergence of meta-

programmable tools that have made DSML-based

approaches practical.8-10,13 To put it simply, metamodel-

ing is the modeling of DSMLs. DSML modeling’s pur-

pose is to specify DSMLs in a formal, mathematically

solid way using metamodeling languages. Generic

functions in model-based design such as model build-

ing, model transformation, and model management

are supported by metaprogrammable tools. These

tools’ core functions are independent from the

DSMLs and can be instantiated using metamodels.

The current practice of specifying DSMLs covers a

wide range of methods, from formal (which is be-

yond the scope of this article14) to informal. In the in-

formal approach, specification is implicit: language

constructs and notations are chosen to represent con-

cepts familiar to users. Specifications take the form of

explanations written in natural language (possibly

interspersed with mathematical notations). At a min-

imum, writing down the semantic ideas and ex-

pressing their mathematical meaning reduces the

chance for misunderstanding among developers. How-

ever, characterization of completeness or consistency

of the specification is impossible as languages grow

in size and complexity. This method’s applicability is

restricted to closed tool suites, in which the tool com-

ponents are integrated by the tool vendors and where

semantic consistency is maintained transparently to

the user. In this approach, the model’s behavior is fre-

quently defined by a code generator, which translates

the models to executable code. For example, Matrixx

models are translated into Ada, which can be com-

piled further into executable code. At least three prob-

lems hinder the practicality of this approach:

� Understanding the semantics by observing the be-

havior generated by simulators or compiled code

might be difficult, especially when deployed in

highly integrated or distributed configurations.

Metamodeling

56 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

� Changes made to the model-

ing language often require

significant changes to the sim-

ulators or code generators,

which often serve as the only

fully detailed description of

the DSML semantics. In addi-

tion, these languages and asso-

ciated tools are frequently

proprietary, which means that

each new release of the tool

suite might result in hidden

changes in the modeling lan-

guage’s semantics.

� Source code templates are

poor documentation, fre-

quently tending toward in-

comprehensibility. Further, the

unrestricted expressiveness

of general-purpose program-

ming languages often leads to

undisciplined (but execut-

able) specifications.

A common technique used

extensively is to limit metamodel-

ing to specify the abstract syntax.

(The modeling language used for

metamodeling is frequently UML class diagrams and

Object Constraint Language or some other variations

of the metamodeling languages;15,16 for an overview,

see Emerson et al.17) This approach represented a

major advance and opened the possibility for develop-

ing metaprogrammable tool suites for model-based de-

sign, such as the Model-Integrated Computing (MIC;

http://www.escherinstitute.org/Plone/tools/suites/mic)

tool suite or the Eclipse modeling framework.13

For example, MetaGME (GME stands for generic

metamodeling environment) is the metamodeling

language for the generic modeling environment of

the MIC tool suite.18 MetaGME is a graphical lan-

guage, and its concrete syntax derives from UML

class diagrams augmented with UML class stereo-

types. Figure 1 shows the metamodel and one of its

possible instances for a simple dataflow language.

According to the metamodel, a synchronous dataflow

(SDF) can be modeled as a set of Actors with Input-

Ports and OutputPorts that are connected by Signals.

The class stereotypes in the metamodel tell the

GME modeling tool how to visualize the classes

(for example, the Signal class is represented as a

graphical connection between ports.) Only Ports

can be connected by Signals. A well-formed instance

of this metamodel shows the model of an image filter.

Although the metamodel and its relationship to

the model is intuitively clear, this technique has two

obvious problems:

� Well-formedness constraints captured in the meta-

models limit the acceptable structure of the mod-

els in a domain. To precisely understand the

meaning of metamodels, we must develop a math-

ematical model for the domains. This mathemati-

cal model provides structural semantics for the

metamodeling languages.

� The model structures provide no help in under-

standing the models’ behavior. We must develop

a method to define the precise behavioral seman-

tics for the modeling languages.

Full development of DSML structural and behavioral

semantics is beyond the scope of this article. For

more information, see Jackson and Sztipanovits.19,20

Signal
« Connection »

InputPort
« Atom »

OutputPort
« Atom »

Port
« Atom »

Actor « Model »
SDF

« Folder »

sro

0..*

0..*
0..*

0..*

dst

Instance of

Model

ROI
ROI extraction

IFFTMultiplySpectral filter

FFT
Image

Metamodel

File:
Memory:
WCET:
Script:

field
field
field
field

OutInp

Out OutOut
Inp
Inp Inp

ROICor

Figure 1. MetaGME metamodel and model instance for simple dataflow. (FFT: fast

Fourier transform; IFFT: inverse FFT; ROI: region of interest.)

57May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Metamodeling application: IP reuse
IP reuse requires that a library of IP blocks be avail-

able to the designer, along with a suitable CAD environ-

ment that lets the designer compose these IP

components in a well-defined manner. Structural and

behavioral constraints must be imposed on the way

such composition can be carried out for the composed

system to be correctly constructed. Metamodeling

helps in designing such a constrained environment;

meta-information on IP components helps in checking

that the constraints are met; and metaprogrammable

APIs allow for adding various model analysis and trans-

formation tools to the environment for further process-

ing, test generation, and verification.

Design reuse is the inclusion of previously

designed components (design IP blocks) in the devel-

opment or modeling of new software and hardware.

Verification reuse is the ability to reuse existing verifi-

cation models to verify a design at various abstraction

levels (for example, microarchitecture level, RTL, and

so on) by creating verification IP blocks at all these

levels from a verification model at the highest abstrac-

tion level (such as the instruction set architecture

[ISA] level).21 Such reuse is best facilitated by

model transformation techniques available with

metamodeling. This kind of reuse allows coherence

between the verification models at the various levels,

and greater productivity by reducing the need to

manually create verification IP for the design at

each abstraction level.

IP reuse for SoC integration
For illustration, assume the availability of a library

of Cþþ-based (such as SystemC) IP blocks contain-

ing implementations of various standard blocks

needed to create a system-level model (SLM) for a tar-

get SoC. The problem designers face is how to create

an SLM of a new SoC by combining the IP blocks

selected from the given library. Three possibilities

while solving this problem may arise:

� the library does not have sufficient required and

relevant IP blocks to build an SLM for the system

under design,

� there are enough IPs that can be composed by

generating the required programming glue to

build the SLM, or

� multiple possible ways exist to combine the given

IPs to create the model, which the designer must

explore to build the most suitable model.

To decide which of these possibilities is the case��
and in the event of the second or third possibility, to

automate the composition process��the designer

can use a metamodeling-driven component composi-

tion framework.22 MCF lets designers

� create a visual module-, connection-, or bus-based

template or a platform for the SoC;

� explore the SystemC IP library to automatically

instantiate the template with real implementations

based on type (structural and behavioral) match-

ing; and

� automatically generate the programming glue

logic for composing the selected IPs.

The essential issues and solutions that MCF was

created to address are as follows:

� System requirement specification: MCF provides a

metamodeling-based component composition

language that lets designers specify the system

requirements as a platform or as an abstract

template.

� IP metadata needed for reuse: The IP metadata

necessary to enable reuse includes compositional

characteristics at both the structural and the be-

havioral levels, which are mined from the IP

blocks in the IP library through automated extrac-

tion techniques.

� IP metadata representation: This meta-information

is represented using XML schemas and populated

in XML data structures to enable processing

through XML parsers.

� IP selection and composition: MCF employs type-

theoretic techniques and assertion-based verifica-

tion to select IP implementations that structurally

and behaviorally match the components in the vi-

sually defined platform. It automatically generates

the necessary interfaces and transactors to com-

pose the selected IP blocks and provide execut-

able models as the end product.

MCF framework

MCF, built on top of MetaGME, captures the syntax

and semantics of the visual composition language

into a metamodel (see Figure 2).22 The metamodel

is developed using UML and OCL. The design envi-

ronment lets a modeler visually construct plat-

forms conforming to the metamodel’s underlying

restrictions. The MCF framework also includes

Metamodeling

58 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

libraries of compiled SystemC

IP blocks, on which MCF per-

forms reflection and introspec-

tion to identify, extract, and

represent IP-specific metadata

in XML structures.21,23 It also

has an IP restrictor, which cap-

tures constraints on IP blocks,

letting the library have flexible

or generic components. MCF

provides a tool for automated se-

lection and composition based

on sound type-theoretic princi-

ples,21 through its interactions

with the IP library and the

IP restrictor. Finally, an interac-

tion console window��displayed

when the software is invoked

and which lets designers enter

commands��ties in the different

ingredients and techniques, ena-

bles design reuse and compo-

nent composition in MCF. By

instantiating the platform com-

ponents and communication

links or buses from the IP library

and by synthesizing the nec-

essary interfaces, we then de-

velop an executable model for

the SoC.22

Visual-modeling environment.

The MCF visual-modeling envi-

ronment built atop GME pro-

vides a visual language for describing component

composition models (CCMs), which are plat-

forms to be instantiated. The entities allowed in

a CCM are components and media at varying

abstraction levels such as RTL and transaction

level (TL) with hierarchical descriptions. The visual

language also enforces structural composition

rules that describe the possible interconnections

between the different entities that a modeler can

instantiate and characterize to describe the sys-

tem.21,22 In addition, MCF allows some behavioral

properties of the abstract components through the

property specification language (PSL). Finally,

the visual model and the behavioral properties

are converted into an internal XML representation

(XML-IR).

IP library. An MCF IP library is a collection of com-

piled SystemC IP cores. Given a library from which

to perform IP selection, composition, and validation,

MCF reflects composition-related metadata and creates

an introspective architecture (that is, an architecture

that lets the system query its own state and topology).

The IP reflector extracts two kinds of metadata; one

related to SystemC components and the other related

to SystemC channels. The metadata on an RTL compo-

nent contains the information (data types and bit

widths) on I/O ports and clock ports. For a TL compo-

nent or channel, the metadata contains information

(function signatures that include function arguments

and return types) on interface ports, clock ports, and

interface access methods. An IP block’s hierarchical

structure is also extracted as a part of the metadata.

SystemC
IP blocks

KaScPar
parser

XMLized
SystemC IP

blocks

Introspective
architecture

Constraint
database

Constraint
manager

IP reflection

IP restriction

Visual modeling environment

Configuration
generator

Netlist generator

Executable generator

Interaction shell

Simulation models

IP selector

IP selection

Match results

CC model

Ty
p

e
vi

ol
at

io
ns

S
ys

te
m

-le
ve

l
vi

ol
at

io
ns

Fa
il

R
ef

le
ct

io
n

XML-IR

CCL

Consistency
checker

Type
checker

GME

Type
propagation

engine

Checkers

PSL

CC properties

Checker
synthesis

SCV

Pass

Figure 2. Metamodeling-driven component composition framework (MCF) design

flow diagram.

59May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

For details on the composition-related metadata ex-

traction from SystemC, see Mathaikutty and Shukla.21

The extracted information populates an XML data

structure, which is part of the library. The library has

appropriate APIs that allow introspection of the data

structure. The main variants of the compositional

metadata are as follows:

� RTL components,

� TL components and channels,

� TL interfaces,

� polymorphic components and channels,

� annotations such as pragmas or comments,

� type declaration and indirection from typedef

and other similar constructs, and

� type restrictions necessary to constrain generic

IP blocks.

A toolset can automatically extract this metadata

from a SystemC IP block through metadata mining

and uniform population of a data structure. The

data structure can be queried through a set of APIs

by MCF’s other ingredients. In addition, user-specified

behavioral metadata is provided as PSL properties

capturing various temporal relationships between

the signals at the component’s I/O ports.

IP selector. The MCF’s primary task is to select an

appropriate IP block from the library that can be

plugged into the platform to create possible execut-

able models, allowing for rapid exploration of design

alternatives. The IP selection problem in MCF and

proposed techniques that perform automated ab-

straction and design visualization-based matching

from an abstract architectural template of the system

are available elsewhere.21,22 The IP selector has vari-

ous selection schemes:

1. For quick selections, the IP selector searches on

the basis of nomenclature (version number, IP,

and library name and distributor).

2. For RTL components, the selector searches on the

basis of port-level structural type (data types).

3. For TL components and channels, the selector

searches on the basis of interface-level structural

type (function signatures and interface port

specifics).

4. The selector can search on the basis of IP visual-

ization: black-box, flattened, or hierarchical.

5. The selector can do a search using a mix of the

first three schemes, in addition to opacity in the

block-box visualization scheme, to obtain nine dif-

ferent selection schemes.

6. An exhaustive search can be made on the afore-

mentioned nine selection schemes to obtain the

ideal match.

The selection schemes exploit the composition-

related metadata provided by the reflective-

introspective capability of the IP library. Behavioral-

type theory and type-matching algorithms as Talpin

et al. have described could also be implemented,24

but instead MCF does postcomposition behavioral

conformity checking between composed compo-

nents through automated test generation.21

Interaction console. The console defines the possi-

ble interactions of a modeler and a library engineer

with MCF as well as outlines the task flow,21 which

can be divided into three stages: initialization, selec-

tion, and executable generation. During the initiali-

zation stage, the modeler creates the architectural

template or the platform of the SoC, and the library

engineer provides the necessary SystemC IP libraries.

In the selection stage, the system automatically

selects SystemC IP implementations that match virtual

components in the template on the basis of sound

structural type-theoretic techniques as well as

assertion-based verification of behavioral proper-

ties.22 As mentioned, the behavioral types are

encoded as PSL properties of the components’ inter-

face signals. Automated test generation, followed by

running a series of tests, checks for behavioral confor-

mity. In the final, executable generation stage, the

MCF software generates possible executable specifi-

cations of the target SoC by integrating the selected

IP blocks and by implementing the necessary pro-

gramming glue.

Note that although this component composition

framework is created based on MetaGME and corre-

sponding concepts of DSML-based metamodeling,

we could take a different approach in creating a CCF

with behavioral IP blocks using a semantics metamod-

eling approach. Although the relative pros and cons of

the two approaches are beyond the scope of this arti-

cle, such a comparative analysis will eventually be

required as metamodeling finds wider use in creating

tools for productivity gain through IP reuse.

Verification reuse: validation environment

A microprocess design flow starts, of necessity, with

building models at a high abstraction level��namely,

Metamodeling

60 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

the ISA model. Subsequently, microarchitectural mod-

els, RTL models, and finally gate-level models are cre-

ated through either manual transformations (from

one level to the next) or automated synthesis tech-

niques. Verification at each abstraction level requires

modeling verification IP blocks at the appropriate lev-

els. These verification IP blocks come in the form of

simulators, test generators, coverage metrics, and

test plans: collectively, they are verification collaterals.

A possible reuse strategy is to use the models created

for the various processor abstractions to derive differ-

ent verification collaterals. A model reused to system-

atically derive the various verification tools and

targets is a generative verification IP. The idea behind

verification IP reuse is to model once and reuse

many times. The alternative would be to derive the

verification collaterals individually, which is tedious,

error-prone, and labor-intensive.

Researchers extended the MCF metamodeling con-

cept to create a microprocessor validation environment

that provides a modeling framework and enables gener-

ative validation IP reuse and is related to Intel’s micro-

processor verification environment (see Figure 3).25

Metamodeling-based verification (MMV) can model

verification models at various abstraction levels

(system, architectural, and microarchitectural levels).

MMV provides a unified language to model verification

IP blocks at all abstraction levels, and verification collat-

erals such as testbenches, simulators, and coverage

monitors that can be generated from these models, there-

by enhancing verification reuse. The metamodeling-

driven modeling framework first provides the syntax

and semantics needed to uniformly capture a processor’s

various modeling abstractions. Metamodeling enforces

the rules that restrict the models at various abstraction

levels. Metamodeling also provides a way to express

rules that enforce well-defined model construction in

each abstraction level and consistency across abstrac-

tions. A visual editor on top of MetaGME facilitates pro-

cessor modeling and enforces the modeling rules

through checkers during design. MMV’s generative vali-

dation IP reuse capability allows processor models to

be translated into executables and other verification

collaterals.21,25

Semantics metamodels
Semantics metamodels, which are generalizations

of models of computation, provide an alternative

view of metamodeling and its use in system

design.26,27

MoCs and semantics metamodels

To use formal models for ensuring safe and cor-

rect designs, the designer must understand the in-

teraction between diverse formal models. There is

a broad range of potential design formalizations,

but most tools and designers describe a design’s be-

havior as a relation between a set of inputs and a

set of outputs. This relation may be informal, even

expressed in natural language. The notion of

MoCs was introduced to denote at one time the

mathematical properties of a representation and

its operational aspects (see Savage, for example28).

Unfortunately, there does not seem to be a unique,

precise mathematical definition of the concept, but

the intuitive notion presented here has been rather

uniformly used in the literature.

Recall that a language is a set of symbols, rules for

combining them (its syntax), and rules for interpret-

ing combinations of symbols (its semantics). Two

approaches to semantics have evolved: operational

and denotational. Operational semantics, which date

back to Turing machines, give the meaning of a lan-

guage in terms of actions taken by some abstract ma-

chine, and are typically closer to the implementation.

Denotational semantics, first developed by Scott and

Metamodeler

GME

MMV

Visual editor

Models

m0 m1 m2

Microprocessor
metamodel (MMM)

Model database

Code generator

XML-IR

Microprocessor modeling
language (MML)

Validation
targets

Modeler

XME

XML parser

Figure 3. Microprocessor validation environment.

61May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Strachey,29 give the meaning of the language in terms

of relations. How the abstract machine in an opera-

tional semantics can behave is a feature of what we

call the MoC underlying the language. The kinds of

relations possible in denotational semantics is also

a feature of the MoC. Other features include commu-

nication style, how individual behavior is aggregated

to make more complex compositions, and how hier-

archy abstracts such compositions.

Many MoCs have been defined, resulting from the

immaturity of the field and also from fundamental dif-

ferences: the best model to use is a function of the de-

sign. Examples of MoCs include finite-state machines

(FSMs), static dataflow (SDF), Kahn process networks

(KPNs), synchronous reactive (SR), discrete event

(DE), and continuous time (CT).26 SDF is a natural

MoC to capture streaming and multimedia applica-

tions, CT is useful for capturing physical phenomena,

and many safety-critical applications are expressed

with SR semantics.

A natural ordering of MoCs is inferred by the rela-

tion of behavior containment. Figure 4a shows the

containment relationships of some of the most well-

known MoCs. For example, a KPN contains all the

behaviors of an SDF model, hence, it is more general.

The SDF model is more restrictive, but more powerful

properties such as schedulability can be inferred

through theoretical analysis, while in the case of

KPN, many properties are difficult to verify and

might require extensive computation.

For example, consider the property of determinate

behavior��that is, the fact that a system’s output

depends only on its inputs and not on some internal,

hidden choice. Any design described by a dataflow

network is determinate, and so this property need

not be checked. If the design is represented by a

Metamodeling

(a) (b)

Discrete
events

Hybrid systems

Synchronous/
reactive

Kahn process
networks

Continuous
time

A concrete semantics
(model of computation)

A finer abstract semantics

An abstract semantics

Stateful firing semantics

Firing semantics

Process networks semantics

Tagged signal semantics
Tagged signal semantics

Process networks semantics

Continuous
time

Hybrid systems

Synchronous/
reactive

Discrete
events

Kahn process
networks

(c) (d)

Firing semantics

Stateful firing semantics

Figure 4. Abstract semantics and model of computation (MoC): containment relationships among MoCs (a), abstract

and concrete semantics (b), some abstract semantics and their relationship (c), and abstract semantics and its

relationship with standard MoCs (d). (These diagrams are renditions of slides presented by Edward Lee.30)

62 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

network of FSMs, we can assess determinacy by

inspecting the state transition function. In both

cases, the use of a particular MoC to capture a design

helps in assessing properties without running expen-

sive tests. There is indeed a trade-off between expres-

sivity (generality) and the formal properties that can

be associated with a model. In general, the more

restricted the model, the more can be said about its

mathematical properties.

In many situations, using a unique general model

of computation for the entire design is equivalent to

giving up any possibility of property checking without

resorting to extensive simulation. On the other hand,

if we use the most restrictive model in terms of behav-

ior for every part of the design, we can leverage the

model’s richness but we must determine a different

way to assess the design’s overall properties. Indeed,

the heterogeneous nature of most embedded systems

makes multiple MoCs a necessity. In addition, during

the design process, the abstraction level, detail, and

specificity in different parts of the design vary. The

skill sets and design styles that different engineers

use on the project are likely to differ. The net result

is that, during the design process, many different

specification and modeling techniques will be used.

The challenge is how to combine heterogeneous

MoCs and determine what the composition’s behavior

is. Unfortunately, the semantics of each MoC are in-

compatible. Hence, it is not even clear what composi-

tion means unless this meaning is explicitly specified.

A way to solve this problem is to embed the detailed

models into a framework that can understand the

models being composed. A theoretical approach to

this view, which is well beyond the scope of this arti-

cle, can be found in the work of Burch et al.,31 who

used an abstract algebra approach to define the inter-

actions among incompatible models.

In some sense, we are looking at an abstraction of

the MoC concept that can be refined into any of the

MoCs of interest. We call this abstraction abstract se-

mantics, first introduced by Lee et al.32 In Figure 4b,

a Venn diagram expresses the abstraction relation be-

tween a class of abstract semantics and a particular

MoC characterized by a concrete semantics. The in-

spiration on how to define the abstract semantics

comes from the consideration that MoCs are built

by combining three largely orthogonal aspects: se-

quential behavior, concurrency, and communication.

Similar to the way that a MoC abstracts a class of

behavior, abstract semantics abstract the semantics

of various MoCs. There are many ways of abstracting

MoCs, as Figure 4c indicates. Each set of abstract

semantics represents a model that is then called a

semantics metamodel.

In previous work, a very general semantics meta-

model has been defined: the tagged signal model

(TSM), also called the Lee�Sangiovanni-Vincentelli

(LSV) model.27 Its semantics is denotational, because

it was introduced to compare the MoCs that have

been in use and to possibly derive new ones.

In TSM, the basic entity is an event 2 T � V, where

T is a set of values and V is a set of tags. Tags could be

used to establish ordering relations, such as time. A

signal s is a set of events, whereas a functional signal

is a function from T to V. A process with n signals is a

set of possible behaviors, where each behavior 2 Sn,

and S is the set of all signals. When composing pro-

cesses, their shared signals are intersected to derive

the overall process. The model is extremely simple

yet powerful enough to express concrete MoCs. Intui-

tively, a TSM consists of processes that run concur-

rently; the constraints imposed on their shared

signals’ tags define communication among them.

Tags can represent a broad range of annotated rela-

tions, such as total orders in timed systems, partial

orders in untimed systems or nonorder bearing cost

information.

We used the concepts of abstract semantics and re-

lated abstract metamodels to design two general

frameworks for system-level design: the Metropolis de-

sign environment and Ptolemy II.8,9 Because the TSM

is a denotational metamodel, we needed to derive op-

erational versions of it based on the TSM but with

somewhat finer abstract semantics. Called process net-

works metamodel, the TSM ‘‘contains’’ the semantics,

as Figure 4b shows, in the sense that all models con-

forming to the process networks’ abstract semantics

also conform to the TSM’s abstract semantics.

Other design environment modeling approaches

can be referred to still finer abstract metamodels, as

Figure 4b indicates. The name we gave to these ab-

stract metamodels reflects the basic mechanism

implemented: in the firing abstract semantics, the

dataflow firing mechanism is abstracted and inserted

into the more general abstract process network meta-

model. The stateful firing abstract semantics capture

the notion of state and can be used to abstract all

state-based models of computation. Figure 4d shows

the containment relationship of the abstract seman-

tics with respect to standard MoCs.

63May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Metropolis and its metamodel

The Metropolis metamodel (MMM) implements the

process network abstract semantics and describes all

the ingredients advocated by the platform-based de-

sign (PBD) methodology, namely functionality and ar-

chitecture across MoCs and abstraction levels, and

the mapping relations between them.11,33 The precise

MMM semantics enables Metropolis to specify com-

plex systems without ambiguity, and to perform syn-

thesis and formal analysis in addition to simulation

on the systems. Metropolis and its metamodel have

been used extensively in system design, including au-

tomotive systems, ICs, and buildings��with particular

emphasis on multiple levels of abstraction and map-

ping of functionality to architecture. Examples of its

use can be found elsewhere.5,34-37

As shown in Figure 5, the MMM describes a func-

tional model or an architectural model as a set of

objects that concurrently take actions while communi-

cating with one another. Each such object is termed a

process and is associated with a sequential program

called a thread. A process communicates through

ports, where a port is specified with an interface,

declaring a set of methods that can be used by the

process through the port. In general, we can have a

set of implementations of the same interface, and

objects that implement port interfaces are media.

Any medium can be connected to a port if it

implements the port interface. Media do not have

their own threads. Computation and communication

are usually modeled separately by processes and

media. On top of them, quantity managers are intro-

duced for two purposes: performance modeling and

scheduling. They can respond to quantity annotation

requests sent by processes or media. After iterative res-

olution, quantity managers will associate the resulting

annotations (tags) with the requesting behavior to re-

flect the model performance or scheduling. Finally,

the MMM supports declarative constraints orthogonal

to the imperative models. The constraints could be

used either as properties that should be satisfied by

the imperative model, which can be verified by valida-

tion tools, or as a refinement of the imperative behav-

ior, in which case constraints and models both shape

the desired behavior.

The MMM is generic and expressive enough

to model different MoCs so that they can all be

described and manipulated in a unique framework.

To make modeling easier, it is usually wise to provide

well-designed and well-tested MoC platforms, such

that designers can simply extend the components in

the platform to create their own model with that

MoC semantics. Of course, if needed, users can al-

ways add MoCs, expressed in the MMM.

A MoC platform frequently has three major

components: computation, communication, and

Metamodeling

constraint { ltl G(beg(P0,P0.foo) <−>beg(T1,CPU.execute(50)) &&
 end(P0,P0.foo) <−>end(T1,CPU.execute(50)) &&
 beg(P0,M.write) <−>beg(T1,CPU.write) &&
 ...
 end(P1,P1.foo) <−>end(T2,CPU.execute(50)) &&
 ...
 end(C,C.foo) <−>end(T3,CPU.execute(50)) &&
 ...)}

process Task
name T1

process Task
name T2

q−manager
BusArb

 q−manager
energy

q−manager
CpuArb

q−manager
time

process X
name P1

process X
name C

process Task
name T3process X

name P0

medium S
name M

constraint{ ltl G(beg(P0, M.write) −> !beg(P1, M.write) U end(P0, M.write) &&
 beg(P1, M.write) −> !beg(P0, M.write) U end(P1, M.write)); }

medium
CPU

medium
BUS

medium
MEM

Figure 5. Functional model, architectural model, and their mapping.

64 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

coordination. Sometimes, in simple MoCs, the coordi-

nation component is absorbed by the computation

and communication components. A few interesting

MoCs have been implemented and tested as part of

the Metropolis MoC platform library, such as SDF, syn-

chronous systems, and fault-tolerant dataflow (FTDF).

When using a particular MoC, designers must import

the platform for that MoC, and inherit the computa-

tion; the communication component; and the coordi-

nation component, if any.

Computation. A model in a synchronous MoC con-

tains computing entities connected via point-to-point

single-storage channels. Based on its functionality, a

computing entity can be classified as a Moore entity

or a Mealy entity: the former generates outputs solely

on the basis of its internal states, whereas the latter

also depends on its current inputs. For Moore entities,

their outputs are not available to others until the next

computation cycle. Because the computing entities

are synchronous, they all run once per cycle. How-

ever, to make the semantics a little simpler, in this

MoC, we do not enforce any scheduling among enti-

ties even though data dependencies might exist. As a

consequence, the model is nondeterministic, and the

behavior can vary because of different execution

orders of the entities.

In a MoC platform, a computation component is

usually modeled by a process. With a synchronous

MoC, the computation is easy��reading data through

its input ports, performing computation, and writing

data to its output ports. The synchronous MoC plat-

form captures these three tasks in a process; the

read-data, compute, and write-data become three

methods in the process; and the thread of the process

keeps calling these methods in that order. When

designers model a synchronous computation compo-

nent, they will only need to inherit the process

defined in the platform, configure the number of

input and output ports, and provide the component

computation by overriding the computational method

defined in the platform. This style of process skeleton

definition and inheritance are the prototypical way

of defining and instantiating MoCs in Metropolis.

Communication. Communication plays a crucial

role in MoCs. It defines how components interact

with one another, the distinguishing aspect of differ-

ent MoCs. For instance, in KPNs, communication

uses unbounded FIFO channels with blocking read

and nonblocking write semantics, which guarantees

a deterministic execution. In the rendezvous mecha-

nism, communication blocks the sender or the re-

ceiver until both are ready to receive and send. In a

synchronous MoC, communication takes the seman-

tics of one-place FIFO processing with nonblocking

write and nonblocking read.

In the Metropolis MoC platforms, communication

is modeled with media. For the synchronous MoC, a

medium consists of a storage variable and a flag. It

also provides a read-and-write function. When the

write function is called, it saves the data into storage

and validates the flag. When the read function is

called, it checks the flag first. If the flag is valid, it

returns the stored data, then invalidates the flag; if

the flag is invalid, it returns special data. Unlike com-

putation components, in the synchronous MoC, the

communication model needs no further modifica-

tion. It can be simply instantiated and set up to con-

nect computation components.

Execution order. In Metropolis MoC platforms, a

model’s execution order can be modeled by quantity

managers. Processes or media can insert quantity an-

notation requests anywhere in their behavior descrip-

tion. Whenever quantity requests are executed,

execution sends the requests to quantity managers,

stops, and waits for quantity annotation results.

Depending on the annotation results, these quantity

managers can either suspend or resume execution.

This mechanism effectively achieves execution-order

scheduling, and significantly increases the reusability

of the scheduling algorithms by capturing them with

dedicated entities: quantity managers.

In the synchronous MoC, each computation com-

ponent consists of three operations: read inputs,

compute, and write outputs. To satisfy the synchro-

nous semantics, all components must execute the

three operations once per cycle and in that order. In

addition, if there are any Moore components, their

write-outputs operations must be held to the end of

the current cycle after all other components finish

their operations, because the outputs of Moore com-

ponents are only visible in the next cycle.

To introduce the cyclic behavior, all processes

must be synchronized after the three operations.

Therefore, it is natural to add a barrier after the

write-outputs operations. If there are any Moore com-

ponents in the system, their write-outputs operations

must be delayed until the end of the cycle. Therefore,

65May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

for Moore components, a second barrier is needed

before the write-outputs operations. The two barriers

are modeled by a quantity annotation request.

When sending the requests, additional information

such as the identity of the barrier can be passed

along. Based on the requests, the quantity manager

can decide which requesting processes should pro-

ceed and which should wait. When creating a syn-

chronous MoC model, such a quantity manager

should be instantiated and connected to all request-

ing processes, with no further modification needed.

Ptolemy II

The goal of the Ptolemy project (http://ptolemy.

berkeley.edu) is to provide a framework for heteroge-

neous modeling and execution of complex functional

systems. Ptolemy II is based on an actor-oriented para-

digm that can be interpreted as process-network

abstract semantics.9

Actors are concurrent components that communi-

cate through interfaces called ports. Actors can be

atomic or composite (containing other actors). Rela-

tions define the interconnection between these ports,

thereby also defining the communication structures

between actors. When ports are connected, channels

are established. Unlike Metropolis, where communica-

tion is performed by calling media-provided interface

methods, Ptolemy II is not allowed to incur such trans-

fers of control flow: only data is passed through ports.

Each actor can run in its own thread, or all the actors

can run sequentially in a single thread. Therefore, an-

other entity��a director��must be provided to handle

actors’ scheduling and communication.

Actors and directors can be used in Ptolemy II to

build a rich set of domains��that is, refinements of

the metamodel into a more specific metamodel.

The framework comes with predefined MoCs, includ-

ing SDF, SR, DE, CT, and PN. Actors can be defined in

a ‘‘generic’’ form to be used with a variety of directors,

which simplifies domain construction. These actors

are domain polymorphic; examples include data sour-

ces and sinks, arithmetic operators, logic operators,

and signal-processing operators.

Computation. Actors contain three executable

phases: setup, iterate, and wrap-up. Each phase can

have finer-grained subphases.

� Setup. The setup phase has pre-initialize and initi-

alize subphases. Pre-initialization usually handles

structural information, such as instantiating dy-

namically created actors, deciding port widths,

and creating receivers associated with input

ports. Initialization sets up parameters, resets

local states, and generates initial tokens. Usually,

pre-initialization is performed exactly once for

an actor at the beginning of its life cycle. Initializa-

tion is performed once after pre-initialization, but

can be run again if the semantics require

reinitialization.

� Iterate. In the iterate phase, actors perform atomic

executions. An iteration is a finite computation

that leads the actor to a quiescent state. The

MoC semantics determine how the iteration of

one actor relates to that of another. To coordinate

the iterations among actors, an iteration is further

broken down into prefire, fire, and postfire. Prefire

checks the preconditions for the actor to execute,

such as the presence of sufficient inputs to com-

plete the iteration. The fire subphase usually

does the actor’s computation, which might involve

reading inputs, processing data, and writing out-

puts. Postfire updates the actor’s persistent state.

The separate fire and postfire subphases ensure

that the current computation result would not

propagate to other actors, which is essential to

support fixed-point iteration in some MoCs, such

as SR and CT. These MoCs compute the fixed

point of actor outputs while keeping the actor

states unchanged. To reach the fixed point, multi-

ple firing of each actor can be performed before

the states are updated by postfire.

� Wrap-up. At the end of the execution, wrap-up

runs once to clean up, for example, resources

that were allocated to actors during execution.

Communication. Actors communicate with one an-

other by sending and receiving data through ports.

The communication mechanism is implemented

using receivers contained in input ports. Because of

different communication semantics, receivers might

implement FIFO queues, mailboxes, proxies for a

global queue, or rendezvous points. Receivers are

created in pre-initialization for each actor. The do-

main polymorphism of actors is partially realized

through the dynamic creation of receivers for differ-

ent domains.

Execution order. A MoC defines the communica-

tion semantics and the execution order among actors.

Metamodeling

66 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

This is realized through implicit (invisible to design-

ers) receivers and directors. A director controls the

execution order of actors in the same composite

actor. When a composite actor is fired, the director in-

side the composite actor fires the actors of the con-

tained model. For instance, in the SDF domain, the

director statically computes scheduling. During exe-

cution, the director follows the scheduling and

invokes each actor one by one. In the DE domain,

a time line is maintained. Whenever an actor gener-

ates an event, the event is sorted in the time line

according to its time stamp. The director always

removes the event with the lowest time stamp and

fires the event’s destination actor.

Metamodeling without directors. Benveniste et al.

provided an interesting extension and formalization

for Ptolemy-style metamodeling in which the con-

cepts of actors and directors were cast in a TSM

framework but with a version of KPNs, which consti-

tutes finer abstract semantics than the process-

network abstract semantics.38 In particular, although

the MoC semantics are naturally expressed in terms

of actors and directors, directors are not essential

for semantics purposes and are justified only by sim-

ulation efficiency purposes. Benveniste et al. then

claimed that, at least semantically, directors do not

play an important part in defining a MoC.38

Related approaches

Other efforts that can be related to the concept of

semantics metamodels are EWD, SystemCH, and

HetSC. EWD is a customizable multi-MoC modeling

environment based on the GME methodology.39

EWD defines three phases in its flow: model construc-

tion, parsing, and code generation. For a MoC do-

main, a visual modeling language can be designed

using GME. Applications can then be created in the

model construction phase. The parsing phase produ-

ces an XML representation for the application, and

code generation can translate it into models in lan-

guages such as SML, Haskell, or SMV for various anal-

ysis purposes.

SystemCH and HetSC are based on SystemC��a

set of libraries written in Cþþ. SystemC provides

modeling capabilities for time, concurrency, and syn-

chronization. As a system design language, it has

gained momentum in recent years. However, it is lim-

ited with its discrete event semantics. SystemCH40

and HetSC (http://www.teisa.unican.es/HetSC) have

extended SystemC by adding the support of other

MoCs, but their approaches are completely different.

SystemCH directly modifies the SystemC kernel

(a part of the library) by adding more modeling con-

structs for different MoCs. At the same time, it also

integrates MoC-specific tools into the kernel, such as

the scheduling tool for SDF. On the other hand,

HetSC does not change the library but extends it for

other MoCs. In addition, HetSC also provides con-

verter channels among different MoCs. Therefore,

from a modeling perspective, HetSC is closer to Me-

tropolis than SystemCH. However, because the

Metropolis metamodel defines more rigorous seman-

tics than SystemC, the analysis and realization of

MMM is much easier.

METAMODELING IS BECOMING an important foundation

of next-generation design methodology and tools for

system-level design. For this reason, it is important

to point to relevant past and present research. We

have no doubts that metamodeling will find its way

into industrial-strength design tools as system-level de-

sign becomes increasingly complex, encompassing

multiple-semantics domains. In this respect, meta-

modeling will be a key concept in the development

of design methods for next-generation embedded

systems in which the physical is codesigned with

digitally controlled, cyber-physical systems. �

Acknowledgments
We gratefully acknowledge the many influential

discussions with colleagues and students��in particu-

lar, Edward Lee, who inspired the discussion about

abstract semantics and metamodels; and Albert Ben-

veniste, Ethan Jackson, Roberto Passerone, Yosinori

Watanabe, Luciano Lavagno, and Felice Balarin.

This research has been supported by the Marco

Focus Center Research Program (FCRP) Gigascale

Systems Research Center (GSRC), the ArtistDesign

network of excellence, a Semiconductor Research

Corp. Integrated Systems Task, Air Force Office of Sci-

entific Research (AFOSR), and the Component-Based

Embedded Systems Design Techniques (Combest)

STREP (a European funding program).

�References
1. G. Nicolescu, Model-Based Design for Embedded

Systems, CRC Press, 2009 (to appear).

2. J.B. Dabney and T.L. Harman, Mastering Simulink,

Prentice Hall, 2004.

67May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

3. G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling

Language User Guide, 2nd ed., Addison-Wesley, 2005.

4. K. Keutzer et al., ‘‘System Level Design: Orthogonoliza-

tion of Concerns and Platform-Based Design,’’ IEEE

Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 19, no. 12, 2000, pp. 1523-1543.

5. A. Sangiovanni-Vincentelli, ‘‘Quo Vadis, SLD? Reasoning

about the Trends and Challenges of System Level

Design,’’ Proc. IEEE, vol. 95, no. 3, 2007, pp. 467-506.

6. W. Premerlani et al., Object-Oriented Modeling and

Design, Prentice Hall, 2005.

7. D. Jackson, ‘‘Alloy: A Lightweight Object Modelling

Notation,’’ ACM Trans. Software Engineering and

Methodology, vol. 11, no. 2, 2002, pp. 256-290.

8. F. Balarin et al., ‘‘Metropolis: A Design Environment for

Heterogeneous Systems,’’ Multiprocessor Systems-on-

Chips, W. Wolf and A. Jerraya, eds., Morgan Kaufmann,

2004.

9. C. Brooks et al., eds., Heterogeneous Concurrent

Modeling and Design in Java (Volume 1: Introduction

to Ptolemy II), tech. report UCB/ERL M05/21, Univ. of

California, Berkeley, 2005.

10. M. Emerson, S. Neema, and S. Sztipanovits, ‘‘Metamod-

eling Languages and Metaprogrammable Tools,’’ 2007;

http://www.isis.vanderbilt.edu/node/3978.

11. F. Balarin et al., ‘‘Metropolis: An Integrated Electronic

System Design Environment,’’ Computer, vol. 36, no. 4,

2003, pp. 45-52.

12. M. Imber, ‘‘The CASE Data Interchange Format (CDIF)

Standards,’’ Software Engineering Environments, F. Long

ed., Ellis Horwood Series in Information Technology, Ellis

Horwood, 1991, pp. 457-474.

13. M. Emerson, S. Neema, and J. Sztipanovits, ‘‘Metamod-

eling Languages and Metaprogrammable Tools,’’ Hand-

book of Real-Time and Embedded Systems, I. Lee,

J. Leung, and S.H. Son, eds., CRC Press, 2006.

14. See D. Harel and B. Rumpe, ‘‘Modeling Languages: Syn-

tax, Semantics and All That Stuff,’’ tech. report MCS00-

16, Weizmann Inst. Science, 2000. This article was later

popularized by the authors in D. Harel and B. Rumpe,

‘‘Meaningful Modeling: What’s the Semantics of

‘Semantics’?’’ Computer, vol. 37, no. 10, 2004, pp. 64-72.

15. Unified Modeling Language: Superstructure v2.0, 3rd

revised submission to OMG RFP, tech. report, Object

Management Group, 2003.

16. Object Constraint Language v2.0, tech. report, Object

Management Group, 2006.

17. M. Emerson, J. Sztipanovits, and T. Bapty, ‘‘A MOF-

Based Metamodeling Environment,’’ J. Universal Com-

puter Science, vol. 10, no. 10, 2004, pp. 1357-1382.

18. G. Karsai et al., ‘‘The Model-Integrated Computing Tool-

suite: Metaprogrammable Tools for Embedded Control

System Design,’’ Proc. IEEE Joint Conf. CCA, ISIC, and

CACSD, IEEE Press, 2006, pp. 50-55.

19. E.K. Jackson and J. Sztipanovits, ‘‘Towards a Formal

Foundation for Domain Specific Modeling Languages,’’

Proc. 6th ACM Int’l Conf. Embedded Software (EMSOFT

06), ACM Press, 2006, pp. 53-62.

20. E. Jackson and J. Sztipanovits, ‘‘Formalizing the

Structural Semantics of Domain-Specific Modeling

Languages,’’ J. Software and Systems Modeling, 2009

(to appear).

21. D.A. Mathaikutty and S.K. Shukla, Metamodeling Driven

IP Reuse for System-on-a-Chip Integration and Verifica-

tion, Artech House, 2009.

22. D.A. Mathaikutty and S.K. Shukla, ‘‘MCF: A Metamodeling-

Based Visual Component Composition Framework,’’ IEEE

Trans. Very Large Scale Integration (VLSI) Systems,

vol. 16, no. 7, 2008, pp. 792-805.

23. D.A. Mathaikutty and S.K. Shukla, ‘‘Mining Metadata for

Composability of IPs from SystemC IP Library,’’ Design

Automation for Embedded Systems, vol. 12, no. 1, 2008,

pp. 63-94.

24. J.P. Talpin et al., ‘‘A Behavioral Type Inference System

for Compositional System-on-Chip Design,’’ Proc. Appli-

cations of Concurrency in System Design (ACSD 04),

IEEE CS Press, 2004, pp. 47-56.

25. D.A. Mathaikutty et al., ‘‘MMV: A Metamodeling-Based

Microprocessor Validation Environment,’’ IEEE Trans.

Very Large Scale Integration (VLSI) Systems, vol. 16,

no. 4, 2008, pp. 339-352.

26. S. Edwards et al., ‘‘Design of Embedded Systems:

Formal Models, Validation, and Synthesis,’’ Proc. IEEE,

vol. 85, no. 3, 1997, pp. 366-390.

27. E. Lee and A. Sangiovanni-Vincentelli, ‘‘A Framework

for Comparing Models of Computation,’’ IEEE Trans.

Computer-Aided Design of Integrated Circuits and

Systems, vol. 17, no. 12, 1998, pp. 1217-1229.

28. J.E. Savage, Models of Computation: Exploring the

Power of Computing, Addison-Wesley, 1998.

29. J.E. Stoy, In Denotational Semantics: The Scott-Strachey

Approach to Programming Language Theory, MIT

Press, 1977.

30. E.A. Lee, ‘‘Concurrent Models of Computation for

Embedded Software,’’ tech. memo UCB ERL M05/2,

Univ. of California, Berkeley, 4 Jan. 2005; http://ptolemy.

eecs.berkeley.edu/papers/05/Lee_Lectures/, pp. 317-325.

31. J.R. Burch, R. Passerone, and A.L. Sangiovanni-

Vincentelli, ‘‘Refinement Preserving Approximations for

the Design and Verification of Heterogeneous Systems,’’

Metamodeling

68 IEEE Design & Test of Computers

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Formal Methods in System Design, vol. 31, no. 1, Aug.

2007, pp. 1-33.

32. E.A. Lee et al., ‘‘Actor-Oriented Design of Embedded

Hardware and Software Systems,’’ J. Circuits, Systems,

and Computers, vol. 12, no. 3, 2003, pp. 231-260.

33. Metropolis Design Team, ‘‘The Metropolis Meta Model

v0.4,’’ tech. memo UCB/ERL M04/38, Univ. of California,

Berkeley, 14 Sept. 2004.

34. A. Bonivento, L.P. Carloni, and A.L. Sangiovanni-

Vincentelli, ‘‘Platform-Based Design of Wireless Sensor

Networks for Industrial Applications,’’ Proc. Design, Auto-

mation and Test in Europe Conf. (DATE 06), IEEE CS

Press, 2006, pp. 1103-1107.

35. S. Kanajan et al., ‘‘Exploring Trade-off’s between Central-

ized versus Decentralized Automotive Architectures

Using A Virtual Integration Environment,’’ Proc. Design,

Automation and Test in Europe Conf. (DATE 06), IEEE

CS Press, 2006, pp. 548-553.

36. D. Densmore, A. Donlin, and A. Sangiovanni-Vincentelli,

‘‘FPGA Architecture Characterization for System Level

Performance Analysis,’’ Proc. Design, Automation and

Test in Europe Conf. (DATE 06), IEEE CS Press, 2006,

pp. 1-6.

37. A. Pinto et al., ‘‘Synthesis of Embedded Networks for

Building Automation and Control,’’ Proc. Am. Control

Conf. (ACC 08), IEEE Press, 2008, pp. 920-925.

38. A. Benveniste et al., ‘‘Actors without Directors: A Kahnian

View of Heterogeneous Systems,’’ Proc. Hybrid Systems:

Computation and Control (HSCC 09), LNCS 5469,

Springer, 2009, pp. 46-60.

39. D.A. Mathaikutty et al., ‘‘EWD: A Metamodeling Driven

Customizable Multi-MoC System Modeling Environment,’’

Proc. ACM Trans. Design Automation of Electronic

Systems, vol. 12, Dec. 2007, article 33.

40. H.D. Patel and S.K. Shukla, SystemC Kernel Extensions

for Heterogeneous System Modeling: A Framework for

Multi-MoC Modeling, Springer, 2004.

Alberto Sangiovanni-Vincentelli holds the

Buttner Chair of Electrical Engineering and Computer

Science at the University of California, Berkeley. His re-

search interests include system-level design, embedded

and hybrid systems, and EDA. He has a Dr Eng in elec-

trical engineering and computer sciences from Politec-

nico di Milano. He is a Fellow of the IEEE, and is a

member of the National Academy of Engineering and

the ACM.

Sandeep Kumar Shukla is an associate professor

in the Bradley Department of Electrical and Computer

Engineering at Virginia Polytechnic and State Univer-

sity. He is the founder and director of the FERMAT

lab, and cofounder and deputy director of the Center

for Embedded Systems for Critical Applications

(CESCA). He has a PhD in computer science from

the State University of New York at Albany. He is a

senior member of the IEEE and ACM.

Janos Sztipanovits is the E. Bronson Ingram Dis-

tinguished Professor of Engineering at Vanderbilt Uni-

versity and founding director of the Institute for

Software Integrated Systems (ISIS) there. He has a

PhD in electrical engineering from the Technical Uni-

versity of Budapest. He is a Fellow of the IEEE.

Guang Yang is a staff software research and develop-

ment engineer in the National Instruments Berkeley, Cal-

ifornia, office. He has a PhD in electronics engineering

and computer sciences from the University of California,

Berkeley. He is a member of the IEEE.

Deepak A. Mathaikutty is a researcher at the

Microarchitecture Research Lab at Intel. He has a

PhD in computer engineering from Virginia Polytechnic

and State University. He is a member of the IEEE.

�Direct questions and comments about this article to

Sandeep K. Shukla, 302 Whittemore Hall, Virginia

Tech, Blacksburg, VA 24061; shukla@vt.edu.

For further information on this or any other computing

topic, please visit our Digital Library at http://www.

computer.org/csdl.

69May/June 2009

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 3, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

