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ABSTRACT

The use of statistical techniques to build approximations of expensive computer analysis codes

pervades much of today's engineering design. These statistical approximations, or metamodels,

are used to replace the actual expensive computer analyses, facilitating multidisciplinary,

multiobjective optimization and concept exploration. In this paper we review several of these

techniques including design of experiments, response surface methodology, Taguchi methods,

neural networks, inductive learning, and kriging. We survey their existing application in

engineering design and then address the dangers of applying traditional statistical techniques to

approximate deterministic computer analysis codes. We conclude with recommendations for the

appropriate use of statistical approximation techniques in given situations and how common pitfalls

can be avoided.

1 INTRODUCTION

Much of today's engineering analysis consists of running complex computer codes: supplying

a vector of design variables (inputs) x and computing a vector of responses (outputs) y. Despite

steady advances in computing power, the expense of running many analysis codes remains non-

trivial; single evaluations of aerodynamic or finite-element analyses can take minutes to hours, if

not longer. Moreover, this mode of query-and-response often leads to a trial and error approach to

design whereby a designer may never uncover the functional relationship between x and y and

therefore never identify the "best" settings for input values.
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Statistical techniques are widely used in engineering design to address these concerns. The

basic approach is to construct approximations of the analysis codes that are more efficient to run

and yield insight into the functional relationship between x and y. If the true nature of a computer

analysis code is

y = f(x),

then a "model of the model" or metamodel [62] of the analysis code is

= g(x), and so y = _ +

where E represents both the error of approximation and measurement (random) errors. The most

common metamodeling approach is to apply the design of experiments (DOE) to identify an

efficient set of computer runs (xl, x2, ..., xo) and then use regression analysis to create a

polynomial approximation of the computer analysis code. These approximations then can replace

the existing analysis code while providing:

• a better understanding of the relationship between x and y,

° easier integration of domain dependent computer codes, and

• fast analysis tools for optimization and exploration of the design space by using

approximations in lieu of the computationally expensive analysis codes themselves.

We have found that many applications (including our own) using these methods for computer-

based design are statistically questionable because many analysis codes are deterministic in which

the error of approximation is not due to random effects. This calls into question the subsequent

statistical analyses of model significance. Consequently, we seek to highlight potential statistical

pitthlls in metamodeling and provide general recommendations for the proper use of metamodeling

techniques in computer-based engineering design. In Section 2 we present a review of

metamodeling techniques including regression, neural networks, inductive learning, and kriging.

We conclude Section 2 with an introduction to the general statistical approaches of response

surface methodology and Taguchi's robust design. In Section 3 we describe the engineering

design context for statistical applications, review existing applications and methods and conclude
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with a closer look at deterministic applications of metamodeling. In Section 4 we present some

recommendations for avoiding pitfalls in using metamodeling, and in Section 5 we conclude by

discussing some more advanced issues that contribute to making metamodeling an active and

interesting research area.

2 REVIEW OF METAMODELING TECHNIQUES

Metamodeling involves (a) choosing an experimental design for generating data, (b) choosing a

model to represent the data, and then (c) fitting the model to the observed data. There are several

options for each of these steps as shown in Figure 1, and we have attempted to highlight a few of

the more prevalent ones. For example, building a neural network involves fitting a network of

neurons by means of backpropagation to data which is typically hand selected while Response

Surface Methodology usually employs central composite designs, second order polynomials and

least squares regression analysis.
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Figure 1. Techniques for Metamodeling
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In the remainder of this section we provide a brief overview of several of the options listed in

Figure 1. In Section 2.1 the focus is on experimental designs, particularly (fractional) factorial

designs, central composite designs and orthogonal arrays. In Section 2.2 we discuss model choice

and model fitting, focusing on response surfaces, neural networks, inductive learning and kriging.

We conclude with an overview of two of the more common metamodeling techniques, namely,

response surface methodology and Taguchi's robust design.

2.1 Experimental Design

Properly designed experiments are essential for effective computer utilization. In engineering,

traditionally a single parameter is varied (perturbed) and the effects are observed. Alternatively,

combinations of factor settings are assigned either systematically (e.g., grid search) or randomly to

provide an alternative for comparison. Experimental design techniques which were developed for

physical experiments are being applied to the design of computer experiments to increase the

efficiency of these analyses. In this section an overview of different types of experiment designs is

provided along with measures of merit for selecting/comparing different experimental designs.

2.1.1 A Survey of Experimental Desiqns. An experimental design represents a sequence of

experiments to be performed, expressed in terms of factors (design variables) set at specified levels

(predefined values). An experimental design is represented by a matrix X where the rows denote

experiment runs, and the colunms denote particular factor settings.

Factorial Designs: The most basic experimental design is a full factorial design. The number of

design points dictated by a lull factorial design is the product of the number of levels for each

factor. The most common are 2 k (for evaluating main effects and interactions) and 3 k designs (for

evaluating main and quadratic effects and interactions) for k factors at 2 and 3 levels, respectively.

A 23 full factorial design is shown in Figure 2(a).

The size of a full factorial experiment increases exponentially with the number of factors; this

leads to an unmanageable number of experiments. Fractional factorial designs are used when

experiments are costly and many factors are required. A fractional factorial design is a fraction of a
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full factorial design; the most common are 2 (k-p) designs in which the fraction is 1/2 (p). A half

fraction of the 2 3 full factorial design is shown in Figure 2(b). The reduction of the number of

design points in a fractional factorial design is not without a price. The 2 3 full factorial design

shown in Figure 2(a) allows estimation of all main effects (x 1, x 2, x3), all two factor interactions

(x ix 2, x_x 3 and X2X3) , as well as the three factor interaction (x_ X2X3). For the 23-1 fractional factorial

indicated by the solid dots in Figure 2(b), the main effects are aliased (or biased) with the two

factor interactions. Aliased effects cannot be estimated independently unless they are known (or

assumed) not to exist.

X2 X2

X1 X1

. . ×,,_";,
X3

X2

(a) 23Full Factorial (b) 291 Fractional Factorial (c) Composite Design

Figure 2. Basic Three-Factor Designs

Often 2 k and 2 !k-p) designs are used to identify or screen for important factors. When there are

many factors, the 5parsity of effects principle [87] can be invoked whereby the system is assumed

to be dominated by main effects and low order interactions. Thus, two level tractional factorial

designs are used to "screen" factors to identify those with the greatest effects. The sparsity of

effects principle is not always valid, however; Hunter [59] notes that every design provides aliased

estimates: quadratic and cubic effects, if present, bias the estimates of the mean and main effects

when a two level fractional factorial design is used.

One specific family of fractional factorial designs frequently used for screening are two level

Plackett-Burman (PB) designs [103]. These are used to study k=n-1 factors in n=4m design

points. PB designs in which n is a power of two are called geometric designs and are identical to

2 (kp) fractional factorials. If n is strictly a multiple of four, the PB designs are referred to as non-

geometric designs and have very messy alias structures. Their use in practical problems is
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problematic particularly if the design is saturated (i.e., the number of factors is exactly n-1). If

interactions are negligible, however, these designs allow unbiased estimation of all main effects,

and require only one more design point than the number of factors; they also give the smallest

possible variance [14]. Myers and Montgomery [91] present a more complete discussion of

factorial designs and aliasing of effects. Minimum variance and minimum size designs are

discussed in Section 2.1.2.

Central Composite and Box-Behnken Designs: To estimate quadratic effects, 3 k or 3 (kpl designs

can be used but often require an unmanageable number of design points. The most common

second order designs, configured to reduce the number of design points, are central composite and

Box-Behnken designs.

A central composite design (CCD) is a two level (2 (kp_or 2k) factorial design, augmented by n o

center points and two "star" points positioned at _+_ for each factor. This design, shown for three

factors in Figure 2(c), consists of 2(kP)+2k+no total design points to estimate 2k+k(k-1)/2+l

coefficients. For three factors, setting c_= 1 locates the star points on the centers of the faces of the

cube, giving a face-centered central composite (CCF) design; note that for values of a other than 1,

each factor is evaluated at five levels.

Often it is desirable to use the smallest number of factor levels in an experimental design. One

common class of such designs is the Box-Behnken designs [15]. These are formed by combining

2 k factorials with incomplete block designs. They do not contain points at the vertices of the

hypercube defined by the upper and lower limits for each factor. This is desirable if these extreme

points are expensive or impossible to test. More information about CCD and Box-Behnken

designs can be found in [87].

Orthogonal Arrays: The experiment designs used by Taguchi, orthogonal arrco,s, are usually

simply fractional factorial designs in two or three levels (2 _k-p_and 3 _kp_designs). These arrays are

constructed to reduce the number of design points necessary; two-level L 4, Ltz, and Ll6 arrays, for

example, allow 3, 11, and 15 factors/effects to be evaluated with 4, 12, and 16 design points,

respectively. Often these designs are identical to Plackett-Burman designs [78]. The definition of
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orthogonality for these arrays and other experiment designs is given in Section 2.1.2. An

overview of Taguchi's approach to parameter design is given in Section 2.3.

"Space Filling" Designs: Many researchers advocate the use of "space filling" designs when

sampling deterministic computer experiments. As discussed by Booker [13], in the "classical"

design and analysis of physical experiments (i.e., using central composite and factorial designs),

random variation is accounted for by spreading the sample points out in the design space and by

taking multiple data points (replicates), see Figure 3. Sacks, et al. [117] state that the "classical"

notions of experimental blocking, replication, and randomization are irrelevant when it comes to

deterministic computer experiments; thus, sample points in DACE should be chosen to fill the

design space. They suggest minimizing the integrated mean squared error (IMSE) over the design

region by using IMSE-optimal designs; the "space filling" design illustrated in Figure 3(b) is an

IMSE optimal design.

10p i 0[0.5 0.5 • • • •

x2 0.0 go _o go x2 0.0 • •

-0.5 -0.5 • • • • •

-1.0 go oo -1.0 • • • •
oo

-1.0 -0.5 0.0 0,5 1.0 -I.0 -0.5 0.0 0.5 1.0

xl xl

(a) "Classical" Design (b) "Space Filling" Design

Figure 3. "Classical" and "Space Filling" Designs [adapted from 13]

Koch [63] investigates the use of a modified central composite design which combines half

fractions of a CCI and a CCF to more evenly distribute the points throughout the design space.

Koehler and Owen [66] describe several Bayesian and Frequentist "space filling" designs,

including maximum entropy designs, mean squared-error designs, minimax and maximin designs,

Latin hypercubes, randomized orthogonal arrays, and scrambled nets. Minimax and maxhnin

designs were originally proposed by Johnson, et al. [60] specifically for use with computer

experiments. Sherwy and Wynn [121] and Currin, et al. [35] use the maximum entropy principle

to develop designs for computer experiments. Tang [128] describes orthogonal array-based Latin



hypercubeswhich he assertsare more suitablefor computerexperimentsthan generalLatin

hypercubes.Park [100] discussesoptimal Latin hypercube designs for computer experiments

which either minimize IMSE or maximize entropy, spreading the points out over the design region.

Morris and Mitchell [89] propose maximin distance designs found within the class of Latin

hypercube arrangements since they "offer a compromise between the entropy/maximin criterion,

and good projective properties in each dimension." Owen [99] advocates the use of orthogonal

arrays as suitable designs for computer experiments, numerical integration, and visualization; a

collection of orthogonal array generators is available over the Intemet [98]. A review of Bayesian

experimental designs for linear and nonlinear regression models is given in [24].

2.1.2 Measures of Merit for Evaluating Experimental Designs. Selecting the appropriate

design is essential for effective experimentation: the desire to gain as much information as possible

about the response-factor relationships is balanced against the cost of experimentation. Several

measures of merit are available and useful for evaluating and comparing experimental designs.

Orthogonality, Rotatability, Minimum Variance, and Minimum Bias: To facilitate efficient

estimates of parameters, four desirable characteristics of an experimental design are orthogonality,

rotatability, minimum variance, and minimum bias. A design is orthogonal if, for every pair of

factors x_ and xj, the sum of the cross-products of the N design points

N

E XiuXju

u=-I

For a first order model, the estimates of all coefficients will have minimum variance if theis zero.

design can be configured so that

N

E X2u=N ;

u=l

the variance of predictions _ will also have constant variance at a fixed distance from the center of

the design, and the design will also be rotatable.



In second order modeling, Hunter [58] suggests that orthogonality is less important: "If the

objective of the experimenter is to forecast a response at either present or future settings of x, then

an unbiased minimum variance estimate of the forecast _ is required. In the late 1950's Box and

his co-workers demonstrated that rotatability...and the minimization of bias from higher order

terms...were the essential criteria for good forecasting." A design is rotatable if N.Var[_ (x)]/_ z

has the same value at any two locations that are the same distance from the design center. The

requirements for minimum variance and minimum bias designs for second order models are

beyond the scope of this work; we refer the reader to [91] for more information.

Unsaturated�Saturated and Supersaturated Designs: In many cases, the primary concern in the

design of an experiment is its size. Most designs are unsaturated in that they contain at least two

more design points than the number of factors. A saturated design is one in which the number of

design points is equal to one more than the number of factor effects to be estimated. Saturated

fractional factorial designs allow unbiased estimation of all main effects with the smallest possible

variance and size [14]. The most common examples of saturated designs are the Plackett-Burman

two level design and Taguchi's orthogonal arrays. For estimating second order effects, small

composite designs have been developed to reduce the number of required design points. A small

composite design is saturated if the number of design points is 2k+k(k-1)/2+ 1 (the number of

coefficients to be estimated for a full quadratic model). Myers and Montgomery [91 ] note that

recent work has suggested that these designs may not always be good; additional comments on

small composite designs can be found in [16, 77]. Finally, in supersaturated designs the number

of design points is less than or equal to the number of factors [37, 38].

It is most desirable to use unsaturated designs for predictive models, unless running the

necessary experiments is prohibitively expensive. When comparing experiments based on the

number of design points and the information obtained, the D-optimal and D-efficiency statistics are

often used.

D-optimal and D-efficiency: A design is said to be D-optimal if IX' X ]/r?' is maximized where X

is the expanded design matrix which has n rows (one for each design setting) and p columns (one
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colunm for each coefficient to be estimated plus one colunm for the overall mean). The D-

efficiency statistic for comparing designs, Eq. (1), compares a design against a D-optimal design,

normalized by the size of the matrix in order to compare designs of different sizes.

' / X'X 1/pD-efficiency = (IX Xldesig n ] ]D-optimum) (1)

Other statistics for comparing designs such as G-efficiency, Q-efficiency, and A-optimality have

also been formulated, see, e.g., [91]. We now turn to the issues of model choice and model

fitting.

2.2 Model Choice and Model Fitting

After selecting an appropriate experimental design and performing the necessary computer

runs, the next step is to choose an approximating model and fitting method. Many alternative

models and methods exist, but here we review the four which are most prevalent in the literature:

response surfaces, neural networks, inductive learning, and kriging.

2.2.1 Response Surfaces. Given a response, y,

influencing y, the relationship between y and x is:

and a vector of independent factors x

y = fix) + e , (2)

where e represents random error which is assumed to be normally distributed with mean zero and

standard deviation cr. Since the true response surface function fix) is usually unknown, a response

surface g(x) is created to approximate fix). Predicted values are then obtained using _ = g(x).

The most widely used response surface approximating functions are low-order polynomials.

For low curvature, a first order polynomial can be used as in Eq. (3); for significant curvature, a

second order polynomial which includes all two-factor interactions is available, see Eq. (4).

k

= [30 + Z [3ixi (3)

i=l

k k

= [30 + Z [3iXi + Z [3iiXi 2 + Z Z [3ijXiXj (4)

i=l i=l i j

i<j
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Theparametersof the polynomials in Eq. (3) andEq. (4) areusually determinedby least

squaresregressionanalysisby fitting theresponsesurfaceapproximationsto existingdata. These

approximationsare normally used tbr prediction within response surface methodology (RSM). A

more complete discussion of response surfaces and least squares fitting is presented in [91]. An

overview of RSM is given in Section 2.3.

2.2.2 Neural Networks. A neural network is composed of neurons (single-unit perceptrons)

which are multiple linear regression models with a nonlinear (typically sigmoidal) transformation

on y. If the inputs to each neuron are denoted {xl, x2, ..., x a }, and the regression coefficients are

denoted by the weights, w_, then the output, y, might be given by

1
y-

1 + enrr (5)

where 11= Y_w_xi + 13(where 13is the "bias value" of a neuron), and T is the slope parameter of the

sigmoid defined by the user. A neural network is then created by assembling the neurons into an

architecture; the most common of which is the multi-layer feedforward architecture, see Figure 4.

Iv Input Hidden OutputInputs ' Units Layer Units
I

I xl _ 1]=_WiX i+_

/ X2--W l I

ut ' _
I

!

li '
wn _ Y_ I!

It I

I

!

!

(a) Single-Unit Perceptron (b) Feedforward Two-layer Architecture

Figure 4. Typical Neuron and Architecture

There are two main issues in building a neural network: (1) specifying the architecture and (2)

training the neural network to pertbrm well with reference to a training set. "To a statistician, this

is equivalent to (i) specifying a regression model, and (ii) estimating the parameters of the model
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given a set of data" [30]. If the architecture is made large enough, a neural network can be a nearly

universal approximator [115]. Hajela and Berke [54] review the use of neural networks in

structural analysis and design.

"Training" a neural network is the determination of the proper values for all weights, w i, in the

architecture and is usually done by backpropagation [115]; this requires a set of n training data

points [(xl,y_), (x2,y2) .... , (xp,yp)}. For a network with output y, the performance is

E =_ (yp- _p)2 (6)

P

where _ p is the output that results from the network given input xp, and E is the total error of the

system. The weights are then adjusted in proportion to

0E 0y (7)

Oy Ow_j"

Neural networks are best suited for approximating deterministic functions in regression-type

applications. "In most applications of neural networks that generate regression-like output, there is

no explicit mention of randomness. Instead, the aim is function approximation" [30]. Typical

applications of neural nets are speech recognition and handwritten character recognition where the

data is complex and of high dimensionality. Networks with tens of thousands of paranaeters have

been used but the requisite gathering of training data and calculation of model paranaeters can be

extremely computationally expensive. Cheng and Titterington [30] comment that "...the procedure

is to toss the data directly into the NN software, use tens of thousands of parameters in the fit, let

the workstation run 2-3 weeks grinding away doing the gradient descent, and voild, out comes the

result." Rogers and LaMarsh [ 111 ] describe parallel computing eftbrts aimed at reducing the time

required to "train" neural networks.

2.2.3 In d u eti ve I.e a r n in .q. Inductive learning is one of five main paradigms of machine learning

that also include neural networks, case-based learning, genetic algorithms, and analytic learning

[68]. Of these five, inductive learning is the most akin to regression and metamodeling and is

therefore the focus here. An inductive learning system induces rules from examples; the
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fundamental modeling constructs are condition-action rules which partition the data into discrete

categories and can be combined into decision trees for ease of interpretation, see Figure 5.

y = f(xl,x2) ]
====================================================================

Y = Yl Y = Y2 Y = Y3 Y = Y4

Figure 5. A Decision Tree

Training data are required in the form {(xl,yl),(x2,y2) .... , (xn,yn) } where x i is a vector of

attribute values (e.g., processing parameters and environmental conditions), and each Yi is a

corresponding observed output value. Although attributes and outputs can be real-valued, the

method is better suited to discrete-valued data; real values must often be transformed into discrete

representations [41]. Once the data has been collected, training algorittuns build a decision tree by

selecting the "best" divisive attribute and then recursively calling the resulting data subsets.

Although trees can be built by selecting attributes randomly, it is more efficient to select attributes

that minimize the amount of information needed tbr category membership. The mathematics of

such an information-theoretic approach are given in [41].

Many of the applications of inductive learning have been in process control and diagnostic

systems, and inductive learning approaches can be used to automate the knowledge-acquisition

process of building expert systems. Furthermore, although decision trees appear best suited for

applications with discrete input and output values, there are also applications with continuous

variables that have met with greater success than standard statistical analysis. Leech [71] reports a

process-control application where "Standard statistical analysis methods were employed with
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limited success.Someof thedatawerenon-numerical,thedependenciesbetweenvariableswere

notwell understood,andit wasnecessaryto simultaneouslycontrol severalcharacteristicsof the

final productwhile workingwithin systemconstraints.Theresultsof thestatisticalanalysis,a set

of correlationsfor eachoutputof interest,weredifficult for peopleresponsiblefor theday-to-day

operationto interpretanduse." Additionalexamplescanbe foundin [41,68].

2.2.4 Kriging. Since many computer analysis codes are deterministic and therefore not subject to

measurement error, the usual measures of uncertainty derived from least-squares residuals have no

obvious meaning (cf., [117]). Consequently, some statisticians (see, e.g., [13, 66, 117, 138])

have suggested modeling responses as a combination of a polynomial model plus departures of the

form:

y(x) = f(x) + Z(x) (8)

where y(x) is the unknown function of interest, f(x) is a known polynomial function of x, and

Z(x) is the realization of a nomaally distributed Gaussian random process with mean zero, variance

2, and non-zero covariance. The f(x) term in Eq. (8) is similar to the polynomial model in a

response surface and provides a "global" model of the design space; in many cases f(x) is simply

taken to be a constant term, see, e.g., [117, 139].

While f(x) "globally" approximates the design space, Z(x) creates "localized" deviations so

that the kriging model interpolates the n S sampled data points. The covariance matrix of Z(x) is

given by:

Cov[Z(xi),Z(xJ)] = cr2 R([R(xi, x j)]. (9)

where R is the correlation matrix, and R(xi,x j) is the correlation function between any two of the n s

sampled data points x _ and x j. R is a (ns x ns) symmetric matrix with ones along the diagonal. The

correlation function R(x_,x j) is specified by the user; Sacks, et al. [117] and Koehler and Owen

[66] discuss several correlation functions which may be used. In our work, we have employed a

Gaussian correlation function of the form:
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i j) -_ iR(x,x =exp[-Ek=,0dxk-x{l'l (10)

where ok are the unknown correlation parameters used to fit the model, and the xki and xkj are the

k 'h components of sample points x i and x j. In some cases using a single correlation parameter

gives sufficiently good results, see, e.g., [94, 117].

Predicted estimates, _ (x), of the response y(x) at untried values of x are given by:

= _ + rT(x)R -' (y-f_) (1 1)

where y is the colunm vector of length n, which contains the values of the response at each sample

point, and f is a column vector of length n, which is filled with ones when f(x) is taken as a

constant. In Eq. (11), rT(x) is the correlation vector of length n s between an untried x and the

sampled data points {x 1, x 2, ..., x n' } and is given by:

FT(x) = [R(x,xl), R(x,x 2) ..... R(x,xnS)] T (12)

In Eq. (11), _ is estimated using Eq. (13).

= (fTR-lf)-I fTR-ly. (13)

The estimate of the variance, _2, from the underlying global model (not the variance in the

observed data) is given by

_2 = (Y- f_)TR-t(Y - 1_) (14)

U s

where f(x) is assumed to be the constant _. The maximum likelihood estimates (i.e., "best

guesses") for the Ok in Eq. (10) used to fit the model are found by maximizing [13]:

[n ln(d 2) + lnlRl] (15)
2
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for 0k> 0 where both _2 and ]R] are both functions of % While any values for the 0k create an

interpolative approximation model, the "best" kriging model is found by solving the k-dimensional

unconstrained nonlinear optimization problem given by Eq. (15).

Depending on the choice of correlation function in Eq. (10), kriging can either "honor the

data," providing an exact interpolation of the data, or "smooth the data," providing an inexact

interpolation [34]. Finally, it should be noted that kriging is different from fitting splines (i.e.,

non-parametric regression models). In several comparative studies kriging performs as well as, if

not better than, splines [69].

2.2.4 Additional Metamodelinq Approaches. For the reader's convenience, we include

references for some alternative metamodeling techniques which have not been discussed in the

previous subsections. Rasmussen [106] offers an accumulated approximation technique for

structural optimization which refines the approximation of objective and constraint functions by

accumulating the function values of previously visited points. Similarly, Bailing and Clark [4]

describe weighted and gradient-based approximations for use with optimization which utilize

weighted sums of exact function values at sample points. Friedman [45] describes multivariate

adaptive regression splines (MARS): a flexible regression modeling method based on recursive

partitioning and spline fitting for high dimensional data. Dyn, et al. [39] use radial basis functions

to build global approximation surfaces to interpolate smooth data. Wang, et al. [137] present

multivariate Hemrite approximations for multidisciplinary design optimization which uses data

generated during the course of iterative optimization; it is compared against linear, reciprocal, and

other standard approximations but shows inefficiencies because it requires more data points.

Finally, Friedman and Steutzle [46] introduce projection pursuit regression which works well in

high-dimensional (< 50) data and with large data sets (can handle 200,000+ data points); project

pursuit regression takes the data and generates different projections of it along linear combinations

of the variables; an optimizer finds the best projections and builds a predictor by summing them

together with arbitrary levels of precision.
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This concludes our discussion on experimental design, model selection and model fitting. We

now turn to more general methods for experimental design and modeling building.

2.3 Experimentation and Metamodeling Strategies

Two widely used methods incorporating experimental design, model building, and prediction

are response surface methodology and Taguchi's robust design or parameter design. A brief

overview of these two approaches is provided.

2.3.1 Response Surface Methodology (RSM). Different authors describe RSM differently.

Myers, et al. [90] define RSM as "a collection of tools in design or data analysis that enhance the

exploration of a region of design variables in one or more responses." Box and Draper [16] state

that, "Response surface methodology comprises a group of statistical techniques for empirical

model building and model exploitation. By careful design and analysis of experiments, it seeks to

relate a response, or output variable, to the levels of a number of predictors, or input variables, that

affect it." Finally, Myers and Montgomery [91 ] state that RSM "is a collection of statistical and

mathematical techniques useful for developing, improving, and optimizing process. It also has

important applications in the design, development, and formulation of new products, as well as in

the improvement of existing product designs."

The "collection of statistical and mathematical techniques" of which these authors speak refers

to the design of experiments (Section 2.1), least squares regression analysis and response surface

model building (Section 2.2.1), and "model exploitation," exploring a factor space seeking

optimum factor settings. The general RSM approach includes all or some of the following steps:

i) screening: when the number of factors is large or when experimentation is expensive,

screening experiments are used to reduce the set of factors to those that are most influential to

the response(s) being investigated;

ii) .first order experimentation: when the starting point is far from the optimum point or when

knowledge about the space being investigated is sought, first order models and an approach
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such as steepest ascent are used to "rapidly and economically move to the vicinity of the

optimum" [88];

iii) second order experimentation: after the best solution using first order methods is obtained, a

second order model is fit in the region of the first order solution to evaluate curvature effects

and to attempt to improve the solution.

A more detailed description of RSM techniques and tools can be found in [91], and a

comprehensive review of RSM developments and applications from 1966-1988 is given in [90].

In Section 3 we review recent applications in aerospace and mechanical engineering design, but

first we discuss Taguchi's robust design approach.

2.3.2 Taquchi's Robust Desiqn. Genichi Taguchi developed an approach for industrial

product design built on statistically designed experiments. Taguchi's robust design for quality

engineering includes three steps: system design, parameter design, and tolerance design [ 18]. The

key step is parameter design within which statistical experimentation is incorporated.

Rather than simply improving or optimizing a response value, the focus in parameter design is

to identify factor settings that minimize variation in performance and adjust the mean performance

to a desired target in order to minimize the associated loss. Factors included in experimentation

include control factors and noise factors; control factors are set and held at specific values, while

noise factors cannot be controlled, e.g., shop floor temperature. The evaluation of mean

performance and performance variation is accomplished by "crossing" two orthogonal anays

(Section 2.1.1). Control factors are varied according to an inner array, or "control", array, and for

each run of the control array, noise factors are varied according to an outer, or "noise", array. For

each control factor experiment, a response value is obtained for each noise factor design point.

The mean and variance of the response (measured across the noise design points) are calculated.

The performance characteristic used by Taguchi is a signal-to-noise (S/N) ratio defined in terms of

the mean and vm-iance of the response. Several alternate S/N ratios are available based on whether

lower, higher, or nominal response values are desired, see, e.g., [ 112].
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TheTaguchiapproachdoesnot explicitlyincludemodelbuildingandoptimization.Analysisof

experimentalresultsis usedto identify factoreffects, to plan additionalexperiments,andto set

factorvaluesfor improvedperformance.A comprehensivediscussionof theTaguchiapproachis

givenin [102, 112]. Taguchimethodshavebeenusedextensivelyin engineeringdesignandare

oftenincorporatedwithin traditionalRSMfor efficient,effective,and robust design [91 ]. These

applications and their implications for engineering design are discussed next.

3 METAMODELING IN ENGINEERING DESIGN

How are the metamodeling techniques of the previous section employed in engineering design ?

All of these techniques can be used to create approximations of existing computer analyses, and

produce fast analysis modules for more efficient computation. These metamodeling techniques

also yield insight into the functional relationship between input and output parameters.

Where would such models be useful? A designer's goal is usually to arrive at improved or

robust solutions which are the values of design variables that best meet the design objectives as

shown in Figure 6. A search for these solutions usually relies on an optimization technique which

generates and evaluates many potential solutions in the path toward design improvement; thus, fast

analysis modules are an imperative.

When are metamodels usefitl or appropriate? In the later stages of design when detailed

information about specific solutions is available, highly accurate analysis is essential. In the early

stages of design, however, the focus is on generating, evaluating, and comparing potential

conceptual configurations. The early stages of design are characterized by a large amount of

information, often uncertain, which must be managed. To ensure the identification of a "good"

system configuration, a comprehensive search is necessary. In this case, the tradeoff between

accuracy and efficiency may be appropriate. The creation of metamodels allows fast analysis,

facilitating both comprehensive and efficient design space search at the expense of a (hopefully

slight) loss of accuracy.
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Figure 6. Principal Use of Statistics in Computer-Based Design

Having established our engineering design "context" /'or using metamodels, we present a

review of several statistical applications in engineering design in Section 3.1. In Section 3.2 we

discuss a general statistical methods which have been developed for engineering applications, and

we conclude by discussing some of the pitfalls associated with the application of statistical

techniques to deterministic computer experiments in Section 3.3. This then paves the way tbr

Section 4, guidelines t'or the appropriate use of statistics in computer-based design.

3.1 Applications in Engineering Design

3.1.1 DOE, RSM, and Taguchi's Robust Design. In Table 1 we present a survey of several

engineering applications of design of experiments, response surface methodology, and Taguchi's
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robustdesignapproach.Most of theseexamplescomefrom aerospaceandmechanicalengineering

designapplicationspresentedatconferencesin recentyears.A reviewof approximationconcepts

usedin structuraldesigncanbefoundin [7].

Someobservationsregardingour findingsareasfollows.

• Central composite designs and D-optimal designs seem to be preferred among aerospace

engineers while orthogonal arrays (OAs) are preferred by mechanical engineers; grid and random

point searches are seldom used since they are less efficient.

• Optimization seems to be the principal driver for aerospace applications of DOE and RSM; these

types of applications typically involve the use of computer intensive analysis and optimization

routines, and DOE and RSM is a logical choice for increased efficiency.

• Mechanical engineers usually use OAs and Taguchi's approach for robust design and the signal-

to-noise ratio for parameter and tolerance design.

• Very few designers actually model Taguchi's loss function directly (see, e.g., [9]); many prefer

to model the response instead.

• Most applications use second order response surface models; there are only a few cases where

higher order (see, e.g., [136]) and mixed polynomial models (see, e.g., [113]) are used for

engineering design.

• When orthogonal arrays are used, special care must be taken to avoid aliasing main effects with

interactions, unless the interactions are known (or assumed) to be insignificant.

• Most applications utilize least squares regression analysis when fitting a model; only a few use

stepwise regression, and this is usually because the model is not second order.
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Table 1. Survey of Engineering Applications of DOE, RSM, andTaguchi's Robust

Design

Experimental Response Tetguchi

Design Surface Method Medhod

FilU_ng:

Balsbanov. et al. [3] x x 2nd X X

Bauer and Kr elbs[8] x x x 2rid x x S/N

Beard and Su_efland 19] X x X L

Chert, et al [25} x x L>nd x R

Chi a_l Bloebaum [31] x x R

Engebnd, el al, [40] x X 2_d x

GadaJlsh and EIM a/aghy [47] X x 2rid x x x

131iuntaket al. {51 ] x X 2rid x

Giunta, et al. [_>3] x X X X 2rid x

Healy, et aL [_] X X 2rid x X

Hong, et _. (56} X X I 2rid x x SiN

Koch et al. [64] x x 2rid x

Korng(_d a_l Gab¢iele [67] x 2rid x

Li, et al. [74] x 2rid X X S/N

M,swts etal. [81] x x 2rid x R

Mavris el aL [83] X X 2rid X R

Rotrx et aJ.(113] x x Mix X

Rowel, et BJ. [114J x x x 21_1 x x x

Stanley, et al. J126] x X x R

Sund_, el _d. [ 127] x x x a

Unal el a1.[130] X x 2nd x

Unal. el al. l13t] x x x R

Unal, el al [132] x x x x 2nd X R

Unal. el al, [ 133] x x 2nd X

Venire, el 81.[ 136] x x 4_ X

YLI and Istfil [ 146] X x 2nd x x R

3.1.1 Kri.qing Applications. Kriging, also referred to as DACE (Design and Analysis of

Computer Experiments after the inaugural paper [117]) modeling, has found limited use in

engineering design applications perhaps because of the lack of readily available software to fit

kriging models, the added complexity of fitting a kriging model, or the additional effort required to

use a kriging model. Simpson, et al. [124] detail a preliminary comparison of second order

response surface models and kriging models for the multidisciplinary design of an aerospike nozzle

which has three geometry (design) variables; neither the kriging models nor the response surface

models consistently outperform the other in this engineering example. Giunta [50] presents an

investigation into the use of kriging for the multidisciplinary design optimization of a High Speed

Civil Transport aircraft. He explores a five and a ten variable design problem, observing that the

kriging and response surface modeling approaches yield similar results due to the quadratic trend

of the responses. Osio and Amon [94] have developed an extension of DACE modeling for
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numerical optimization which uses a multistage strategy for refining the accuracy of the model; they

have applied their approach to the thermal design of an embedded electronic package which has 5

design variables. Booker, et al. [12] solve a 31 variable helicopter rotor structural design problem

using an similar approximation methodology based on kriging. Booker [11] extend the helicopter

rotor design problem to include 56 structural variables to examine the aeroelastic and dynamic

response of the rotor. Welch, et al. [138] describe a kriging-based approximation methodology

which they use to identify important variables, detect curvature and interactions, and produce a

useful approximation model for two 20 variable problems using only 30-50 runs of the computer

code; they claim their method can cope with up to 30-40 variables provided factor sparsity can be

exploited. Trosset and Torczon [ 129] have developed a numerical optimization strategy which

incorporates DACE modeling and pattern search methods for global optimization. Cox and John

[32] have developed the Sequential Design for Optimization method which uses lower confidence

bounds on predicted values of the response for the sequential selection of evaluation points during

optimization. Both approaches have shown improvements over traditional optimization approaches

when applied to a variety of standard mathematical test problems.

3.2 Existing Methods and Tools in Engineering Design

In this section we present some methods and tools developed specifically for engineering

which incorporate statistical techniques from Section 2. Since the Taguchi approach and RSM

have been widely applied in engineering design, a literature review comparing these approaches is

given first. This is followed by an overview of some methods and "tools" that have been

developed for general design applications. These include the Robust Concept Exploration Method,

the Variable-Complexity Response Surface Modeling Method, and Concurrent SubSpace

Optimization to name a few.

3.2.1 Taguchi Approach vs. RSM. The Taguchi approach and RSM have been applied

extensively in engineering design. It is commonly accepted that the principles associated with the

Taguchi approach are both useful and very appropriate for industrial product design. Ramberg, et
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al. [105] suggestthat"the lossfunctionandtheassociatedrobustdesignphilosophyprovidefresh

insightinto theprocessof optimizingor improvingthesimulation'sperformance."Two aspectsof

theTaguchiapproachareoftencriticized: thechoiceof experimentaldesign(orthogonalarrays,

innerandouter)andthelossfunction(signal-to-noiseratio). It hasbeenarguedanddemonstrated

thattheuseof a singleexperimentcombiningcontrolandnoisefactorsismoreefficient [122,131,

139].Thedrawbacksof combiningresponsemeanandvarianceinto asinglelossfunction (signal-

to-noiseratio)arewell-documented.Manyauthorsadvocatemeasuringtheresponsedirectly and

separatelytrackingmeanandvariance(cf., [27, 105,139]). However,Shoemaker,et al. [122]

warnthat a"potentialdrawbackof theresponse-modelapproachis thatit dependsmorecritically

thantheloss-modelapproachonhow well themodelfits."

Given the wide acceptanceof Taguchirobust designprinciplesand the criticisms, many

advocateacombinedTaguchi-RSMapproachor simply usingtraditionalRSMtechniqueswithin

theTaguchiframework[78, 90,91,105]. Webelievethatorthogonalinnerandouterarrays,and

singlecompositeexperimentseachhaveadvantagesanddisadvantagesandappropriateuses,and

that separateobservationof meanand varianceleadsto useful insight. Regardless,the core

principlesof bothTaguchiandRSMprovideafoundationfor manyof thespecificdesignmethods

discussedin Section3.2.2.

3.2.2 An Overview of Existinq Methods. The Robust Concept Exploration Method (RCEM)

facilitates quick evaluation of different design alternatives and generation of top-level design

specifications in the early stages of design [25, 26]. Foundational to the RCEM is the integration

of robust design principles, DOE, RSM, and the compromise Decision Support Problem (a

multiobjective decision model). The RCEM has been applied to the multiobjective design of a

High Speed Civil Transport [25, 65], a family of General Aviation Aircraft [123], a turbine lift

engine [64], a solar-powered irrigation system 128], and a flywheel [70]; to manufacturing

simulation [101 ]; and to maintainability design of aircraft engines [93]. A preliminary investigation

into the use of DOE and neural networks to augment the capabilities of response surface modeling

within the RCEM is given in [29].
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The Variable-Complexity Response Surface Modeling (VCRSM) Method uses analyses of

varying fidelity to reduce the design space to the region of interest and build response surface

models of increasing accuracy (see, e.g., [51, 52]). The VCRSM method employs DOE and RS

modeling techniques and has been successfully applied to the multidisciplinary wing design of a

high speed civil transport (see, e.g., [2, 3, 51, 53, 61]), to the analysis and design of composite

curved channel frames [80], to the structural design of bar trusses [113], to predict the fatigue life

of structures [135], to reduce numerical noise inherent in structural analyses [53, 136] and shape

design problems using fluid flow analysis [92], and to facilitate the integration of local and global

analyses for structural optimization [48, 104, 134]. Coarse-grained parallelization of analysis

codes for efficient response surface generation has also been investigated [ 17, 61].

Concurrent SubSpace Optimization (CSSO) uses data generated during concurrent subspace

optimizations to develop response surface approximations of the design space. Optimization of

these response surfaces forms the basis for the subspace coordination procedure. The data

generated by the subspace optimizers is not unifomaly centered about the current design as in CCD

or other sampling strategies, but instead follows the descent path of the subspace optimizers. In

[109, 108, 110], interpolating polynomial response surfaces are constructed which have either a

first or second order basis for use in the CSSO coordination procedure. In [140, 141], a modified

decomposition strategy is used to develop quadratic response surfaces tbr use in the CSSO

coordination procedure. Finally, in [118-120] artificial neural network response surfaces are

developed for use in the CSSO coordination procedure.

Robust Design Simulation (RDS) is a stochastic approach which employs the principles of

Integrated Product and Process Development (IPPD) for the purpose of determining the optimum

values of design factors and proposed technologies (in the presence of uncertainty) which yield

affordable designs with low variability. Toward this end, RDS combines design of experiments

and response surface metamodels with Monte Carlo simulation and Fast Probability Techniques

(see, e.g., [6]) to achieve customer satisfaction through robust systems design [83]. RDS has

been applied to the design of a High Speed Civil Transport aircraft [81, 83] and very large
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transports [82]. RDS has also been used to study the economic uncertainty of the HSCT [36, 84]

and the feasibility/viability of aircraft [85].

NORMAN/DEBORA is a TCAD (Technology Computer Aided Design) system incorporating

advanced sequential DOE and RSM techniques to aid in engineering optimization and robust design

[22]. NORMAN/DEBORA includes a novel design of experiments concept--Target Oriented

Design--a unique parameter transformation technique--RATIOFIND--and a non-linear,

constrained optimizer--DEBORA [23]. It has been successfully employed for semiconductor

integrated circuit design and optimization [20, 21, 23, 57]. An updated and more powerful version

of NORMAN/DEBORA is being offered as LMS Optimus [75].

The Probabilistic Design System (PDS) being developed at Pratt and Whitney uses Box-

Behnken designs and response surface methodology to perform probabilistic design analysis of

gas turbine rotors [43, 42]. Fox [44] describes twelve criteria which are used to validate the

response surfaces which are used in combination with cheap-to-run analyses in a Monte Carlo

Simulator to estimate the corresponding distributions of the responses and minimum life of system

components. Adamson [1] describes issues involved with developing, calibrating, using, and

testing the PDS and discusses Pratt and Whitney's plans to validate the PDS by designing,

building, and testing actual parts.

DOE/Opt is a prototype computer system for DOE, RSM, and optimization [10]. It has been

used in semiconductor process/device design including process/device optimization, simulator

tuning, process control recipe generation, and design/'or manufacturability.

Hierarchical and Interactive Decision Refinement (HIDER) is a methodology for concept

exploration in the early stages of design. It integrates sinmlation, optimization, statistical

techniques, and machine learning to support design decision making [107, 142]. The

methodology is used to hierarchically refine/reduce "a large initial design space through a series of

multiple-objective optimizations, until a fully specified design is obtained" [142]. HIDER uses the

Adaptive Interactive Modeling System (AIMS) [76] to decompose the design space using distance-
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based, population-based, and hyperplane-based 'algorithms. HIDER and AIMS have been applied

to the design of a cutting process [76], a diesel engine [142, 143], and a wheel loader [107].

Other approaches incorporating statistical techniques in engineering design exist; only a few

have been included here. Our focus is not on the methods, but on the appropriateness of the

statistical techniques; many of the examples to which these methods have been applied employ

deterministic computer experiments in which the application of statistical techniques is

questionable. Associated issues are discussed in the next section.

3.3 A Closer Look at Experimental Design for Deterministic Computer Experiments

Since engineering design usually involves exercising deterministic computer analysis codes,

the use of statistical techniques for creating metamodels warrants a closer look. Given a response

of interest, y, and a vector of independent factors x thought to influence y, the relationship

between y and x (see Eq. (2)) includes the random error term e. To apply least squares regression,

error values at each data point are assumed to have identical and independent normal distributions

with means of zero and standard deviations of _, or E_i.i.d. N(0,_2), see Figure 7(a). The least

squares estimator then minimizes the sum of the squared differences between actual data points and

predicted values. This is acceptable when no data point actually lies on the predicted model

because it is assumed that the model "smoothes out" random error. Of course, it is likely that the

regression model itself is merely an approximation of the true behavior of x and y so that the final

relationship is

y = g(x) + Ebi_ + Ereaado m (16)

where Ebi,_represents the error of approximation. However, tbr deterministic computer analyses as

shown in Figure 7(b), er_dom has mean zero and variance zero, yielding the relationship

y = g(x) + Ebi_ . (17)
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The deterministic case in Eq. (17) conflicts sharply with the methods of least squares

regression. Unless ebi_ is i.i.d. N(0,_ 2) the assumptions for statistical inference from least squares

regression are violated. Further, since there is no random error it is not justifiable to smooth

across data points; instead the model should hit each point exactly and interpolate between them as

in Figure 5(b). Finally, most standard tests for model and parameter significance are based on

computations of Er._omand therefore cannot be computed. These observations are supported by

literature in the statistics community; as Sacks, et al. [117] carefully point out that because

deterministic computer experiments lack random error:

• response surface model adequacy is determined solely by systematic bias,

• the usual measures of uncertainty derived from least-squares residuals have no obvious

statistical meaning (deterministic measures of uncertainty exist, e.g., max. lY (x) - y(x)[ over

x, but they may be very difficult to compute), and

• the classical notions of experimental blocking, replication and randomization are irrelevant.
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Furthermore, some of the methods for the design and analysis of physical experiments (see,

e.g., [14, 16, 91] are not ideal for complex, deterministic computer models. "In the presence of

systematic error rather than random error, statistical testing is inappropriate" [139]. A discussion

of how the model should interpolate the observations can be found in [116].

So where can these methods go wrong? Unfortunately it is easy to misclassify the Ebi_ term

from a deterministic model as Erandomand then proceed with standard statistical testing. Several

authors have reported statistical measures (e.g., F-statistics and root mean square error) to verify

model adequacy, see, e.g., [55, 64, 132, 136, 139]. However, these measures have no statistical

meaning since they assume the observations include a random error term with a mean of zero and a

non-zero standard deviation. Consequently, the use of stepwise regression for polynomial model

fitting is also inappropriate since it utilizes F-statistics when adding/removing model parameters.

Some researchers (see, e.g., [51, 53, 92, 135, 136]) have used metamodeling techniques for

deterministic computer experiments containing numerical noise. Metamodels are used to smooth

the numerical noise which inhibits the performance of gradient based optimizers (cf., [53, 4]).

When constructing the metamodels, the numerical noise is used as a surrogate for random error,

and the standard least-squares approach is then used to determine model significance. The idea of

equating numerical noise to random error warrants further investigation into the sources and nature

of this "deterministic" noise.

How can model accuracy be tested? R-Squared (the model sum of squares divided by the total

sum of squares) and R-Squared_adjusted (which takes into account the number of parameters in

the model) are the only measures for verifying model adequacy in detenninistic computer

experiments. This measure is often insufficient; a high R-Squared value can be deceiving.

Residual plots may be helpful tbr verifying model adequacy, identifying trends in data, examining

outliers, etc; however, validating the model using additional (different) data points is essential.

Maximum absolute error, average absolute error, and root mean square error for the additional

validation points can be calculated to assess model accuracy, see, e.g., [124, 136]. Otto, et al.

[95, 96] and Yesilyurt and Patera [145] have developed a Bayesian-validated surrogate approach
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which uses additionalvalidationpoints to makequalitativeassessmentsof the quality of the

approximationmodelandprovidetheoreticalboundson thelargestdiscrepancybetweenthemodel

and theactualcomputeranalysis. They have applied their approach to optimization of multi-

element airfoils [96], design of trapezoidal ducts and axisymmetric bodies [97], and optimization

of an eddy-promoter heat exchanger [144, 145]. Finally, an alternative method which does not

require additional points is leave-one-out cross validation [86]. Each sample point used to fit the

model is removed one at a time, the model is rebuilt without a sample point, and the difference

between the model without the sample point and actual value at the sample point is computed for all

of the sample points.

Given the potential problems in applying least-squares regression to deterministic applications,

the trade-off then is between appropriateness and practicality. If a response surface is created to

model data from a deterministic computer analysis code using experimental design and least

squares fitting, and if it provides good agreement between predicted and actual values, then there is

no reason to discard it. It should be used, albeit with caution. However, it is important to

understand the fundamental assumptions of the statistical techniques employed to avoid misleading

statements about model significance. In the next section we offer some guidelines for the

appropriate use of statistical metamodeling with deterministic computer analyses.

4 GUIDELINES AND RECOMMENDATIONS

How can a designer apply metamodeling tools while avoiding the pitfalls described in Section

3.3? This can either be answered from the bottom up (tools -> applications, Section 4.1) or from

the top down (motives -> tools, Section 4.2).

4.1 Evaluation of Metamodeling Techniques

There are two components to this section. The first is an evaluation of the four metamodeling

techniques described in Section 2.2. The second component is choosing an experimental design

which has more direct applicability to response surface methods. Determining what experimental
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designsaremost appropriatefor theothermetamodelingtechniquesdiscussedin Section2.2are

openresearchareas.

4.1.1 Evaluation of Model Choice and Model Fittinq Alternatives. Some guidelines for the

evaluation of the metamodeling techniques presented in Section 2.2 are summarized in Table 2.

Table 2. Recommendations for Model Choice and Use

Model Choice

Responses Surfaces

Neural Networks

Rule Induction /

Inductive Learning

Kriging

Characteristics/Appropriate Uses

• well-established and easy to use

• best suited for applications with random error

• appropriate for applications with < 10 factors

• good for highly nonlinear or very large problems

(- 10,000 parameters)

• best suited for deterministic applications

• high computational expense (often > 10,000

training data points); best for repeated application

• best when factors and responses are discrete-
valued

• form of model is rules or decision tree; better suited

to dia_nosis than engineerin_ design

• extremely flexible but complex

• well-suited for deterministic applications

• can handle applications with < 50 factors

• limited support is currently available tbr

implementation

Response Surfaces: primaIily intended for applications with random error; however, they have

been used successfully in many engineering design applications. It is the most well-established

metamodeling technique and is probably the easiest to use, provided the user is aware of the

possible pitfalls described in Section 3.3.

Neural Networks: nonlinear regression approach best suited to deterministic applications which

require repeated use. Building a neural network for a one-shot use can be extremely inefficient due

to the computational overhead required.

Inductive Learning: modeling technique most appropriate when input and output factors are

primarily discrete-valued or can be grouped. The predictive model, in the fore1 of condition-action

mrs or a decision tree, may lack the mathematical insight desired for engineering design.
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Krig&g: an interpolation method capable of handling deterministic data which is extremely

flexible due to the wide range of correlation functions which may be chosen. However, the

method is more complex than response surface modeling and lacks readily available computer

support software.

4.1.2 Evaluation of Experimental Designs. There are many voices in the discussion of the

relative merits of different experimental designs, and it is therefore unlikely that we have captured

them all. The opinions on the appropriate experimental design for computer analyses vary; the

only consensus reached thus far is that designs for non-random, deterministic computer

experiments should be "space filling." Several "space filling" designs were discussed previously

in Section 2.1.1. For a comparison of some specific design types, we refer the reader to the

following articles.

• Myers and Montgomery [91] provide a comprehensive review of experimental designs for fitting

second order response surfaces. They conclude that hybrid designs are useful, if the unusual

levels of the design variables can be tolerated; with computer experiments this is unlikely to be a

problem.

• Carpenter [19] examines the effect of design selection on response surface performance. He

compares 2 k and 3 k factorial designs, central composite designs, minimum point designs, and

minimtun point designs augmented by additional randonfly selected points; he favors the

augmented point designs for problems involving more than 6 variables.

• Giovarmitti-Jensen and Myers [49] discuss several first and second order designs, observing that

the perfomaance of rotatable CCD and Box-Behnken designs are nearly identical. They note that

"hybrid designs appear to be very promising."

• Lucas [79] compares CCD, Box-Behnken, uniform shell, Hoke, Pesotchinsky, and Box-Draper

designs, using the D-efficiency and G-efficiency statistics.

• Montgomery and Evans [88] compare six second order designs: (a) 32 factorial, (b) rotatable

orthogonal CCD, (c) rotatable uniform precision CCD, (d) rotatable minimum bias CCD, (e)
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rotatableorthogonalhexagon,and(f') rotatableuniformprecisionhexagon.Comparisoncriteria

includeaverageresponseachievementanddistancefromtrueoptimum.

• Lucas[77] comparessymmetricandasymmetriccompositeandsmallestcompositedesignsfor

differentnumbersof factorsusingtheD-efficiencyandG-efficiencystatistics.

4.2 Recommendations for Metamodeling Uses

Most metamodeling applications are built around creating low order polynomials using central

composite designs and least squares regression. The popularity of this approach is due, at least in

part, to the maturity of RSM, its simplicity, and readily accessible software tools. However, RSM

breaks down when there are many (>10) factors or highly nonlinear responses. Furthermore,

there are also dangers in applying RSM blindly in deterministic applications as discussed in Section

3.3. Alternative approaches to metamodeling (see Section 4.1.1) address some of these

limitations. Our recommendations are:

• ff many factors must be modeled in a deterministic application, neural networks may be the

best choice despite their tendency to be computationally expensive to create.

• If the underlying function to be modeled is deterministic and highly nonlinear in a moderate

number of factors (less than 50, say), then kriging may be the best choice despite the added

complexity.

° In deterministic applications with a few fairly well behaved factors, another option for

exploration is using the standard RSM approach augmented by a Taguchi outer (noise) array.

RSM/OA approach: The basic problem in applying least-squares regression to deterministic

applications is the lack of Er_dom in Eq. (17). However, if some input parameters in the computer

analysis are classified as noise factors, and if these noise factors are varied across an outer array

for each setting of the control factors, then essentially a series of replications are generated to

approximate rr_d,, . This is justified if it is reasonable to assume that, were the experiments

performed on an actual physical system, the random error observed would have been due to these

noise factor fluctuations. Statistical testing of model and parameter significance can then be
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performed,andmodelsof bothmeanresponseandvariability arecreatedfrom the samesetof

experiments.Furtherdiscussionandapreliminaryinvestigationinto suchanapproachis givenin

[72].

5 SUMMARY AND CLOSING REMARKS

In this paper we survey some applications of statistics in engineering design and have

discussed the concept of metamodeling, refer to Section 1 and Figure 6. However, applying these

techniques to deterministic applications in engineering design can cause problems, see Sections 3.1

and 3.3. We present recommendations for applying metamodeling techniques in Section 4, but

these recommendations are by no means complete. Comprehensive comparisons of these

techniques must be performed; preliminary and ongoing investigations into the use of kriging as an

alternative metamodeling technique to response surfaces is described in [ 124].

The difficulties of large problem size and non-linearity are ever-present. In particular, an issue

of interest to us is the problem of size [65]. As the number of factors in the problem increases, the

cost associated with creating metamodels begins to out-weigh the gains in efficiency. In addition,

often screening is insufficient to reduce the problem to a manageable size. This difficulty is

compounded by the multiple response problenv----complex engineering design problems invariably

include nmltiple measure of performance (responses) to be modeled. The screening process breaks

down when attempting to select the most important factors for more than one response since each

response may require different important factors. The general question arising from these

problems, then, is how can these experimentation and metamodeling techniques be used efficiently

]'or larger problems (problems with greater than 10 factors after screening)? One approach is

problem partitioning or decomposition. Using these techniques, a complex problem may be

broken down into smaller problems allowing efficient experimentation and metamodeling, Milch

again leads to comprehensive and efficient exploration of a design space [63]. A significant

literature base exists of techniques for breaking a problem into smaller problems; a good review of

such methods can be found in [73]. Detailed reviews of multidisciplinary design optimization
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approaches for formulating and concurrently solving decomposed problems are presented in [ 125]

and [33], and a comparison of some of these approaches is given in [5].
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