
1

Metamorphic Relations for Enhancing System
Understanding and Use

Zhi Quan Zhou, Liqun Sun, Tsong Yueh Chen, and Dave Towey

Abstract—Modern information technology paradigms, such as online services and off-the-shelf products, often involve a wide variety

of users with different or even conflicting objectives. Every software output may satisfy some users, but may also fail to satisfy others.

Furthermore, users often do not know the internal working mechanisms of the systems. This situation is quite different from bespoke

software, where developers and users usually know each other. This paper proposes an approach to help users to better understand

the software that they use, and thereby more easily achieve their objectives—even when they do not fully understand how the system

is implemented. Our approach borrows the concept of metamorphic relations from the field of metamorphic testing (MT), using it in

an innovative way that extends beyond MT. We also propose a “symmetry” metamorphic relation pattern and a “change direction”

metamorphic relation input pattern that can be used to derive multiple concrete metamorphic relations. Empirical studies reveal previously

unknown failures in some of the most popular applications in the world, and show how our approach can help users to better understand

and better use the systems. The empirical results provide strong evidence of the simplicity, applicability, and effectiveness of our

methodology.

Index Terms—Metamorphic exploration, symmetry, metamorphic testing, metamorphic relation, metamorphic relation pattern,

metamorphic relation input pattern, change direction, oracle problem, user experience, user countermeasure, software validation.

✦

1 INTRODUCTION

It is generally agreed that the main challenge for software
and systems engineering is not the limited raw computing
resources, but rather our limited ability to correctly
construct complex systems. In the context of software
engineering, an oracle is a mechanism against which
the correctness of the software behavior can be decided.
Having a test oracle (automated, if possible) is essential
to successful testing. In many settings, however, such an
oracle is not available, or is theoretically available, but
practically too difficult or expensive to be applied. This is
a situation known as the oracle problem, which is a major
challenge in software testing.

There is a growing interest in test oracles from the
research community, as reflected by an increasing number
of research activities involving this topic in recent years
[1]–[8]. Most of these research activities address the oracle
problem from the developers’ or testers’ perspective for
the purpose of software testing and verification. Barr et
al. [4], for instance, identified four broad categories of
oracles: specified oracles (such as assertions and algebraic
specifications); derived oracles (such as metamorphic
relations in metamorphic testing, and invariants in
invariant detection); implicit oracles (such as the detection

Zhi Quan Zhou and Liqun Sun are with the Institute of Cybersecurity
and Cryptology, School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW 2522, Australia. E-mails:
zhiquan@uow.edu.au, ls168@uowmail.edu.au.
Tsong Yueh Chen is with the Department of Computer Science and Software
Engineering, Swinburne University of Technology, Hawthorn, VIC 3122,
Australia. E-mail: tychen@swin.edu.au.
Dave Towey is with the School of Computer Science, University of
Nottingham Ningbo China, Ningbo, Zhejiang 315100, China. E-mail:
Dave.Towey@nottingham.edu.cn.

of crashes by fuzzing); and human oracles. Each type of
oracle has its own advantages and limitations, as well as
open research questions.

In contrast to the existing literature, in this research
we go beyond conventional software verification and
validation to consider the oracle problem from a different
perspective, and for a different purpose: Taking the users’
perspective, we aim to explore the software system with
the goal of helping users to better understand it, and
thereby make better use of it for their own specific
information needs.

Our motivation for this research is explained as follows:
In traditional development of bespoke systems, software
is produced by a specific developer (such as a software
house or an information technology (IT) department) for
a specific organization or user. In such a paradigm, the
developer and user may know each other quite well.
This is different from the situation where software is
developed for the mass market (such as commercial
off-the-shelf packages, open-source software, and free
software), where there is a diverse user base. Furthermore,
in modern IT paradigms such as online services and
cloud computing, an application often has many different
users using it for different, or even conflicting, purposes.
On the one hand, the developer may not necessarily
understand all of the users’ needs and objectives (for
example, what a user is really looking for when shopping
online); on the other hand, as pointed out by Zhou
et al. [9], the users often lack a comprehensive system
specification (apart from an often brief user manual or
online help page) that can help them to understand how
the system really works (for example, how an eCommerce
website ranks the products). This all means that, while

This article has been accepted for publication in IEEE Transactions on Software Engineering
Available: https://doi.org/10.1109/TSE.2018.2876433

2

the produced software may satisfy some users, it may
also (simultaneously) fail to satisfy others. Furthermore,
as will be shown in this paper, even the most popular
software systems may contain serious faults. Due to the
oracle problem, however, it may not be possible for the
user to identify when an output is erroneous. As such,
we argue that users need to operate software in a smarter
way, to both best satisfy their own needs, and to enable
awareness of erroneous software behavior and output.

It should be noted that software for the mass market
has been developed for several decades, and under-
standing the needs of a diverse user base has long
been recognized as a challenge. Lehman [10] classified
computer programs according to their relationship to the
environment in which they are executed, and defined E-
programs to be those that mechanize a human or societal
activity (such as operating systems, air-traffic control,
and stock control). Lehman pointed out that the support
required of such programs would depend on program
characteristics as experienced by the users. He further
pointed out that the validity of E-programs depends on
human assessment of its effectiveness in the intended
application, and that the “proof of correctness” of such
programs is basically irrelevant—a “correct” program
may be useless, and an “incorrect” program may be
quite usable: “it is the detailed behavior of the program
under operational conditions that is of concern” [10, p. 1064].
Lehman’s work strongly contributed to the identification
of sources of evolutionary pressure on computer software,
and explained why software maintenance is a never-
ending process.

It should be pointed out, however, that while devel-
opers strive to satisfy, as much as possible, the users’
requirements during software evolution, the complexity
(and quantity) of users’ needs makes it difficult to target
each and every user in the mass market. Therefore, from
a specific user’s perspective, there is a need for a practical
method that can help to give insight into the software. The
perspective of the present research, therefore, is different
from that of Lehman [10]: Instead of trying to help the
developers to understand the users’ needs, we attempt
to help the users to understand the software, and hence
make better use of it. This means that our techniques will
also be useful for the developers to train their clients and
testers, such as in the context of user acceptance testing
[11], alpha/beta testing, and crowdsourced testing [12],
[13]. Section 10.4 presents further discussion of users’
roles.

In the area of software reverse engineering, intensive
research has been conducted into program understand-
ing / comprehension [14]–[17], which is a key activity
in software maintenance: Software must be sufficiently
understood before it can be properly modified [16]. The
objective of the present research differs from that of
the program understanding literature because our aim
is to help the users to better understand and use the
system, rather than help the developers to comprehend
the source code or programming interfaces for software

maintenance purposes. Nevertheless, this research also
benefits software comprehension as we develop a black-
box approach for understanding a system in the absence
of a comprehensive specification.

Our research questions are stated as follows:

• RQ1: Can we design a mechanism to help users
quickly recognize whether the software, or the
software output, is really appropriate for their needs?

• RQ2: Can our mechanism help users to obtain more
desirable computation results, even if the software
being used is defective, or the user does not fully
understand how it actually works?

• RQ3: Because we target end users, our solutions
must be simple, applicable, and effective, for multiple
scenarios and application domains. To what degree
do our solutions possess these properties?

The contributions of this research are summarized as
follows:

• We propose an innovative way of exploring software
systems, called metamorphic exploration, that can help
users to better understand the systems and better
achieve their objectives, even if the software is
not well documented. Our approach borrows the
concept of metamorphic relations (MRs) from the
field of metamorphic testing (MT), using the MRs for
purposes beyond conventional software testing and
verification.

• We further propose the concepts of a “symmetry” 1

metamorphic relation pattern (MRP), and of a “change
direction” metamorphic relation input pattern (MRIP).
MRPs and MRIPs can be used either separately or in
combination to derive various concrete metamorphic
relations across many different application domains.

• We discuss case studies conducted using a variety
of very popular software applications. These appli-
cations are quite different in nature, and include
65 of the top commercial websites, Google Maps
navigation, Google Maps location-based search, im-
age analysis software for face recognition (including
MATLAB, OpenCV, and Facebook), and the Google
video analysis service Cloud Video Intelligence. We
show how “symmetry” MRs can help users to
(1) detect previously unknown failures in each of
these applications, and (2) obtain more desirable
computation results in spite of the failures, even
when the users do not fully understand how the
software is actually implemented.

• The empirical results provide strong evidence of the
simplicity, wide applicability, and effectiveness of

1. In this paper, we use the word “symmetry” to refer to both an
intrinsic property of the real world (including nature, human behavior,
and human society), and a desirable property of computer systems. Our
concept of “symmetry,” therefore, has a much broader meaning than
that used in previous studies in the software testing and verification
literature, such as Gotlieb’s [18] (where “symmetries” referred to the
permutation relation of program input and output vectors) and that of
Ip and Dill [19] (where, based on results from group theory, structural
symmetries were exploited to address the state explosion problem in
model checking).

3

our methodology, hence providing an affirmative
answer to all three research questions.

The evaluation and limitations of our approach are
summarized as follows (with further details given in
Section 11): On the one hand, feedback and news from
the real world confirm the validity and usefulness of
our results; on the other hand, it should be noted
that our approach is only a partial analysis technique,
whose effectiveness is dependent on the chosen MRs, the
chosen inputs, as well as the background, experience, and
perspectives of the users—as will be discussed, however,
the MR and input choice, and even the users’ initial
familiarity with the concepts, are issues easily addressed,
often within only a few hours training [20]–[22]. The scale
of our case studies is also limited and, therefore, there is
a threat to the external validity of our results, in terms of
the generalization of the findings to other areas or other
software features not yet investigated.

The rest of the paper is organized as follows: Section 2
reviews the basic concepts of MT and MRs. Section 3 intro-
duces our approach, using motivating, real-life examples.
Section 4 discusses our MR patterns, the symmetry MRP
and the “change direction” MRIP. Sections 5 to 9 present
a series of case studies using popular applications from
various domains. Section 10 contains further discussion
of related topics, including the relationships between the
present work and metamorphic testing, the validity and
sufficiency of MRs, the design space and choices, and
customers’ roles in related software processes. Section 11
presents evaluation and limitations of our approach.
Finally, Section 12 concludes the paper.

2 METAMORPHIC TESTING (MT)

Because our research borrows from some of the core
concepts in the field of MT, we therefore first give a brief
review of some of the principles of MT.

MT is a property-based software testing method [23],
[24]. It differs from conventional testing techniques in that
it does not focus on the verification of each individual
output of the software under test (SUT), but instead
checks the relations among the inputs and outputs of
multiple executions of the SUT. Such relations are called
metamorphic relations (MRs). MRs are necessary properties
of the intended program’s functionality. If an MR is
violated for certain test cases, then the SUT must be
at fault.

Consider, for example, a program p(G, a, b) that
identifies the shortest path from an origin node a to
a destination node b in an undirected graph G. When
G is large and complex, and when a and b are chosen
randomly, it is hard to verify the output of p because
of the lack of a practical oracle. Nevertheless, we can
identify some MRs for the shortest path problem. One
of the MRs can state, for example, that swapping the
origin and destination nodes should not affect the length
of the shortest path [25]. Based on this MR, MT can be
performed by running the program p twice: once for a

source execution, on a source input (G, a, b) to produce
a source output; and once for a follow-up execution, on a
follow-up input (G, b, a) to produce a follow-up output.
If a source output and its follow-up output are found
to have different lengths, then we say that the MR has
been violated and, hence, a fault in p has been revealed.
Many different MRs can be identified for the shortest path
problem [25]. Interested readers are referred to Chen et
al. [26] for formal definitions of the concepts. Section 10.2
answers further questions relating to MRs.

A growing body of research has examined the concept
of MT [6], [26]–[29], and proven it to be a very useful
testing paradigm that effectively addresses the oracle
problem. The increasing interest in MT is not only because
of its ability to test software in the absence of an ideal
oracle, but also because MT is based on a perspective
not previously used by other testing techniques—as a
result, it has been reported that MT can detect previously
unknown faults in mature software systems such as the
Siemens suite of programs [30], the GCC and LLVM
compilers [3], [31], graphics shader compilers [32], various
open source and commercial code obfuscators [33], and
the Google Maps navigation system [34].

When studying MT for machine learning software,
Xie et al. [35] found that an MR violation could reveal
problems not only in the implementation but also in
the choice of algorithm. In this situation, the MR was
identified based on the expected functionality of the
system: A violation of this MR, therefore, could indicate
that the chosen algorithm was not appropriate (and not
just that the implementation had faults). Xie et al.’s study
was at the algorithm selection level, checking whether or
not the adopted algorithm was appropriate. More recently,
Zhou et al. [9] expanded MT into a unified framework
that covers verification, validation, and other types of
software quality assessment. They showed that MRs
could be identified by users based on their expectations
(reflecting what they really cared about), rather than
being based on the system designs chosen by the system
designer or developer. Their study used MT at the top
(system/services) level, and involved very large scale
empirical studies with major web search engines. It
should be noted that these studies [9], [35] did not address
how to obtain better computation results from the users’
perspective, nor any of the research questions raised in
Section 1.

3 OUR APPROACH

In the following, we use two real-life examples to
illustrate the basic ideas of our approach.

3.1 Example 1: Searching for American Inventors

Suppose that a student wants to find a list of the
top American inventors of all time. She goes to
www.google.com and enters the following query:

www.google.com

4

[American inventors]. 2 Google immediately
returns a list of top American inventors under the
category “Inventors > United States” as shown in Fig. 1a.
Suppose the student wants to check whether these
Google results are stable, or whether Google can provide
a different list. She therefore identifies an MR that she
thinks should hold: Searching in a different language
should return the same, or a similar, list of American
inventors. Using Google Translate, the student then
translates [American inventors] into simplified
Chinese: [美国发明家]. She copies and pastes these
Chinese characters into Google, and searches again. To
her surprise, this time Google returns a very different
list of American inventors, still under the category
“Inventors > United States,” as shown in Fig. 1b. 3

The student cannot understand why there is such a
dramatic difference between the two lists provided by
Google. Why, for example, is Thomas Edison listed as
the #1 American inventor for the Chinese query, but he
does not even appear among the top five for the English
query? Nevertheless, the student has now obtained a
deeper understanding of how Google works: It gives
different lists for different query languages, even though
the queries appear equivalent, and the categorizations
(“Inventors > United States”) are also identical. The
student can now decide whether she still wants to use
the Google results (for example, by choosing one of the
two lists, or by combining them), or can choose to consult
a different website.

3.2 Example 2: Machine Translation

Suppose a user wants to translate the Chinese sentence
我爱吃苹果 into English. Because he does not know any
English, he decides to use a machine translation service,
and so goes to www.bing.com, and enters the following
query: [translate 我爱吃苹果]. As shown in Fig. 2a,
Bing translates the sentence into English as: I love to

eat.
Using an MR to check this result, the user translates

the English sentence I love to eat into Chinese to
see whether the resulting Chinese sentence has a similar
meaning to the original one. To the user’s surprise, the
resulting Chinese sentence is: 我爱吃, as shown in Fig. 2b.
He notes that the last two Chinese characters in his
original sentence, 苹果 (apple), are missing, and hence
has found an error in the translation results. Although he
cannot tell whether the error was in the Chinese-English
or English-Chinese translation, he decides to use other
machine translation services for which the MR holds. 4

2. A note on the square brackets convention: Although a query can
be surrounded by square brackets in a specification, the brackets should
not be typed when doing the actual query.

3. A similar observation has been reported by Sailer [36]. The
inconsistencies can also be produced using other queries, such as
[British Engineers].

4. The correct translation should be “I love to eat apples.” We found
that this translation error remained in Bing for more than a week
in October 2017, caused by a fault in the Microsoft Translator API
(https://www.microsoft.com/en-us/translator/translatorapi.aspx).

(a) Top American inventors returned by Google, under
the category “Inventors > United States.”

(b) An equivalent query term in Chinese yielded a very
different list of American inventors, still under the

category “Inventors > United States.”

Fig. 1: A metamorphic relation helped the user to expand
her Google search results.

(a) Using Bing to translate a Chinese sentence into
English.

(b) Translating the English sentence back to Chinese
revealed an error.

Fig. 2: A metamorphic relation helped the user to identify
an error in Bing translation.

www.bing.com
https://www.microsoft.com/en-us/translator/translatorapi.aspx

5

4 METAMORPHIC RELATION PATTERN (MRP)

A challenge in our approach, as well as in MT in general,
is the systematic identification of effective MRs. Abstract
MRs, which can be used to derive multiple concrete MRs,
appear to be a possible solution for this. In Section 4.1, we
review the background of this research direction. Then,
in Section 4.2, we reflect on two independent studies
where MT was successfully applied to detect real-life
bugs in very different application domains. We provide
our insights, and discuss a discovered pattern underlying
both of these studies. We call this pattern symmetry, and
define it in Section 4.3. In Section 4.4, we show that
symmetry is indeed an intrinsic property of the real
world (evident in places including nature and human
society). Some of the concepts or principles presented in
this section are used later in this paper in the context
of software systems. In Section 4.5, we propose using
symmetry as a fundamental metamorphic relation pattern
(MRP), motivated by the insight that the virtual world
(computer systems) is built to simulate, model, meet user
requirements, or solve problems from the real world.
Finally, in Section 4.6, we propose metamorphic relation
input pattern (MRIP).

4.1 Background

In early MT research, MRs were usually identified from
scratch for each individual problem under study. To assist
with systematic identification of MRs, Zhou et al. were
the first to propose a concept of general metamorphic
relations [37, p. 3], which is an abstract form of MR
that can be used to derive multiple concrete MRs. For
the purpose of testing search engines, they described a
“general metamorphic relation” as follows:

MRSEARCH: If search criterion X2 implies search
criterion X1 (that is, if X2 is satisfied then X1 is
satisfied), then #(X2) ≤ #(X1), where #(X)
denotes the number of results satisfying the
search criterion X .

Using this general MR, many concrete MRs can be
derived [37], such as:

MROR: If A1 ≡ (A2 OR B), then #(A2) ≤ #(A1),
where A1, A2, and B denote search criteria / conditions,
and “OR” is the logical operator for inclusive disjunction
(∨). Similarly, we can have the following concrete MR:

MRAND: If A1 ≡ (A2 AND B), then #(A1) ≤ #(A2),
where “AND” is the operator for logical conjunction (∧).

In a follow-up study, Zhou et al. further identified a
pattern (instead of using the word “pattern,” they called
it a “general relation” [38, p. 223]), which is a subset
relation:

Pages(X2) ⊆ Pages(X1),

where Pages(X1) denotes the source output (that is, search
results, or web pages in the context of a web search
engine, satisfying the search criterion X1) and Pages(X2)
denotes the follow-up output (search results satisfying
the search criterion X2).

Empirical results showed that concrete MRs derived
from the above abstract forms of MRs had a strong fault-
detection capability [37], [38]. For example, Microsoft’s
Live Search returned 11, 783 results for the query [GLIF]
but zero results for [GLIF OR 5Y4W] (where “OR” is
a reserved keyword of the search engine for inclusive
disjunction)—this obviously violated MROR and, because
the violation was repeatable, a fault in Live Search was
revealed [38].

A limitation of Zhou et al.’s work [37], [38] is that they
only considered a specific type of software under test
(namely, software performing search operations, of which
each output was a list of search results) and, therefore,
their patterns were not general enough to cover other
types of functions, features, and application domains.

Also using abstract MRs to derive concrete ones for
systematic MR generation, Segura et al. [39] explicitly
proposed metamorphic relation output pattern (MROP) in
the context of testing RESTful web APIs (that implement
create, read, update, or delete operations over a resource).
They stated that an MROP “defines an abstract output
relation typically identified in Web APIs” and that “each
MROP is defined in terms of set operations among test
outputs such as equality, union, subset, or intersection.”
They found MROPs to be very helpful for deriving
concrete MRs. More specifically, they identified six
MROPs: (1) Equivalence (representing relations where
the source and follow-up outputs include the same
items although not necessarily in the same order); (2)
Equality (representing relations where the source and
follow-up outputs must contain the same items, in the
same order); (3) Subset (representing subset relations
among the source and follow-up outputs, similar to
the “general relation” (Pages(X2) ⊆ Pages(X1)) proposed
by Zhou et al. [38, p. 223]); (4) Disjoint (representing
relations where the source and follow-up outputs should
be disjoint sets—having no elements in common); (5)
Complete (representing relations where the union of the
follow-up outputs should contain the same items as the
source output); and (6) Difference (representing relations
where the source and follow-up outputs should differ in
a specific set of items).

A concrete example of an “equivalence” MROP is that
a search for YouTube videos should return the same set of
videos “regardless of the ordering criteria specified (date,
rating, relevance, title, or number of views)” [39]. Segura
et al. [39] hypothesized that their proposed patterns could
also be useful for automated inferencing of likely MRs
for a given API; however, they also pointed out that such
research, as in [40]–[42], was challenging, and still at an
early stage.

Compared with Zhou et al.’s initial work on this topic
[37], [38], Segura et al. [39] investigated the pattern
concept more explicitly and systematically, providing
strong evidence of its potential usefulness. However,
Segura et al.’s patterns face a similar limitation to that of
Zhou et al.: They were only designed for a specific type
of program (RESTful web APIs, performing one of four

6

operations over a resource—create, read, update, and
delete) with an emphasis on the search (read) operation
[39]. Furthermore, Segura et al. [39] only studied patterns
for output relations, and the outputs must be sets, and
the output relations must be defined in terms of set
operations. These limitations mean that all previous
work [37]–[39] has a significant applicability problem
and, therefore, cannot be used to address our research
questions RQ1, RQ2, and RQ3, which require a solution
that should not put any restriction on the type of
application, feature, function, operation, input/output
format, or problem domain. In this paper, we propose
generic patterns (including one MRP and one MRIP) that
have no such restrictions.

4.2 Reflection on Two Independent Studies

In 2017, two independent MT studies [6], [43] were
presented at the ICSE metamorphic testing workshop that
showed great research serendipity: They both employed
geometric transformations to transform the source input
into the follow-up input, and very effectively detected
software faults. In Lindvall et al.’s work [43], researchers
from the Fraunhofer Center for Experimental Software
Engineering tested autonomous drones using MRs that
“leverage geometric changes in the simulated environ-
ment, such as rotation and translation in combination
with different formations of obstacles in the scenarios that
the drone exposed to.” For example, for a given source
input (scenario), a follow-up input (scenario equivalent
to the source one) could be generated by rotating the
world geometry of the source scenario while keeping the
distances and relative positions unchanged. The drone
was expected to behave consistently under the source
and follow-up scenarios. For instance, other conditions
being the same, the drone should have similar behavior
regardless of whether it was flying north or south. Using
this kind of MR, the researchers detected critical faults
that could cause crashes: “instead of avoiding the obstacle,
the drone flew straight into it and crashed.”

Independent of Lindvall et al.’s work, engineers
from Adobe [6] used MT to test the time series
analysis (TSA) service of Adobe Marketing Cloud
(http://www.adobe.com/marketing-cloud.html),
software that provides customers with automatic
identification and reporting of anomalies in marketing
data. Input for a TSA request includes, among others,
training data and metric data (data to be modeled). The
training data are a set of values at different time points,
used to train the statistical model. Once a model is
selected as the best fit for the training data, it is then
applied to the metric data to predict future behavior.

To test the TSA, Jarman et al. [6] treated every time
series (input to the SUT) as a 2D geometric object,
assigning the x-axis as time t and the y-axis as the
respective data value. They pointed out that “if the
assumption is made that all statistical models are derived
from the internal relationships of the values . . . we can

safely expect that TSA will produce identical models
regardless of orientation in space.” As such, they defined
their MR as: Given a time series f(x) (source input)
and its expected TSA model m(f(x)) (source output),
applying a geometric transformation T to f(x), denoted
by T (f(x)) (follow-up input), should have an expected
TSA model (follow-up output) equal to T (m(f(x))), that
is: T (m(f(x))) = m(T (f(x))). Using this MR, together
with a set of very simple source test cases, the engineers
detected three previously unknown bugs in the TSA
software and reported that the MR “has been proven
highly effective as shown by the high violation rates.”

It should be noted that these two studies [6], [43]
were conducted independently, by two different teams,
in completely different application domains. However,
both studies showed that MRs based on geometric
transformations were very effective for fault detection: In
Lindvall et al.’s work [43], the follow-up input (scenario)
was generated by applying geometric transformations to
the source input (scenario); whereas in Jarman et al.’s
study [6], the source input was f(x) (the 2D geometric
object representing a time series), and the follow-up
input, T (f(x)), was generated by applying the geometric
transformation T to the source input. The MRs used
in both these two studies shared a similar viewpoint:
The system should appear more or less the same under
geometric transformations.

Are the observations of the effectiveness of geometric
transformations just a coincidence, happening by chance
in both of these different application areas? A reflection
on this question led us to the conclusion that geometric
transformations are an instance of a more fundamental
and pervasive property of the real world: Symmetry. The
discovery of the power of geometric transformations in
MT, therefore, might have revealed part of the usefulness
of symmetry as a generic MR pattern. In fact, we found
that the geometric transformations and the examples of
Sections 3.1 and 3.2 are all instances of symmetry. Before
we go deeper into this topic, we wish to first review the
basic concept of symmetry.

4.3 Definition of Symmetry

Symmetry is an immensely important concept in the
sciences and the arts, and can be defined in different ways,
and from different perspectives. According to the Amer-
ican Heritage Dictionary (https://ahdictionary.com), it
can refer to a relationship in which there is correspon-
dence or similarity between entities or parts, or invariance
under transformation. This concept was also elaborated
upon by Philip W. Anderson, Nobel laureate in Physics,
who said: “By symmetry we mean the existence of
different viewpoints from which the system appears
the same” and that “it is only slightly overstating the
case to say that physics is the study of symmetry” [44,
p. 394]. We adopt Anderson’s definition in this paper.

http://www.adobe.com/marketing-cloud.html
https://ahdictionary.com

7

4.4 Symmetry as a Universal Property

In this section, we highlight symmetries in various
domains, including in the natural world, in mathematics,
in the laws that govern the universe, and in social
interactions, aesthetics, and preferences.

4.4.1 Symmetries in the Natural World

In the natural world, symmetries can be highly vi-
sual. Flowers, plants and sessile animals (such as sea
anemones) often have radial or rotational symmetry. The
body shapes of humans and the major group of animals
such as insects, fish, birds, and mammals, have bilateral
symmetry. The forms of the majority of heavenly bodies
such as the Earth, the sun, and galaxies, are symmetric.
Other examples of symmetric objects or patterns include,
snowflakes, sand dunes, waves, animal gait, animal
markings, stalactites and stalagmites in caves—indeed,
symmetries appear everywhere, and seem to appeal
strongly to our innate sense of pattern [45]–[47].

4.4.2 Symmetries in Mathematics

In geometry, an object is symmetric if there is a trans-
formation that moves individual parts of the object
without changing the overall shape. Various types of
symmetries have been studied in geometry, including:
reflectional (mirror) symmetry (examples of which are
the bilateral symmetry of human bodies and faces);
rotational symmetry (examples of which include the
fivefold symmetry of a starfish, or the sixfold symmetry
of a snowflake); and translational symmetry (such as the
traces of footprints left in the sand by a person walking
on a beach).

In logic, a binary relation can be either symmetric or
asymmetric. An example of a symmetric relation is: If A
is a sibling of B then B is also a sibling of A. Symmetric
logical operators include AND, OR, XOR, and ↔ (if and
only if).

Today’s formal (mathematical) concept of symmetry
came from algebra when the notion of a symmetric group 5

emerged, which led to the development of diverse areas
of mathematics. The discovery of the connections between
geometry and group theory (in particular, the group of
transformations) allowed for theorems to be transferred
between different areas of geometry [45] [49].

In mathematics, the concept of isomorphism [50, p. 3]
expresses the idea that two mathematical objects have
the same structure with respect to the properties under
consideration. An isomorphism is therefore an instance of
symmetry, but symmetry is not limited to isomorphisms
or mathematical structures. The examples of Sections 3.1
and 3.2 are better understood as instances of symmetry
than isomorphism.

5. Note the difference between a symmetric group and a symmetry
group: The former is the group of permutations of n distinct objects—
of order n!, whereas the latter is a group of symmetry-preserving
operations, including rotations, reflections, and inversions [48].

4.4.3 Symmetries in Nature’s Laws

At a fundamental level are the laws of nature, and
one of the most intriguing features of these laws is
that they are symmetric [45], [51], [52]. It should be
noted that symmetry of the laws does not necessarily
imply symmetry of the behavior: There is a difference
between the symmetries of the “state” of a system, and
the symmetries of the rules defining it [52]. It has been
observed that the laws of nature are more symmetric
than nature itself [45].

For example, Noether discovered the crucial relation-
ship between symmetry and conservation [53]. Einstein
wrote about Noether as “One seeks the most general
ideas of operation which will bring together in simple,
logical and unified form the largest possible circle of
formal relationships.” [46, p. 114]. Today, symmetry plays
a major role in the search to unify relativity and quantum
theory [45].

4.4.4 Other Symmetries

Symmetry does not need to be visual. Consider two
children playing rock–paper–scissors [45]. It is symmetry
that makes the game fair and attractive: Both players
and all three strategies are on equal footing. Similarly,
in social disputes, both sides should be treated in the
same way [45]. Symmetrical social interactions, which
may include asymmetrical balance, can be identified in a
variety of contexts, including reciprocity and sympathy.

Symmetry is associated with our innate sense of beauty
and harmony, and thus with aesthetics and preference.
For example, it has been reported that symmetry in the
human face and body correlates with attractiveness [54]
and that movie stars often have unusually symmetrical
faces [45]. Symmetry can be found in many artistic areas,
such as in architecture, music, literature, and in the design
of crafts and objects.

4.5 Symmetry as a Metamorphic Relation Pattern

We have seen that symmetry is an intrinsic, pervasive,
and profound property of the real world. Computer
systems are built to solve problems or meet requirements
from the real world, often by simulating, modeling, or
learning from it (including nature and society) or its
processes. Computer software is designed and used by
humans, whose preference and innate sense of harmony
is often associated with symmetry [45], [47]. Therefore,
we hypothesize that symmetry is also a pervasively desirable
property for many computer systems.

Furthermore, there is a growing awareness that the
concept of symmetry can serve as a heuristic to help
scientists in their exploration of the unknown. For
example, guided by Noether’s theorem, physicists can
now guess what the action might be when exploring
the nuclear and subnuclear world [46]. Similarly, later
in this paper, we show how the concept of symmetry
(the symmetry metamorphic relation pattern, to use our
terminology) can help a user to understand the behavior

8

of a computer system in the absence of a detailed system
specification. We first give the following definition:

Definition 1: A metamorphic relation pattern (MRP) is an
abstraction that characterizes a set of (possibly infinitely
many) metamorphic relations.

To apply abstraction [55, p. 49], we need to identify the
most important aspects of the MRs under consideration,
ignoring details. One approach to the identification
and grouping of MRPs (and MRs) is through levels of
abstraction. In other words, it is possible for many MRPs
to form a hierarchy [55, pp. 79-81], with MRPs at higher
levels being more abstract, and those at lower levels
being more concrete. Consider mathematical programs,
for example. The property monotone can be considered
an MRP. Compared with monotone, “strictly increasing”
and “strictly decreasing” can be considered MRPs at a
lower level of abstraction, and could have other MRPs
further below them (for example, by considering linearity,
or the shape of curvature). As another example, symmetry
is an MRP at a high level of abstraction, and “equivalence
under geometric transformation” would be an MRP under
symmetry, at a lower level. We define the symmetry MRP
as follows:

Definition 2: The symmetry MRP refers to the existence of
different viewpoints from which the system appears the
same.

Definition 2 borrows from Anderson’s notion of “sym-
metry” (see Section 4.3), but here the word “system”
can refer to not only a physical system, but also to a
computer system. Using this definition, it is clear that
the examples of Sections 3.1, 3.2, and 4.2 are all instances
of the symmetry MRP. For example, regardless of what
query language is being used, the meaning of the query
(“American inventors” or “I love to eat apples”) should be
preserved, and from this perspective, the system should
“appear the same.” However, the users found that this
was not the case; therefore, they can decide whether to
accept the outputs, or to use alternative ways to get more
suitable results.

In Definition 2, “the system appears the same” does not
mean that the software system’s (source and follow-up)
outputs must have an equality or equivalence relation.
This point is further elaborated in Section 7.

4.6 Metamorphic Relation Input Pattern (MRIP)

When defining the symmetry MRP, we did not specify
the types of transformations that could be performed on
the source input, or the types of invariance that should
be observed when checking the output. An attempt to do
so would weaken the generality of the MRP. However,
to help practitioners to more easily identify concrete
MRs, in this paper we propose a metamorphic relation
input pattern (MRIP), change direction, as an approach to
transforming the source input into the follow-up input.

Definition 3: A metamorphic relation input pattern (MRIP) is
an abstraction that characterizes the relations among the
source and follow-up inputs of a set of (possibly infinitely
many) metamorphic relations.

As with MRPs, MRIPs are abstractions of relations.
Therefore, the discussion about levels of abstraction and
hierarchy under Definition 1 is equally applicable to
MRIPs. For example, “change sequence,” which changes
the sequence of some elements in the source input, can
be considered an MRIP at a high level of abstraction.
Under this MRIP, there could be two more MRIPs at
a lower level: “change sequence in time” and “change
sequence in space,” where the former could refer to the
change of time sequence of some input events (such as
in the context of testing an interactive system), and the
latter could refer to the change of order of some data
items (such as permuting an input array in the context
of testing a sorting program). Typical operations such as
“change value,” “insertion,” and “deletion” could all be
used to create MRIPs at different abstraction levels. We
can now define the “change direction” MRIP at a high
level of abstraction as follows:

Definition 4: The change direction MRIP refers to the
existence of a direction element in the source input, either
physical or logical, explicit or implicit, which can be
changed to construct the follow-up input.

The “change direction” MRIP can help the users and
testers to identify “different viewpoints” of a system.
The multiplicity of the association between “MRIP” and
“MRP” is n : n, that is, an MRIP may be associated with
multiple MRPs, and an MRP may also have multiple
MRIPs. This means that the “change direction” MRIP may
also be associated with an MRP other than symmetry, and
vice versa. The example in Section 3.2 belongs to both
the symmetry MRP and the “change direction” MRIP
because there is a “direction” element in the source input
(“Chinese to English”) that was changed to “English to
Chinese” in the follow-up input. In contrast, although
the example in Section 3.1 belongs to the symmetry
MRP, it does not belong to the “change direction” MRIP
because there is no “direction” element in the MR. The
MR “swapping the origin and destination nodes should
not affect the length of the shortest path” (Section 2)
is also an instance of both the symmetry MRP and the
“change direction” MRIP.

In the rest of this paper, the “change direction” MRIP,
in combination with the symmetry MRP, is applied to a
variety of application domains. In Section 5, we test 65 top
commercial websites by looking at their most commonly
used features, search and sort. The “direction” element in
the user input is the sort criterion (sort from high to low,
or from low to high), and the symmetry is that sorting
the results in ascending and descending orders should
return the same set of results in reverse order. In Section 6,
we test the Google Maps navigation service, where the
“direction” element is the direction from the origin to

9

the destination, and the symmetry is that swapping the
origin and destination should return a route that has
a similar cost (in terms of time or distance, provided
that no one-way restriction is involved). In Section 7, we
test the Google Maps location-based search, where the
“direction” element is the direction from one location to
another location, and one of the symmetries is that if
an entity A can see another entity B, then, everything
else being equal, B can also see A. In Section 8, we
test the face recognition functions of MATLAB, OpenCV,
and Facebook, where the “direction” element is the
direction of the x-axis of 2D images, and the symmetry
is that changing the direction of the x-axis of an image
from rightward to leftward (which results in a mirror
image) should not affect the face recognition outcome
because human faces usually have approximate bilateral
symmetry [45], [47]. In Section 9, we test the Google
video analysis service Cloud Video Intelligence, where the
“direction” element is whether a video is played forwards
or backwards, and the symmetry is in terms of time:
The same static objects in the video should be identified
regardless of whether the video is played forwards or
backwards. We show that none of the systems under
test satisfied these symmetry properties, thus revealing
various issues—some of these issues are software faults;
others reveal differences between the users’ expectations
and the actual behavior of the software. The detection of
these issues emphasizes the need for developing user-side
countermeasures.

5 CASE STUDY OF 65 TOP COMMERCIAL

WEBSITES

In this section, we report on applying the symmetry MRP
and “change direction” MRIP to commercial websites.

Unlike previous research on MT, where multiple
MRs were identified together with a large number of
test cases to test the SUTs [28], in this case study
we tested the SUTs using only one MR and only one
MT test case (a source test case and a follow-up test
case) to identify software issues and corresponding user
countermeasures. We considered the most commonly
used features of online stores and advertising websites:
search and sort. In particular, because research has shown
that one of the most frequently used features by end
users of commercial websites is price sorting, our study
focused on this feature. Collins et al. [56, p. 68], for
example, when studying the sorting strategies of end
users, reported that “price is clearly the dominant sort
attribute.” Degeratu et al. [57, p. 75] studied how search
attributes affected online choice behavior, and noted
that “many executives are very concerned that online
consumers will focus on price.” In general, customers
shopping online may face an overwhelming amount
of information. An online search, in combination with
sorting, enables them to “find the products and prices
that best meet their needs,” and to “both expand and
narrow the consideration sets” [57, p. 77]. Suk et al. [58]

reported that the order in which options are presented
could significantly influence consumer responses. They
found, for example, that “when differing brand options
are presented in descending price order, consumers tend
to choose higher-price options; when they are presented
in ascending price order, consumers tend to choose lower-
priced options (the price order effect)” [58, p. 708]. It is
therefore possible for companies to implement a pricing
strategy to maximize benefits: a default list presenting
items in descending order of price, for example.

In short, price sorting is a simple, but critical, function
for both customers and owners of online stores and
advertising websites.

5.1 The Metamorphic Relation

We define the following MR from the users’ perspective,
as a concrete instance of the “change direction” MRIP
and the symmetry MRP, where the “direction” element
is whether the sorting is from low to high, or from high
to low:

MRPriceSort: Let s(q, c) denote a perfect search function,
where q is a search criterion and c is a sorting criterion—
the results are sorted according to c. If c1 (c2) denotes
the criterion that sorts the results by price in ascending
(descending) order, then s(q, c1) and s(q, c2) should return
exactly the same set of results, but in reverse order.

It should be noted that MRPriceSort does not belong to
the “equivalence” MROP proposed by Segura et al. [39],
which does not consider the ordering of the search results.

5.2 Websites Under Test

We selected a total of 65 top commercial websites from
several major ranking lists based on annual revenue
or popularity. Of these 65 sites, 35 were top retailing
websites listed in Deloitte’s annual Global Powers of
Retailing report [59] (which identified the biggest e-
retailers in terms of annual revenue in 2015). We also
selected 11 top pharmacy websites, based on web traffic,
from the Alexa rankings [60]. We further selected 11 top
real estate websites identified by eBizMBA, an eBusiness
guide [61] (whose rankings were based on “each website’s
Alexa Global Traffic Rank, and U.S. Traffic Rank from
both Compete and Quantcast.”). Finally, similar to the
real estate websites selection, we selected eight top car
sales websites from the eBizMBA rankings [62]. We
only selected English language websites whose features
included price sorting.

Each website was tested against MRPriceSort by running
one source test case and one follow-up test case. For each
website, the source and follow-up test cases used exactly
the same query term together with a request to sort by
price in ascending and descending orders, respectively.
Although it would have been desirable for all 65 websites
to be tested using the same query term, this, however, was
not possible due to the different nature of the websites.
For example, real estate websites required the user to

10

enter location information of the real estate properties
but a body care retailer did not require such information.
Our approach, therefore, was to group the 65 websites
into nine categories, as shown in the first column of
Table 1. Websites within the same category were tested
using the same query term (listed in the second column of
Table 1). For example, all body care retailer websites were
tested using the query term “body,” and all office supply
websites were tested using the query term “pencil.” These
query terms were generated manually such that they
were general enough to accommodate all websites within
the same category, and return nonempty search results.
During testing, some websites did not return a results
page for a general query term. For example, the website
www.sears.com showed only a promotion page when
the query term was “women.” For those websites that
could not return a results page, we used a backup query
term (“women dress” instead of “women”). Similarly,
we also prepared a backup query term for the category
of online real estate websites. These two backup query
terms are shown in the third column of Table 1.

All 65 websites under test and their corresponding
categories are listed in the first and second columns of
Table 2.

TABLE 1: Query terms.
Category Query Backup query
body care retailer (1 website) body
car sales (8 websites) BMW (zip:11223)
consumer electronics retailer (2 websites) mouse
department retailer (24 websites) women women dress
groceries (3 websites) sauce
home improvement (3 websites) knife
office supply (2 websites) pencil
online pharmacy (11 websites) oil
online realestate (11 websites) Brooklyn, NY New York, NY

5.3 Analyses of Test Results

Only five of the 65 websites passed all our tests, as
highlighted in rows #14, #31, #38, #45, and #52 of Table 2.

We categorized the software issues that caused the MR
violations into five types, as listed in columns #3 to #7
of Table 2. In the following, we analyze these five types
of issues, discuss their impact on the software quality
characteristics of commercial websites (referring to the
software quality model standard ISO/IEC 25010 [63]),
and explain how the use of MRs can help users to better
achieve their goals.

5.3.1 Type 1 Issue: Count Consistency (Functional

Correctness)

A characteristic of MRPriceSort is that the number of
results in the source and follow-up outputs should be
equal, otherwise at least one of the two outputs must
be incorrect. Count consistency, therefore, is related to
the functional correctness of the SUT, which refers to the
“degree to which a product or system provides the correct
results with the needed degree of precision” in ISO/IEC
25010 [63].

5.3.1.1 Observations: Column #3 of Table 2 shows
the count consistency result for each website under test.
A tick (X) indicates a pass (consistent); and a cross (×)
indicates a failure (inconsistent). Table 2 shows that,
of the 65 websites under test, five (7.69%) failed to
produce consistent counts. For example, when searching
for “women dress” in www.amazon.com, 160 results
were returned when sorted by price (low to high) (see
Fig. 3a), but 851, 077 were returned when sorted by
price (high to low) (see Fig. 3b). We note that, in the
results page, there is a statement “Showing most relevant
results. See all results for women dress.” In this example,
our focus was on the “most relevant results;” however,
even when we clicked on the link “See all results for
women dress,” the two result counts were still different.
Theoretically, the difference could be caused by web
dynamics such as database updates. To exclude this
possibility, we repeated the source and follow-up tests ten
times, involving a total of 20 queries as follows: sort by
price (low to high); sort by price (high to low); sort by
price (low to high); In all of the (low to high) queries,
“160 results” were returned, and in all of the (high to low)
queries, “851, 077 results” were returned. This means that
the inconsistency was not caused by the dynamic nature
of the website. Furthermore, we repeated these queries on
different days, obtaining similar results. This means that
the inconsistency was not caused by the use of temporary,
cached data, or by any similar mechanism in which the
server might simply return the same result for the same
query without recalculation.

In addition to the total counts, we further found
that the result counts for subgroups could also be
inconsistent. For example, when searching for “women”
in www.target.com, the counts of four size groups were
inconsistent: the “woman” group (5, 746 vs 5, 737); the
“juniors” group (1, 977 vs 1, 982); the “plus” group (990 vs
984); and the “maternity” group (509 vs 510), as shown
in Fig. 3c. We repeated these tests multiple times, always
obtaining the same result, which means that the MR
violation was not caused by data updates in the website.

5.3.1.2 Discussion: We reiterate that, in this paper,
all reported inconsistencies were repeatable at the time of
the experiment, thus excluding the possibility that the MR
violation was caused by data updates on the server side.

One may argue that some websites might only return
approximate results and, therefore, imprecision should
be allowed. In the case of the Amazon failure, it is also
possible that different search or approximation algorithms
were used for the sorting criteria “low to high” and “high
to low.” Third-party components running on different
servers might have also been involved, thus causing the
inconsistency of the search results shown in Figs. 3a and
3b. Without further knowledge of the system design,
we are unable to confirm the cause of the failure, but
developers who know more about the system design
should be able to find the root cause, and rectify the
problem. Readers who are interested in the validity of MR
use for verification, validation, and quality assessment of

www.sears.com
www.amazon.com
www.target.com

11

(a) A source query: search for “women dress” in www.amazon.com, sorted by price (low to high)—160 “most
relevant” results.

(b) A follow-up query: search for “women dress” in www.amazon.com, sorted by price (high to low)—851, 077
“most relevant” results.

(c) Inconsistent results identified by comparing the source (left) and follow-up (right) outputs using the MR, when
searching for “women” in www.target.com.

Fig. 3: Examples of Type 1 issue: failures detected in www.amazon.com and www.target.com using a metamorphic
relation.

Fig. 4: Example of Type 2 issue: Walmart can only display up to 1000 records.

search services are referred to the in-depth discussions
in our previous work [9], [38]. In this paper, however,
our perspective is from that of the users. After all, the
online systems are designed to satisfy the users’ needs,
and the users do not know the technical design details
of the systems—they only want to know whether the
system is suitable for their information needs. Consider
the example shown in Figs. 3a and 3b. This type of
inconsistency in counting the “most relevant” results

could confuse the users, probably failing to meet their
expectation and, hence, failing the validation.

Nevertheless, the users are now in a better position
to decide what to do next. This is because the MR yielded
useful information from comparing the follow-up output
(Fig. 3b) with the source output (Fig. 3a), and hence the
users can better understand how Amazon works—they
may immediately realize that different sorting criteria
have a direct impact on the search results. The users can

12

T
A

B
L

E
2:

R
es

u
lt

s
o

f
ex

p
er

im
en

ts
(c

o
n

ti
n

u
ed

o
n

n
ex

t
p

ag
e)

.

1
2

3
4

5
6

7

W
eb

si
te

C
at

eg
or

y
Ty

pe
 1

co
un

t c
on

si
st

en
cy

Ty
pe

 2
co

m
pl

et
en

es
s

of
 re

su
lts

Ty
pe

 3
no

 s
ep

ar
at

e
se

ct
io

ns
Ty

pe
 4

sa
m

e
pr

ic
e

re
ve

rs
e

Ty
pe

 5
di

ffe
re

nt
 p

ric
es

re

ve
rs

e
1

w
w

w
.b

at
ha

nd
bo

dy
w

or
ks

.c
om

bo
dy

 c
ar

e
re

ta
ile

r
✓

✓
✓

x
✓

2
w

w
w

.a
ut

ot
ra

de
r.c

om
ca

r s
al

es
✓

✓
x

x
✓

3
w
w
w
.c
ar
fa
x.
co
m

ca
r s

al
es

✓
x

x
x

✓

4
w

w
w

.c
ar

gu
ru

s.
co

m
ca

r s
al

es
✓

x
x

x
✓

5
w
w
w
.c
ar
m
ax
.c
om

ca
r s

al
es

✓
✓

✓
x

✓

6
w

w
w

.c
ar

s.
co

m
ca

r s
al

es
✓

x
x

x
✓

7
w
w
w
.c
ar
sd
ire

ct
.c
om

ca
r s

al
es

✓
x

x
x

x
8

w
w

w
.k

bb
.c

om
ca

r s
al

es
✓

x
x

x
✓

9
w
w
w
.th

ec
ar
co
nn

ec
tio

n.
co
m

ca
r s

al
es

✓
✓

x
x

✓

10
w

w
w

.b
es

tb
uy

.c
om

co
ns

um
er

 e
le

ct
ro

ni
cs

 re
ta

ile
r

✓
✓

✓
x

✓

11
w

w
w

.c
ur

ry
s.

co
.u

k
co

ns
um

er
 e

le
ct

ro
ni

cs
 re

ta
ile

r
✓

✓
✓

x
✓

12
w

w
w

.a
m

az
on

.c
om

de
pa

rtm
en

t r
et

ai
le

r
x

x
x

x
x

13
w

w
w

.c
os

tc
o.

co
m

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
✓

14
w

w
w

.h
sn

.c
om

de
pa

rt
m

en
t r

et
ai

le
r

✓
✓

✓
✓

✓

15
w

w
w

.jc
pe

nn
ey

.c
om

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
✓

16
w

w
w

.jo
hn

le
w

is
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

✓

17
w

w
w

.jo
yb

uy
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

x
18

w
w

w
.k

oh
ls

.c
om

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
x

19
w

w
w

.ll
be

an
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

x
20

w
w

w
.m

ac
ys

.c
om

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
x

21
w

w
w

.o
ve

rs
to

ck
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
x

✓
x

x
22

w
w

w
.q

vc
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

✓

23
w

w
w

.s
ea

rs
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
x

✓
x

✓

24
w

w
w

.ta
rg

et
.c

om
de

pa
rtm

en
t r

et
ai

le
r

x
x

✓
x

✓

25
w

w
w

.v
er

y.
co

.u
k

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
x

26
w

w
w

.w
al

m
ar

t.c
om

de
pa

rtm
en

t r
et

ai
le

r
x

x
✓

x
✓

27
w

w
w

.w
ay

fa
ir.

co
m

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
x

28
be

df
or

df
ai

r.b
la

ir.
co

m
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

x
29

sh
op

.n
or

ds
tro

m
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

x
30

st
or

e.
ni

ke
.c

om
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

x
31

w
w

w
.a

so
s.

co
m

de
pa

rt
m

en
t r

et
ai

le
r

✓
✓

✓
✓

✓

32
w

w
w

.h
m

.c
om

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
✓

33
w

w
w

.n
ei

m
an

m
ar

cu
s.

co
m

de
pa

rtm
en

t r
et

ai
le

r
✓

✓
✓

x
✓

34
w

w
w

.n
ex

t.c
o.

uk
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

✓

35
w

w
w

.z
al

an
do

.c
o.

uk
de

pa
rtm

en
t r

et
ai

le
r

✓
✓

✓
x

✓

13

T
A

B
L

E
2:

R
es

u
lt

s
o

f
ex

p
er

im
en

ts
(c

o
n

ti
n

u
ed

).

1
2

3
4

5
6

7

W
eb

si
te

C
at

eg
or

y
Ty

pe
 1

co
un

t c
on

si
st

en
cy

Ty
pe

 2
co

m
pl

et
en

es
s

of
 re

su
lts

Ty
pe

 3
no

 s
ep

ar
at

e
se

ct
io

ns
Ty

pe
 4

sa
m

e
pr

ic
e

re
ve

rs
e

Ty
pe

 5
di

ffe
re

nt
 p

ric
es

re

ve
rs

e
36

w
w

w
.o

ca
do

.c
om

gr
oc

er
ie

s
✓

✓
x

x
✓

37
w

w
w

.s
ai

ns
bu

ry
s.

co
.u

k
gr

oc
er

ie
s

✓
✓

✓
x

✓

38
w

w
w

.te
sc

o.
co

m
gr

oc
er

ie
s

✓
✓

✓
✓

✓

39
w

w
w

.h
ab

ita
t.c

o.
uk

ho
m

e
im

pr
ov

em
en

t
✓

✓
✓

x
✓

40
w

w
w

.h
om

ed
ep

ot
.c

om
ho

m
e

im
pr

ov
em

en
t

✓
x

✓
x

x
41

w
w

w
.w

illi
am

s-
so

no
m

a.
co

m
ho

m
e

im
pr

ov
em

en
t

✓
✓

x
x

✓

42
w

w
w

.s
ta

pl
es

.c
om

of
fic

e
su

pp
ly

✓
x

x
x

✓

43
w

w
w

.v
ik

in
g-

di
re

ct
.c

o.
uk

of
fic

e
su

pp
ly

✓
✓

x
x

✓

44
m

ed
ic

he
st

.c
om

on
lin

e
ph

ar
m

ac
y

✓
✓

✓
x

x
45

m
ex

m
ed

s4
yo

u.
co

m
on

lin
e

ph
ar

m
ac

y
✓

✓
✓

✓
✓

46
w

el
l.c

a
on

lin
e

ph
ar

m
ac

y
✓

✓
x

x
✓

47
w

w
w

.c
in

co
tta

ch
em

is
t.c

om
.a

u
on

lin
e

ph
ar

m
ac

y
✓

✓
✓

x
x

48
w

w
w

.c
vs

.c
om

on
lin

e
ph

ar
m

ac
y

✓
✓

✓
x

✓

49
w

w
w

.e
ph

ar
m

ac
y.

co
m

.a
u

on
lin

e
ph

ar
m

ac
y

✓
✓

✓
x

✓

50
w

w
w

.m
ed

sh
op

ex
pr

es
s.

co
m

on
lin

e
ph

ar
m

ac
y

✓
✓

✓
x

x
51

w
w

w
.n

et
ph

ar
m

ac
y.

co
.n

z
on

lin
e

ph
ar

m
ac

y
✓

✓
✓

x
✓

52
w

w
w

.p
ha

rm
ac

y2
u.

co
.u

k
on

lin
e

ph
ar

m
ac

y
✓

✓
✓

N
/A

✓

53
w

w
w

.p
ha

rm
co

m
.c

om
on

lin
e

ph
ar

m
ac

y
✓

✓
✓

x
✓

54
w

w
w

.w
al

gr
ee

ns
.c

om
on

lin
e

ph
ar

m
ac

y
✓

✓
x

x
✓

55
ho

tp
ad

s.
co

m
on

lin
e

re
al

es
ta

te
✓

x
✓

x
x

56
w

w
w

.a
pa

rtm
en

tg
ui

de
.c

om
on

lin
e

re
al

es
ta

te
✓

✓
✓

x
x

57
w

w
w

.a
pa

rtm
en

ts
.c

om
on

lin
e

re
al

es
ta

te
x

x
x

x
✓

58
w

w
w

.h
om

es
.c

om
on

lin
e

re
al

es
ta

te
✓

✓
✓

x
✓

59
w

w
w

.re
al

to
r.c

om
on

lin
e

re
al

es
ta

te
✓

✓
✓

x
✓

60
w

w
w

.re
df

in
.c

om
on

lin
e

re
al

es
ta

te
✓

x
✓

✓
✓

61
w

w
w

.re
m

ax
.c

om
on

lin
e

re
al

es
ta

te
✓

✓
✓

x
✓

62
w

w
w

.re
nt

.c
om

on
lin

e
re

al
es

ta
te

✓
✓

x
x

x
63

w
w

w
.tr

ul
ia

.c
om

on
lin

e
re

al
es

ta
te

✓
x

✓
x

✓

64
w

w
w

.z
illo

w
.c

om
on

lin
e

re
al

es
ta

te
x

x
✓

x
✓

65
w

w
w

.z
ip

re
al

ty
.c

om
on

lin
e

re
al

es
ta

te
✓

✓
✓

x
✓

In
co

ns
is

te
nc

y
ra

te
 (%

)
7.

69
26

.1
5

24
.6

2
90

.7
7

(=
59

/6
5)

29
.2

3

14

now decide to accept the 160 “most relevant” results in
the source output, if they prefer fewer results; or the
851, 077 “most relevant” results in the follow-up output,
if they prefer a larger dataset.

From the users’ perspective, the use of the MR has
helped to improve the system’s appropriateness recogniz-
ability (“degree to which users can recognize whether a
product or system is appropriate for their needs”) and
learnability (“degree to which a product or system can
be used by specified users to achieve specified goals of
learning to use the product or system with effectiveness,
efficiency, freedom from risk and satisfaction in a specified
context of use”) [63]. Both appropriateness recognizability
and learnability are software quality subcharacteristics
under the software quality characteristic of usability in
ISO/IEC 25010 [63]. For users who need accurate and
stable results, such as for market research, the MR allows
them to quickly recognize that Amazon might not meet
their information needs, and hence they might decide to
consult other websites.

Finally, the “degree of precision” is a critical notion in
the definition of “functional correctness” [63]. The results
presented in column #3 of Table 2 mean that the MR
can help users to distinguish between high-precision and
low-precision outputs.

5.3.2 Type 2 Issue: Completeness of Search Results

(Functional Completeness, Capacity, Usability)

Another characteristic of MRPriceSort is that the source and
follow-up outputs “should return exactly the same set of
results.” Some websites failed to do this and, therefore,
violated the MR. These websites only returned partial
results (rather than a complete set of results) when the
number of results was large, and different partial results
were returned when sorted in ascending and descending
orders.

Incompleteness of the search results may not necessar-
ily be related to the functional correctness, but is related
to the functional completeness, capacity, and usability of the
websites under test, where functional completeness refers
to the “degree to which the set of functions covers all
the specified tasks and user objectives”; capacity refers to
the “degree to which the maximum limits of a product
or system parameter meet requirements”; and usability
refers to the “degree to which a product or system can
be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified
context of use” [63].

5.3.2.1 Observations: Column #4 of Table 2 shows
that, of the 65 websites under test, 17 (26.15%) failed
to provide complete results, which caused violations of
MRPriceSort. For example, we visited the Walmart website
(www.walmart.com) and entered the query term women

to search. Under “Sort,” we selected “Price: low to high.”
In the search results page, the system stated:

Showing results sorted by both Relevance and
Price: low to high.
Sort results by Price: low to high only.

We clicked on the link “Sort results by Price: low to
high only” to sort by price only, and the system reported
that “223, 534 results” were found. However, when we
jumped to the last search results page (which was the
25th page, where each page contained 40 results), we
could only find a total of 1000 results, as shown in Fig. 4.
In other words, the results list was truncated to show
only the top 1000 items. The ascending and descending
lists thus truncated, of course, contained different items,
hence violating MRPriceSort. The 17 failed websites imposed
different threshold values (the maximum sizes of the
results lists) when applying truncation, ranging from a
few hundred items to tens of thousands of items.

5.3.2.2 Discussion: Truncating the results list could
be a valid design decision based on practical considera-
tions. It is a strategy adopted by many web search engines,
including Google [64], and this practice could be justified
by the observation that search engine users are normally
only interested in the top few results [9]. Nevertheless,
there are still criticisms of this practice because, according
to user behavior studies at Blekko [64], “there are people
who look deep into the results.”

It should be noted that the 65 websites under study
were specific commercial sites rather than generic web
search engines, and that in our experiments the results
were ranked by price rather than by relevance—users
might not be interested in web pages of lower relevance,
but they may be extremely interested in products of lower
or higher prices. The argument that “users are normally
only interested in the top few results” would only be
valid when sorting by relevance: Here the argument is
invalid, as we were sorting by price. The 17 websites’
practice of excluding higher (or lower) priced items from
their search results is therefore misleading.

The problem of these 17 websites can be demonstrated
using the example in Fig. 4: When sorting by price,
Walmart only shows the top 1000 of the 223, 534 products.
This means that the users can only see the 1000 least
expensive products (when sorted in ascending order) or
the 1000 most expensive products (when in descending
order). The vast majority of the products (223, 534 −
1000 − 1000 = 221, 534) in the median price range are
hidden. A crucial deficiency in the 17 websites’ functional
completeness and capacity has therefore been revealed.

A further usability problem is that the users can be
easily misled to consider the last displayed item as the
most (or least) expensive product, unaware of the fact
that there are actually far more available products not
being displayed.

Using this MR, users will find that the top results
in an ascending list are completely different from the
bottom results in a descending list, which may prompt
them to further investigate the results pages, where they
would find that both lists are actually incomplete. The
users could then decide whether they should change
their search or browsing strategy. They may, for example,
perform an additional operation, such as “Refine Price”
(as shown in Fig. 4), which allows users to find products

www.walmart.com

15

TABLE 3: Additional backup query terms for studies
conducted in Sections 5.3.3, 5.3.4, and 5.3.5.

Category 1st backup query 2nd backup query 3rd backup query
body care retailer soap

car sales
BMW 328i
(zip:11223)

BMW 3 series Gran Turismo
(zip:11223)

BMW 3-series
(zip:11223)

consumer electronics retailer laptop
department retailer women dress percolator
groceries oil
home improvement cement tile
office supply Dell all in one printer
online pharmacy zinc
online realestate zip:11223

within a specific price range. It should be noted, however,
that “Refine Price” could alleviate, but not completely
solve the problem because, for example, even the minimal
price range in the Walmart website could easily contain
more than 2000 results, and yet the system could not
show more than 1000. To further alleviate this problem,
the users could apply more filters, such as restricting the
product types or departments.

5.3.3 Type 3 Issue: Separate Sections (Functional Com-

pleteness, Functional Appropriateness)

A further characteristic of MRPriceSort is that the source
and follow-up outputs must be “in reverse order.” Some
websites failed to meet this requirement because they
inserted separate sections into the results lists that
violated the ascending and descending orders. More
specifically, we found that some items were always at
the beginning or the end of the results lists, regardless
of their prices. Therefore, we say that these items
belong to separate sections, independent of price sorting.
Consequently, users could not directly find the lowest or
highest price by just looking at the top or the bottom of
the “sorted” list—additional effort would be needed for
the users to identify which part of the results list was
sorted and which part was not.

The insertion of the “separate sections” is normally
a design decision and, therefore, may not necessarily
imply a bug. However, this does adversely affect the
functional completeness and functional appropriateness of the
websites, where the concept of functional completeness
was introduced in Section 5.3.2, and functional appro-
priateness refers to the “degree to which the functions
facilitate the accomplishment of specified tasks and
objectives”—an example is that “a user is only presented
with the necessary steps to complete a task, excluding
any unnecessary steps” [63].

5.3.3.1 Additional experimental settings: In Sec-
tions 5.3.3, 5.3.4, and 5.3.5, we further examine the actual
contents of the results lists. To be fair to all of the websites
under study, we wanted to avoid the “truncation” effect
discussed in Section 5.3.2. Therefore, we manually created
an additional set of backup query terms, as shown in
Table 3. If the original query terms from Table 1 resulted
in truncation of the results list, a backup query term from
Table 3 was used instead, with further constraints also
possibly added. The detailed algorithm, which effectively

Begin
Issue a source query using Table 1.
If the results list has been truncated then

Issue a source query using the “1st backup query” in Table 3. For
websites where the “1st backup query” is invalid, use the “2nd
backup query.” For websites where both the “1st backup query” and
the “2nd backup query” are invalid, use the “3rd backup query.”

If the results list has been truncated then
Issue the source query again together with a filter, such as choosing a

color, a size group, a department, or a category (different websites
offer different filters).

EndIf
EndIf
End

Fig. 5: Procedure for generating a source query and
avoiding result truncations. This procedure was followed
in the studies reported on in Sections 5.3.3, 5.3.4, and
5.3.5.

eliminated the truncation effect, is shown in Fig. 5.
5.3.3.2 Observations: Column #5 of Table 2 is

titled “no separate sections.” A cross (×) indicates the
occurrence of separate section(s) that caused an MRPriceSort

violation. Of the 65 websites under test, 16 (24.62%)
yielded separate sections that violated MRPriceSort.

5.3.3.3 Discussion: Some websites tended to put
featured or promotional products at the beginning of the
results list and/or leave low priority items (such as those
out of stock) to the end of the list, regardless of the sorting
criteria. Although this strategy could provide benefits to
some vendors or customers, it should be noted, however,
that this practice resulted in a functional deficiency: The
system could not generate a truly sorted list of results
according to user criteria.

From the perspective of user experience, having sepa-
rate sections can be both good and bad: It is good, for
example, for users who are interested in promotions, or
not interested in unavailable products; it is bad, however,
for users who want to obtain a list of items sorted by price,
regardless of the promotional or availability status of the
items (for example, researchers doing market studies, or
consumers making general price comparisons).

From the users’ perspective, by issuing a follow-up
query to sort the results the other way round, they should
be able to more easily identify the separate sections—
because these sections appear in the same locations
regardless of the search criteria.

To improve user experience and software quality in
terms of functional completeness and functional appropri-
ateness, the website developers may consider providing
an additional option for users. Such an option should
allow the generation of a truly sorted list according to
user criteria without separate sections.

5.3.4 Type 4 Issue: Same Price (Functional Complete-

ness, Usability)

In Sections 5.3.4 and 5.3.5, we further examine the
actual items contained in each search results list. A
“search results list” contains multiple “search results
pages.” Some websites can return a very large number
of search results, to be displayed in a large number of

16

search results pages. To improve testing efficiency, we
decided to only check the first and last three search
results pages when comparing the actual contents of the
source and follow-up outputs. We used the websites’
default page lengths (such as 60 results per page—
different websites differed). Although this meant a
weakened testing criterion, nevertheless, where there is
no ambiguity, we still use MRPriceSort to denote the MR.

In MRPriceSort, a plausible requirement for a perfect search
function is that the order of the items having the same
price in the source output should be reversed in the
follow-up output. The majority of the websites under test
failed to meet this requirement as they listed items of
the same price in the same order in both the source and
follow-up outputs—this was probably a design decision
and, therefore, should not necessarily be considered
a fault. However, this practice adversely affects the
functional completeness and the usability of the websites,
as will be explained shortly.

5.3.4.1 Observations: Column #6 of Table 2 is titled
“same price reverse,” which means that the order of the
items with the same price in the source output should
be reversed in the follow-up output. A tick (X) indicates
that the website satisfied this requirement, and a cross
(×) indicates that it did not satisfy the requirement and,
hence, violated MRPriceSort. Of the 65 websites under test,
59 (90.77%) failed to satisfy this requirement. For the
remaining six websites, one is labeled “N/A” (because
its search results did not involve items of the same price),
and five satisfied the MR by faithfully reversing the order
of same-price items.

An example of a Type 4 issue that violated MRPriceSort

is shown in Fig. 6: When searching for “knife” in
http://www.williams-sonoma.com, and sorting the
results by price (low to high), the system listed the “KAI
for Williams Sonoma Paring Knife” ($7.95)
before the “KAI for Williams Sonoma Citrus

Knife” ($7.95) (Fig. 6a). The same order was followed
when the results were sorted by price (high to low)
(Fig. 6b). This was probably a result of the tie-break
mechanism of the system and, hence, should not
necessarily be considered a fault. However, there are
problems with this, explained as follows: In a large
commercial website, there can be thousands of products
with the same price. For example, the Walmart website
could not finish displaying all of its $19.99 products
within its limit of 1000 records, for the query term
“women.” In general, the higher an item is ranked
in the search results list, and the more frequently it
appears, the more visitors it will receive [65]. That is
why search engine optimization (SEO) is considered to be
one of the most critical Internet marketing strategies,
and vendors are extremely concerned about how their
products rank in a search results list [66]. In our example,
however, the tie-break mechanism (the reason why
the “KAI for Williams Sonoma Paring Knife”
always ranked higher than the “KAI for Williams

Sonoma Citrus Knife”) remains unknown to the

(a) Search for “knife” in www.williams-sonoma.com,
sorted by price (low to high).

(b) Search for “knife” in www.williams-sonoma.com,
sorted by price (high to low).

Fig. 6: An example of Type 4 issue that violated MRPriceSort:
The two $7.95 items were listed in the same order when
sorted by price (low to high) and (high to low).

users (including both the consumers who buy knives
and the vendors who sell them). This adversely affects
the appropriateness recognizability and learnability of the
system.

Another example of a Type 4 issue is given in Fig. 7,
which shows the Walmart website displaying $10 prod-
ucts in the same order in both the ascending and the
descending lists.

5.3.4.2 Discussion: Let A1, B2, C3, D4, E4,
F4, G5, H6, and I7 denote products whose prices
are $1, $2, $3, $4, $4, $4, $5, $6, and $7, respectively.
Suppose the SUT has a Type 4 issue and returns lists
ListA and ListD when sorting these items by price
in ascending and descending orders, respectively:
ListA = (A1, B2, C3, D4, E4, F4, G5, H6, I7),
ListD = (I7, H6, G5, D4, E4, F4, C3, B2, A1). When
examining each individual list separately, there is no
problem, but if they are checked against the MR, then
the following problems can be identified. First, the listing
favors D4, because D4 always appears first among
all the $4 products, regardless of how the products
are sorted. In contrast, F4 is treated unfairly because
it always ranks lower than D4 and E4. This is likely
to increase the visibility of D4 (that is, give a higher
exposure rate for customers to see D4) and decrease the
visibility of F4. Visibility is a critical concern for online
businesses. Worse than this, however, as explained in
Section 5.3.2, the system may truncate results lists, which
means that F4 has a higher chance than D4 of being

http://www.williams-sonoma.com

17

(a) Part of a search results page for $10 “women”
products, sorted by price (low to high).

(b) Part of a search results page for $10 “women”
products, sorted by price (high to low).

Fig. 7: An example of Type 4 issue at www.walmart.com:
The five $10 products in both ascending and descending
lists appeared in the same order.

truncated and never seen by customers, in both the
ascending and descending order lists. Furthermore, the
website’s rule for sorting same-price items is hidden
from users (both consumers and vendors), with no way
for the users to set their preferred sorting rule—this is a
functional deficiency.

The Type 4 issue may also be misleading when users
are performing certain tasks. For example, consider the
following scenario: A user requests the system to sort the
results in ascending order. She then browses the results
sequentially, seeing A1, B2, C3, D4. She stops at D4,
and requests the system to sort the results again, but in
descending order. She then browses the results in the new
list, also sequentially, and sees I7, H6, G5, D4. When she
reaches D4, she realizes that she has already visited this
item when the list was in ascending order, and therefore
concludes that she has already seen all of the results. She
thus discards the list. Here, the user has been misled: She
has never actually seen E4 or F4. This scenario shows
that the Type 4 issue may lead to user errors, which is a
major usability deficiency.

In general, the symmetry principle in social interactions
introduced in Section 4.4.4 requires that different vendors
should be treated fairly. The Type 4 issue violates this
principle as some products are disadvantaged in terms
of visibility. Our MR simply and explicitly asks the

users to compare the source and follow-up outputs, and
hence allows the users to discover this situation. Mistakes
like the one described in the preceding paragraph, can
therefore more easily be avoided. Using the MR, vendors
can also see that their products are advantaged or
disadvantaged in terms of ranking and visibility.

5.3.5 Type 5 Issue: Different Prices (Functional Correct-

ness, Usability)

While the Type 4 issue involved same-price items, the
Type 5 issue refers to the MRPriceSort violation involving
inconsistent sorting of different-price items. To study
this type of issue, we ignored the “separate sections”
discussed in Section 5.3.3 when testing the websites
against MRPriceSort.

It can be time consuming for users to identify incor-
rectly sorted items in a long results list; however, by
generating both the source and the follow-up outputs,
we found that out-of-order items could often be quickly
detected when comparing only the top and bottom few
results of the two lists. Two such examples are discussed
in the following.

Fig. 8 shows excerpts of a screenshot from
www.macys.com. The price sorting was erroneous,
which was detected when we found that the top result
(the AUD 9.43 product highlighted in the figure) 6 of
the ascending list did not appear at the bottom of the
descending list. This finding suggests that if users of this
website want to browse all products in a particular price
range, then they had better not use price sorting, because
it could be wrong: To achieve their goal, users could use
price filters instead of price sorting—here we are using
another MR under the symmetry pattern because the
activity of searching with a specified price range (price
filter) and the activity of browsing a segment of a list
sorted by price are theoretically equivalent.

An MR may also reveal the internal working mecha-
nisms of the website under test. For example, Fig. 9 shows
a Type 5 MR violation in www.amazon.com, detected by
comparing the top result (the $7.99 product in Fig. 9a)
of the ascending list with the bottom result (the $11.99
product in Fig. 9b) of the descending list. The MR was
violated as the original $7.99 product in the ascending
list was displayed as a $19.98 product in the descending
list (Fig. 9c) and, hence, appeared in the middle of the list.
A further investigation revealed that the item shown in
Figs. 9a and 9c actually represented a group of products
with different sizes for which the price ranged from $7.99
to $19.98—this was indicated by the phrase “See Size
Options” (shown in the screenshots). In the source query,
the user requested a sort by price (low to high), and the
system used the lower bound ($7.99) to represent the
entire group; in the follow-up query, the user requested
sorting by price (high to low), and the system used
the upper bound ($19.98) to represent the entire group.

6. The prices were shown in AUD as we visited this website from
Australia.

www.macys.com
www.amazon.com

18

Fig. 8: Part of a results list wrongly sorted by price (high
to low) at www.macys.com.

(a) Search for “perco-
lator,” sorted by price
(low to high), first
page, first item: $7.99.

(b) Search for “per-
colator,” sorted by
price (high to low),
last page, last item:
$11.99.

(c) The original $7.99
item appeared in the
middle of the de-
scending list with a
new price $19.98.

Fig. 9: The MR revealed how products were priced in
www.amazon.com.

This example shows that the MR allowed the user
to understand how the Amazon system worked, and
hence could adjust his/her search strategy accordingly.

This example also revealed a usability problem of the
website, as most users might not realize that the displayed
price was only an upper or lower bound of a product
group—in this situation, developers should consider
displaying a price range rather than a single price.

The test results are summarized in column #7 of Table 2:
Type 5 MR violations have been revealed in a total of 19
(29.23%) websites.

5.4 Validity and User Experience

The connection between our approach and usability/user
experience has been further validated through the fol-
lowing university laboratory exercise: A university post-
graduate course in software engineering had a total
of 36 students. These students were all asked to visit
www.carsdirect.com and find both (i) the most expensive
and (ii) the least expensive used cars satisfying the
following criteria: Make: BMW; Model: 3-Series; Zipcode:
11223; and Distance (from zipcode area): 50 miles. The
task was performed in a computer laboratory, with no
time limitation set.

To our great surprise, all 36 students gave wrong
answers. The majority (32 students 7) reported $2495 to be
the minimum price, because they had sorted the cars by
price, from low to high, and then picked the first-ranked
result (Fig. 10a). Similarly, these 32 students reported
$38, 995 to be the highest price, using the high to low
listing (Fig. 10c). These answers were wrong because
the lowest price was actually $1995 (Fig. 10b), and the
highest price was actually $51, 175 (Fig. 10d).

After this task, we taught the students the following
MR concepts: The first MR was MRPriceSort. The second
MR also belongs to the symmetry MRP, and can be stated
as follows: Suppose that we search a system for the most
(or least) expensive product. Suppose the system returns
product p with a price c. We can then issue a new query
using the same query term together with a constraint
price > c (or price < c). A correct system should return
an empty set.

Using the first MR, the students were able to improve
their search results by looking at both the top and
the bottom of both the ascending and the descending
results lists to identify the lowest/highest prices. Using
the second MR, the students were able to improve
their results by recursively applying the price filter. For
example, if the system returned $38, 995 ($2495) as the
most (least) expensive car then the students were able to
issue a follow-up query by setting the price filter to be
greater than $38, 995 (or less than $2495). This process
was repeated until no more results could be returned.
Using either MR, the students were able to improve their
search results.

The 100% error rate of the 36 computer science
students finding the target cars, and the subsequent
100% improvement using MRs, demonstrate the validity

7. The remaining four students reported other results that were also
incorrect.

www.carsdirect.com

19

(a) Sorted by price (low to high), first page, first item—taken
by most students as the cheapest car in the results list.

(b) This was the actual car with the lowest price in the results
list.

(c) Sorted by price (high to low), first page, first item—taken
by most students as the most expensive car in the results list.

(d) This was the actual car with the highest price in the results
list.

Fig. 10: Students failed to find the target cars in
www.carsdirect.com.

and efficiency of our approach for user experience
improvement.

5.5 Summary

In contrast to the existing software testing literature,
where large numbers of test cases are used by developers
or testers to detect software issues, in this section we
have shown how users can detect software issues using
just one MR and two test cases. The MR studied is an
instance of the combination of the symmetry MRP and
the “change direction” MRIP. Our approach has revealed
five types of issues in major websites. These issues
include both software faults and other problems related
to the functional correctness, functional completeness,
functional appropriateness, and usability of the websites.
The 65 websites under study are representative of large
online businesses, and are listed in major lists of top sites
according to popularity and revenue rankings.

Most importantly, based on the concept of the symme-
try MRP, we have presented countermeasures that users
can use to better achieve their objectives when dealing
with these commercial websites whose internal working

mechanisms are hidden. The validity of our method has
also been confirmed through an exercise involving end
users.

6 CASE STUDY OF GOOGLE MAPS NAVIGA-
TION

In this section, we report on a case study of applying the
symmetry MRP and the “change direction” MRIP to a
very different type of system: navigation software.

Navigation software attempts to generate an optimal
route from an origin to a destination, conforming to
the constraints given by the user. The route includes
directions for the user to reach the destination. Not
only is navigation software one of the most popular
Internet applications, but it is actually the number one
smart phone application, installed on more than 50%,
globally [34]. Navigation systems are mission critical
because errors in navigation may result in accidents,
especially when such systems are used to guide self-
driving cars, delivery robots, or autonomous drones.

Although navigation systems are both popular and
critical, they are also very difficult to test because of the
oracle problem. It is also challenging for a user to judge
whether or not a route generated by the system is the best
solution. In this section, we report on using the Google
Maps web application at maps.google.com to show how
our method can help users and testers. Google Maps is
by far the most popular mapping service [34].

6.1 The Metamorphic Relation

In the context of navigation software, a “direction”
element can be naturally identified as the direction from
the origin to the destination. Therefore, the “change
direction” MRIP can be applied in combination with
the symmetry MRP to define the following concrete MR:
Swapping the origin and destination should return a route
with a similar cost (provided that no one-way restrictions are
involved in the routes). In this study, the cost of a route
is in terms of distance or time (either similar distances
or similar times will satisfy the MR). The “time” is the
theoretical travel time without considering real-time data
such as traffic jams. Financial costs are also not considered.
It should be noted that this MR cannot be interpreted in
any absolute sense, because special road conditions may
exist. This MR is similar to the one for the shortest path
problem discussed in Section 2.

6.2 Results

To more effectively avoid one-way restrictions in the
routes, we selected walking, instead of driving, naviga-
tion to test in our experiments. This is because, according
to our observations, there are far fewer one-way roads for
pedestrians than for cars. All test results were manually
validated. Readers who are interested in the testing
of driving navigation without one-way restrictions are
referred to our previous work [34], where four MRs

maps.google.com

20

were identified to test driving navigation, three of which
belong to the symmetry MRP.

In the present research, our experiments were con-
ducted as follows: We selected London and Hong Kong
as the subject cities. For both of these cities, we generated
1000 pairs of valid addresses. For each pair of addresses
(A, B), we ran Google Maps to generate walking
navigation from A to B and then from B to A. The
distances and time durations of the returned routes were
then compared. In all experiments, we used the default
settings in Google Maps. As mentioned previously, to
improve accuracy and make the experiments repeatable,
no real-time traffic data were used. To avoid personalized
results, we did not log into any online accounts, including
those for Google.

For London, 8% and 42% of the tests returned different
distances and durations, respectively. The corresponding
figures for Hong Kong were 16% and 72%. While many
of the differences were minor, we did find notable bad
cases. Two such examples are given in Fig. 11.

Fig. 11a shows that, given a starting point (Portcullis
House) and a destination (67 Bridge St), Google Maps
returned a route with a distance of “3 ft”; but swapping
the origin and destination yielded a route of “0.5” miles
(Fig. 11b) 8. From the users’ perspective, such a dramatic
difference is unacceptable. Worse, as shown in Fig. 11b,
“This route has restricted usage or includes private roads.”
As another example, Figs. 11c 9 and 11d 10 show a similar
bad case in Hong Kong. We inspected all of the returned
routes to ensure that they did not contain any one-way
restrictions for pedestrians.

6.3 Implications

We have shown that, using a “change direction” MR
(the functionality for which can be readily accessed by

simply clicking on the icon shown on the screen), users
and testers can easily identify bad cases such as those
shown in Figs. 11b and 11d. Because these routes entail
unreasonably and unnecessarily longer distances and
durations compared with their symmetric counterparts
(Figs. 11a and 11c), the users should use the routes given
by Figs. 11a and 11c, regardless of the direction of travel.
For example, if the users want to walk from 67 Bridge
St to Portcullis House, they should obviously follow the
route given by Fig. 11a (3 feet), albeit in a reverse order,
instead of the route given by Fig. 11b (0.5 miles).

8. This inconsistency was repeatable for at least half a year from late
2017 to early 2018, when the issue was rectified around April 2018.

9. URL: https://www.google.com/maps/dir/Mei+
Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+
Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/
22.3370167,114.1412827/@22.3374341,114.1379989,17z/
data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:
0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2

10. URL: https://www.google.com/maps/dir/
22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+
7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+
Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=
!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:
0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2

(a) Walking navigation in London: 3 ft, 1 min.

(b) Bad case detected: MR violation after reversing
origin and destination: 0.5 miles, 10 min.

(c) Walking navigation in Hong Kong: 250 m, 3 min.

(d) Bad case detected: MR violation after reversing
origin and destination: 750 m, 10 min.

Fig. 11: A “change direction” MR revealed Google Maps
navigation defects in London (a&b) and Hong Kong
(c&d).

https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/22.3370167,114.1412827/@22.3374341,114.1379989,17z/data=!3m1!4b1!4m9!4m8!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!1m0!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2
https://www.google.com/maps/dir/22.3370167,114.1412827/Mei+Foo+Sun+Chuen+Stage+7+-+1-3+Mount+Sterling+Mall,+1-3+Mount+Sterling+Mall,+Hong+Kong/@22.3385225,114.1375424,17z/data=!3m1!4b1!4m9!4m8!1m0!1m5!1m1!1s0x3403f8ab6af1cdfb:0x5d48e5358a826c08!2m2!1d114.1393603!2d22.3375777!3e2

21

(a) The same bad case as in Fig. 11b but with a slightly
different starting point.

(b) The bad case was detected and the shortcut was
found by swapping the origin and destination, using the

same “change direction” MR.

Fig. 12: Detecting the same bad case in another route, in
London.

It could be argued that, because the origin and the
destination are only three feet apart in the bad case
shown in Fig. 11b, it should be so obvious to a user
that comparing with Fig. 11a should be unnecessary.
There are, however, two points that should be noted:
First, navigation software is increasingly used not only
by humans, but also by autonomous machinery, such as
delivery robots [67], which do not have the common sense
of humans, and will strictly follow the directions given
by the control systems. Our MR, if adopted by the control
systems, would enable the robots to find an alternative
and better solution for its routing tasks, without the need
for changing the underlying navigation software. Second,
bad cases similar to that of Fig. 11b can appear in other
routes, such as the one shown in Fig. 12a, where we
slightly moved the starting point to be a little farther
away from the destination point (and hence the users
might not be able to so easily realize the existence of a
shorter route). Fig. 12b shows that the “change direction”
MR can help users to identify the existence of the shorter
route, which is a better solution.

7 CASE STUDY OF LOCATION-BASED

SEARCH

In the definition of the symmetry MRP (Definition 2),
“the system appears the same” does not mean that the sys-
tem’s source and follow-up outputs must be equivalent.
For example, consider the following symmetry of the
physical world: In an open space, all other things being
equal, if person A can see person B then person B should
also be able to see person A. To map this symmetry to
the virtual world, we can have the following MR:

MRSeeEachOther: In some software systems, users can
reasonably expect that if they can find B from A then
they can also find A from B, where A and B denote two
entities in the system.

MRSeeEachOther is an instance of both the symmetry
MRP and the “change direction” MRIP—the “direction”
element is the direction “look from A to B” or “look from
B to A.” In MRSeeEachOther, the source output is “B” and
the follow-up output is “A”—these two outputs are not
equivalent, but they provide a perspective from which
the users can understand that the system works in the
same way.

Users can expect many computer systems to demon-
strate the symmetry property MRSeeEachOther. For example,
a typical student management system allows users to
find all the students of a given professor; it also allows
the users to find all the professors of a given student.
Here, A is the professor and B is the student.

In this section, we examine whether or not MRSeeEachOther

is satisfied in a location-based search. To do this, we
conducted a case study using the “search and find
nearby places” feature of Google Maps (see Fig. 13).
Failures to satisfy MRSeeEachOther do not necessarily imply
a software fault. However, they do allow the users to
better understand how the system works and, hence,
to use the system in a smarter way to better meet their
information needs.

7.1 Searching for Cafes in London and Hong Kong

using Google Maps

The number of location-based online searches has grown
dramatically in recent years. It has been reported that one
in five searches is now location-related [68]. According
to Google, location targeting helps businesses to focus
their advertising on the areas where they will find the
right customers, and restrict it in areas where they will
not [69].

In this series of experiments, we followed the procedure
given in Fig. 13, which was taken from the Google
Maps online help page. First, we set the current location
to a Hilton hotel in a city (when there were multiple
Hilton hotels, we randomly chose one). Then, from the
current location, we searched for “nearby” cafes, using
[cafe] as the query term. Let A = {a1, a2, . . . , an}
denote the set of search results (cafes near the Hilton

22

Fig. 13: Search and find nearby places: A screenshot taken
from the Google Maps online help page.

hotel) 11. Next, for each ai ∈ A, we set the current location
to ai and then searched for “nearby” cafes again. Let
Bi = {bi,1, bi,2, . . . , bi,ni

} denote the set of these search
results, that is, the set of cafes near ai. As a result, we
obtained the following pairs of cafes for each subject city:
(a1, b1,1), (a1, b1,2), . . . , (a1, b1,n1

),
(a2, b2,1), (a2, b2,2), . . . , (a2, b2,n2

),
. . . ,

(an, bn,1), (an, bn,2), . . . , (an, bn,nn
).

We selected 100 pairs of cafes for London and another
100 pairs for Hong Kong. For each pair of cafes (a, b), we
set the current location to b and then searched for “nearby”
cafes to see whether a was included in the results list. If
the answer was yes, then a and b could find each other;
if the answer was no, then a could find b, but b could
not find a, that is, MRSeeEachOther was violated. We found
that the MR violation rates for London and Hong Kong
were 27% and 5%, respectively. These figures mean that
the location-based search service offered by Google Maps
was not really symmetric. For example, when the current
location was at St. James Cafe (41 Pall Mall, London)
we were able to find a “nearby” cafe named Rainforest
Cafe (20 Shaftesbury Ave, London); however, at the latter
location we were unable to find St. James Cafe.

We next investigate how our findings can help users
with their information needs, by making use of the
asymmetry of the system.

11. Google Maps can return “nearby” places that are located far
away in different countries. In all experiments of location-based search,
we inspected the search results to exclude such extreme cases from
consideration.

b1

b3

a

b2

Fig. 14: Asymmetry in the Google Maps location-based
search: (i) a can see b3, but b3 cannot see a; (ii) the
“obstacle” only blocks the view of b3 but not the views
of b1 and b2—b1 and b2 can be very close to b3 but, for
some unknown reason, their views are not blocked.

7.2 Making Use of Asymmetry

A high violation rate of the symmetry property
MRSeeEachOther indicates that the Google Maps location-
based search is asymmetric: When a considers b to be
a nearby entity, b may or may not consider a to be a
nearby entity; in other words, “nearby” is not solely
decided by distance.

This situation is depicted in Fig. 14: b1, b2, and b3 are
close to a; a can see b1, b2, and b3; b1 and b2 can also see
a; however, for some unknown reason (represented by
an “obstacle”), b3 cannot see a. We do not know the exact
nature of the “obstacle”—it could be a design decision
in the Google Maps search algorithm, or an error in the
online data/tags, or a fault in the implementation—from
the users’ perspective, we simply call it an obstacle.

Now, the question is: Can we help the users, whose
current location is at b3, to see a? By referring to Fig. 14,
we can design two solutions that can be readily adopted.
Both solutions make use of the asymmetry of the system:
The first solution is to slightly change the current location;
and the second solution is to get rid of the obstacle using
a concept of “parallel universes.”

7.2.1 Changing the Current Location

In the physical world, when two people stand next to
each other, their views should be similar. That is, they
see similar things, so the world appears the same to both
of them. 12

Our findings revealed that the above physical rule does
not hold in the virtual world of Google Maps. In Fig. 14,
the physical distance between b1 and b3, or between b2
and b3, could be very small. (It should be noted that the
“is close to” relation is not transitive. Therefore, in theory,
the physical distance between b1 and b3, or between b2
and b3, may or may not be “very small.” However, in
practice, it is very possible for some of b1, b2, and b3 to be
close to each other. In our experiments, we found many

12. This symmetry is a result of the properties of light propagation,
such as the laws of rectilinear propagation (the property of light
travelling in a straight line in a homogeneous transparent medium),
reflection, refraction, and independent propagation [70], [71].

23

cases where the distance was indeed very small. Our
current discussion is with regard to this kind of situation.)
It is unclear why the obstacle only blocks the view of
b3, and not the views of b1 and b2. This observation
means that, somehow, the “light” (information flow) in
the virtual world does not travel in a “straight line,”
and that the virtual world is not “homogenous” (it is
nonuniform in structure or composition). In short, the
system is asymmetric.

The users can make use of this type of asymmetry as
follows: They could change their current location (slightly)
from b3, for example, by moving away from b3 and
towards b1 or b2. It should then be possible for users to
see a at certain points, even though the physical distance
between the users’ new current location and a may not
decrease. In the worst case, when the users reach b1 or
b2, they should see a.

The users, of course, are probably unaware of the
existence of a, and the fact that a can be found from
b1 and b2. However, the general strategy underlying our
method will still work: If a user is not satisfied with the
search results returned by Google Maps, or if he/she
wants more results, then changing the current location
may help. Given the non-homogeneity (and possibly non-
linearity) of the software system, even a small change in
the current location may reveal additional search results
that had previously been unseen. This can be achieved
by (slightly) changing the current location in the Google
Maps website. Mobile users could also walk or drive for
a small distance and then search “nearby” again.

For example, we used Google Maps from Australia and
set the current address to 206 Beasley St, Farrer

ACT 2607, Australia. We then searched “nearby”
with [HSBC] as the query term, and Google Maps
returned only one result (see Figs. 15a and 15b).

We then changed the current address to the next-door
neighbor, 204 Beasley St, Farrer ACT 2607,

Australia, and searched “nearby” for [HSBC] again.
This time, Google Maps returned ten results, as shown
in Figs. 16a and 16b. It should be noted that a new result
shown in Fig. 16b was actually closer to the current
location than the previous result. Fig. 17 shows that the
current locations of Fig. 15 and Fig. 16 were next-door
neighbors.

This example shows that users can make use of the
asymmetry of the system, by (slightly) moving the current
location to achieve more results.

7.2.2 Removing the Obstacle through “Parallel Uni-

verses”

Our next question is: Can users find a without moving
away from b3 (Fig. 14)? We next present a strategy
for achieving this. We start by borrowing the idea
of a multiverse, a hypothetical set of parallel universes.
We then explain that, although a multiverse is only a
scientific hypothesis, or philosophical speculation, it can,
nonetheless, be a reality of the virtual world in computer
systems. Then, based on a further series of experiments

(a) The current location was set to 206 Beasley St, Farrer
ACT 2607, Australia.

(b) Based on the current location, Google Maps found
only one result for the query term [HSBC].

Fig. 15: Google Maps found only one “nearby” HSBC
when the current location was set to 206 Beasley St, Farrer
ACT 2607, Australia.

to validate whether the multiverse of the virtual world is
symmetric, we show how our findings can help users to
remove the “obstacle” shown in Fig. 14 without changing
their current location.

7.2.2.1 Multiverse as a scientific hypothesis or
philosophical speculation: A “multiverse” is a hypoth-
esis among cosmologists and theoretical physicists that
refers to the idea of parallel universes [72]. 13 In science
fiction, the concept of a “doppelgänger” (a “double” of

13. In spite of the use of the word “parallel,” parallel universes
should not be assumed to be completely symmetric.

24

(a) The current location was set to 204 Beasley St, Farrer
ACT 2607, Australia.

(b) Based on the current location, Google Maps found ten
results for the query term [HSBC]. Two results are

shown in the figure, where the new result was closer to
the current location than the previous result.

Fig. 16: Google Maps found ten “nearby” HSBC when
the current location was set to 204 Beasley St, Farrer ACT
2607, Australia.

Fig. 17: The current location of Fig. 16 was next-door to
the current location of Fig. 15.

a person) is a frequent theme, with stories varying in
how similar the doppelgängers are to their originals [73].
Related to this is Schrödinger’s cat, or the cat paradox,

a thought experiment devised by Erwin Schrödinger,
Nobel laureate in Physics, to illustrate what he saw as
the problem of the Copenhagen interpretation of quantum
mechanics. This involves an imaginary cat in a box, with
the cat being simultaneously both alive and dead (until
the state has been observed) as a result of being linked
to a subatomic event that may or may not occur [74].

In the scientific community, the issue of whether the
multiverse is a scientific hypothesis, or just philosoph-
ical speculation disguised as science, continues [72]. A
comment on the NASA website 14 is intriguing: “Do
nearly exact copies of you exist in other universes? If
one or more of the multiverse hypotheses is correct,
then quite possibly they do.” The website also points
out that “one criticism of multiverse hypotheses is that
they are frequently difficult to test. Some multiverse
hypotheses may therefore be great fun to think about but
not practically falsifiable and therefore have no predictive
scientific value.”

7.2.2.2 Multiverse of the virtual world in the con-
text of a distributed system: In this study, we borrow the
terms “multiverse” and “parallel universes” to describe
the virtual world defined by a distributed computer
system. This is because a large distributed system such
as Google consists of thousands of independent servers 15

running in parallel in different countries to process user
queries sent from different locations. In a sense, a server is
like a “universe” of the virtual world, and hence the entire
distributed system is a multiverse consisting of many
“parallel universes” (parallel servers) that coexist, and can
work quite independently of each other. If we consider
a software entity (such as a functional component or
data item) to be a person, then many software entities
can find their doppelgängers in other parallel universes
within the same distributed system because of the
replication of data and processing. The parallelization,
concurrency, and synchronization mechanisms of the
distributed system should ensure consistency among
these doppelgängers so that a user will receive the same
computation results regardless of which server processes
the request (that is, regardless of which doppelgängers
the request encounters). Hence, the existence of the
“parallel universes” should be transparent to users—
this is indeed a basic requirement for the design of a
distributed system. In the context of distributed systems,
transparency “deals with hiding the implementation
policies from the user” [75, p. 23], including access trans-
parency, location transparency, migration transparency,
transaction transparency, failure transparency, replication
transparency, and so on. Replication transparency is “a
distribution transparency which masks the use of a group
of mutually behaviorally compatible objects to support an

14. https://apod.nasa.gov/apod/ap101114.html
15. Here, our concept of “servers” is not strictly defined, and is

used for illustration purposes only. A server does not need to be
physical; it is a subsystem such as one or a group of processes that work
independently of other servers. A server may involve multiple hardware
devices, and a hardware device may also host multiple servers.

https://apod.nasa.gov/apod/ap101114.html

25

Fig. 18: A highly symmetric multiverse where each
parallel universe (universes 1, 2, . . . , n) contains exact
(equivalent) copies of doppelgängers (a, b1, b2, b3, and
the obstacle).

Fig. 19: A less symmetric multiverse where each parallel
universe (universes 1, 2, . . . , n) may contains different
(nonequivalent) copies of doppelgängers (a, b1, b2, b3,
and the obstacle).

interface” [76, p. 299] and “does not let the user become
aware of any replication” [75, p. 24].

7.2.2.3 Discussion: Are the doppelgängers in the
parallel universes of the Google Maps multiverse really
exact/equivalent copies of each other? If the answer is yes,
then these parallel universes must be highly symmetric
as illustrated in Fig. 18. This means that if the processing
of the user request switches from universe 1 to universe
2, then the user should receive the same results because
what happens in universe 1 must also happen in universe
2—for the same person, the different universes tell the
same story.

If the answer is no, then these parallel universes are
less symmetric, as illustrated in Fig. 19. This means that if
the processing of the user request switches from universe
1 to universe 2, the user might receive different results
because what happens in universe 1 may not necessarily
happen in universe 2—for the same person, the different
universes may tell different stories: a doppelgänger may
have different states in different universes. For example,
the scenario described in Fig. 14 could just be a snapshot
of universe 1 depicted in Fig. 19, where there is an
obstacle from b3 to a. However, this obstacle may not
necessarily exist in universe 2, and in universe n there
could be a different obstacle somewhere else. In a sense,
the multiverse depicted in Fig. 19 is like a black box, in
which sits Schrödinger’s cat (the obstacle), in both alive
(as in universe 1) and dead (as in universe 2) states—

the state is probabilistic until the user request has been
processed in one of the universes and the results have
been observed by the user.

7.2.2.4 Hypothesis: In Section 7.2.1, our results
revealed a degree of non-homogeneity in the Google
Maps system, indicating the system is nonuniform in
structure or composition. We therefore hypothesize that
the Google Maps multiverse is less symmetric—it is more
like Fig. 19 than Fig. 18. If our hypothesis can be proven to
be true, then we could get rid of the obstacle by designing
a mechanism to move from universe 1 to universe 2
(Fig. 19). From this perspective, our concept of multiverse
for the virtual world is different from that for the real
world introduced in Section 7.2.2.1, where the parallel
universes were not allowed to communicate with each
other.

7.2.2.5 Evaluation of our hypothesis: We first
conducted a small experiment in October 2017, when
the first user repeated the query shown in Fig. 16 from
Singapore, and the second user repeated the same query
from Australia. Queries from both locations were issued
and repeated several times during the same period of
time. The second user (who queried from Australia) was
able to receive the ten results shown in Fig. 16, but the first
user (who queried from Singapore) could only receive
one result. This observation suggests that the two users’
queries were processed by different Google Maps servers,
and the different servers returned different results. In
other words, the “obstacle” encountered by the first user
was not encountered by the second user.

Inspired by this observation, we conducted a further
series of experiments to more systematically investigate
this phenomenon: From Australia, we issued the same
set of queries to two different domains of Google Maps
during the same period of time: The first was the default
“.au” domain at maps.google.com.au; and the second
was the “.com” domain at maps.google.com—we used
a US-based VPN service to access this .com domain to
ensure that a Google Maps server other than that for
.au was being used: It had previously been reported
that “Google searches now correspond to user location
instead of domain” [68]. In each query, we first set the
current location to a suburb (town)—in total, we used 58
Australian towns. We then searched for a nearby [HSBC].
The test results showed that the two Google Maps servers
returned the same numbers of results for only 25 of the
58 towns, giving an inconsistency rate of 57%. For 15
towns, the .com server returned more results; and for 18
towns, the .au server returned more results.

We have thus proven the hypothesis of Section 7.2.2.4
to be true, which means that Google Maps is like the
system depicted in Fig. 19, and that users may be able
to remove some of the obstacles by changing the server
or platform.

7.2.2.6 A final example: In real life, we cannot
expect the users to have access to a VPN server located
in a different country. Nevertheless, the general idea
of changing platforms is still valid, because different

maps.google.com.au
maps.google.com

26

platforms may correspond to different servers 16. Such
an example is shown in Figs. 20, 21, and 22, where
all searches were conducted during the same period of
time and from the same location, and all search results were
repeatable at the time of the experiment. The user was
physically located at the Sheraton Buenos Aires Hotel &
Convention Center, and wanted to find a foreign currency
exchange. Therefore, using the Google Maps app for
Android installed on his Huawei Mate 9 Pro mobile
phone, he searched for [casa de cambio] (Spanish for
foreign currency exchange). Before he began the search, he
disabled all the filters (such as rating scores and opening
hours) to maximize the results list (Fig. 20a). He did not
need to enter his current location as the Google Maps app
automatically obtained his mobile phone’s GPS location
information and returned a total of four results, as shown
in (Figs. 20b and 20c).

The user was not satisfied with just four results, and so,
using our recommended strategy, he decided to change
platform, hoping that the asymmetry of the Google Maps
product family would give him more results. Therefore,
with the same mobile phone, he opened a browser to visit
the Google website and entered his hotel name as the
query term, as shown in Fig. 21a. Then, using the browser,
he set his hotel as the current location and searched for
nearby [casa de cambio]. This time, Google Maps
returned six results (including two new results that were
closer to the hotel than some of the previous results), as
shown in Fig. 21b.

Encouraged by the fact that the Google Maps website,
when accessed through the mobile phone browser, gave
him more results than the Google Maps mobile app,
the user wondered whether he could find more results
by changing the platform again. He therefore opened a
browser from his laptop, and visited the Google Maps
website again. For the same query, the website returned
nine results, including some closer than previous ones.
This was three more results than the mobile phone
browser, and five more than the mobile app, as shown
in Fig. 22. Comparing the results of Figs. 20 and 22, it
can be seen that the latter included new results that were
better than some of the previous ones: Cambio Platinum
Sa (shown in Fig. 22), for example, was preferable to
House exchange Palermo (shown in Fig. 20) in terms of
both distance and rating. In any case, factors such as
distance, rating score, or opening hours, should not be a
cause for the different search results, because all filters
were disabled at the start of the experiment. Because the
results were repeatable at the time of the experiment, it
can be concluded that the differences were not caused
by web dynamics, either.

Through this example, we have shown that the use
of asymmetry across different platforms of the same
product family can help the user to find more and better

16. The users, of course, can also change their application and service
provider, for example, by using Microsoft Bing instead of Google. In
this research, however, our focus is on the same product family without
assuming the availability of other systems.

(a) All filters such as rating scores and opening hours
were cleared to maximize the number of search results.

(b) Google Maps mobile app found a total of four results.

(c) Details of the four results.

Fig. 20: Google Maps mobile app found four results.

results. A limitation of this approach is that some users
might not have access to multiple devices. Nevertheless,
even in such situations, the user could still use different
software from the same device to perform the tasks, such
as using a mobile app and a web browser, both from
the same mobile phone, as illustrated in Figs. 20 and 21.
Furthermore, when two or more people are travelling
together, they are likely to have different brands or

27

(a) Visiting the Google website using a browser of the
mobile phone.

(b) The Google Maps website found a total of six results
for the mobile phone user.

Fig. 21: Google Maps website, when accessed from a
browser of the mobile phone, found six results.

models of mobile phones, and therefore they can perform
the same tasks using their respective phones, and then
pool the results.

7.3 Summary

In this section, we have discussed an investigation
into Google Maps location-based search. We started by
defining MRSeeEachOther, an instance of the symmetry MRP
and the “change direction” MRIP. In MRSeeEachOther, the
source and follow-up outputs were not equivalent.

Our experiments first revealed that the system was not
really symmetric in terms of MRSeeEachOther. We further

showed that this finding has profound implications,
and demonstrated that users can make use of this (the
asymmetry of the system) to find previously hidden
objects or targets. Our first strategy was to set a slightly
different current location, and the second strategy was to
try to force the selection of a different server, by either
using a VPN or a different member of the product family.
In our next series of experiments, we compared the search
results provided by two different Google Maps servers
and confirmed that different servers could indeed return
very different results. Ordinary users seldom consider
changing servers to achieve better search results. Modern
distributed system design principles also require that
the existence of multiple servers be transparent to users
(that is, users should not be aware of their existence),
which means that, at least theoretically, different servers
should return the same results. All our discussions
here have been supported by experimental results and
comprehensive, real-life examples and case studies.

8 CASE STUDY OF IMAGE ANALYSIS USING

MATLAB, OPENCV, AND FACEBOOK

All of the applications studied so far have involved certain
kinds of user queries. In this section, we investigate a
different type of software, one that does not involve
textual queries from the users: image analysis software
for face recognition.

In our MR, we change the direction of the x-axis of
the image to create a mirror image, and the symmetry
is that a mirror image of a face is still a face, because
human faces have approximate bilateral symmetry.

8.1 The Systems Under Test

Matlab is a well-known commercial off-the-shelf package
for scientists and engineers. It provides a numerical
computing environment with multiple toolboxes. In our
experiment, the Computer Vision System Toolbox cascade
object detector 17 of Matlab version R2017b 64-bit was used
to detect faces in photos. Photos were read by the function
imread, and the function flip was used to obtain a mirror
image.

OpenCV (Open Source Computer Vision Library) is
a popular open source computer vision and machine
learning software library. In our experiment, we used
OpenCV version 3.3.0 with a Python interface. The func-
tion we tested is cv2.CascadeClassifier.detectMultiScale 18

with the pre-trained classifiers configuration file 19 for
the front of the face. All parameters used default values.
Photos were read by the function cv2.imread and were
flipped by the function cv2.flip.

17. https://au.mathworks.com/help/vision/ref/
vision.cascadeobjectdetector-system-object.html

18. https://docs.opencv.org/3.3.0/d1/de5/classcv 1
1CascadeClassifier.html

19. https://github.com/opencv/opencv/blob/master/data/
haarcascades/haarcascade frontalface default.xml

https://au.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://au.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-object.html
https://docs.opencv.org/3.3.0/d1/de5/classcv_1_1CascadeClassifier.html
https://docs.opencv.org/3.3.0/d1/de5/classcv_1_1CascadeClassifier.html
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml

28

Fig. 22: Google Maps website, when accessed from a
browser of a laptop, found nine results.

Facebook (https://www.facebook.com) allows users
to upload images as part of a posting (for example, see
Fig. 23a). The system can automatically analyze photos
and identify faces in them. When a user tags a photo 20, if
a face is detected, the system prompts with a hint “Who
is this?” and draws a box on the face (for example, see
Fig. 23b).

8.2 Test Cases

All photos used in our experiments were taken from the
Database of Faces of AT&T Laboratories Cambridge, hosted
in conjunction with the Cambridge University Computer
Laboratory 21. The database contains ten different images
for each of the 40 distinct subjects in an upright, frontal
position, giving a total of 400 images.

8.3 Results

Table 4 summarizes the test results. Type 1 violations refer
to situations where no face was detected in the original
photo, but one face was detected in the flipped one. This
is the largest category of violations, and no SUTs passed

20. https://www.facebook.com/help/tag-suggestions
21. http://www.cl.cam.ac.uk/research/dtg/attarchive/

facedatabase.html

(a) Share post with photo. Click the “Tag” button to edit
photo.

(b) Face being detected in an uploaded image.

Fig. 23: Automatic face detection in https:
//www.facebook.com.

this test. Type 2 violations refer to situations where one
face was detected in the original photo, but none were
detected in the flipped one. Matlab and OpenCV failed
this test. Type 3 violations refer to situations where two
faces were detected in the original photo, but only one
was detected in the flipped photo. Facebook and OpenCV
failed this test. Examples of each violation type for each
SUT are given in Fig. 24.

TABLE 4: Results of the face recognition experiments.

Type 1 Type 2 Type 3

Facebook 400 1 0 1
Matlab 400 24 20 0
OpenCV 400 14 8 1

SUT
Number of MR violationsNumber of

(original, flipped)
image pairs

8.4 Implications

Our experimental results suggest that users of image
analysis software can make use of symmetry properties
(including, but not limited to, flipping the image) to
detect potential false negative and false positive cases.
Developers not only can use this strategy to verify their

https://www.facebook.com
https://www.facebook.com/help/tag-suggestions
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.facebook.com
https://www.facebook.com

29

(a) Facebook
Type 1: original

(b) Facebook
Type 1: flipped

(c) Facebook
Type 3: original

(d) Facebook
Type 3: flipped

(e) Matlab Type
1: original

(f) Matlab Type
1: flipped

(g) Matlab
Type 2: original

(h) Matlab
Type 2: flipped

(i) OpenCV
Type 1: original

(j) OpenCV
Type 1: flipped

(k) OpenCV
Type 2: original

(l) OpenCV
Type 2: flipped

(m) OpenCV
Type 3: original

(n) OpenCV
Type 3: flipped

Fig. 24: Examples of MR violations.

software during the testing phase, but also can improve
their algorithms or embed some self-checking code in
their products by taking advantage of the symmetry
properties of images.

9 CASE STUDY OF VIDEO ANALYSIS USING

GOOGLE CLOUD VIDEO INTELLIGENCE: EX-
PLORING THE TIME REVERSAL SYMMETRY

In this section, we report on a small case study in-
vestigating video analysis software. The SUT was a
service provided by Google Cloud Video Intelligence [77]
that can automatically recognize objects inside videos.
This functionality makes videos searchable by extracting
metadata from the video files and annotating “key nouns
entities.” In this case study, we used a Google API demo
page [78] to conduct the testing. The video analysis
service took a user uploaded video as input, listing the
detected objects together with the associated confidence
scores.

9.1 The Test Case and the MR

We used only one test case, a 39-second video that only
included five static objects (a cup, a keyboard, a knife, a

hair dryer, and a headphone), as shown in Fig. 25. We
recorded the video using a mobile phone.

Using the symmetry MRP and the “change direction”
MRIP, we identified the following MR: The SUT should
find the same set of objects in the video regardless of
whether it is played forwards or backwards.

To create a follow-up test case, we used a tool ffmpeg
(version 3.1.1, https://www.ffmpeg.org) to reverse the
original video by playing it backwards.

9.2 Results

In the original video, the Google Cloud Video Intelligence
API detected four objects (Fig. 26a), but in the backwards-
played video, five objects were detected (Fig. 26b). In
Figs. 26a and 26b, the labels on the left are the names
of the recognized objects, and the percentages on the
right indicate the associated confidence. It should be
noted that a knife was detected in Fig. 26b with a high
degree of confidence (72%), but not detected at all in
the original video (Fig. 26a). We repeated the experiment
several times using the sequence: original video, reversed
video, original video, reversed video. The same results
were obtained each time.

Fig. 25: A snapshot of the video (our test case).

9.3 Implications

The results reported in this section have similar implica-
tions to those discussed in Section 8.4. Although the case
study was of a very small scale, it nonetheless shows a
significant application of the time reversal symmetry (T-
symmetry).

10 DISCUSSION

In this section, we first clarify the relationship between
the present work and MT, and then discuss the validity
and sufficiency of MRs. We then examine the design
space and choices in our methodology. We conclude this
section by analyzing customers’ roles in related software
processes.

https://www.ffmpeg.org

30

(a) Four objects were detected in the original video.

(b) Five objects were detected in the backwards-played
video.

Fig. 26: Test results of Google Cloud Video Intelligence.

10.1 Metamorphic Testing and Metamorphic Explo-

ration

Metamorphic testing was originally proposed as a verifi-
cation technique, where MRs were identified based on the
software specification or the target algorithm [23], [24].
Recently, Zhou et al. [9] extended MT into a paradigm that
covers not only verification but also validation and other
types of software quality assessment, where MRs can be
identified not only based on software specifications, but
also based on user or stakeholder expectations. Generally
speaking, in the MT literature, if an MR is violated for
certain test cases, then the software is considered to be
faulty, or at least to have failed to meet user expectations
[26], [28].

In this paper, although we have also shown the
detection of issues in the SUTs (some of which revealed
real-life, previously unknown bugs), the main focus of
this work is not on the detection of bugs, but rather
on what users can do when faced with imperfect or
unfamiliar software. For this purpose, the MRs are used as
a tool for users to explore the system to better understand
how it works. Accordingly, our method is also different
from software fault tolerance and self-healing techniques
such as data diversity [79] and automatic workarounds

[80]. Here, an MR violation may not necessarily imply
a software fault or user dissatisfaction, but instead
allows the user to better understand the system and,
if necessary, to take actions to achieve more desirable
computation results (such as by using a follow-up input
for a certain MR). Strictly speaking, the user is not
performing software testing for fault detection or quality
assessment, but is instead using the MRs to explore the
system and to better satisfy his/her specific information
needs. We therefore call this metamorphic exploration,
which is similar to MT, but is performed by users for a
different purpose: Enhancing system understanding so
that the system can be used to serve them better.

10.2 Validity and Sufficiency of Metamorphic Rela-

tions

This section answers the following three questions: (1)
Do MRs need to be validated? (2) Could the validation of
MRs also suffer from the oracle problem? (3) How many
MRs need to be identified/used?

In the context of metamorphic testing, MRs are ex-
pected properties of the SUT. The tester, therefore, needs
to ensure that the MRs are valid. So, the answer to
question (1) is yes. Furthermore, in some situations, it may
not be easy to prove that the MR under consideration is
indeed a necessary property of the specified functionality
of the software. Therefore, the answer to question (2) is
also yes. However, because an MR is only an expected
property of the software (that is, one of possibly many
expected aspects of the software), validating the MR
should be easier than validating the entire software. For
example, it is straightforward to confirm that sin θ = sin
(θ + 2π) is a valid MR (which can be done by referring
to a mathematical textbook), but is not easy to verify the
output of a program implementing the sine function. To
address question (3), Liu et al. conducted an in-depth
study [20], and showed that, for the purpose of software
verification, a small number of (on average, around six)
diverse MRs were sufficient to match the fault-detection
effectiveness of a test oracle for software implementing
a knapsack algorithm.

In the context of metamorphic exploration, MRs are
identified by the users based on what they are most
interested in, and these MRs may or may not be necessary
properties of the target system. In this situation, with
regard to questions (1) and (2), there is no “valid” or
“invalid” MR (because users can try anything they like).
In other words, there is no validation or oracle problem
for the MRs, as they only represent something that the
users want to explore—violating an MR in the actual
execution may help them to reflect on their original
assumption and thereby gain better understanding of
the system; satisfying an MR in the actual execution
may help confirm an assumption, and thereby also lead
to better understanding of the system. Furthermore,
different users may have completely different or even
conflicting MRs, all of which can be helpful for exploring

31

the system. Consider the “American inventors” example
given in Section 3.1: In contrast to the student, another
user could assume a different MR, such as “the search
engine should return different results for the English
and Chinese queries, because Chinese searchers might
be interested in certain American inventors more than
English searchers.” This MR contrasts with the one
identified by the student in Section 3.1, and may involve
a more complex symmetric relation. This user may be
happy to find that the Google search results confirm
his/her assumption in the sense that queries in different
languages do indeed return different results.

In the context of metamorphic exploration, software
validation, and quality assessment, MRs are identified
to cover the software features or quality characteristics
that interest the users or stakeholders. Even for the same
system, different users or stakeholders may be interested
in different aspects of the system and, therefore, may want
to select different MRs for experimentation. For example,
those who are not interested in prices will not come
up with MRPriceSort, presented in Section 5.1. Therefore,
for metamorphic exploration, software validation, and
quality assessment, the answer to question (3) depends
on the interests of individual users and stakeholders.

10.3 The Design of Metamorphic Relations and Com-
parisons of Choices

In this section, we discuss the design space that led us
to the selection of the symmetry MRP, and analyze the
relationships between different choices.

10.3.1 Why Symmetry was Selected?

In this study, we raised three research questions. To
address the research questions RQ1 and RQ2, we need to
design a solution that can help users to better understand
and use the system in the absence of a comprehensive
system specification and oracle. Therefore, because they
are widely recognized in the research community as
a highly effective approach to addressing the oracle
problem, we decided to make use of MRs. Our third
research question, RQ3, requires that our solutions be
“simple, applicable, and effective” for users in multiple
domains. This means that we need to find a rule (in
the context of metamorphic exploration, this rule is
expressed as an MR at a higher level of abstraction,
that is, a “metamorphic relation pattern”) that not only
can be widely observed in different areas, but also
achieves a good combination of simplicity and strength.
We found symmetry to be the best candidate that satisfies
all these requirements. For example, in the literature
of physics and philosophy, the notion of simplicity is
often associated with symmetry [46]. Furthermore, as
elaborated in Section 4.4, symmetry is ubiquitous in the
real world. Besides, symmetry is also elegant [46], and
can be easily understood by ordinary users without a
mathematical background. In addition to these attributes,
our reflection (see, for example, Section 4.2) also shows

that symmetry is effective. Indeed, as pointed out by
Hargittai and Hargittai, “symmetry is beautiful although
alone it may not be enough for beauty, and absolute perfection
may even be irritating. Function, utility, and aesthetic appeal
are the reasons for symmetry in technology and the arts” [47,
p. 1].

10.3.2 The Design Space and Choices

In the existing literature, the concepts of metamorphic
relations and their patterns have been developed for
software testing, verification, and validation purposes [9],
[26], [28], [37]–[39]; in other words, the existing concepts
are not developed to facilitate the objectives specified in
our research questions RQ1, RQ2, and RQ3.

In contrast to existing work, in this research we
considered how to identify suitable MRs for the purpose
of metamorphic exploration, namely, to help users to
better understand and use the system. In a sense, to
understand a software system by observing its input and
output is similar to trying to know a person’s appearance
by only looking at pictures of them: A front-view photo
shows the person’s eyes, nose, and mouth; but it does
not show full information about the height of the nose,
and some other facial features. To know this person’s
appearance better, we would need profile (side-view)
photos, which show the height of the nose as well as
some other facial features, but at the expense of losing
some front-view information such as the width of the
mouth. If the side-view and front-view perspectives only
differ by a small angle, they will look similar and still
lack information about the height of the nose. In other
words, the side-view picture of the same person should
be taken from a different perspective so that we can know
more about the person’s appearance [81].

Like taking pictures of the same person from dif-
ferent angles, the symmetry MRP provides “different
viewpoints” of the same system. Therefore, we believe
that symmetry is a suitable MRP for the purpose of
metamorphic exploration to help users to understand
the system. In the definition of the symmetry MRP
(Definition 2), the key phrase “different viewpoints”
corresponds to the variations of input values to the
system. When there are many different viewpoints, which
one(s) can best serve the purpose? Still considering the
front- and side-view photos, as explained, it is not very
useful if they deviate by only a small angle. Obviously,
a good side-view photo to capture the information of
the height of the nose is from an angle set 90 degrees
apart from the front view [82, p. 226]. Likewise, we need
to study metamorphic relation input patterns (MRIPs),
which describe generic ways of changing input values for
the purpose of constructing good MRs for metamorphic
exploration.

As explained in Section 4.1, previous studies on abstract
forms of MRs [37]–[39] were not focused on input.
Nevertheless, in the context of automated test case gen-
eration, there is a related technique called data mutation
[83]: Given a set of test cases (seeds), data mutation

32

generates new test cases by modifying the seeds using
a set of operators, called data mutation operators. Data
mutation operators can include, for example: increase or
decrease the value of a parameter; set a parameter to
0, to a very large value, or to its negative; swap the
values of some parameters; etc. In the extreme case,
the modification to the values can be done randomly,
which is fuzzing (fuzz testing). Data mutation is different
from metamorphic testing as it only considers ways
of changing the values of input parameters without
looking at the output relations. Technically speaking,
metamorphic relations involve semantics rather than data
mutation at the syntax level. Nevertheless, data mutation
and metamorphic testing can be combined, and have
produced practical tools [84]. Data mutation operators
can provide heuristics for the identification of potential
MRIPs, which will be a focus for our future research.

If the users are smart enough, even without a “pattern,”
they might still be able to identify suitable MRs to conduct
metamorphic exploration. However, the vast majority of
users need some guidance. Our concepts of MRPs and
MRIPs (and the specific patterns symmetry and “change
direction”) aim to help such users to narrow down
the search space, focus on the most potentially useful
properties and, hence, more easily identify useful MRs.
Compared with data mutation operators, our concepts of
symmetry and “change direction” are at a much higher
level of abstraction, and are simple and general enough
that they can be easily applied by users to a variety of
application domains.

As noted under Definitions 1 and 3, the identification
of MRPs and MRIPs can be achieved through levels of
abstraction, which immediately suggests two approaches:
top-down, and bottom-up. In the top-down approach, a
pattern at a high level of abstraction can be first identified
and used to derive other patterns at lower levels in the
hierarchy, or concrete MRs at the bottom level. In the
bottom-up approach, concrete MRs can be first identified
by directly analyzing the input parameters of the SUT.
Later, multiple concrete MRs can be analyzed to identify
commonalities, leading to generalization of some MRs
into patterns. The top-down and bottom-up approaches
can also be combined.

In addition to top-down and bottom-up, two other
general approaches for designing MRs are: input-driven
and output-driven. In this research, following the “change
direction” MRIP, we only considered the input-driven
approach (that is, identification of MRs guided by
considering how to modify the input). In contrast to
this, the process could also be output-driven, in which
the identification of MRs is guided by first considering
the output relations—for example, by referring to some
metamorphic relation output patterns such as those
designed by Segura et al. [39], as explained in Section 4.1.
Once an output relation is identified, the kinds of changes
to be made to the input in order to achieve that output
relation can be considered. For example, in the context of
using a web search engine, the users may be interested

in the “equality” output relation. Then, in order to make
two search results pages equal, the users may think that
searching for “A AND B” and searching for “B AND
A” should produce the same results, because the logical
conjunction of the search criteria A and B is equivalent
to that of B and A. When using this relation to conduct
metamorphic exploration, users will probably find that
the search results, although similar, are not actually
identical [9]. A further investigation of this issue would
help them to understand that a web search engine works
differently from a traditional database application: The
MR holds true for the latter but not for the former, because
web search engines normally give more weighting to the
first query term than to the second [9].

It should be noted that, while in many studies an
MR can be decomposed into two separate components—
one subrelation involving only the inputs and the other
involving only the outputs—this is not the case for all
MRs [26]. For example, in Section 6, the MR “swapping
the origin and destination should return a route with a
similar cost” can be split into an input-only subrelation
(where the follow-up input is dependent only on the
source input) and an output-only subrelation (where
we need to compare the follow-up output only with
the source output). In some situations, however, the
generation of the follow-up input may also involve the
source output, and the verification of the outputs may
also involve some of the inputs. Such an example was
given in Section 7.1: Let a denote a source input, which is
a cafe selected using certain techniques. Based on a, we
searched for “nearby” cafes. Let b be one of such cafes
returned by the location-based search engine, that is, b is
the source output (or part of the source output). In the
follow-up search, we set the current location to b and then
searched again for “nearby” cafes. This means that the
source output b has now become the follow-up input. We
then checked whether a could be located, that is, whether
or not the source input appeared in the follow-up output.
This is an example that shows a situation where the
follow-up input is based on the source output, and the
checking of the follow-up output involves the source
input. In this situation, the MR cannot separate into
input-only and output-only subrelations. Nevertheless,
our “change direction” MRIP can still be applied in
this situation.

Finally, it should be noted that, although the selection
of MRs can be quite different for various purposes,
it is always associated with requirements. Therefore,
requirements elicitation and analysis techniques can also
be applied for the purpose of MR identification.

10.3.3 Symmetry and Asymmetry

In the natural world, symmetry and asymmetry are often
observed together. For example, while human bodies
appear approximately symmetric, the internal organs are
not. As the ancient Chinese philosopher Lao Tzu wrote:
“It is because everyone under Heaven recognizes beauty as

33

beauty, that the idea of ugliness exists. · · · For truly Being
and Not-being grow out of one another” [85].

Similarly, we hypothesize that symmetry and asymme-
try are two fundamental MR patterns that come in pairs
for computer systems. Furthermore, while this research
has been focused on symmetry, we have also shown the
applications of asymmetry in our methodology: In the
reported case studies, we often first defined a symmetry
MR and then showed that the SUT violated it, indicating
that the system was, from some perspective, asymmetric.
We then showed how users could make use of this
asymmetry to achieve more desirable results (as in the
example shown in Fig. 19).

We wish to reiterate that while the concept of symmetry
is associated with invariance, it does not necessarily imply
an equality or equivalence relation (for example, see
MRSeeEachOther). This is different from data diversity [79]
and automatic workarounds [80], both of which rely on
equivalent executions. Furthermore, in a metamorphic
relation, the generation of the follow-up input may
involve not only the source input but also the source
output (see, for example, [26, p. 4:7] and [86, pp. 49-56]),
but this is not the case in data diversity [79].

10.4 Customers’ Roles

The advantage of early involvement of users in software
development projects has been widely recognized [87].
Fig. 27 shows typical verification and validation activities
in a conventional software development project [9],
[87], where the white arrows correspond to verification
activities, and the shaded arrows (a, b, . . ., f) correspond
to validation activities. In the validation activities, various
software artifacts are reviewed or tested by the actual
users against their real needs.

In the activities depicted in Fig. 27, metamorphic
exploration has the potential to help the users to better
understand the system or subsystem in the validation
activities a, f , and e (where a represents user acceptance
testing, and f and e represent user testing activities at
the system and subsystem levels).

Fig. 27: Conventional software verification and validation
activities (taken from [9], which was adapted from [87]).

While developers write tests “method-by-method,” cus-
tomers write tests “story-by-story” [88]. In requirements
engineering, a user story is a short description of a feature,
or software functionality, told from the perspective of the
software’s user. A user story differs from a requirement in
that the former normally does not contain implementation
information, but instead is focused on user experience.
For example, a user story could be told as: “As a home
buyer, I want to search for recently sold homes, so
I can estimate prices in my area” [89]. We found it
straightforward to turn the MRs introduced in the various
case studies of the present paper (Sections 5 to 9) into
user stories. Therefore, our method is not only useful
in the validation stage, but could also be helpful in
the requirements stage, guiding users to create their
stories using the simple concept of MRs. This shows
that our method is also useful for user training in both
the requirements and the validation stages.

The effectiveness of our methodology depends on
user background and experience, and different users
could identify very different MRs. Consider, for example,
the image analysis case study of Section 8. Matlab and
OpenCV users are generally more technical and, therefore,
might be able to design the MR involving the use of
mirror images; in contrast, Facebook users are generally
less technical and, hence, might not be able to use such
an MR. On the one hand, this observation shows a
limitation of our approach; on the other hand, it means
that the effectiveness of metamorphic exploration can be
improved through user training. Examining the amount
of training required for users of different backgrounds to
be able to effectively use metamorphic exploration will
be a future research topic.

Our approach could also be useful in the context
of crowdsourced testing. It has been reported that
CrowdOracles are a viable solution to mitigate the test
oracle problem, but the task of getting useful results
from the crowd can be challenging [12], [13]. The simple
concepts of metamorphic relations and metamorphic
exploration can be introduced to the crowd, so that they
can have a way to better understanding the system under
test. Furthermore, MRs identified by different individuals
naturally contain a degree of diversity (a highly desirable
characteristic of effective metamorphic testing, as shown
in previous studies, and hence expected to impact on
effective metamorphic exploration) [20]. Therefore, as
pointed out in our recent survey paper [26], making use
of crowdsourcing to brainstorm and identify MRs for a
given system is a promising research direction.

11 EVALUATION AND LIMITATIONS

In this section, we validate our approach by first pre-
senting feedback on our findings from the software
vendors, who confirmed its value and usefulness mostly
from the software developer’s perspective. Next, we
present a recent news report closely related to our study,
which shows its value and usefulness from the user’s

34

perspective. We then present a critical analysis of the
limitations of our approach. Finally, we introduce related
research and development progress in industry.

11.1 Feedback from the Owners / Developers of the

Software Systems

When we detected a bug, and where there was a way to
provide a bug report online or by email, we sent such
a report to the owner or vendor of the software system.
Furthermore, we also personally contacted some software
engineers inside the software companies whose products
were tested in this study. The feedback we collected is
summarized as follows.

With regard to the issues reported in Section 5, the
replies we received either confirmed that there were
indeed faults in the system or indicated (either explicitly
or implicitly) that there was (hidden) business logic in
price sorting not disclosed to end users. For example,
Overstock.com confirmed the existence of the previously
unknown faults and indicated that they would try to
fix the problem, whereas Apartments.com explained that
their system “will sometimes narrow your search,” with-
out giving further details about the underlying algorithm.
Representatives from other eCommerce websites also
acknowledged the existence of hidden logic in the sorting
algorithms (and the complexity of such algorithms),
such as the considerations of click-through rates, add-
to-cart rates, and so on; they further indicated that the
correctness of sorting could also be affected by the quality
of the catalog data (including data from third-party
sellers). All this feedback confirmed that our findings
are valuable and useful for both the developers (for the
purpose of fault detection) and the users (for the purpose
of better understanding and using the system in the
presence of hidden business logic).

With regard to the issues in Google Maps Navigation
presented in Section 6, we reported the detected bad
cases (Fig. 11) to the relevant Google team, who replied
that “that is indeed interesting,” and that they were
further investigating these problems. Regardless of the
investigation outcomes, Google’s reply clearly indicated
that our approach is useful for them.

With regard to the issues in face recognition reported
in Section 8, Matlab confirmed that they were able to
“reproduce the issue,” and explained that it revealed
situations where their pre-trained classifiers “are not
always sufficient for a particular application,” and that,
to solve this problem, users could use another function
to train a custom classifier. Matlab’s reply means that our
approach is indeed useful for users to quickly recognize
whether the software is really appropriate for their
particular application (as stated in RQ1). Furthermore,
we have also received a reply from Facebook, in which
they indicated that they were working to fix the technical
problems, and that our report was helpful for them to
improve the Facebook user experience.

With regard to the issues in video analysis reported in
Section 9, Google informed us that the issues were being

investigated by their Cloud Video Intelligence API team,
but that there was not yet any estimation of when the
fix would be available. Google’s reply indicates that our
findings have interested their development team, and
that they are trying to address the problem.

11.2 A Recent News Report Confirming the Useful-
ness of our Approach from the Users’ Perspective

In Section 7, we presented a “multiverse” concept for
metamorphic exploration. While interesting, it may be
argued that the concept is not practical for a normal user:
To be able to derive tests to enhance their knowledge, the
user has to learn about both the software product and our
metamorphic exploration techniques. In this section, we
present a strong case, recently reported in a newspaper,
to show a situation where users are very well motivated
to apply our techniques to explore the software that they
are using.

We submitted the first version of the present paper to
the IEEE Transactions on Software Engineering on Feb 7,
2018, where in Section 7.2.2.6 we presented an example
(Figs. 20, 21, and 22) to illustrate our finding that a mobile
application and a web browser could return very different
results for the same search query, and that the use of
asymmetry across different platforms of the same product
family can help the user to find more and better results.

On Feb 19, 2018 (12 days after the submission of our
manuscript), the Ming Pao newspaper (明报, a primary
Chinese newspaper in Hong Kong) had its headline news
titled (in English translation): “Booking hotel rooms
online using an App and a computer can have 24% price
differences from the same travel agent.” An excerpt of
the original news is shown in Fig. 28a, and its English
translation, by Google Translate, is shown in Fig. 28b.
In this news report, the tester essentially applied the
same approach, as introduced in our Section 7.2.2.6, to
investigate hotel room booking prices offered by major
online booking businesses including Agoda, Expedia,
and Ctrip, and surprisingly discovered a secret that the
same online booking business could give very different
prices when accessed using different devices. On the
one hand, this news report was truly serendipitous as
we had not shared our method with the newspaper;
on the other hand, reporting this story as the headline
news of the day is evidence that their (and hence our)
approach is valid and highly relevant to consumers,
independent testers, the news media, and even the
relevant regulatory authorities. It is also evidence that
the various stakeholders should be motivated to learn
and use this approach.

11.3 Limitations of our Approach

In this section, we present a critical analysis of the
limitations of our approach. At a fundamental level, our
approach, metamorphic exploration, is only a partial
analysis method, and is dependent on metamorphic
relations and test cases. Therefore, as a methodology,

35

(a) Excerpts of the original Ming Pao news.
URL: https://news.mingpao.com/pns/dailynews/web tc/article/20180219/s00001/1518976216906

(b) English translation (by Google Translate) of the Ming Pao news.
URL: https://translate.google.com/translate?sl=auto&tl=en&js=y&prev= t&hl=en&ie=UTF-8&u=

https%3A%2F%2Fnews.mingpao.com%2Fpns%2Fdailynews%2Fweb tc%2Farticle%2F20180219%2Fs00001%2F1518976216906&edit-text=

Fig. 28: Ming Pao headline news, Hong Kong, Feb 19, 2018 (12 days after the submission of the first version of the
present paper), which essentially reported on an application of metamorphic exploration introduced in Section 7.2.2.6.

metamorphic exploration has the following limitations:
(1) It is a dynamic approach, and hence cannot be applied
if the executable program is not yet available. (2) As an
MR involves multiple executions of the program, our
approach must run the program at least twice, which
could be an issue in situations where the execution
time is very long. (3) It depends on the quality of the
chosen MRs, and an MR may not necessarily cover
all possible inputs or features. For example, to apply
the MR defined in Section 6.1, we need to avoid one-
way traffic, which is an obvious limitation of this MR’s
applicability. To enhance test coverage, other MRs need
to be developed to allow one-way traffic, such as those
reported by Brown et al. [34]. (4) It depends on the
quality of the chosen input—this is a limitation of all
test-case-based techniques including software testing and
other dynamic approaches. (5) Its effectiveness depends

on the background, experience, and knowledge of the
users who conduct the metamorphic exploration. (6) As
a user-oriented technique, metamorphic exploration is
not a systematic approach in the sense that it is not
designed to exhaustively cover all aspects of a software
system—it only covers those aspects that the particular
user is interested in: Different users may draw different
conclusions based on their own results.

Regarding the symmetry MRP: Although we believe
that symmetry is a pervasively desirable property for
many computer systems, our empirical studies reported
in this paper only involved the following five narrow
areas: commercial websites, navigation services, location-
based search, image analysis, and video analysis. There-
fore, there is a threat to the external validity of our
results, that is, a threat to the generalization of our
findings to other areas that have not yet been investigated.

https://news.mingpao.com/pns/dailynews/web_tc/article/20180219/s00001/1518976216906
https://translate.google.com/translate?sl=auto&tl=en&js=y&prev=_t&hl=en&ie=UTF-8&u=https%3A%2F%2Fnews.mingpao.com%2Fpns%2Fdailynews%2Fweb_tc%2Farticle%2F20180219%2Fs00001%2F1518976216906&edit-text=
https://translate.google.com/translate?sl=auto&tl=en&js=y&prev=_t&hl=en&ie=UTF-8&u=https%3A%2F%2Fnews.mingpao.com%2Fpns%2Fdailynews%2Fweb_tc%2Farticle%2F20180219%2Fs00001%2F1518976216906&edit-text=

36

Are there areas where symmetry cannot be applied?
We do not know the answer but cannot exclude the
possibility. However, even in such situations, attempting
to conduct metamorphic exploration with the idea of
symmetry would still be useful because such an attempt
would allow the user to realize that the system is
asymmetric. In any case, the external validity of our
results can only be enhanced through additional empirical
studies involving different software features and different
application domains.

An important issue that has not been addressed in
this paper relates to the selection of the most suitable
symmetry MRs when there are multiple candidates. For
some systems, multiple symmetry MRs may be identified,
but they may not all be equally useful. Consider again the
problem of finding a shortest path in an undirected graph,
discussed in Section 2, for which a number of symmetry
MRs could be identified: Apart from the symmetry MR
“swapping the origin and destination nodes should not
affect the length of the shortest path,” we can have
others, such as [25]: Let (G, a, b) be the source input,
and (G′, a′, b′) be the follow-up input, where G′ is a
permutation (isomorphic graph) of G, the node a′ in G′

corresponds to the node a in G, and the node b′ in G′

corresponds to the node b in G. Then the length of the
shortest path between a and b in G should be the same as
that between a′ and b′ in G′. Given these different types
of MRs, all of which belong to the symmetry MRP, how
could a user find the most suitable one? The users need
practical guidance for MR selection and prioritization.
This research question was studied in our previous work
[25], [90] in the context of metamorphic testing, but not
investigated in the present paper for the purpose of
metamorphic exploration. Although we have given a
general principle in Section 10.2—that selection of MRs
for metamorphic exploration depends on the interests
of individual users and stakeholders—more research is
needed to develop more specific guidelines. Before this
question can be properly addressed, there is a possibility
that the user will select a less effective MR to perform
metamorphic exploration and, consequently, obtain less
useful results.

Although we did not address the issue of selection of
the most suitable symmetry MRs, our previous work has
indicated that, identifying the concept of diversity as a
guide [30], it is possible to train testers with no previous
MT experience to a level where they can quickly identify
and apply effective MRs within a matter of hours [20]–
[22]. We have seen testers newly trained in this way,
even working as individuals, independently and in an ad
hoc manner, identify MRs with very high fault-detection
effectiveness, even finding previously undetected faults in
extensively tested software [20]. Given this relative ease
and speed with which ab initio industrial MT users can be
prepared, we are confident of the probable equal facility
to become conversant and effective with metamorphic
exploration. Obviously, however, verification of this
will require further studies of actual user training and

evaluation, which is something we look forward to doing.
Finally, we wish to point out that the “change direction”

MRIP has obvious limitations: First, it is possible that a
user may not be able to find any “direction element” in
the program’s input. In this situation, “change direction”
cannot be applied. Second, even if some direction ele-
ments can be identified, they may not necessarily cover
the features that the user is actually interested in. For
example, if the user is not interested in search and sort
functions, then the MR presented in Section 5 related to
price sorting would be useless. In this situation, other
types of MRIPs might be desirable.

11.4 Related Industrial Research and Development

Although this research targets end users, our method-
ology (which makes use of MRs to enhance software
understanding, use, and quality assurance) is useful
for developers, too. Adobe Systems, for example, has
confirmed the usefulness of MRs, with their feedback
summarized as follows:

• The introduction of MRs into the software quality
assurance process has resulted in a significant drop
in the user complaint rate.

• Compared with conventional methods, the use of
MRs has helped Adobe engineers to better under-
stand the software under test and to more cost-
effectively identify compatibility issues between
systems and their environments.

• Adobe engineers have started to use MRs to facilitate
profiling system performance for the Adobe Cloud
Platform. They have found that, compared with
conventional approaches, MRs have helped them
to more accurately estimate the operational readiness
of applications, including the budget needed to set
up an application in the operational environment.

Recently, the usefulness of MRs in the context of
verifying machine learning (ML) applications has been
recognized by researchers from Accenture. They noted
that “unlike testing of traditional applications, finding
one (or a few) instances of incorrect classification from an
ML application does not indicate the presence of a bug”
and that conventional testing techniques, when applied
to ML applications, are “very expensive in terms of time
and cost” [91, p. 118]. They presented a solution based
on MT. Furthermore, Accenture Labs has reported on
their patent titled “Verifying Machine Learning through
Metamorphic Testing” [92, p. 12], in which they state that
their methodology “needs only a few test cases (or even
just one) to identify bugs in ML applications, thereby
reducing the cost of testing significantly.”

Also recently, organizations such as the US National
Institute of Standards and Technology, have found that
MRs are useful for cybersecurity enhancement [33], [93].
In Aug 2018, Google acquired GraphicsFuzz, a spinout
company from Imperial College London, to develop
secure and reliable graphics drivers by making use of
MT within the Android ecosystem [5], [32], [94], [95].

37

We plan to continue to collaborate with industry to
investigate the implications of this research on a larger
scale.

12 CONCLUSION

In traditional bespoke system development, developers
are often assumed to know the user requirements well
when they release the final software product, and the
users also usually receive appropriate system specifi-
cations and training. This is quite different from the
situation where software is developed for the mass
market. Furthermore, in modern IT paradigms, the
software product may not necessarily satisfy the needs of
all users (who may have diverse objectives), and the users
may not necessarily understand how the system really
works, or whether or not the service is really suitable for
their specific information needs.

We posed three research questions in Section 1, all
of which we have addressed using the concepts of
metamorphic relations, metamorphic relation patterns,
metamorphic relation input patterns, and metamorphic
exploration. We have conducted a series of empirical
studies using a wide variety of web applications and open
source and commercial off-the-shelf products, including
65 of the most popular commercial websites, Google
Maps navigation, Google Maps location-based search,
MATLAB, OpenCV, Facebook, and the Google Cloud
Video Intelligence. The empirical results show that our
metamorphic exploration solution is simple, applicable,
and highly effective for all systems investigated, hence
providing an affirmative answer to all three research
questions.

We have also provided a critical analysis of the
limitations of our approach. In particular, the proposed
symmetry MRP may not necessarily be applicable to
all programs or all aspects of a program, and there can
be situations where multiple symmetry MRs exist and
where users may find it difficult to prioritize them. In this
paper, we have only provided a guideline, or direction,
for metamorphic exploration, using the symmetry MRP
as a case study. Some of the discussions presented in
this paper may even involve an oversimplification of the
problem being solved. Nevertheless, we have opened the
door to a new research direction, and paved the way for
more in-depth research in the future: We have provided
the fundamentals (with sufficient detail), including the
methodology, the main concepts, and a reasonably scaled
empirical evaluation.

This research has focused on the symmetry MRP and
the “change direction” MRIP. In future research, we will
continue to look at the applications of these patterns,
and study other types of patterns for the purpose of
metamorphic testing and exploration.

ACKNOWLEDGMENTS

This research was supported in part by a linkage
grant of the Australian Research Council (Project ID:

LP160101691). We would like to thank Suzhou Insight
Cloud Information Technology Co., Ltd. for supporting
this research. Dave Towey acknowledges the financial
support from the Artificial Intelligence and Optimisation
Research Group of the University of Nottingham Ningbo
China, the International Doctoral Innovation Centre,
the Ningbo Education Bureau, the Ningbo Science and
Technology Bureau, and the University of Nottingham.
We wish to thank Darryl Jarman and Zhenyu Wang
of Adobe Systems for providing feedback on the use
of metamorphic relations in software processes. We are
grateful to the anonymous reviewers for their valuable
comments on this work. All correspondence should be
addressed to Dr. Zhi Quan Zhou at the address shown
on the first page of this paper.

REFERENCES

[1] M. Pezzè and C. Zhang, “Automated test oracles: a survey,”
in Advances in Computers, A. Memon, Ed. Elsevier Science &
Technology, 2014, vol. 95, ch. 1, pp. 1–48.

[2] R. A. P. Oliveira, U. Kanewala, and P. A. Nardi, “Automated test
oracles: State of the art, taxonomies, and trends,” in Advances in
Computers, A. Memon, Ed. Elsevier Science & Technology, 2014,
vol. 95, ch. 3, pp. 113–199.

[3] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’14), 2014,
pp. 216–226.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[5] A. F. Donaldson and A. Lascu, “Metamorphic testing for (graphics)
compilers,” in Proceedings of the IEEE/ACM 1st International
Workshop on Metamorphic Testing (MET ’16), in conjunction with
the 38th International Conference on Software Engineering (ICSE ’16).
ACM, 2016, pp. 44–47.

[6] D. C. Jarman, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing
for Adobe data analytics software,” in Proceedings of the IEEE/ACM
2nd International Workshop on Metamorphic Testing (MET ’17),
in conjunction with the 39th International Conference on Software
Engineering (ICSE ’17), 2017, pp. 21–27.

[7] M. F. Kıraç, B. Aktemur, and H. Sözer, “VISOR: A fast image
processing pipeline with scaling and translation invariance for test
oracle automation of visual output systems,” Journal of Systems
and Software, Special Issue on Test Oracles, vol. 136, pp. 266–277,
2018.

[8] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of
the IEEE/ACM 40th International Conference on Software Engineering
(ICSE ’18). ACM, 2018, pp. 303–314.

[9] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” IEEE
Transactions on Software Engineering, vol. 42, no. 3, pp. 264–284,
2016.

[10] M. M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076,
Sep 1980.

[11] G. Melnik, F. Maurer, and M. Chiasson, “Executable acceptance
tests for communicating business requirements: Customer
perspective,” in Proceedings of AGILE 2006 Conference (AGILE ’06).
IEEE, 2006.

[12] F. Pastore, L. Mariani, and G. Fraser, “CrowdOracles: Can the
crowd solve the oracle problem?” in Proceedings of the IEEE 6th
International Conference on Software Testing, Verification and Validation.
IEEE, 2013, pp. 342–351.

[13] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, p. 57–84, 2017.

[14] B. Korel, “Black-box understanding of COTS components,” in
Proceedings the 7th International Workshop on Program Comprehension.
IEEE, 1999.

38

[15] A. Andrews, S. Ghosh, and E. M. Choi, “A model for
understanding software components,” in Proceedings of the
International Conference on Software Maintenance (ICSM ’02). IEEE,
2002.

[16] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Transactions on Software
Engineering, vol. 35, no. 5, pp. 684–702, 2009.

[17] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li,
“Measuring program comprehension: A large-scale field study
with professionals,” IEEE Transactions on Software Engineering, DOI:
10.1109/TSE.2017.2734091.

[18] A. Gotlieb, “Exploiting symmetries to test programs,” in
Proceedings of the 14th International Symposium on Software Reliability
Engineering (ISSRE’03), 2003, pp. 365–374.

[19] C. N. Ip and D. L. Dill, “Better verification through symmetry,”
Formal Methods in System Design, vol. 9, no. 1–2, p. 41–75, 1996.

[20] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively
does metamorphic testing alleviate the oracle problem?” IEEE
Transactions on Software Engineering, vol. 40, no. 1, pp. 4–22, 2014.

[21] D. Towey and T. Y. Chen, “Teaching software testing skills:
Metamorphic testing as vehicle for creativity and effectiveness in
software testing,” in Proceedings of the IEEE International Conference
on Teaching, Assessment, and Learning for Engineering (TALE ’15).
IEEE, 2015, pp. 161–162.

[22] D. Towey, H. Liu, T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou,
“Metamorphic testing: A new student engagement approach for
a new software testing paradigm,” in Proceedings of the IEEE
International Conference on Teaching, Assessment, and Learning for
Engineering (TALE ’16). IEEE, 2016, pp. 218–225.

[23] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” Department
of Computer Science, Hong Kong University of Science and
Technology, Hong Kong, Tech. Rep. HKUST-CS98-01, 1998.

[24] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without
the need of oracles,” Information and Software Technology, vol. 45,
no. 1, pp. 1–9, 2003.

[25] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case
studies on the selection of useful relations in metamorphic testing,”
in Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC’04). Polytechnic
University of Madrid, 2004, pp. 569–583.

[26] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,
and Z. Q. Zhou, “Metamorphic testing: A review of challenges
and opportunities,” ACM Computing Surveys, vol. 51, no. 1, pp.
4:1–4:27, 2018.

[27] M. Lindvall, D. Ganesan, R. Árdal, and R. E. Wiegand,
“Metamorphic model-based testing applied on NASA DAT —an
experience report,” in Proceedings of the IEEE/ACM 37th International
Conference on Software Engineering (ICSE ’15), 2015, pp. 129–138.

[28] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[29] U. Kanewala, L. L. Pullum, S. Segura, D. Towey, and Z. Q.
Zhou, “Message from the workshop chairs,” in Proceedings of
the IEEE/ACM 1st International Workshop on Metamorphic Testing
(MET ’16), in conjunction with the 38th International Conference on
Software Engineering (ICSE ’16). ACM, 2016.

[30] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “A revisit of
three studies related to random testing,” Science China Information
Sciences, vol. 58, pp. 052 104:1–052 104:9, 2015.

[31] J. Regehr, “Finding compiler bugs by removing dead code,” http:
//blog.regehr.org/archives/1161, June 20, 2014.

[32] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson,
“Automated testing of graphics shader compilers,” Proceedings
of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp.
93:1–93:29, 2017.

[33] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and
Z. Q. Zhou, “Metamorphic testing for cybersecurity,” Computer,
vol. 49, no. 6, pp. 48–55, 2016.

[34] J. Brown, Z. Q. Zhou, and Y.-W. Chow, “Metamorphic testing
of navigation software: A pilot study with Google Maps,” in
Proceedings of the 51st Annual Hawaii International Conference on
System Sciences (HICSS-51), 2018, pp. 5687–5696, available: http:
//hdl.handle.net/10125/50602.

[35] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y.
Chen, “Testing and validating machine learning classifiers by

metamorphic testing,” Journal of Systems and Software, vol. 84, pp.
544–558, 2011.

[36] S. Sailer. (Sep 20, 2016) Great moments in Google: ”American
inventors”. [Online]. Available: http://www.unz.com/isteve/
great-moments-in-google-american-inventors/

[37] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen, “Automated
functional testing of web search engines in the absence of an
oracle,” Department of Computer Science, The University of Hong
Kong, Tech. Rep. TR-2007-06, 2007.

[38] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo,
and T. Y. Chen, “Automated functional testing of online search
services,” Software Testing, Verification and Reliability, vol. 22, no. 4,
pp. 221–243, 2012.

[39] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of RESTful web APIs,” IEEE Transactions on Software
Engineering, in press.

[40] F.-H. Su, J. Bell, C. Murphy, and G. Kaiser, “Dynamic inference
of likely metamorphic properties to support differential testing,”
in Proceedings of the IEEE/ACM 10th International Workshop on
Automation of Software Test. IEEE, 2015, pp. 55–59.

[41] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting
metamorphic relations for testing scientific software: a machine
learning approach using graph kernels,” Software Testing,
Verification and Reliability, vol. 26, pp. 245–269, 2016.

[42] J. Troya, S. Segura, and A. Ruiz-Cortés, “Automated inference of
likely metamorphic relations for model transformations,” Journal
of Systems and Software, Special Issue on Test Oracles, vol. 136, pp.
188–208, 2018.

[43] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze,
“Metamorphic model-based testing of autonomous systems,”
in Proceedings of the IEEE/ACM 2nd International Workshop on
Metamorphic Testing (MET ’17), in conjunction with the 39th
International Conference on Software Engineering (ICSE ’17), 2017, pp.
35–41.

[44] P. W. Anderson, “More is different,” Science, vol. 177, no. 4047, p.
393–396, 1972.

[45] I. Stewart, Symmetry: A Very Short Introduction. Oxford University
Press, 2013.

[46] A. Zee, Fearful Symmetry: The Search for Beauty in Modern Physics.
Princeton University Press, 2016.

[47] M. Hargittai and I. Hargittai, Symmetry through the Eyes of a Chemist,
3rd ed. Springer, 2009.

[48] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for
Physicists: A Comprehensive Guide, 7th ed. Amsterdam: Academic
Press, 2012.

[49] I. M. Yaglom, Felix Klein and Sophus Lie: Evolution of the Idea of
Symmetry in the Nineteenth Century, 1st ed. Birkhäuser, 1990.

[50] E. B. Vinberg, A Course in Algebra. American Mathematical Society,
2003.

[51] D. J. Gross, “The role of symmetry in fundamental physics,”
Proceedings of the National Academy of Sciences of the United States of
America, vol. 93, no. 25, pp. 14 256–14 259, 1996.

[52] S. Das and G. Kunstatter, “The central role of symmetry in physics,”
Journal of Applied and Fundamental Sciences, vol. 2, no. 2, pp. 69–77,
2016.

[53] M. Bañados and I. Reyes, “A short review on Noether’s theorems,
gauge symmetries and boundary terms,” International Journal of
Modern Physics D, vol. 25, no. 10, pp. 1 630 021:1–1 630 021:74, 2016.

[54] D. I. Perrett, D. M. Burt, I. S. Penton-Voak, K. J. Lee, D. A. Rowland,
and R. Edwards, “Symmetry and human facial attractiveness,”
Evolution and Human Behavior, vol. 20, pp. 295–307, 1999.

[55] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, 2nd ed. Pearson, 2002.

[56] A. T. Collins, J. M. Rose, and S. Hess, “Interactive stated choice
surveys: a study of air travel behaviour,” Transportation, vol. 39,
no. 1, pp. 55–79, 2012.

[57] A. M. Degeratu, A. Rangaswamy, and J. Wu, “Consumer choice
behavior in online and traditional supermarkets: The effects of
brand name, price, and other search attributes,” International
Journal of Research in Marketing, vol. 17, no. 1, pp. 55–78, 2000.

[58] K. Suk, J. Lee, and D. R. Lichtenstein, “The influence of price
presentation order on consumer choice,” Journal of Marketing
Research, vol. 49, no. 5, pp. 708–717, 2012.

[59] Deloitte. (2017) Global powers of retailing 2017:
The art and science of customers. [Online]. Avail-
able: https://www2.deloitte.com/global/en/pages/consumer-
business/articles/global-powers-of-retailing.html

http://blog.regehr.org/archives/1161
http://blog.regehr.org/archives/1161
http://hdl.handle.net/10125/50602
http://hdl.handle.net/10125/50602
http://www.unz.com/isteve/great-moments-in-google-american-inventors/
http://www.unz.com/isteve/great-moments-in-google-american-inventors/
https://www2.deloitte.com/global/en/pages/consumer-business/articles/global-powers-of-retailing.html
https://www2.deloitte.com/global/en/pages/consumer-business/articles/global-powers-of-retailing.html

39

[60] Alexa. (2017) Top sites by category: Shop-
ping/Health/Pharmacy/Online Pharmacies. [Online].
Available: http://www.alexa.com/topsites/category/Shopping/
Health/Pharmacy/Online Pharmacies

[61] eBizMBA: The eBusiness Guide. (2017) Top 15 most popular real
estate websites. [Online]. Available: http://www.ebizmba.com/
articles/real-estate-websites

[62] ——. (2017) Top 15 most popular car websites. [Online]. Available:
http://www.ebizmba.com/articles/car-websites

[63] ISO/IEC 25010:2011, “Systems and software engineering – systems
and software quality requirements and evaluation (SQuaRE) –
system and software quality models,” 2011.

[64] Quora, Inc. (2012) Why does Google only return 50 pages of 10
results when it claims that there are 560,000 results? [Online].
Available: https://www.quora.com/

[65] D. Feinleib, Bricks to Clicks: Why Some Brands Will Thrive in E-
Commerce and Others Won’t. Apress, 2017.

[66] A. Clarke, SEO 2018: Learn Search Engine Optimization with Smart
Internet Marketing Strategies. CreateSpace Independent Publishing
Platform, 2017.

[67] J. C. Wong, “Delivery robots: a revolutionary step or sidewalk-
clogging nightmare?” The Guardian, Apr. 12, 2017. [Online].
Available: https://www.theguardian.com/technology/2017/apr/
12/delivery-robots-doordash-yelp-sidewalk-problems

[68] A. Gesenhues, “Google searches now correspond to
user location instead of domain,” Search Engine
Land, Oct. 27, 2017. [Online]. Available: https:
//searchengineland.com/google-searches-now-correspond-
location-versus-country-services-attached-domain-285769

[69] Google, “Target ads to geographic locations,” 2017.
[Online]. Available: https://support.google.com/adwords/
answer/1722043?hl=en

[70] P. Kabos and V. S. Stalmachov, Magnetostatic Waves and Their
Application. Springer, 1994.

[71] F. Han, A Modern Course in University Physics: Optics, Thermal
Physics, Modern Physics. World Scientific, 2017.

[72] H. Kragh, “Contemporary history of cosmology and the
controversy over the multiverse,” Annals of Science, vol. 66, no. 4,
pp. 529–551, 2009.

[73] D. Deutsch, The Beginning of Infinity: Explanations That Transform
the World. Viking, 2011.

[74] J. Gribbin, In Search of Schrödinger’s Cat: Quantum Physics and Reality.
Random House Publishing Group, 2011.

[75] A. D. Kshemkalyani and M. Singhal, Distributed Computing:
Principles, Algorithms, and Systems, 1st ed. Cambridge University
Press, 2008.

[76] ISO/IEC/IEEE 24765:2010(E), “Systems and software engineering
– vocabulary,” 2010.

[77] F.-F. Li. (2017) Announcing Google Cloud Video Intelligence
API, and more cloud machine learning updates. Google Cloud
Big Data and Machine Learning Blog. [Online]. Available:
https://cloud.google.com/blog/big-data/2017/03/announcing-
google-cloud-video-intelligence-api-and-more-cloud-machine-
learning-updates

[78] Google, Inc. (2017) Cloud video intelligence - video content
analysis. [Online]. Available: https://cloud.google.com/video-
intelligence/

[79] P. E. Ammann and J. C. Knight, “Data diversity: An approach to
software fault tolerance,” IEEE Transactions on Computers, vol. 37,
no. 4, pp. 418–425, 1988.

[80] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè, “Automatic
workarounds: Exploiting the intrinsic redundancy of web
applications,” ACM Transactions on Software Engineering and
Methodology, vol. 24, no. 3, pp. 16:1–16:42, 2015.

[81] X. Zhang, Y. Gao, and M. K. H. Leung, “Recognizing rotated faces
from frontal and side views: An approach toward effective use of
mugshot databases,” IEEE Transactions on Information Forensics and
Security, vol. 3, no. 4, pp. 684–697, 2008.

[82] V. I. Stoichita, A Short History of the Shadow. Reaktion Books,
1997.

[83] L. Shan and H. Zhu, “Generating structurally complex test cases
by data mutation: A case study of testing an automated modelling
tool,” The Computer Journal, vol. 52, no. 5, pp. 571–588, 2009.

[84] H. Zhu, “JFuzz: A tool for automated java unit testing based on
data mutation and metamorphic testing methods,” in Proceedings
of the 2nd International Conference on Trustworthy Systems and Their
Applications. IEEE, 2015, pp. 8–15.

[85] Lao Tzu, Tao Te Ching. Wordsworth Editions Limited, 1997,
translated by Arthur Waley.

[86] S. Segura and Z. Q. Zhou, “Presentation slides for ICSE 2018
Technical Briefing on metamorphic testing,” 2018. [Online].
Available: http://doi.org/10.5281/zenodo.1256230

[87] M. Pezzè and M. Young, Software Testing and Analysis: Process,
Principles, and Techniques. New York: Wiley, 2008.

[88] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, 2nd ed. Addison-Wesley, 2004.

[89] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting
user story information in developer-client conversations to
generate extractive summaries,” in Proceedings of the IEEE/ACM
39th International Conference on Software Engineering (ICSE ’17),
2017.

[90] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between the
effectiveness of metamorphic relations and dissimilarities of test
case executions,” in Proceedings of the 13th International Conference
on Quality Software (QSIC ’13). IEEE, 2013, pp. 153–162.

[91] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C. Bose,
N. Dubash, and S. Podder, “Identifying implementation bugs
in machine learning based image classifiers using metamorphic
testing,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’18). ACM,
2018, pp. 118–128.

[92] Accenture. (2018) Quality engineering in the new:
A vision and R&D update from Accenture Labs
and Accenture Testing Services. [Online]. Available:
https://www.accenture.com/t20180627T065422Z w /us-en/
acnmedia/PDF-81/Accenture-Quality-Engineering-POV.pdf

[93] N. Mouha, M. S. Raunak, D. R. Kuhn, and R. Kacker, “Finding
bugs in cryptographic hash function implementations,” IEEE
Transactions on Reliability, in press.

[94] GraphicsFuzz homepage. [Online]. Available: https://
www.graphicsfuzz.com

[95] GraphicsFuzz. How it works. [Online]. Available: https://
www.graphicsfuzz.com/howitworks.html

Zhi Quan Zhou received the BSc degree in com-
puter science from Peking University, China, and
the PhD degree in software engineering from The
University of Hong Kong. He is currently an as-
sociate professor in software engineering at the
University of Wollongong, Australia. His current
research interests include software testing and
debugging, software quality assessment, user
experience improvement, and citation analysis.
Zhou was a main contributor to some of the
earliest research papers on metamorphic testing,

and was one of the few pioneers who opened up and established this
research field. He co-founded the ICSE International Workshop on
Metamorphic Testing in 2016 (MET ’16), and was an invited keynote
speaker at ICSE MET ’17. Zhou was selected for a Virtual Earth Award
by Microsoft Research, Redmond.

Liqun Sun received the BSc and MSc degrees
in physics from Donghua University, China. He is
currently an MPhil student in computer science
at the University of Wollongong, Australia. He
worked as a software engineer at Tencent Tech-
nology and Taiwan Semiconductor Manufacturing
Company. His current research interests include
software testing and analysis.

http://www.alexa.com/topsites/category/Shopping/Health/Pharmacy/Online_Pharmacies
http://www.alexa.com/topsites/category/Shopping/Health/Pharmacy/Online_Pharmacies
http://www.ebizmba.com/articles/real-estate-websites
http://www.ebizmba.com/articles/real-estate-websites
http://www.ebizmba.com/articles/car-websites
https://www.quora.com/
https://www.theguardian.com/technology/2017/apr/12/delivery-robots-doordash-yelp-sidewalk-problems
https://www.theguardian.com/technology/2017/apr/12/delivery-robots-doordash-yelp-sidewalk-problems
https://searchengineland.com/google-searches-now-correspond-location-versus-country-services-attached-domain-285769
https://searchengineland.com/google-searches-now-correspond-location-versus-country-services-attached-domain-285769
https://searchengineland.com/google-searches-now-correspond-location-versus-country-services-attached-domain-285769
https://support.google.com/adwords/answer/1722043?hl=en
https://support.google.com/adwords/answer/1722043?hl=en
https://cloud.google.com/blog/big-data/2017/03/announcing-google-cloud-video-intelligence-api-and-more-cloud-machine-learning-updates
https://cloud.google.com/blog/big-data/2017/03/announcing-google-cloud-video-intelligence-api-and-more-cloud-machine-learning-updates
https://cloud.google.com/blog/big-data/2017/03/announcing-google-cloud-video-intelligence-api-and-more-cloud-machine-learning-updates
https://cloud.google.com/video-intelligence/
https://cloud.google.com/video-intelligence/
http://doi.org/10.5281/zenodo.1256230
https://www.accenture.com/t20180627T065422Z__w__/us-en/_acnmedia/PDF-81/Accenture-Quality-Engineering-POV.pdf
https://www.accenture.com/t20180627T065422Z__w__/us-en/_acnmedia/PDF-81/Accenture-Quality-Engineering-POV.pdf
https://www.graphicsfuzz.com
https://www.graphicsfuzz.com
https://www.graphicsfuzz.com/howitworks.html
https://www.graphicsfuzz.com/howitworks.html

40

Tsong Yueh Chen received the BSc and MPhil
degrees from The University of Hong Kong; MSc
degree and DIC from the Imperial College of
London University; and PhD degree from The
University of Melbourne. He is a professor of
software engineering at Swinburne University of
Technology, Australia. Prior to joining Swinburne,
he had taught at The University of Hong Kong
and The University of Melbourne. His current
research interests include software testing and
analysis. He is the inventor of adaptive random

testing and metamorphic testing.

Dave Towey received the BA and MA degrees
from The University of Dublin, Trinity College;
PgCertTESOL from The Open University of Hong
Kong; the MEd degree from The University of
Bristol; and the PhD degree from The University
of Hong Kong. He is an associate professor in
the School of Computer Science, University of
Nottingham Ningbo China (UNNC), where he
serves as the school director of teaching and
learning, and the deputy head. He also serves
as deputy director of the International Doctoral

Innovation Centre. His current research interests include software testing
(especially adaptive random testing, for which he was amongst the
earliest researchers who established the field, and metamorphic testing),
computer security, and technology-enhanced education. He co-founded
the ICSE International Workshop on Metamorphic Testing in 2016, and
is a member of both the IEEE and the ACM.

	Introduction
	Metamorphic Testing (MT)
	Our Approach
	Example 1: Searching for American Inventors
	Example 2: Machine Translation

	Metamorphic Relation Pattern (MRP)
	Background
	Reflection on Two Independent Studies
	Definition of Symmetry
	Symmetry as a Universal Property
	Symmetries in the Natural World
	Symmetries in Mathematics
	Symmetries in Nature's Laws
	Other Symmetries

	Symmetry as a Metamorphic Relation Pattern
	Metamorphic Relation Input Pattern (MRIP)

	Case Study of 65 Top Commercial Websites
	The Metamorphic Relation
	Websites Under Test
	Analyses of Test Results
	Type 1 Issue: Count Consistency (Functional Correctness)
	Type 2 Issue: Completeness of Search Results (Functional Completeness, Capacity, Usability)
	Type 3 Issue: Separate Sections (Functional Completeness, Functional Appropriateness)
	Type 4 Issue: Same Price (Functional Completeness, Usability)
	Type 5 Issue: Different Prices (Functional Correctness, Usability)

	Validity and User Experience
	Summary

	Case Study of Google Maps Navigation
	The Metamorphic Relation
	Results
	Implications

	Case Study of Location-Based Search
	Searching for Cafes in London and Hong Kong using Google Maps
	Making Use of Asymmetry
	Changing the Current Location
	Removing the Obstacle through ``Parallel Universes''

	Summary

	Case Study of Image Analysis using MATLAB, OpenCV, and Facebook
	The Systems Under Test
	Test Cases
	Results
	Implications

	Case Study of Video Analysis Using Google Cloud Video Intelligence: Exploring the Time Reversal Symmetry
	The Test Case and the MR
	Results
	Implications

	Discussion
	Metamorphic Testing and Metamorphic Exploration
	Validity and Sufficiency of Metamorphic Relations
	The Design of Metamorphic Relations and Comparisons of Choices
	Why Symmetry was Selected?
	The Design Space and Choices
	Symmetry and Asymmetry

	Customers' Roles

	Evaluation and Limitations
	Feedback from the Owners/Developers of the Software Systems
	A Recent News Report Confirming the Usefulness of our Approach from the Users' Perspective
	Limitations of our Approach
	Related Industrial Research and Development

	Conclusion
	References
	Biographies
	Zhi Quan Zhou
	Liqun Sun
	Tsong Yueh Chen
	Dave Towey

