
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2018

Metamorphic Testing: A Review of Challenges and Opportunities Metamorphic Testing: A Review of Challenges and Opportunities

Tsong Yueh Chen
Swinburne University of Technology, tychen@swin.edu.au

Fei-Ching Kuo
Swinburne University of Technology, dkuo@swin.edu.au

Huai Liu
Victoria University, Huai.Liu@vu.edu.au

Pak-Lok Poon
paklok.poon@rmit.edu.au

Dave Towey
United International College, University of Nottingham China Campus

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Chen, Tsong Yueh; Kuo, Fei-Ching; Liu, Huai; Poon, Pak-Lok; Towey, Dave; Tse, T. H.; and Zhou, Zhi Quan,
"Metamorphic Testing: A Review of Challenges and Opportunities" (2018). Faculty of Engineering and
Information Sciences - Papers: Part B. 975.
https://ro.uow.edu.au/eispapers1/975

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F975&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F975&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F975&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/975?utm_source=ro.uow.edu.au%2Feispapers1%2F975&utm_medium=PDF&utm_campaign=PDFCoverPages

Metamorphic Testing: A Review of Challenges and Opportunities Metamorphic Testing: A Review of Challenges and Opportunities

Abstract Abstract
Metamorphic testing is an approach to both test case generation and test result verification. A central
element is a set of metamorphic relations, which are necessary properties of the target function or
algorithm in relation to multiple inputs and their expected outputs. Since its first publication, we have
witnessed a rapidly increasing body of work examining metamorphic testing from various perspectives,
including metamorphic relation identification, test case generation, integration with other software
engineering techniques, and the validation and evaluation of software systems. In this article, we review
the current research of metamorphic testing and discuss the challenges yet to be addressed. We also
present visions for further improvement of metamorphic testing and highlight opportunities for new
research.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Chen, T., Kuo, F., Liu, H., Poon, P., Towey, D., Tse, T. H. & Zhou, Z. Q. (2018). Metamorphic Testing: A Review
of Challenges and Opportunities. ACM Computing Surveys, 51 (1), 4:1-4:27.

Authors Authors
Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/975

https://ro.uow.edu.au/eispapers1/975

Metamorphic Testing: A Review of Challenges and Opportunities

TSONG YUEH CHEN and FEI-CHING KUO, Swinburne University of Technology, Australia

HUAI LIU, Victoria University, Australia

PAK-LOK POON, RMIT University, Australia

DAVE TOWEY, University of Nottingham Ningbo China, China

T. H. TSE, The University of Hong Kong

ZHI QUAN ZHOU, University of Wollongong, Australia

Metamorphic testing is an approach to both test case generation and test result verification. A central element is a set of metamorphic
relations, which are necessary properties of the target function or algorithm in relation to multiple inputs and their expected
outputs. Since its first publication, we have witnessed a rapidly increasing body of work examining metamorphic testing from
various perspectives, including metamorphic relation identification, test case generation, integration with other software engineering
techniques, and the validation and evaluation of software systems. In this paper, we review the current research of metamorphic
testing and discuss the challenges yet to be addressed. We also present visions for further improvement of metamorphic testing and
highlight opportunities for new research.

Additional Key Words and Phrases: Metamorphic testing, metamorphic relation, test case generation, oracle problem

ACM Reference Format:
Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A
Review of Challenges and Opportunities. 1, 1 (January 2018), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

This research was supported in part by a linkage grant of the Australian Research Council (project ID LP160101691) and a grant of the General Research
Fund of the Research Grants Council of Hong Kong (project no. 716612). Dave Towey acknowledges the financial support from the Artificial Intelligence
and Optimisation Research Group of the University of Nottingham Ningbo China, the International Doctoral Innovation Centre, the Ningbo Education
Bureau, the Ningbo Science and Technology Bureau, and the University of Nottingham.
It is with deep regret and sadness that we report the passing of the second author Fei-Ching Kuo on October 6, 2017.
Author’s addresses: T. Y. Chen and F.-C. Kuo, Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn
VIC 3122, Australia; email: tychen@swin.edu.au. H. Liu, College of Engineering & Science, Victoria University, Melbourne VIC 8001, Australia; email:
huai.liu@vu.edu.au. P.-L. Poon, School of Business IT and Logistics, RMIT University, Melbourne, VIC 3001, Australia; email: paklok.poon@rmit.edu.au. D.
Towey, School of Computer Science, University of Nottingham Ningbo China, Ningbo, Zhejiang 315100, China; email: Dave.Towey@nottingham.edu.cn.
T. H. Tse, Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong; email: thtse@cs.hku.hk. Z. Q. Zhou, Institute of
Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia; email:
zhiquan@uow.edu.au.
Authors’ addresses: Tsong Yueh Chen; Fei-Ching Kuo, Swinburne University of Technology, Department of Computer Science and Software Engineering,
John Street, Hawthorn, VIC, 3122, Australia; Huai Liu, Victoria University, School of Engineering & Science, Melbourne, VIC, 8001, Australia; Pak-Lok
Poon, RMIT University, School of Business IT and Logistics, Melbourne, VIC, 3001, Australia; Dave Towey, University of Nottingham Ningbo China,
School of Computer Science, Ningbo, Zhejiang, 315100, China; T. H. Tse, The University of Hong Kong, Department of Computer Science, Pokfulam,
Hong Kong; Zhi Quan Zhou, University of Wollongong, School of Computing and Information Technology, Wollongong, NSW, 2522, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
zhiquan
Typewritten Text
The final version of this paper has been published as follows:ACM Computing Surveys, Vol. 51, No. 1, pp. 4:1-4:27, January 2018. Available: https://doi.org/10.1145/3143561

2 T. Y. Chen et al.

1 INTRODUCTION

Software testing is a mainstream approach to software quality assurance and verification. However, it faces two
fundamental problems: the oracle problem and the reliable test set problem. The oracle problem refers to situations
where it is extremely difficult, or impossible, to verify the test result of a given test case (that is, an input selected
to test the program). Normally, after the execution of a test case t , a systematic mechanism called a test oracle (or
simply an oracle) is required to check the execution result. If the result does not agree with the expected outcome,
we say that t fails and refer to it as a failure-causing test case. Otherwise, we say that t succeeds and refer to it as a
successful, or non-failure-causing, test case. In many real-life situations, however, an oracle may not exist, or it may
exist but resource constraints make it infeasible to use. The reliable test set problem means that since it is normally
not possible to exhaustively execute all possible test cases, it is challenging to effectively select a subset of test cases
(the reliable test set) with the ability to determine the correctness of the program. A number of strategies have been
proposed to generate test cases for addressing the reliable test set problem, including random testing [39], coverage
testing [101], search-based testing [40], and symbolic execution [11]. Compared with test case generation strategies,
only a few techniques have been proposed to address the oracle problem, such as assertion checking [79] and N -version
programming [61]. When the oracle problem occurs, many strategies for the reliable test set problem have limited
applicability and effectiveness. Regardless of how effective a strategy is in generating a failure-causing test case, unless
it leads to a crash of the program under test, that failure may not be recognized in the presence of the oracle problem.

Unlike most other software testing techniques, Metamorphic Testing (MT) [15] can be used for both test case
generation and test result verification — thus addressing both fundamental problems of testing. Although it was initially
proposed as a method to generate new test cases based on successful ones, it soon became apparent that MT is also an
effective approach for alleviating the oracle problem. A central element of MT is a set of Metamorphic Relations (MRs),
which are necessary properties of the target function or algorithm in relation to multiple inputs and their expected
outputs. When implementing MT, some program inputs (called source inputs) are first generated as source test cases, on
the basis of which an MR can then be used to generate new inputs as follow-up test cases. Unlike the traditional way of
verifying the test result of each individual test case, MT verifies the source and follow-up test cases as well as their
outputs against the corresponding MR.

Since its first publication in 1998, quite a number of studies have been conducted on various aspects of MT. In recent
years especially, MT has been attracting an increasing amount of attention and has helped detect a large number of
real-life faults. It was a surprise to the software testing community, for example, when MT managed to detect new
faults [77, 93] in three out of seven programs in the Siemens suite [43] even though these programs had repeatedly been
studied in major software testing research projects for 20 years. In addition, Le et al. [50] detected over one hundred
faults in two popular C compilers (GCC and LLVM) based on a simple relation, which was quickly realized to be an
MR [51, 78]. In addition to its extensive use in software testing [8, 13, 14, 16, 20, 50–52, 83, 91, 99], MT has been widely
applied to address the oracle problem in the broader context of software engineering [3, 27, 29, 45, 46, 57, 77, 92, 93]. It
has also been used as a technique for validation [91] and quality assessment [98], detecting real-life faults in several
popular search engines.

In recent surveys of the oracle problem [4, 68, 71, 72], a significant amount of discussion was devoted to MT, which
was categorized as a mainstream and promising approach for addressing the problem. Among the surveys specifically
about MT [34, 42, 81], Segura et al. [81] have presented an extensive literature review of MT, analyzing and summarizing
119 research papers published between 1998 and 2015, highlighting some open questions. Among all the papers on

Manuscript submitted to ACM

Metamorphic Testing 3

MT, we consider some of them as the most important and influential studies if either they opened new and important
research directions for MT or their results have had significant impact. For example, some studies presented various
approaches to systemically generate metamorphic relations [25, 47, 96, 100]. Other studies proposed the innovative
application of MT to, amongst others, proving [27, 37], debugging [29, 46], fault localization [92], fault tolerance [57],
and program repair [45]. Still other studies, as discussed above, have had the surprising and striking results of detecting
real-life bugs in, amongst others, popular compilers [50, 51] and search engines [98]. Our present article is different
from traditional surveys. Rather than providing an exhaustive survey of what has been investigated, we focus instead
on the above-mentioned most important and influential MT studies, the relationships among them, and their impacts.
Complementary to previous surveys on the oracle problem [4, 68, 71, 72] and MT [34, 42, 81], we attempt to summarize
and analyze results based on related studies from a different perspective, providing an in-depth discussion of what has
really been achieved and what still remains to be done. The main contribution of this paper is threefold. To the best of
our knowledge:

• It provides by far the most thorough summary and clarification of the critical concepts of MT, including improved
formal notation and definitions as well as consolidated advantages ofMT (Section 2); and important, but frequently
overlooked or misunderstood concepts in MT (Section 3).
• It presents by far the most systematic discussions of MT’s research in the contexts of (i) traditional software
testing (Section 4); (ii) extension beyond testing, such as for proving MRs and for validation (Section 5); and
(iii) integration of MT with other software engineering methods to address the oracle problem in related fields
(Section 6). In each discussion, we first provide a high-level review of the state of the art of MT, and then highlight
the critical challenges to be addressed.
• It unveils by far the most comprehensive list of contemporary opportunities for emerging research related to MT
(Section 7).

2 BACKGROUND

Before formally presenting the notation and definitions, we first introduce the history of how MT was proposed, paving
a way for a deeper understanding of its underlying intuitions, and facilitating the presentation of its evolution.

2.1 Are successful test cases really useless?

As pointed out by Dijkstra [31], software testing can only demonstrate the presence of faults, not their absence. In
many situations, successful (non-failure-causing) test cases had been regarded as useless — because they do not reveal
failures — and their test results were usually not passed to the debugging team. About twenty years ago, we revisited the
question: Are successful test cases really useless? Our answer was “no”. Most test case generation strategies serve specific
purposes, so every generated test case should carry some useful information about the program under test [15, 21]. It
has been an interesting (and challenging) task to examine how to make use of such useful, but implicit, information to
support further testing.

Our revisit of this question led to the development of metamorphic testing (MT). In MT, we first identify some
necessary properties of the target function or algorithm in the form of metamorphic relations (MRs) among multiple
inputs and their expected outputs. These MRs are then used to transform existing (source) test cases into new (follow-up)
test cases. Obviously, because the follow-up test cases depend on the source test cases, they should also possess some
(if not all) of the useful information embedded in them. If the actual outputs of source and follow-up test cases violate a

Manuscript submitted to ACM

4 T. Y. Chen et al.

certain MR, then we can say that the program under test is faulty with respect to the property associated with that
MR. Although MT was initially proposed as a method for generating new test cases based on successful ones, it soon
became clear that it could be used regardless of whether the source test cases were successful or not. In addition, it
actually provided a lightweight, but effective, mechanism for test result verification — MT was thus recognized as a
promising approach for alleviating the oracle problem.

It should be noted that MT is not the only technique designed to make use of successful test cases. Adaptive Random
Testing (ART) [21, 26, 60] attempts to evenly spread the test cases across the input domain, using the location of
successful test cases to guide selection of subsequent ones.

2.2 The intuition and formalization of MT

The intuition behind using MT to alleviate the oracle problem is as follows: Even if we cannot determine the correctness
of the actual output for an individual input, it may still be possible to use relations among the expected outputs of
multiple related inputs (and the inputs themselves) to help. Consider the following example.

Example 1. Suppose that an algorithm f computes the shortest path for an undirected graph G, and a program P

implements f. For any two vertices a and b in a largeG , it may be very difficult to verify whether P (G,a,b) — the computed

result of P given the inputs G, a, and b — is really the shortest path between a and b. One possible way to verify the result

is to generate all possible paths from a to b, and then check against them whether P (G,a,b) is really the shortest path.

However, it may not be practically feasible to generate all possible paths from a to b as the number of possible paths grows

exponentially with the number of vertices. Although the oracle problem exists for testing the program P , we can make use of

some properties to partially verify the result. For example, an MR can be derived from the following property: If the vertices

a and b are swapped, the length of the shortest path will remain unchanged, that is, | f (G,b,a) | = | f (G,a,b) |. Based on this

MR, we need two test executions, one with the source test case (G,a,b) and the other with the follow-up test case (G,b,a).

Instead of verifying the result of a single test execution, we verify the results of the multiple executions against the MR — we

check whether the relation |P (G,b,a) | = |P (G,a,b) | (where we simply replace f by P) is satisfied or violated. If a violation

is detected, we can then say that P is faulty.

The following is a formal presentation of the MT methodology.

Definition 1 (Metamorphic Relation (MR)). Let f be a target function or algorithm. Ametamorphic relation
(MR) is a necessary property1 of f over a sequence of two or more inputs ⟨x1, x2, . . . , xn⟩, where n ⩾ 2, and their

corresponding outputs ⟨f (x1), f (x2), . . . , f (xn)⟩. It can be expressed as a relation R ⊆ Xn × Yn , where ⊆ denotes

the subset relation, and Xn and Yn are the Cartesian products of n input and n output spaces, respectively. Following

standard informal practice, we may simply write R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn)

)
to indicate that

⟨x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn)⟩ ∈ R.

For ease of presentation, we will write “target function or algorithm” as “target algorithm” in the remaining part of
this paper.

For instance, the property from Example 1, “If the vertices a and b are swapped, the length of the shortest path will
remain unchanged”, is a necessary property of the target algorithm f . | f (G,b,a) | = | f (G,a,b) | is the MR corresponding
to this property.

1A necessary property of an algorithm means a condition that can be logically deduced from the algorithm.

Manuscript submitted to ACM

Metamorphic Testing 5

Definition 2 (Source Input and Follow-up Input). Consider anMRR
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn)

)
.

Suppose that each x j (j = k+1,k+2, . . . ,n) is constructed based on ⟨x1, x2, . . . , xk , f (x1), f (x2), . . . , f (xk)⟩ according
to R. For any i = 1,2, . . . ,k , we refer to xi as a source input. For any j = k + 1,k + 2, . . . ,n, we refer to x j as a follow-
up input. In other words, for a given R, if all source inputs xi (i = 1,2, . . . ,k) are specified, then follow-up inputs

x j (j = k + 1,k + 2, . . . ,n) can be constructed based on the source inputs and, if necessary, their corresponding outputs.

In Example 1, (G,a,b) is the source input and (G,b,a) is the follow-up input constructed by using the same graph G
and swapping the start and end nodes (a and b). Obviously, (G,a,b) and (G,b,a) can be used as test cases for MT (and
are referred to as the source and follow-up test cases, respectively).

Definition 3 (Metamorphic Group of Inputs (MG)). Consider an MR

R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn)

)
. The sequence of inputs ⟨x1, x2, . . . , xn⟩ is defined as a meta-

morphic group (MG) of inputs for the MR. More specifically, the MG is the sequence of source inputs ⟨x1, x2, . . . , xk ⟩

and follow-up inputs ⟨xk+1, xk+2, . . . , xn⟩ related to R.

In Example 1, ⟨(G,a,b), (G,b,a)⟩ is an MG.

Definition 4 (Metamorphic Testing (MT)). Let P be an implementation of a target algorithm f . For an MR R,

suppose that we have R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn)

)
. Metamorphic testing (MT) based on this MR for

P involves the following steps:

(1) Define R ′ by replacing f by P in R.

(2) Given a sequence of source test cases ⟨x1, x2, . . . , xk ⟩, execute them to obtain their respective outputs

⟨P (x1), P (x2), . . . , P (xk)⟩. Construct and execute a sequence of follow-up test cases ⟨xk+1, xk+2, . . . , xn⟩ accord-

ing to R ′ and obtain their respective outputs ⟨P (xk+1), P (xk+2), . . . , P (xn)⟩.

(3) Examine the results with reference to R ′. If R ′ is not satisfied, then this MR has revealed that P is faulty.

If conducting MT for Example 1, f would first be replaced by P in the MR to give the expected relation |P (G,b,a) | =
|P (G,a,b) |. Given the MG ⟨(G,a,b), (G,b,a)⟩, the program would then be executed so that we could examine whether
|P (G,b,a) | = |P (G,a,b) | is satisfied or violated.

With MT, it is not necessary to investigate whether P (xi) = f (xi) for any individual test case xi — which would
require a test oracle. MT therefore alleviates the oracle problem in testing.

2.3 Advantages of MT

Based on the definitions in the previous section, we next summarize MT’s main advantages. Note that although these
advantages are not unique to metamorphic testing, MT is one of the few techniques that have all of them.

Advantage 1: Simplicity in concept. Both the intuition and technical content of MT are simple and elegant. As
shown in previous studies [55, 73], testers, even those without much experience or expertise, could learn how to use
MT in a few hours and then correctly apply it to test a variety of systems.

Advantage 2: Straightforward implementation. According to Definition 4 (Section 2.2), implementing MT is
straightforward. Both test case generation and test result verification are implemented based on MRs. Previous studies
of MT, especially those related to MT applications where a large number of MRs are identified, suggest that MR
identification is not a very difficult task even though it cannot be completely automated. The success of using a very
simple MR to detect hundreds of real-life bugs in two popular compilers [50] is strong evidence that identification

Manuscript submitted to ACM

6 T. Y. Chen et al.

of good MRs may not be difficult at all. It should also be straightforward for users to develop MT tools for their own
specific domains [84, 100].

Advantage 3: Ease of automation given the availability of MRs. Apart from the MR identification process, it
should not be difficult to automate the major steps in MT, including test case generation, execution, and verification. The
construction of individual test cases is simple. Source test cases can be generated through existing testing methods while
follow-up test cases can be constructed through transformations according to MRs. Test case execution is normally
straightforward also, and thus may be the most easily automated process for almost all testing methods. Test result
verification in MT can also be automated by creating scripts to check test outputs against the relevant MRs. In the
entire MT procedure, the only part that might not be fully automated is MR identification, but this can be improved
based on the recent influential study of systematic MR identification [25]. Although tools already exist that implement
the entire MT process for certain application domains [84, 100], further research is still required to develop a general
framework incorporating and automating every MT step as much as possible.

Advantage 4: Low costs. Compared with traditional testing techniques, MT requires a process of identifying MRs,
and incurs marginal additional computational costs for generation and execution of follow-up test cases, and test result
verification. Although MR identification involves some manual work and hence incurs some overheads, it is expectable
and unavoidable. Similar manual processes are necessary in traditional testing, such as the requirements analysis for
specification-based testing, the construction of formal models for model-based testing, the identification of assertions,
and the design of fitness functions for search-based testing. As explained above, follow-up test cases are easily generated
through transformations according to MRs, and usually incur very low cost. Although test result verification involves
checking outputs against MRs, the associated overhead is relatively low compared with the cost of result verification
when the oracle problem exists.

Another important factor affecting costs is the scalability problem, by which we mean that the required number of
test cases or required testing efforts is exponentially growing with the size of the program under test. For example,
the multiple-condition coverage criterion, widely regarded as “one of the most popular criteria in software testing
practice” [101], aims to design test cases that cover all possible combinations of condition outcomes in a decision for a
given program. For a given program, such a testing criterion requests a minimum number of test cases to satisfy its
original objective. In contrast, there exist several techniques, such as MT and random testing, that do not have this kind
of constraint on the minimum number of test cases. MT can be applied with a test suite of any size, independent from the
size and complexity of the program under test. How large or small the test suite is does not affect the implementation
of MT. Thus, MT does not have the scalability problem as encountered by the multiple-condition test case selection
method. Some may argue that MT may require many test cases to guarantee the detection of certain software failures.
However, this issue is related to the failure rate of the program under test and fault-detection capability rather than
scalability.

3 FREQUENTLY MISUNDERSTOOD CONCEPTS IN MT

In our research, we have identified the following MT concepts that were frequently overlooked or misunderstood — they
appear to be the cause of most inquiries from readers, reviewers, and software practitioners. In this section, therefore,
we highlight and address each one of them, providing a more comprehensive picture of MT and thus enabling a deeper
understanding of MT’s capabilities.

Concept 1: Not all necessary properties areMRs.MRs are necessary properties of the target algorithm in relation
to multiple inputs and their corresponding expected outputs. Not all necessary properties of the algorithm, therefore,
Manuscript submitted to ACM

Metamorphic Testing 7

are MRs. For example, although −1 ≤ sin(x) ≤ 1 is a necessary property of the sine function, it only involves a single
instance of the input and thus cannot be considered an MR — even though, obviously, violation of this property implies
that the relevant program is faulty. It should be noted that such a property involving only one input has been used
in other techniques, such as assertion checking [79], which also addresses the oracle problem but in a different way
and less effective than MT in detecting various faults [41, 97]. There are also development and testing approaches
that involve multiple executions using the same input: N -version programming [61] and differential testing [35], for
instance, verify the test results against the property that various versions of the same software should produce the
same results given the same input. However, because such a property does not involve multiple different inputs (even
though it involves multiple executions across various versions), it is not regarded as an MR.

Concept 2: Not all MRs separate into input-only and output-only sub-relations. Many previously studied
MRs consist of two separate or independent components: one sub-relation involving only the inputs and the other one
involving only the outputs. Consider the shortest path program P (G,a,b) in Example 1 (Section 2.2), where G is an
undirected graph, a is the start node, b is the end node, and the output is a shortest path from a to b. The given MR, “If
the vertices a and b are swapped, the length of the shortest path will remain unchanged”, which we denote as MR1, can
be decomposed into two separate sub-relations: Rin (a relation only involving the inputs: “the start and end nodes, a
and b, are swapped”) and Rout (a relation only involving the outputs: “|P (G,b,a) | = |P (G,a,b) |”). Although this type of
MR is often identified, it should be noted that there are other types that cannot be decomposed into input-only and
output-only sub-relations. Consider a second MR, denoted as MR2: |P (G,a,c) | + |P (G,c,b) | = |P (G,a,b) | where c is
a node appearing in the shortest path from a to b in graph G. In MR2, the follow-up test cases (G,a,c) and (G,c,b)

depend on the output of the source test case (G,a,b). Although MR2 is different from MR1, which is in the form of Rin

and Rout, MR2 does still comply with Definition 1.
Concept 3: Not all MRs are equality relations. Although many of the MRs studied to date have involved equality

relations, this is not a requirement in the original MR definition (Definition 1). Consider the following example.

Example 2. Suppose that a database query commandq extracts data from the database using the condition c1∨c2∨. . .∨cn .

One possible MR for q is: If any ci (1 ≤ i ≤ n) is removed, the new extracted data should be a subset of the original extracted

data, that is, q(c1 ∨ c2 ∨ . . . ∨ ci−1 ∨ ci+1 ∨ . . . ∨ cn) ⊆ q(c1 ∨ c2 ∨ . . . ∨ cn).

Unlike the MR defined in Example 1, which involves an equality relation, the MR in Example 2 involves a relation that
is not an equality. Furthermore, some studies have considered the use of nondeterministic or probabilistic relations as a
kind of extension to MT [38, 66]. In fact, the MR definition was never constrained to specific relation types. Although
other techniques (such as the data diversity approach for fault tolerance [2]) specifically involve the use of equality
relations, MRs may include but are not limited to equality relations. This makes MT intrinsically different from other
techniques. Interested readers who wish to further explore the differences between MT and these other techniques may
consult our previous studies [29, 55].

Concept 4: MT can be applied with or without an oracle. Although MT has been extensively applied to the
testing of programs with the oracle problem, it can also be applied when a usable oracle is available — something
that has been overlooked or misunderstood by many researchers. In fact, MT has revealed real-life faults that had
remained undetected for years in some small-sized and extensively-tested programs — such as the famous Siemens
programs [77, 93], which will be discussed in Section 4.2. This means that MT can be used as a test case generation
strategy regardless of whether or not a usable test oracle exists. As will be shown in Section 5.1, MT with semi-proving
can reveal conditions of inputs that lead to violations of an MR (if such violations exist). These conditions are useful for

Manuscript submitted to ACM

8 T. Y. Chen et al.

debugging, regardless of whether the test oracle exists or not. In summary, MT is a useful and effective method even
when a test oracle exists.

4 MT IN TESTING

4.1 MT as an approach to alleviating the oracle problem

State of the art. Although it has widely been acknowledged that MT can effectively alleviate the oracle problem
in testing, one can never completely solve it. MRs are necessary properties of the target algorithm in relation to
multiple inputs and their expected outputs, but because there are usually a huge number of these properties, it is almost
impossible to obtain a complete set of MRs representing all of them. Even if it were possible to obtain such a complete
set of MRs, they might still not be equivalent to a test oracle due to the necessary (but not sufficient) nature of the
properties. Nevertheless, a recent empirical study [55] has delivered very encouraging results, demonstrating how a
small number of diverse MRs appear to be very close to the test oracle in terms of software fault-detection ability. For
each of the six subject programs in the study, MT only required an average of three to six diverse MRs to reveal at least
90% of the faults that could be detected by an oracle.

The effectiveness of MT in alleviating the oracle problem has been shown repeatedly in numerous studies, covering
many different domains, including bioinformatics [16, 75, 76, 80]; web services [14, 84]; embedded systems [13, 44, 49];
components [8, 59]; compilers [50, 86]; databases [52]; machine learning classifiers [65, 67, 91]; online search functions
and search engines [98, 99]; software product lines [82, 83]; and security [20]. In particular, MT has detected real-life
faults in some frequently used programs with the oracle problem. For example, when testing a program analyzing
gene regulatory networks, Chen et al. [16] identified some MRs involving simply altering the basic network structure
(through deletion of a node, or addition of an edge, for instance). It was surprising to observe that a fault was revealed by
a very simple MR that added a zero-weight edge. Other examples of MT detecting real-life faults include its application
in embedded systems [49], in three famous Siemens programs [77, 93], and with two popular C compilers [50, 86].
Readers can refer to the recent survey [81] for the details on how MT has addressed the oracle problems in these
different application domains. We will not repeat the detailed discussions in this paper. Instead, we will now summarize
the similarity among these studies. Most studies have used random testing (RT) as the benchmark for evaluating
the fault-detection effectiveness of MT, either explicitly or implicitly. Usually, faults are seeded into a base program
(automatically and/or manually) to generate a set of faulty versions called mutants. The base program can then be used
as the oracle. RT with the oracle provides the upper bound of the fault-detection effectiveness. RT without the oracle
provides the lower bound — in which case we can only detect faults related to program crashes, such as segmentation
faults. It is usually reported that MT always detects more faults than RT without the oracle. Obviously, any program
crash will lead to the violation of MRs, whereas some faults do not necessarily trigger crashes but may result in MR
violations. On the other hand, the more MRs used, the closer will be the number of faults detected by MT to that for RT
with the oracle. Furthermore, if a sufficient number of diverse MRs are used, then the fault-detection effectiveness of
MT is found to approach that of the oracle [55].

In addition to RT, MT has also been compared with another technique for addressing the oracle problem, assertion
checking [41, 97]. Although incurring a slightly higher computational cost, MT has been observed to detect more faults
than assertion checking. MT was also found to be complementary to error trapping, a commonly used spreadsheet
testing technique [74]. Because MT and error trapping find different types of faults, it has been proposed that they
should both be used when testing spreadsheets.

Manuscript submitted to ACM

Metamorphic Testing 9

Challenge 1: Comprehensive empirical studies for a unified understanding of MT. The increasing number
of real-world programs tested using MT is indicative of its wide acceptance [81], but a thorough evaluation of MT’s
overall effectiveness is still lacking. Many experimental studies [12, 55] have used mutation analysis to evaluate the
fault-detection effectiveness of MT — evaluating how well MT, or more specifically a set of MRs, can alleviate the oracle
problem based on how many mutants can be killed. However, most of these studies either focused on one particular
application domain, or were based on a set of small or medium-sized subject programs. In addition to the appropriate
effectiveness measurement (such as the mutation-based metrics), further empirical studies involving large and complex
subject programs, from a variety of application domains, will be needed to develop a full picture of MT’s fault-detection
effectiveness. Such projects are labor-intensive and time-consuming, and should be conducted through collaborations
across different research groups with complementary strengths. Furthermore, some previous MT experiments have
yielded contradictory results. As discussed in a previous survey [81], for instance, the effectiveness of MRs (such as
those in [17, 62]) has not been conclusively determined. It is therefore critical that all these experiments be summarized
and analyzed. Based on these analyses, more comprehensive and thorough empirical studies should be designed and
conducted. It is hoped that such comprehensive studies will lead to a more unified understanding of MT, enabling
provision of clearer directions and guidelines for further MT research.

Challenge 2: Systematic MR identification and selection. Effective MRs are the key to MT alleviating the oracle
problem. Although many MRs have been identified for various application domains (as mentioned in Section 2.3), and
were reportedly not difficult to identify, most of these identifications were conducted in an ad hoc and arbitrary way.
Several studies have been conducted examining how to systematically identify MRs [25, 56] and how to select “good”
MRs [12, 17, 55, 62] (the results of these studies have been summarized by Segura et al. [81]). However, both systematic
identification and selection of appropriate MRs still face several critical challenges.

Research into MR identification is important, but still at a preliminary stage, with most techniques proposed so far
having limited applicability. Currently, MR identification strategies can be classified as either ad hoc or systematic, with
most previous MT studies requiring testers to identify MRs in an ad hoc manner, without any systematic mechanism.
Recently, however, research has been emerging on systematic methods for MR identification. Zhang et al. [96], for
example, proposed identifying MRs from multiple executions of the program under test. On the one hand, MRs based on
program executions may be erroneous if the implementation is faulty. The latter is exactly what we set out to test. On
the other hand, even though these MRs may not be valid, they provide users with clues and inspirations for identifying
appropriate MRs.

Some MR identification techniques can only be applied in specific application domains [47, 96, 100], or may require
the existence of initial MRs [33, 56]. Other recent work, however, has yielded much higher applicability and MR
identification without a need for existing MRs: METRIC [25], for instance, is based on the concepts of category and
choice [24] from the software specifications. Categories refer to input parameters or environmental conditions that
affect the execution of the software under test, while choices are disjoint partitions of each category that cover sets of
possible values for the category. Technically speaking, MRs are part of the specifications, and hence, intuitively, should
be identifiable from them — an intuition that motivated the technique on which METRIC is based. However, in spite
of its systematic approach, METRIC still relies somewhat on the testers’ expertise and experience in identifying MRs.
Consider the following example.

Manuscript submitted to ACM

10 T. Y. Chen et al.

Example 3. For the sine function, its specification is usually given by the equation

sin(x) = x −
x3

3!
+
x5

5!
− · · · (1)

With this specification, it may not be difficult to identify the MR “sin(−x) = − sin(x)”. However, it is not trivial to derive
some other MRs from Equation (1), such as “sin(π − x) = sin(x)” or “sin(x + 2π) = sin(x)”, because the final cancellation
of all π ’s after replacing x by (π − x) or (x + 2π) in the equation involves difficult mathematical operations.

On the other hand, if the sine function is defined to be the ratio of the opposite side to the hypotenuse in a right-angled

triangle, then the MRs “sin(π − x) = sin(x)” and “sin(x + 2π) = sin(x)” should be easily identifiable — because they follow

directly from the definition or specification.

Current practices in specifications engineering aim mainly to help developers understand the required functionality
of the software to be developed, with a view to delivering a system that satisfies user needs. It will therefore be a
challenge to investigate new specification practices that would support the identification of MRs. This research direction
may bring a new perspective to specifications engineering.

Although work has been conducted into providing guidelines for “good” MR selection [12, 17, 55, 62], these guidelines
remain rather qualitative and their implementation is still a relatively subjective process. More work is needed to
produce the formal, objective, and measurable criteria that can be used to guide selection of appropriate MRs to
effectively alleviate the oracle problem. Potential criteria include the code coverage of MRs, the differences in execution
profiles (such as branch hits and branch counts) of source and follow-up test cases for an MR [12], the logical hierarchy
of MRs, and so on.

A promising direction for future research will be to integrate the selection of “good” MRs with the systematic
identification of MRs. The resultant is an advanced technique achieving both MR identification and selection. It would
not only identify MRs without the need for existing ones, but could also systematically select a set of MRs that would
be most effective in detecting various faults.

4.2 MT as a new test case generation strategy

State of the art. As already discussed, MT was proposed as a test case generation strategy that could be used regardless
of whether or not the oracle problem exists. Previous studies have shown that in addition to alleviating the oracle
problem, MT is effective at revealing real-life faults, even for widely-used programs, such as the famous Siemens
programs [77, 93], C compilers [50, 86], bioinformatics software [16], and wireless embedded systems [49]. Segura et
al. [81] reported that MT had detected about 295 real-life faults, emphasizing the effectiveness of the technique. Among
these detected faults, two results are worth highlighting for further analysis: the detection of three faults in the Siemens
suite and the detection of over 100 faults in two popular C compilers (GCC and LLVM).

MT detected three real-life faults in three out of seven programs [77, 93] in the Siemens suite [43]. The Siemens
suite had been extensively used as a benchmark for evaluating many test case selection strategies for the previous two
decades. Furthermore, the programs are of relatively small size. It was therefore particularly surprising that such faults
had remained undetected for so long in spite of the small program sizes and the thorough testing by a large number of
test case selection strategies. This clearly demonstrates that MT complements existing test case selection strategies.
The success in revealing these previously undetected faults is due to MT’s innovative approach to generating test cases
based on a perspective different from those used before. In MT, testers need to consider the necessary properties of the
target algorithm — not the implementation. Even without a complete specification, testers can still identify MRs that
Manuscript submitted to ACM

Metamorphic Testing 11

describe particular properties, and thus can generate test cases that may reveal faults violating these properties. This
situation emphasizes the importance of the concept of test case diversity. Programmers may make a variety of errors,
including unexpected ones. Correspondingly, test cases should be designed from different perspectives such that they
can trigger as many distinct kinds of execution behaviors as possible. Interested readers may consult our work on the
role of diversity in effective test cases [21, 22].

Recently, Le et al. [50] developed a technique to test compilers and detected over 100 faults in the popular GCC and
LLVM C compilers. The same technique was also applied to detect over 50 new bugs in OpenCL (Open Computing
Language) compilers [51]. The technique is basically MT, as observed by different researchers [51, 78], with a specific
instance of the following MR: If source programs SP and SP ′ are equivalent for input I , then their object programs OP
and OP ′, respectively, are also equivalent on I . Their method constructs SP ′ from SP by removing the statements in
SP that are not executed with input I . Compared with the Siemens test suite, the two compilers are extremely large.
Although we do not know the testing history of the two compilers, it is very likely that they were tested with fewer
testing methods than the Siemens suite — because the latter has been extensively used as a benchmark for evaluating the
effectiveness of testing methods. However, since these two compilers are popular, they must have been used extensively,
and thus, it is a surprise that so many faults have been detected. This again demonstrates the effectiveness of MT in
revealing real-life faults. In fact, Le et al. are not the first researchers to use MT to test compilers. Tao et al. [86] had
previously also used MT, but had only found one fault in the GCC compiler and one in the UCC compiler. This dramatic
difference in the number of detected faults also emphasizes the significant impact MR choice has on the fault-detection
effectiveness of MT.

Compared with other testing strategies, the main MT overheads relate to the identification of MRs, as well as
the generation and execution of follow-up test cases. However, a major advantage of MT is that it does not have
the scalability problem that has rendered many other testing techniques unusable on large software, as discussed in
Section 2.3. Furthermore, the MR that Le et al. [50] used to test the two compilers is remarkably simple, in spite of the
technical complexity of compilers, and can be defined without referring to such complex technical content. In fact, the
used MR is applicable to compilers for other programming languages, not restricted to the C compilers.

Challenge 3: Effective test case generation. The effectiveness of MT depends on the MRs and MGs used, while
follow-up test cases depend on source test cases and the relevant MR. Thus, the effectiveness of MT actually depends on
both the MRs and the source test cases. Nevertheless, research has mainly focused on the impact of MRs (as discussed in
Section 4.1), with the impact of source test cases on MT’s fault-detection effectiveness having somehow been neglected.
Previous studies have focused mainly on the identification of “good” MRs, often overlooking the issue of generating
“good” test cases — in terms of fault-detection effectiveness. In most previous studies, source test cases were either
randomly generated [7, 55], or were special values [19], or both [16]. As observed by Segura et al. [81], 57% of source test
cases in previous studies were randomly generated and 34% were from existing test suites. In other words, investigation
of the impact of source test cases on MR (and MT) effectiveness is an area yet to be explored. Some initial work in this
area has begun, including attempts to generate source test cases using more advanced techniques, such as fault-based
testing [28] and ART [5, 7]. The studies so far conducted are still at relatively initial stages, and it is quite challenging
to assess and guarantee the effectiveness of test cases generated for MT, which depends on a variety of factors. It will
be worthwhile to more deeply investigate how to generate effective source test cases and consequently follow-up test
cases that maximize fault detection.

Manuscript submitted to ACM

12 T. Y. Chen et al.

5 EXTENSION OF MT BEYOND TESTING

This section examines how MT has been extended beyond the context of testing, into MR proving (Section 5.1) and as a
unified framework for verification, validation, and quality assessment (Section 5.2).

5.1 Proving MRs

State of the art. In MT, MRs are tested and not proven, which means that, even if there is no MR violation, it still
cannot be concluded that the program satisfies the relevant MRs for all inputs. A natural line of investigation, therefore,
will be to examine how to prove that a program satisfies MRs for the entire input domain — abbreviated as proving MRs,
hereafter. To the best of our knowledge, very few investigations in this direction have so far been conducted: one by
Chen et al. [27, 29] and one by Gotlieb and Botella [37].

Chen et al. [27, 29] developed a semi-proving method that uses symbolic analysis techniques to prove MRs. In addition
to providing a general framework for proving, they showed that semi-proving can be combined with testing and
debugging, as illustrated by the following example.

Example 4. Consider a program P implementing a function f (x) that has the following MR: f (k × x) = k × f (x)

(denoted by MRo), where k is a non-zero integer. Suppose semi-proving has successfully proven that the program P satisfies

MRo on the entire input domain. Now, test P using a concrete test case, such as x = 2, and suppose that the output is correct.
Then, based on this result and the proven MR, it can be concluded that P (4), P (6), P (8), . . . must all be correct — even

though the program P has never been tested using these concrete test cases.

As shown above, semi-proving enables extrapolation from the correctness of a program for tested inputs to the
correctness for related but untested inputs, thus combining testing and proving. It was also observed that proving the
correctness of a program could sometimes be achieved by proving a set of MRs [27, 29]. In this way, semi-proving
provides a new and automated way to do proving. For complex programs where symbolic analysis cannot be applied
globally, semi-proving can be performed on a finite set of selected paths, making it a symbolic testing technique.
When semi-proving finds that an MR is not satisfied by the program, it provides a constraint on the inputs for which
the relevant MR is violated. For example, suppose that the program has two input parameters, a and b, and that the
constraint is a = (2 × b) + 5. Whenever the input parameters satisfy the constraint, the MR will be violated. Obviously,
such a constraint is more informative than a concrete test case (such as a = 11 and b = 3) for revealing the nature of the
defect.

Gotlieb and Botella [37] used constraint logic programming to generate test cases that cause violations of given
MRs. Their testing framework first translates the program under test into an Equivalent Constraint Logic Program
over Finite Domains (eclp (f d)), and then generates the negation of the given MR, expressed as a goal to solve with the
eclp (f d). Because a contradiction of the constraint system means that the MR is satisfied, their technique can prove the
satisfaction of MRs for certain programs.

Challenge 4: Metamorphic proving. Geller [36] proposed using test cases to prove program correctness by first
testing the program using a sample test case, showing that the output is correct, and then proving that the program’s
output and the specified target function “are perturbed in the same fashion” as the input values change. In this way,
one can generalize from the given test case to a larger domain. Although metamorphic relations are obvious candidates
for the generalization, how to make use of them for program proving or disproving, in combination with testing, is a
challenge. In particular, extensive research is required to balance the fault-detection effectiveness of the MRs (their
proving power) with the difficulty level of the proofs.
Manuscript submitted to ACM

Metamorphic Testing 13

To elaborate this point, consider again program P in Example 4, which implements the function f (x) that has the
MRo : f (k × x) = k × f (x), where k is a non-zero integer. We have shown that proving MRo can be very useful because
it enables extrapolation from the program’s correctness for a single test case to the program’s correctness with infinitely
many untested inputs. In practice, however, the verifier might find that MRo is too difficult to prove for P . In this
situation, the verifier should look for other MRs that are easier to prove, such as MRn : f (−x) = −f (x). Although MRn
is weaker than MRo , proving MRn for P could be more practical, and a successful proof of P (−x) = −P (x) will still be
very useful as it will double the effectiveness of concrete test cases.

Many different proving techniques exist, each with advantages and limitations. For the existing MT-based proving
techniques [27, 29, 37], their applicability and scalability rely on their related support tools. Further research is needed
to identify the usefulness, advantages, and limitations of MR proving techniques beyond symbolic evaluation and
constraint logic programming.

5.2 A framework for verification, validation, and quality assessment

State of the art. Software verification checks whether the products of a given development phase (such as design
documents or program code) satisfy the specified requirements. Software validation, on the other hand, checks whether
these products meet the user’s actual needs. Boehm [9] famously explained the difference as questions of “building the
product right” (verification) and “building the right product” (validation).

Although MT was originally proposed as a verification technique, it was later also found to be useful for validation.
In a study of testing machine learning classifier software [91], it was observed that implementations of two classifiers,
k-Nearest Neighbor (kNN) and Naive Bayes, violated some of the identified MRs. Careful investigation later revealed
that some of the violated MRs were not actually necessary properties of the target algorithms — but they were properties
expected by the users. For example, although users reported expecting that the order of the class labels would not
affect the final classification, the kNN algorithm did not have this property, which resulted in MR violations when the
implemented program was tested. This observation led to the understanding that MT could also be used as a validation
technique — if the MRs are identified based on actual user expectations rather than on the target algorithm.

While verification and validation focus on the functionality and correctness of software, software quality assessment,
as an activity, covers a much broader range of characteristics than just functional correctness [98]. MT has, for
the first time, been formally introduced as a unified framework for software verification, validation, and quality
assessment with large scale empirical studies of major search engines (including Google, Bing, and Baidu) [98]. The
investigated software quality (sub)characteristics included functional correctness, capacity, operability, user error
protection, maturity, effectiveness, and context completeness. As an example, it was found that the search engines
under study had performance degradation when searching large domains, which means that MT is useful for assessing
software scalability. The main difference is the source of MRs: in verification, they are derived from the specifications;
in validation, they are derived from the user expectations; and in quality assessment, they can be defined by various
stakeholders.

Consider again the case of search engines [98], which, due to the lack of a tangible test oracle, can be difficult to test
or assess. Because knowledge of the algorithms, or detailed system specifications of these search engines (which could
be commercial secrets), was not available, a user-oriented approach was adopted to perform MT — MRs were identified
from the users’ perspective. These MRs reflected what users actually care about and were not based on the algorithms
or designs chosen by the search engine developers. On the one hand, they allowed users to validate the search engines
and assess their various quality characteristics. On the other hand, the test results were helpful for the developers to

Manuscript submitted to ACM

14 T. Y. Chen et al.

reveal defects and weaknesses in the search engines and, hence, to improve the quality of service. The search engine
developers could repeat some of the reported MR violations and confirm that they were indeed caused by software
faults or design flaws. This means that the user-oriented MRs were also useful for developers conducting verification.

In summary, MRs have evolved from being just the necessary properties of the target algorithm in relation to multiple
inputs and their expected outputs (Definition 1), to additionally including the properties expected by users.

Challenge 5: A unified and comprehensive framework. Research into software validation and quality assess-
ment using MT is still at an initial stage, but the ultimate goal should be the development of a comprehensive MT
framework supporting verification, validation, and quality assessment. A major task is to formulate MRs not only
from the perspective of the target algorithm, but also from various stakeholders’ perspectives, including those of
developers, user groups, and independent testers. The identification and formalism of MRs can be quite different for
various purposes (including verification, validation, and quality assessment), which are associated with requirements in
distinct specification paradigms. Hence, it is challenging to develop a unified framework that can capture and express
MRs for different purposes and application domains. In particular, it is a very challenging job to propose a specification
language that not only supports the unified expression of MRs by different stakeholders for various purposes, but also
facilitates the transformation of individual MRs to a set of automated procedures for constructing MT test cases, bearing
in mind that the follow-up test cases may depend not only on the source test cases but also their outputs.

Another major task is to involve a variety of quality characteristics and their associated metrics in the framework.
Zhou et al. [98] identified five MRs for search engines and showed how they could be used to evaluate some standard
quality (sub)characteristics [85], such as functional correctness, operability, and maturity. Although the majority of MT
research has focused on the functional correctness of the software under test, it will be necessary to extend further into
the broader context of software quality, addressing such aspects as reliability [70], performance [18], and security [20].
The development of MRs to evaluate the different quality characteristics of various software types will be an important
job. The characteristics of different software, combined with the multiple aspects of verification and validation activities,
will mean that the integration of all these things into a single comprehensive (MT) framework will be both rewarding
and challenging.

6 INTEGRATIONWITH OTHER TECHNIQUES

State of the art. In addition to alleviating the oracle problem in the context of testing, MT has also been widely applied
to address similar problems in other software engineering areas. Because other techniques, such as debugging, analysis,
fault tolerance, and program repair, may normally assume the presence of an oracle, integration with MT should extend
their applicability, especially when the oracle does not exist. Other than the small constraint of involving at least two
inputs, MT is quite straightforward and should easily achieve integration [3, 45, 46, 57, 92, 93]. In fact, the integration
process can be facilitated by the following two-component framework:

• The correspondence between a single test case and an MG (which involves multiple test cases); and
• The correspondence between the pass/fail outcome of a test case and the satisfaction/violation of an MR for the
relevant MG.

Using this integration framework, the technique under study can be extended through the application of the two
mappings with any appropriate modifications to the original technique.

For example, consider the technique of debugging with slicing [46, 93], which conventionally works as follows: “If the
program is tested with an input that reveals a failure, then we find the relevant slice, called the execution slice, for this
Manuscript submitted to ACM

Metamorphic Testing 15

failure-causing input, and debug it.” The rationale is that the execution slice must contain the relevant faulty statement.
Using the integration framework, we can modify the debugging with slicing technique as follows: “If the program is
tested with an MG that reveals the violation of an MR, we find the relevant slice for this MR-violating MG and debug
it.” A possible way of modification is to replace the execution slice used in the original technique with the union of
execution slices for all the test cases (both source and follow-up) in the MG. The rationale is that the faulty statement
must be in the union of the MG-related execution slices, thus giving rise to the MR violation. With this modification,
the technique can then be extended to application domains without a test oracle.

Consider Spectrum-Based Fault Localization (SBFL) [92] as another example. Given a test suite that contains at least
one failure-causing test case, SBFL statistically estimates the likelihood that a program entity (such as a statement)
is faulty. SBFL involves examining each statement to determine how many failure-causing and non-failure-causing
test cases have executed it as well as how many have not, thereby generating four measures for each statement. The
four measures are then used to calculate a risk value, which can be used to prioritize statements for debugging. The
reasoning behind SBFL is that (1) a statement executed by more failure-causing test cases is more likely to be faulty and
(2) a statement executed by more non-failure-causing test cases is less likely to be faulty.

Using the integration framework, the original SBFL method can be extended in the following three steps. First, “a
given test suite with at least one failure-causing test case” becomes “a given set of MGs with at least one MR-violating
MG”. Secondly, “a statement executed by a test case” corresponds to “a statement executed by an MG”. Finally, “a
statement not executed by any test case” corresponds to “a statement not executed by any test case in any MG”.

The new SBFL process then determines how many MR-violating and non-MR-violating MGs have executed each
statement as well as how many have not, thereby generating four new measures for each statement. These four new
measures are then used instead of the respective original ones to calculate the risk values, which in turn can be used
to prioritize the statements for debugging. The reasoning behind the new technique integrating SBFL and MT is that
(1) a statement executed by more MR-violating MGs is more likely to be faulty and (2) a statement executed by more
non-MR-violating MGs is less likely to be faulty. In this way, SBFL can be extended to those application domains that
face the oracle problem.

Of course, it may not be universally possible to use MT to enhance every relevant method to render it applicable
to programs with the oracle problem. Nevertheless, the simplicity of the integration framework makes it generally
applicable in the vast majority of cases.

Challenge 6: Development of new concepts. The integration of MT with other software engineering techniques
can lead to the development of new concepts, such as metamorphic slicing, which was proposed in recent work on
debugging [93]. Slicing is an important concept in program analysis, testing, and debugging. Many slice types have
been developed, such as static slices, dynamic slices, execution slices, and conditioned slices [94]. Nevertheless, the slice
definitions to date are basically data-oriented or data-driven. Metamorphic slicing has been introduced to integrate
MT with debugging and fault localization techniques [92, 93]. A new family of slices has been proposed, including
static metamorphic slices, dynamic metamorphic slices, execution metamorphic slices, and conditioned metamorphic
slices. Unlike their conventional counterparts, metamorphic slices are not only data-oriented but also property-oriented
because they are related to MRs. This has opened a new research area in slicing.

Although many studies integrating MT with other techniques have already been conducted [3, 45, 46, 57, 92, 93],
few new concepts have so far been formally developed. Finding a technique to which MT can be applied is the first
challenge, after which it may be possible to develop a new concept. Obviously, even when a technique can be integrated
with MT, it does not necessarily mean that new concepts will then be developed. Furthermore, the development of new

Manuscript submitted to ACM

16 T. Y. Chen et al.

concepts may not be straightforward. Refer to the example of metamorphic slicing. Although Xie et al. [92, 93] only
described one execution metamorphic slice construction (through the set union of execution slices of the related MG),
there are many possible ways to group the execution slices to form execution metamorphic slices. Generally speaking,
the intended application of the metamorphic slices will influence their definition in terms of conventional slices. Clearly,
integration of MT with other techniques and the related development of new concepts will be challenging.

Challenge 7: Development of new techniques. Since its first appearance in the literature in 1998, MT has been
integrated with many other techniques, resulting in a family of new methods in various areas, including debugging [93],
fault localization [3, 92], fault tolerance [57], and program repair [45]. However, some integration attempts face
challenging problems.

There are parallels between the use of MT in testing and its use in other software engineering techniques. In the
context of testing, for instance, a single test case and its corresponding pass/fail outcome in test result verification
relate to an MG and the corresponding MR satisfaction/violation. However, there are some challenging differences
when MT is applied in other contexts. A main aim of software testing is to reveal a fault, which, in MT, can be indicated
by the violation of an MR. Once an MR is violated, the major task of testing has been fulfilled — it does not matter
too much which test cases in the MG are actually related to the fault. In contrast, failure detection is only the starting
point in some software engineering areas such as debugging. Precise knowledge of which test cases are failure-causing
may be necessary to be able to proceed, such as with debugging [93], fault localization [3, 92], fault tolerance [57],
and program repair [45]. This is not a problem for conventional techniques that use single test cases for verification —
the pass/fail outcomes simply correspond to the non-failure-causing/failure-causing test cases, respectively. However,
with an MR violation, it is only possible to say that at least one test case in the MR-violating MG is related to the
fault, unless we do have a test oracle. It is not clear precisely which test case is related. Such a precision problem is an
intrinsic characteristic of MT, and is therefore an unavoidable cost when MT is used to address the oracle problem
for other software engineering techniques. Consider, for example, fault tolerance techniques. Traditionally, because
of the assumption of an oracle’s existence, once an input causes an incorrect output, a fault tolerance mechanism is
applied to provide an alternative correct output. To address the oracle problem in fault tolerance, one simple strategy of
metamorphic fault tolerance [57] works as follows: Multiple inputs are first constructed according to some equality
MRs, and then executed simultaneously. Next, the associated outputs are verified against the MRs to decide whether or
not the original input (source input in the MT context) results in a “trustworthy” output (in terms of its correctness). If
the original output is regarded as untrustworthy, the most trustworthy output is selected from all the outputs associated
with the follow-up inputs. A naive mechanism for metamorphic fault tolerance is shown in the following example.

Example 5. Suppose t1 is the original input of a system S , for which three equality MRs, namely MRi , MRii , and MRiii ,

have been identified. Suppose further that another three inputs are constructed as follows: t2 is constructed as the follow-up

input based on t1 as the source input, using MRi ; t3 is constructed as the follow-up input based on t2 as the source input,

using MRii ; and t4 is constructed as the follow-up input based on t1 as the source input, using MRiii . In other words, the

MGs for MRi , MRii , and MRiii are ⟨t1,t2⟩, ⟨t2,t3⟩, and ⟨t1,t4⟩, respectively. (Note that t1 does not need to be source input

for all MRs.)

Consider the following two different scenarios:

• MRi and MRiii are satisfied by their corresponding MGs, while MRii is violated. In such a scenario, since t1 is not

involved in any MR violation, it can be regarded as trustworthy, and its corresponding output (that is, the output of

the original input) can be used.
Manuscript submitted to ACM

Metamorphic Testing 17

• MRi and MRii are satisfied by their corresponding MGs, while MRiii is violated. In such a scenario, since t1 is

involved in one MR violation while t2 is not involved in any MR violation, t2 can be regarded as more trustworthy

than t1, and its corresponding output should be used.

However, such a mechanism may result in both false negatives and false positives. On the one hand, a non-failure-
causing input involved in an MR-violating MG may be mistakenly judged as untrustworthy and hence discarded — thus
a false negative occurs. On the other hand, it is possible to select a failure-causing input as the most trustworthy one
and thereby give an incorrect output — thus a false positive occurs. Such an imprecision brings in new challenges, for
example, in the accurate evaluation of trustworthiness among multiple inputs and outputs.

In spite of the test case precision challenges, MT has demonstrated its applicability and effectiveness in other software
engineering areas [3, 45, 46, 57, 92, 93]. Furthermore, there is great potential to develop new methods to further improve
the precision, and thus further enhance the effectiveness. A ranking mechanism, for instance, could be introduced after
MT verification. In such a mechanism, individual test cases could be ranked according to their probability of being
related to faults (provided that there are statistically sufficient data on the relationships among test cases, MRs, MGs,
and the satisfaction/violation outcomes). The ranking results could in turn be used with other software engineering
techniques. For example, the test cases most likely related to faults would be the first ones used in the next steps of
debugging, fault localization, or program repair. Any resultant methods would no longer be the simple combination of
MT and other techniques, but rather new methods, specifically developed and used to be more precise and accurate.

7 MORE RESEARCH OPPORTUNITIES

In addition to the research challenges highlighted in Sections 4 to 6, we next describe seven further opportunities
for MT research. This list of opportunities is not exhaustive, but focuses on those research areas we consider most
promising. Areas that have already been deeply studied in previous work, such as MT in ubiquitous computing [58, 90],
will not be discussed here.

Opportunity 1: Theory of MT. Although extensive studies have been conducted demonstrating the applicability
and effectiveness of MT in addressing the oracle problem for software testing and many other software engineering
areas, there is a lack of comprehensive work on the fundamental theory of MT. Liu et al. [55], for instance, recommended
that a small number of diverse MRs be sufficient by themselves to achieve a fault-detection capability similar to the
oracle, and thus to effectively alleviate the oracle problem. However, the concept of diversity was not formally defined,
and testers were asked to use their own intuitions to judge the diversity and similarity among MRs. It is therefore not
surprising to observe that various testers have different interpretations of diversity, and thus have distinct schemes for
classifying MRs — the lack of unified and formulated definitions for diversity has resulted in the ad hoc and arbitrary
manner of MR identification and selection.

One possible solution is based on the concepts of category and choice used in METRIC [25], which have been used
to create a measure to gauge the dissimilarities among test cases [6]. This metric assesses how different two test cases
are based on how many distinct categories and choices they are associated with. In the METRIC framework [25], each
MR is associated with a set of categories and choices, so it should be feasible to convert the concept of dissimilarity
among test cases into a new metric to assess the diversity among MRs. Such a diversity metric will significantly assist
MT research in a number of ways, including helping testers to systematically select a set of diverse MRs that could
alleviate the oracle problem effectively [55]. It could also help detect and remove “redundant” MRs — in a group of MRs
showing zero diversity with one another, only one such MR would be needed in testing. The diversity metric will also

Manuscript submitted to ACM

18 T. Y. Chen et al.

facilitate measurement of the effectiveness of a group of MRs — it is intuitively expected that the more diverse the MRs
are, the more effective they will be in alleviating the oracle problem.

In addition to the diversity metric, a lot of work can be done regarding a fundamental theory of MT. Such work will
involve investigating the systematic identification of MRs; determining the characteristics of effective MRs; examining
how likely a group of MRs mimic a test oracle (if it exists); determining the overall fault-detection effectiveness of MT;
exploring the impact of the choice of source test cases on the fault-detection effectiveness of MT; and prioritizing MRs.
This theoretical research into MT will enable breakthroughs not only in software testing, but also in the broader area of
software engineering, including debugging, proving, specifications engineering, and quality assurance.

Opportunity 2: Teaching and training. As MT has been increasing in popularity, how to teach it to students,
professional software engineers and testers, and end users has become an issue of the utmost importance. Teaching
experiences by MT researchers [54, 63, 64] indicate that university-level computer science students accept MT and
can apply it easily. Reports [87, 88] of how MT, in particular MR identification, has prompted a higher level of student
engagement in software testing indicate MT’s potential use to encourage student creativity. On the other hand, students
have encountered challenges related to the availability of appropriate learning materials and activities. Further work
will be required to design the best training materials and methods.

Although various experiences from different universities have shown the ease of teaching and learning MT’s basic
concepts, which are arguably simple to grasp, a more challenging job will be to improve the learners’ ability to
derive good and effective MRs, something that will involve a certain degree of art and craftsmanship. Practice and
apprenticeship shall play an important role in in-depth teaching and learning of how to effectively conduct MT.

Opportunity 3: New metrics for coverage and confidence. Similar to how the statement coverage criterion
enables us to design a set of test cases that execute each reachable statement at least once, an MR coverage criterion
may guide us to design a set of MGs that verify every MR in question at least once. More specifically, at least one MG
should be generated for each MR. MRs are normally identified from specifications, thus, MR coverage can be considered
as an additional black-box test adequacy criterion. Furthermore, the MR coverage and white-box coverage criteria are
complementary and thus can work together. For example, a set of test cases satisfying the statement coverage can be
used as source test cases to construct follow-up test cases based on a set of MRs. Obviously, the resultant set of MGs
shall satisfy both the black-box (MR) and white-box (statement) coverage criteria. Unlike statement or branch coverage
criteria, however, development of the MR coverage criterion will require that several additional issues be addressed. For
example, different people may derive different sets of MRs for the same program — something that is not a problem
for the application of statement or branch coverage criteria. The quality and effectiveness of MRs should therefore
be considered when applying any MR coverage criterion. One possible way to ensure the quality of MRs used for a
coverage criterion is to construct a set of very diverse MRs that achieves a good coverage of the functionalities of the
software under test. In other words, the theory of MT in Opportunity 1 may help us improve the effectiveness of the
MR coverage criterion.

MRs can also be used as a quality measure for open source software (OSS). Given an OSS project, sets of MRs can
be posted for its validation and verification. When examining programs that implement the relevant functionality,
users can be guided by information regarding which programs have been verified and validated through which MRs —
selecting the programs whose MRs are most relevant, as illustrated in the following example.

Example 6. Consider an OSS project that implements the sine function. Suppose that two MRs are identified for the

function, namely, MRa : sin(−x) = − sin(x) and MRb : sin(x + 2π) = sin(x). Suppose also that a program S-A in the project

Manuscript submitted to ACM

Metamorphic Testing 19

has only been tested with MRa (not MRb) and another program S-B has only been tested with MRb (not MRa). If the users

are land surveyors, they normally deal with positive (anti-clockwise) and negative (clockwise) angles and are not interested

in angles larger than 2π . As a result, MRa is more meaningful and program S-A is preferred to S-B. On the other hand, if

the users are electrical engineers, they are very likely to use the periodical properties of the sine function. As a result, MRb is

more meaningful and program S-B is preferred to S-A.

Obviously, information about the extent to which an OSS program has been tested is a key guide when choosing which
programs to use. From the perspective of program selection, intuitively, users may prefer to know which properties
(reflected in the MRs) have been tested and satisfied, rather than how extensively the source code has been executed
(as measured, perhaps, by the percentage coverage achieved). For users, satisfying a property may deliver a higher
confidence on the software than covering a certain percentage of the code.

These new MR-based metrics also provide a new perspective on how to make use of test oracle and any technique
addressing the oracle problem. Traditionally, the test oracle and related techniques have only been used for test result
verification, but the MR-based metrics may inspire a new research area for measuring the adequacy of a test suite.

Opportunity 4: End-user testing.With the advances in development platforms (such as spreadsheets, MATLAB,
and Labview) and human interfaces for advanced systems, end-user programming has been growing at a very fast
rate. An increasing number of programs are actually developed by non-IT domain experts rather than professional
software engineers. Some of these end-user developed programs are even used in safety-critical systems [48]. However,
because end-user programmers do not often have formal software engineering training, it is not reasonable to expect
such software to exhibit the same level of quality as that developed by professionals. As a result, end-user software
engineering [48] has become a major research area aiming at guaranteeing and improving the quality of end-user
developed software.

Software testing is a systematic approach towards software quality, but it is challenging to develop specific testing
techniques for end-user programmers. Most testing methods involve a substantial amount of technical software testing
knowledge, as well as a general understanding of software engineering. However, because end-user programmers
normally have no formal training in software testing or software engineering, it is difficult for them to fully understand
the limitations and technical issues of these testing methods. Even if they were able to understand the technical details,
it would still be quite challenging for them to implement the methods, which often involve large-scale and highly
complex programming, and thus should be done by professional programmers. Furthermore, end-user programmers
may not be able to access relevant automated testing tools, even if they are available, because such tools may be quite
expensive and not ordinarily affordable. Some of these automated testing tools or methods require quite sophisticated
parameter settings in order to ensure cost-effective usage. It may be a very challenging task for end-user programmers
to properly set such parameters.

In view of the above problems and constraints, an appropriate testingmethod should have the following characteristics.
First, it must be simple, easily understood, and easy to learn. Secondly, its implementation must be simple. Thirdly, it
must be easily automated, or automated tools must be available. Finally, it must be easy for the end users to provide
domain-specific information to enhance its effectiveness. As previously explained [23], because MT possesses all four
of the characteristics above, it may be the most appropriate testing technique for end-user programmers.

The concept of MT is very simple and can easily be learned in a few hours. The MT testing process can simply
be managed by non-professional end-user programmers, who can also prepare test scripts to automate the process.
MRs are necessary properties of the target algorithm in relation to multiple inputs and their expected outputs, often

Manuscript submitted to ACM

20 T. Y. Chen et al.

identified from the domain knowledge of the system under test. In many cases, therefore, end-users may be even more
appropriate or knowledgeable than developers for defining good MRs [55, 98]. In other words, end-user programmers
should often be able to effectively use MT without much difficulty. A recent systematic investigation [73] of how to
apply MT in end-user testing of spreadsheet systems looked at how a team of non-professionals identified MRs for a
set of five spreadsheets with real-life faults. Even though the MRs were identified in an ad hoc way, they were able
to detect all the faults, demonstrating the effectiveness of MT as an end-user testing method for such systems. In the
future, more research projects should investigate the performance of MT for different development platforms and in
various end-user development domains.

Opportunity 5: Cloud and crowd. Orso and Rothermel [69] have advocated the use of cloud computing and
crowdsourcing for testing, where it would be natural to embed MT, with the aim of improving the effectiveness and
efficiency of MT’s implementation. Cloud computing provides new opportunities to enhance the efficiency of testing
tasks, including those for MT. In any case, a preliminary project [89] was recently conducted to show the usefulness of
cloud-enabled technologies for MT implementation. Much more studies are required to develop a unified cloud-based
framework for MT and to investigate its feasibility, applicability, efficiency, and effectiveness. The cloud resources are
obtained and allocated through virtual machines (VMs) [10], which are created and destroyed on demand, and only
exist for the duration of the testing. When conducting MT in the cloud, different MRs can be used in parallel, thus
improving the overall efficiency of MT. Each MR is by itself a standalone entity, so it will be feasible to allocate one
VM to each MR for the corresponding test case generation, execution, verification, and test result reporting. It will
also be possible to assign a VM specifically for generating source test cases that can then be used by multiple MRs,
executing these test cases, and storing their execution results for comparison with those of the follow-up test cases
generated in other VMs. The decomposition of a task into sub-tasks for multiple VMs is natural and straightforward
in MT. Furthermore, because many cloud-enabled platforms can flexibly allocate computing resources (such as VM
locations, time, and types), it is possible to automatically adjust VMs for specific tasks, depending on the resource
usage [95]. Since various MRs may require different resources, the flexibility of the cloud-enabled computing platforms
will result in optimal resource allocation for MT and ultimately enable a highly efficient MT implementation.

Crowdsourcing is an innovative way of obtaining contributions frommany different people, especially through online
communities. In MT, the most challenging task is the identification and selection of appropriate MRs, a task that cannot
be fully automated, as it requires human intelligence, domain knowledge, and relevant experience. Previous studies [55]
have shown that the MRs identified by different individuals naturally contain a degree of diversity, which is strongly
correlated with high effectiveness in fault detection. It is thus intuitively appealing to make use of crowdsourcing
to brainstorm and decide MRs for a particular system. A variety of personnel can be employed in a crowdsourcing
environment, including users, developers, and testers, all of whom can provide various perspectives of domain knowledge
for identifying diverse MRs. Since people from different backgrounds need to work together, a major challenge is the
need for a formalized framework to support the unified identification and description of MRs. The recent study of MR
identification [25] should provide insights in this area.

Opportunity 6: Big data. Big data is popularly defined as data with the 3Vs: high volume, velocity, and variety [70].
It is normally so large and complex that traditional software testing techniques may no longer suffice. Its huge size and
various types and formats mean that the oracle problem is prevalent, making testing a major challenge. MT has been
recommended as an effective approach for testing big data analytics software [32, 70]. Although Otero and Peter [70]
proposed a set of possible MRs related to synonyms, antonyms, and negations, more complicated relations should also
be explored, such as those related to subset, intersection, and union. Due to the wide distribution and fast growth of
Manuscript submitted to ACM

Metamorphic Testing 21

the data, it is difficult to test big data systems at run-time. Setting up sample data is an essential part of the big data
testing process. Attempts have been made to construct data samples that reflect the characteristics of the actual data.
Alexandrov et al. [1], for example, proposed generation of synthetic data sets based on the actual big data using the data
schema, constraints, and other statistical information. When testing big data software, MRs not only cover necessary
properties of the system under test, but may also cover properties of the data itself. Similar to the program-related
properties, these data-related properties can help produce additional follow-up data to form the sample data, and to
verify the test results, especially when the oracle problem exists (which is not rare in big data software). It will be
interesting to investigate the extent to which the source and follow-up data, according to various MRs, can together
reflect the characteristics of the actual data sets. In addition to the production of sample data, since MRs can relate to
the properties of the big data itself, they can help verify, validate, or even prove whether the big data software satisfy
properties related to 3Vs, just like what has been done for other software systems[91, 98].

Otero and Peter [70] suggested that MT can be applied beyond testing to other areas of big data software engineering.
For example, MRs could be used to create “monitors capable of detecting misbehavior,” thus helping assure the reliability
of big data software. We believe that MT can be applied to many other aspects of big data. It was recently used to test
security software [20], and could therefore naturally be extended into strengthening the protection of big data software
from security attacks. Big data analytics involves a variety of learning algorithms, some of which are mathematically
complex and not easily understood by programmers or users. The degree to which these algorithms actually meet the
users’ needs is, therefore, not easily verified. Because MRs are a clear, explicit, and easily understood representation
of the necessary properties of the algorithm or user’s expectation — with a demonstrated effectiveness in verifying
and validating machine learning software [65, 91] — it is natural to expect MT to be applicable in big data software
verification and validation.

Opportunity 7: Agile development. Agile development has become one of the most popular paradigms for
developing software systems. It normally involves rapid, incremental development, frequent releases of working
software, evolutionary requirements improvements, and close collaboration and communication among developers
and clients [30]. Although some work has been conducted using MRs in the agile testing of databases [52, 53], the
advantages of MT (Section 2.3) suggest that it can easily be applied throughout the entire agile development process.

The most obvious application of MT will be to test software released in every iteration of development, ensuring
that each version of the software satisfies the identified MRs. Due to the evolutionary nature of the requirements, the
MRs would also require regular updating and fine-tuning. Such updating would not only mean changes to specific MRs,
but also the adoption of new MRs and the removal of obsolete ones. Nevertheless, given the close collaboration among
stakeholders in agile development, such changes would not represent a difficult task. Furthermore, MRs can provide a
simple yet effective way of facilitating the communications between customers and developers — they are the necessary
properties that are of the most relevance and interest to the customers, and are clear, non-technical expressions of what
must be considered as the software is developed. Moreover, the rapid development and release of successive versions
make efficient regression testing critical. If MRs are extensively involved in agile development, then new regression
testing techniques involving minimization, prioritization, and augmentation of MRs and MGs will need to be developed
and applied. Another potential research direction relates to exploring how to balance the benefits of applying MT in
agile development against the cost of maintaining MRs for rapidly changing requirements (especially when an oracle is
available). It should be noted that because an MR reflects a specific property, incremental changes in requirements may
only cause the updating of a small number of MRs — in other words, the maintenance of MRs in agile development
should only incur a small overhead.

Manuscript submitted to ACM

22 T. Y. Chen et al.

8 CONCLUSION

Metamorphic testing (MT) first appeared in 1998 as a methodology for generating follow-up test cases based on
successful test cases, guided by some necessary properties of the system under test, called metamorphic relations (MRs).
Since then, MT has mainly been used as a simple, but effective, approach to alleviating the oracle problem, with MRs as
test result verification mechanisms. MT has successfully detected various faults in a variety of application domains, and
advanced techniques have been developed by integrating it with other software engineering methods, often addressing
the oracle problem in those other areas. MT has also been applied outside of testing, including in validation, quality
assessment, debugging, fault localization, fault tolerance, program repair, and proving.

In this paper, we have reviewed a variety of research topics related to MT, highlighted challenges that need to
be addressed, and unveiled some of the most promising opportunities for future MT research. In contrast to — and
complementary to — a traditional literature review [81], we have focused on the most important and influential
MT studies, providing a more in-depth discussion (including a formal and comprehensive description of MT and a
clarification of the major and common misunderstandings of MT) and offering a higher-level vision of MT research and
application (including a framework to support integration of MT with other techniques). Our investigation also showed
many opportunities to further improve the existing MT research areas, including MR identification, source test case
generation, and the application of MT in new domains such as end-user software engineering and big data software.
We have also highlighted MT’s promise as a novel approach to bolstering other related areas, including measurements
for coverage and confidence, cloud-based quality assurance, and agile software development.

MT has evolved from originally defining MRs as necessary properties of the target algorithm in relation to multiple
inputs and their expected outputs, to additionally including the properties expected by users. This evolution, of both
MT and MRs, is expected to continue.

The concluding statement of this paper is a recommendation to researchers who may be developing new software
engineering methods that somehow assume or require a test oracle. It is advisable to consider MT in the development,
which may alleviate the oracle requirement, extend the method’s scope and applicability, and even facilitate the
development of a more comprehensive method.

REFERENCES
[1] Alexander Alexandrov, Christoph Brücke, and Volker Markl. 2013. Issues in big data testing and benchmarking. In Proceedings of the 6th International

Workshop on Testing Database Systems (DBTest ’13). ACM, New York, NY, 1:1–1:5.
[2] Paul E. Ammann and John C. Knight. 1988. Data diversity: An approach to software fault tolerance. IEEE Transactions on Computers 37, 4, 418–425.
[3] Chittineni Aruna and R. Siva Ram Prasad. 2014. Testing approach for dynamic web applications based on automated test strategies. In ICT and

Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India, Vol II, Advances in Intelligent Systems and Computing,
Vol. 249. Springer, Berlin, Germany, 399–410.

[4] Earl T. Barr, Mark Harman, Phil McMminn, Muzammil Shahbaz, and Shin Yoo. 2015. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering 41, 5, 507–525.

[5] Arlinta Christy Barus. 2010. An In-Depth Study of Adaptive Random Testing for Testing Program with Complex Input Types. Ph.D. Thesis. Faculty of
Information and Communication Technologies, Swinburne University of Technology, Melbourne, Australia.

[6] Arlinta Christy Barus, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Robert Merkel, and Gregg Rothermel. 2016. A cost-effective random testing
method for programs with non-numeric inputs. IEEE Transactions on Computers 65, 12, 3509–3523.

[7] Arlinta Christy Barus, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and Heinz W. Schmidt. 2016. The impact of source test case selection on the
effectiveness of metamorphic testing. In Proceedings of the 1st International Workshop on Metamorphic Testing (MET ’16). ACM, New York, NY, 5–11.

[8] Sami Beydeda. 2006. Self-metamorphic-testing components. In Proceedings of the 30th Annual International Computer Software and Applications
Conference (COMPSAC ’06), Vol. 1. IEEE Computer Society, Los Alamitos, CA, 265–272.

[9] Barry W. Boehm. 1984. Verifying and validating software requirements and design specifications. IEEE Software 1, 1, 75–88.

Manuscript submitted to ACM

Metamorphic Testing 23

[10] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. 2009. Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 6, 599–616.

[11] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing: Three decades later. Communications of the ACM 56, 2, 82–90.
[12] Yuxiang Cao, Zhi Quan Zhou, and Tsong Yueh Chen. 2013. On the correlation between the effectiveness of metamorphic relations and dissimilarities

of test case executions. In Proceedings of the 13th International Conference on Quality Software (QSIC ’13). IEEE Computer Society, Los Alamitos, CA,
153–162.

[13] Wing Kwong Chan, Tsong Yueh Chen, Heng Lu, T. H. Tse, and Stephen S. Yau. 2006. Integration testing of context-sensitive middleware-based
applications: A metamorphic approach. International Journal of Software Engineering and Knowledge Engineering 16, 5, 677–703.

[14] Wing Kwong Chan, Shing Chi Cheung, and Karl R. P. H. Leung. 2007. A metamorphic testing approach for online testing of service-oriented
software applications. International Journal of Web Services Research 4, 2, 60–80.

[15] Tsong Yueh Chen, Shing Chi Cheung, and Siu Ming Yiu. 1998. Metamorphic testing: A new approach for generating next test cases. Technical Report
HKUST-CS98-01. Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong.

[16] Tsong Yueh Chen, Joshua W. K. Ho, Huai Liu, and Xiaoyuan Xie. 2009. An innovative approach for testing bioinformatics programs using
metamorphic testing. BMC Bioinformatics 10, article no. 24.

[17] Tsong Yueh Chen, De Hao Huang, T. H. Tse, and Zhi Quan Zhou. 2004. Case studies on the selection of useful relations in metamorphic testing. In
Proceedings of the 4th Ibero-American Symposium on Software Engineering and Knowledge Engineering (JIISIC ’04). Polytechnic University of Madrid,
Madrid, Spain, 569–583.

[18] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and Shengqiong Wang. 2009. Conformance testing of network simulators based on metamorphic
testing technique. In Proceedings of the Joint 11th IFIP WG 6.1 International Conference (FMOODS ’09) and 29th IFIP WG 6.1 International Conference
on Formal Techniques for Distributed Systems (FORTE ’09), Lecture Notes in Computer Science, Vol. 5522. Springer, Berlin, Germany, 243–248.

[19] Tsong Yueh Chen, Fei-Ching Kuo, Ying Liu, and Antony Tang. 2004. Metamorphic testing and testing with special values. In Proceedings of the 5th
ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD ’04). International
Association for Computer and Information Science, Mt. Pleasant, MI, 128–134.

[20] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Jeffrey Voas, and Zhi Quan Zhou. 2016. Metamorphic testing for
cybersecurity. Computer 49, 6, 48–55.

[21] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. 2010. Adaptive random testing: The ART of test case diversity. Journal of Systems
and Software 83, 1, 60–66.

[22] Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey, and Zhi Quan Zhou. 2015. A revisit of three studies related to random testing. Science China
Information Sciences 58, 5, 052104:1–052104:9.

[23] Tsong Yueh Chen, Fei-Ching Kuo, and Zhi Quan Zhou. 2005. An effective testing method for end-user programmers. In Proceedings of the 1st
Workshop on End-User Software Engineering (WEUSE ’05). ACM, New York, NY, 21–25.

[24] Tsong Yueh Chen, Pak-Lok Poon, and T. H. Tse. 2003. A choice relation framework for supporting category-partition test case generation. IEEE
Transactions on Software Engineering 29, 7, 577–593.

[25] Tsong Yueh Chen, Pak-Lok Poon, and Xiaoyuan Xie. 2016. METRIC: METamorphic Relation Identification based on the Category-choice framework.
Journal of Systems and Software 116, 177–190.

[26] Tsong Yueh Chen, T. H. Tse, and Yuen Tak Yu. 2001. Proportional sampling strategy: A compendium and some insights. Journal of Systems and
Software 58, 1, 65–81.

[27] Tsong Yueh Chen, T. H. Tse, and Zhi Quan Zhou. 2002. Semi-proving: An integrated method based on global symbolic evaluation and metamorphic
testing. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’02). ACM, New York, NY, 191–195.

[28] Tsong Yueh Chen, T. H. Tse, and Zhi Quan Zhou. 2003. Fault-based testing without the need of oracles. Information and Software Technology 45, 1,
1–9.

[29] Tsong Yueh Chen, T. H. Tse, and Zhi Quan Zhou. 2011. Semi-proving: An integrated method for program proving, testing, and debugging. IEEE
Transactions on Software Engineering 37, 1, 109–125.

[30] David Cohen, Mikael Lindvall, and Patricia Costa. 2004. An introduction to agile methods. In Advances in Computers, Vol. 62. Elsevier, Amsterdam,
The Netherlands, 1–66.

[31] Edsger W. Dijkstra. 1972. The humble programmer. Communications of the ACM 15, 10, 859–866.
[32] Junhua Ding, Xin-Hua Hu, and Venkat Gudivada. 2017. A machine learning based framework for verification and validation of massive scale image

data. IEEE Transactions on Big Data. DOI:10.1109/TBDATA.2017.2680460 .
[33] Guowei Dong, Baowen Xu, Lin Chen, Changhai Nie, and Lulu Wang. 2008. Case studies on testing with compositional metamorphic relations.

Journal of Southeast University (English Edition) 24, 4, 437–443.
[34] Guowei Dong, Baowen Xu, Lin Chen, Changhai Nie, and Lulu Wang. 2009. Survey of metamorphic testing. Journal of Frontiers of Computer Science

and Technology 3, 2, 130–143.
[35] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil. 2006. Carving differential unit test cases from system test cases. In

Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14). ACM, New York, NY,
253–264.

[36] Matthew Geller. 1978. Test data as an aid in proving program correctness. Communications of the ACM 21, 5, 368–375.

Manuscript submitted to ACM

24 T. Y. Chen et al.

[37] Arnaud Gotlieb and Bernard Botella. 2003. Automated metamorphic testing. In Proceedings of the 27th Annual International Computer Software and
Applications Conference (COMPSAC ’03). IEEE Computer Society, Los Alamitos, CA, 34–40.

[38] Ralph Guderlei and Johannes Mayer. 2007. Statistical metamorphic testing: Testing programs with random output by means of statistical hypothesis
tests and metamorphic testing. In Proceedings of the 7th International Conference on Quality Software (QSIC ’07). IEEE Computer Society, Los Alamitos,
CA, 404–409.

[39] Richard Hamlet. 2002. Random testing. In Encyclopedia of Software Engineering. John Wiley, New York, NY.
[40] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, open problems and challenges for search based software testing. In Proceedings

of the IEEE 8th International Conference on Software Testing, Verification and Validation (ICST ’15). IEEE Computer Society, Los Alamitos, CA.
[41] Peifeng Hu, Zhenyu Zhang, Wing Kwong Chan, and T. H. Tse. 2006. An empirical comparison between direct and indirect test result checking

approaches. In Proceedings of the 3rd International Workshop on Software Quality Assurance (SOQUA ’06) in conjunction with the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14). ACM, New York, NY, 6–13.

[42] Zhan-Wei Hui and Song Huang. 2013. Achievements and challenges of metamorphic testing. In Proceedings of the 4th World Congress on Software
Engineering (WCSE ’13). IEEE Computer Society, Los Alamitos, CA, 73–77.

[43] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Experiments on the effectiveness of dataflow- and controlflow-based test
adequacy criteria. In Proceedings of the 16th International Conference on Software Engineering (ICSE ’94). IEEE Computer Society, Los Alamitos, CA,
191–200.

[44] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, and Zuohua Ding. 2013. Testing central processing unit scheduling algorithms using metamorphic
testing. In Proceedings of the 4th IEEE International Conference on Software Engineering and Service Science (ICSESS ’13). IEEE Computer Society, Los
Alamitos, CA, 530–536.

[45] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey, and Zuohua Ding. 2017. A metamorphic testing approach for supporting program
repair without the need for a test oracle. Journal of Systems and Software 126, 127–140.

[46] Hao Jin, Yanyan Jiang, Na Liu, Chang Xu, Xiaoxing Ma, and Jian Lu. 2015. Concolic metamorphic debugging. In Proceedings of the IEEE 39th Annual
International Computers, Software and Applications Conference (COMPSAC ’15), Vol. 2. IEEE Computer Society, Los Alamitos, CA, 232–241.

[47] Upulee Kanewala, James M. Bieman, and Asa Ben-Hur. 2016. Predicting metamorphic relations for testing scientific software: A machine learning
approach using graph kernels. Software Testing, Verification and Reliability 26, 3, 245–269.

[48] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman,
Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011. The state of the art in end-user software engineering.
ACM Computing Surveys 43, 3, 21:1–21:44.

[49] Fei-Ching Kuo, Tsong Yueh Chen, and Wing K Tam. 2011. Testing embedded software by metamorphic testing: A wireless metering system case
study. In Proceedings of the IEEE 36th Conference on Local Computer Networks (LCN ’11). IEEE Computer Society, Los Alamitos, CA, 291–294.

[50] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, 216–226.

[51] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-core compiler fuzzing. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). ACM, New York, NY, 65–76.

[52] Mikael Lindvall, Dharmalingam Ganesan, Ragnar Árdal, and Robert E. Wiegand. 2015. Metamorphic model-based testing applied on NASA DAT:
An experience report. In Proceedings of the 37th International Conference on Software Engineering (ICSE ’15), Vol. 2. IEEE, Piscataway, NJ, 129–138.

[53] Mikael Lindvall, Dharmalingam Ganesan, Sigurthor Bjorgvinsson, Kristjan Jonsson, Haukur Steinn Logason, Frederik Dietrich, and Robert E.
Wiegand. 2016. Agile metamorphic model-based testing. In Proceedings of the 1st International Workshop on Metamorphic Testing (MET ’16). ACM,
New York, NY, 26–32.

[54] Huai Liu, Fei-Ching Kuo, and Tsong Yueh Chen. 2010. Teaching an end-user testing methodology. In Proceedings of the 23rd IEEE Conference on
Software Engineering Education and Training (CSEE&T ’10). IEEE Computer Society, Los Alamitos, CA, 81–88.

[55] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. 2014. How effectively does metamorphic testing alleviate the oracle problem? IEEE
Transactions on Software Engineering 40, 1, 4–22.

[56] Huai Liu, Xuan Liu, and Tsong Yueh Chen. 2012. A new method for constructing metamorphic relations. In Proceedings of the 12th International
Conference on Quality Software (QSIC ’12). IEEE Computer Society, Los Alamitos, CA, 59–68.

[57] Huai Liu, Iman I. Yusuf, Heinz W. Schmidt, and Tsong Yueh Chen. 2014. Metamorphic fault tolerance: An automated and systematic methodology for
fault tolerance in the absence of test oracle. In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE Companion
’14). ACM, New York, NY, 420–423.

[58] Heng Lu, Wing Kwong Chan, and T. H. Tse. 2006. Testing context-aware middleware-centric programs: A data flow approach and an RFID-based
experimentation. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14).
ACM, New York, NY, 242–252.

[59] Xiaoli Lu, Yunwei Dong, and Chao Luo. 2010. Testing of component-based software: A metamorphic testing methodology. In Proceedings of the
7th International Conference on Ubiquitous Intelligence and Computing and the 7th International Conference on Autonomic and Trusted Computing
(UIC/ATC ’10). IEEE Computer Society, Los Alamitos, CA, 272–276.

[60] Ieng Kei Mak. 1997. On the Effectiveness of Random Testing. Master’s Thesis. Department of Computer Science, The University of Melbourne,
Melbourne, Australia.

Manuscript submitted to ACM

Metamorphic Testing 25

[61] L. I. Manolache and D. G. Kourie. 2001. Software testing using model programs. Software: Practice and Experience 31, 13, 1211–1236.
[62] Johannes Mayer and Ralph Guderlei. 2006. An empirical study on the selection of good metamorphic relations. In Proceedings of the 30th Annual

International Computer Software and Applications Conference (COMPSAC ’06), Vol. 1. IEEE Computer Society, Los Alamitos, CA, 475–484.
[63] Kunal Swaroop Mishra and Gail E. Kaiser. 2012. Effectiveness of teaching metamorphic testing. Technical Report CUCS-020-12. Department of

Computer Science, Columbia University, New York, NY.
[64] Kunal Swaroop Mishra, Gail E. Kaiser, and Swapneel Kalpesh Sheth. 2013. Effectiveness of teaching metamorphic testing, Part II. Technical Report

CUCS-022-13. Department of Computer Science, Columbia University, New York, NY.
[65] Christian Murphy, Gail Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of machine learning applications for use in metamorphic testing. In

Proceedings of the 20th International Conference on Software Engineering and Knowledge Engineering (SEKE ’08). Knowledge Systems Institute Graduate
School, Skokie, IL, 867–872.

[66] Christian Murphy, M. S. Raunak, Andrew King, Sanjian Chen, Christopher Imbriano, Gail Kaiser, Insup Lee, Oleg Sokolsky, Lori Clarke, and Leon
Osterweil. 2011. On effective testing of health care simulation software. In Proceedings of the 3rd Workshop on Software Engineering in Health Care
(SEHC ’11). ACM, New York, NY, 40–47.

[67] Shin Nakajima and Hai Ngoc Bui. 2016. Dataset coverage for testing machine learning computer programs. In Proceedings of the 2016 Asia-Pacific
Software Engineering Conference (APSEC ’16). IEEE Computer Society, Los Alamitos, CA, 297–304.

[68] Rafael A. P. Oliveira, Upulee Kanewala, and Paulo A. Nardi. 2015. Automated test oracles: State of the art, taxonomies, and trends. In Advances in
Computers, Vol. 95. Elsevier, Amsterdam, The Netherlands, 113–199.

[69] Alessandro Orso and Gregg Rothermel. 2014. Software testing: A research travelogue (2000–2014). In Proceedings of the Future of Software Engineering
(FOSE ’14). ACM, New York, NY, 117–132.

[70] Carlos E. Otero and Adrian Peter. 2015. Research directions for engineering big data analytics software. IEEE Intelligent Systems 30, 1, 13–19.
[71] Krishna Patel and Robert M. Hierons. submitted for publication. A systematic literature review on testing and debugging non-testable systems.

Available at http://people.brunel.ac.uk/∼csstrmh/Intt/synth.pdf.
[72] Mauro Pezzè and Cheng Zhang. 2014. Automated test oracles: A survey. In Advances in Computers, Vol. 95. Academic Press, Waltham, MA, 1–48.
[73] Pak-Lok Poon, Fei-Ching Kuo, Huai Liu, and Tsong Yueh Chen. 2014. How can non-technical end users effectively test their spreadsheets?

Information Technology and People 27, 4, 440–462.
[74] Pak-Lok Poon, Huai Liu, and Tsong Yueh Chen. 2017. Error trapping and metamorphic testing for spreadsheet failure detection. Journal of

Organizational and End User Computing 29, 2, 25–42.
[75] Laura L. Pullum and Ozgur Ozmen. 2012. Early results from metamorphic testing of epidemiological models. In Proceedings of the 2012 ASE/IEEE

International Conference on BioMedical Computing (BioMedCom ’12). IEEE Computer Society, Los Alamitos, CA, 62–67.
[76] Arvind Ramanathan, Chad A. Steed, and Laura L. Pullum. 2012. Verification of compartmental epidemiological models using metamorphic testing,

model checking and visual analytics. In Proceedings of the 2012 ASE/IEEE International Conference on BioMedical Computing (BioMedCom ’12). IEEE
Computer Society, Los Alamitos, CA, 68–73.

[77] Peifeng Rao, Zheng Zheng, Tsong Yueh Chen, Nan Wang, and Kai-Yuan Cai. 2013. Impacts of test suite’s class imbalance on spectrum-based fault
localization techniques. In Proceedings of the 13th International Conference on Quality Software (QSIC ’13). IEEE Computer Society, Los Alamitos, CA,
260–267.

[78] John Regehr. 2014. Finding compiler bugs by removing dead code. http://blog.regehr.org/archives/1161.
[79] David S. Rosenblum. 1995. A practical approach to programming with assertions. IEEE Transactions on Software Engineering 21, 1, 19–31.
[80] Md. Shaik Sadi, Fei-Ching Kuo, Joshua W. K. Ho, Michael A. Charleston, and Tsong Yueh Chen. 2011. Verification of phylogenetic inference programs

using metamorphic testing. Journal of Bioinformatics and Computational Biology 9, 6, 729–747.
[81] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz-Cortés. 2016. A survey on metamorphic testing. IEEE Transactions on Software

Engineering 42, 9, 805–824.
[82] Sergio Segura, Robert M. Hierons, David Benavides, and Antonio Ruiz-Cortés. 2010. Automated test data generation on the analyses of feature

models: A metamorphic testing approach. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST ’10).
IEEE Computer Society, Los Alamitos, CA, 35–44.

[83] Sergio Segura, Robert M. Hierons, David Benavides, and Antonio Ruiz-Cortés. 2011. Automated metamorphic testing on the analyses of feature
models. Information and Software Technology 53, 3, 245–258.

[84] Chang-Ai Sun, Guan Wang, Baohong Mu, Huai Liu, Zhaoshun Wang, and Tsong Yueh Chen. 2011. Metamorphic testing for web services: Framework
and a case study. In Proceedings of the 2011 IEEE International Conference on Web Services (ICWS ’11). IEEE Computer Society, Los Alamitos, CA,
283–290.

[85] Systems and software engineering: Systems and software Quality Requirements and Evaluation (SQuaRE): System and software quality models.
ISO/IEC 25010:2011, ISO.

[86] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. 2010. An automatic testing approach for compiler based on metamorphic testing technique. In
Proceedings of the 2010 Asia Pacific Software Engineering Conference (APSEC ’10). IEEE Computer Society, Los Alamitos, CA, 270–279.

[87] Dave Towey and Tsong Yueh Chen. 2015. Teaching software testing skills: Metamorphic testing as vehicle for creativity and effectiveness in software
testing. In Proceedings of the 2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE ’15). IEEE Computer
Society, Los Alamitos, CA, 161–162.

Manuscript submitted to ACM

26 T. Y. Chen et al.

[88] Dave Towey, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, and Zhi Quan Zhou. 2016. Metamorphic testing: A new student engagement approach for
a new software testing paradigm. In Proceedings of the 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering
(TALE ’16). IEEE Computer Society, Los Alamitos, CA, 228–235.

[89] Michael Troup, Andrian Yang, Amir Hossein Kamali, Eleni Giannoulatou, Tsong Yueh Chen, and Joshua W. K. Ho. 2016. A cloud-based framework
for applying metamorphic testing to a bioinformatics pipeline. In Proceedings of the 1st International Workshop on Metamorphic Testing (MET ’16).
ACM, New York, NY, 33–36.

[90] T. H. Tse, Stephen S. Yau, Wing Kwong Chan, Heng Lu, and Tsong Yueh Chen. 2004. Testing context-sensitive middleware-based software
applications. In Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC ’04), Vol. 1. IEEE Computer
Society, Los Alamitos, CA, 458–465.

[91] Xiaoyuan Xie, Joshua W. K. Ho, Christian Murphy, Gail E. Kaiser, Baowen Xu, and Tsong Yueh Chen. 2011. Testing and validating machine learning
classifiers by metamorphic testing. Journal of Systems and Software 84, 4, 544–558.

[92] Xiaoyuan Xie, W. Eric Wong, Tsong Yueh Chen, and Baowen Xu. 2011. Spectrum-based fault localization: Testing oracles are no longer mandatory.
In Proceedings of the 11th International Conference on Quality Software (QSIC ’11). IEEE Computer Society, Los Alamitos, CA, 1–10.

[93] Xiaoyuan Xie, W. Eric Wong, Tsong Yueh Chen, and Baowen Xu. 2013. Metamorphic slice: An application in spectrum-based fault localization.
Information and Software Technology 55, 5, 866–879.

[94] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. 2005. A brief survey of program slicing. ACM SIGSOFT Software Engineering
Notes 30, 2, 1–36.

[95] Iman I. Yusuf, Ian E. Thomas, Maria Spichkova, Steve Androulakis, Grischa R. Meyer, Daniel W. Drumm, George Opletal, Salvy P. Russo, Ashley M.
Buckle, and Heinz W. Schmidt. 2015. Chiminey: Reliable computing and data management platform in the cloud. In Proceedings of the 37th
International Conference on Software Engineering (ICSE ’15), Vol. 2. IEEE, Piscataway, NJ, 677–680.

[96] Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong Mei. 2014. Search-based inference of polynomial metamorphic
relations. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (ASE ’14). ACM, New York, NY, 701–712.

[97] Zhenyu Zhang, Wing Kwong Chan, T. H. Tse, and Peifeng Hu. 2009. Experimental study to compare the use of metamorphic testing and assertion
checking. Journal of Software 20, 10, 2637–2654.

[98] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. 2016. Metamorphic testing for software quality assessment: A study of search engines. IEEE
Transactions on Software Engineering 42, 3, 264–284.

[99] Zhi Quan Zhou, ShuJia Zhang, Markus Hagenbuchner, T. H. Tse, Fei-Ching Kuo, and Tsong Yueh Chen. 2012. Automated functional testing of
online search services. Software Testing, Verification and Reliability 22, 4, 221–243.

[100] Hong Zhu. 2015. JFuzz: A tool for automated Java unit testing based on data mutation and metamorphic testing methods. In Proceedings of the 2nd
International Conference on Trustworthy Systems and Their Applications (TSA ’15). IEEE Computer Society, Los Alamitos, CA, 8–15.

[101] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software unit test coverage and adequacy. ACM Computing Surveys 29, 4, 366–427.

Manuscript submitted to ACM

	Metamorphic Testing: A Review of Challenges and Opportunities
	Recommended Citation

	Metamorphic Testing: A Review of Challenges and Opportunities
	Abstract
	Disciplines
	Publication Details
	Authors

	Abstract
	1 Introduction
	2 Background
	2.1 Are successful test cases really useless?
	2.2 The intuition and formalization of MT
	2.3 Advantages of MT

	3 Frequently Misunderstood Concepts in MT
	4 MT in Testing
	4.1 MT as an approach to alleviating the oracle problem
	4.2 MT as a new test case generation strategy

	5 Extension of MT beyond Testing
	5.1 Proving MRs
	5.2 A framework for verification, validation, and quality assessment

	6 Integration with Other Techniques
	7 More Research Opportunities
	8 Conclusion
	References

