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2 T. Y. Chen et al.

1 INTRODUCTION

Software testing is a mainstream approach to software quality assurance and verification. However, it faces two
fundamental problems: the oracle problem and the reliable test set problem. The oracle problem refers to situations
where it is extremely difficult, or impossible, to verify the test result of a given test case (that is, an input selected
to test the program). Normally, after the execution of a test case t , a systematic mechanism called a test oracle (or
simply an oracle) is required to check the execution result. If the result does not agree with the expected outcome,
we say that t fails and refer to it as a failure-causing test case. Otherwise, we say that t succeeds and refer to it as a
successful, or non-failure-causing, test case. In many real-life situations, however, an oracle may not exist, or it may
exist but resource constraints make it infeasible to use. The reliable test set problem means that since it is normally
not possible to exhaustively execute all possible test cases, it is challenging to effectively select a subset of test cases
(the reliable test set) with the ability to determine the correctness of the program. A number of strategies have been
proposed to generate test cases for addressing the reliable test set problem, including random testing [39], coverage
testing [101], search-based testing [40], and symbolic execution [11]. Compared with test case generation strategies,
only a few techniques have been proposed to address the oracle problem, such as assertion checking [79] and N -version
programming [61]. When the oracle problem occurs, many strategies for the reliable test set problem have limited
applicability and effectiveness. Regardless of how effective a strategy is in generating a failure-causing test case, unless
it leads to a crash of the program under test, that failure may not be recognized in the presence of the oracle problem.

Unlike most other software testing techniques, Metamorphic Testing (MT ) [15] can be used for both test case
generation and test result verification — thus addressing both fundamental problems of testing. Although it was initially
proposed as a method to generate new test cases based on successful ones, it soon became apparent that MT is also an
effective approach for alleviating the oracle problem. A central element of MT is a set of Metamorphic Relations (MRs),
which are necessary properties of the target function or algorithm in relation to multiple inputs and their expected
outputs. When implementing MT, some program inputs (called source inputs) are first generated as source test cases, on
the basis of which an MR can then be used to generate new inputs as follow-up test cases. Unlike the traditional way of
verifying the test result of each individual test case, MT verifies the source and follow-up test cases as well as their
outputs against the corresponding MR.

Since its first publication in 1998, quite a number of studies have been conducted on various aspects of MT. In recent
years especially, MT has been attracting an increasing amount of attention and has helped detect a large number of
real-life faults. It was a surprise to the software testing community, for example, when MT managed to detect new
faults [77, 93] in three out of seven programs in the Siemens suite [43] even though these programs had repeatedly been
studied in major software testing research projects for 20 years. In addition, Le et al. [50] detected over one hundred
faults in two popular C compilers (GCC and LLVM) based on a simple relation, which was quickly realized to be an
MR [51, 78]. In addition to its extensive use in software testing [8, 13, 14, 16, 20, 50–52, 83, 91, 99], MT has been widely
applied to address the oracle problem in the broader context of software engineering [3, 27, 29, 45, 46, 57, 77, 92, 93]. It
has also been used as a technique for validation [91] and quality assessment [98], detecting real-life faults in several
popular search engines.

In recent surveys of the oracle problem [4, 68, 71, 72], a significant amount of discussion was devoted to MT, which
was categorized as a mainstream and promising approach for addressing the problem. Among the surveys specifically
about MT [34, 42, 81], Segura et al. [81] have presented an extensive literature review of MT, analyzing and summarizing
119 research papers published between 1998 and 2015, highlighting some open questions. Among all the papers on
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Metamorphic Testing 3

MT, we consider some of them as the most important and influential studies if either they opened new and important
research directions for MT or their results have had significant impact. For example, some studies presented various
approaches to systemically generate metamorphic relations [25, 47, 96, 100]. Other studies proposed the innovative
application of MT to, amongst others, proving [27, 37], debugging [29, 46], fault localization [92], fault tolerance [57],
and program repair [45]. Still other studies, as discussed above, have had the surprising and striking results of detecting
real-life bugs in, amongst others, popular compilers [50, 51] and search engines [98]. Our present article is different
from traditional surveys. Rather than providing an exhaustive survey of what has been investigated, we focus instead
on the above-mentioned most important and influential MT studies, the relationships among them, and their impacts.
Complementary to previous surveys on the oracle problem [4, 68, 71, 72] and MT [34, 42, 81], we attempt to summarize
and analyze results based on related studies from a different perspective, providing an in-depth discussion of what has
really been achieved and what still remains to be done. The main contribution of this paper is threefold. To the best of
our knowledge:

• It provides by far the most thorough summary and clarification of the critical concepts of MT, including improved
formal notation and definitions as well as consolidated advantages ofMT (Section 2); and important, but frequently
overlooked or misunderstood concepts in MT (Section 3).
• It presents by far the most systematic discussions of MT’s research in the contexts of (i) traditional software
testing (Section 4); (ii) extension beyond testing, such as for proving MRs and for validation (Section 5); and
(iii) integration of MT with other software engineering methods to address the oracle problem in related fields
(Section 6). In each discussion, we first provide a high-level review of the state of the art of MT, and then highlight
the critical challenges to be addressed.
• It unveils by far the most comprehensive list of contemporary opportunities for emerging research related to MT
(Section 7).

2 BACKGROUND

Before formally presenting the notation and definitions, we first introduce the history of how MT was proposed, paving
a way for a deeper understanding of its underlying intuitions, and facilitating the presentation of its evolution.

2.1 Are successful test cases really useless?

As pointed out by Dijkstra [31], software testing can only demonstrate the presence of faults, not their absence. In
many situations, successful (non-failure-causing) test cases had been regarded as useless — because they do not reveal
failures — and their test results were usually not passed to the debugging team. About twenty years ago, we revisited the
question: Are successful test cases really useless? Our answer was “no”. Most test case generation strategies serve specific
purposes, so every generated test case should carry some useful information about the program under test [15, 21]. It
has been an interesting (and challenging) task to examine how to make use of such useful, but implicit, information to
support further testing.

Our revisit of this question led to the development of metamorphic testing (MT). In MT, we first identify some
necessary properties of the target function or algorithm in the form of metamorphic relations (MRs) among multiple
inputs and their expected outputs. These MRs are then used to transform existing (source) test cases into new (follow-up)
test cases. Obviously, because the follow-up test cases depend on the source test cases, they should also possess some
(if not all) of the useful information embedded in them. If the actual outputs of source and follow-up test cases violate a
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4 T. Y. Chen et al.

certain MR, then we can say that the program under test is faulty with respect to the property associated with that
MR. Although MT was initially proposed as a method for generating new test cases based on successful ones, it soon
became clear that it could be used regardless of whether the source test cases were successful or not. In addition, it
actually provided a lightweight, but effective, mechanism for test result verification — MT was thus recognized as a
promising approach for alleviating the oracle problem.

It should be noted that MT is not the only technique designed to make use of successful test cases. Adaptive Random
Testing (ART) [21, 26, 60] attempts to evenly spread the test cases across the input domain, using the location of
successful test cases to guide selection of subsequent ones.

2.2 The intuition and formalization of MT

The intuition behind using MT to alleviate the oracle problem is as follows: Even if we cannot determine the correctness
of the actual output for an individual input, it may still be possible to use relations among the expected outputs of
multiple related inputs (and the inputs themselves) to help. Consider the following example.

Example 1. Suppose that an algorithm f computes the shortest path for an undirected graph G, and a program P

implements f. For any two vertices a and b in a largeG , it may be very difficult to verify whether P (G,a,b) — the computed

result of P given the inputs G, a, and b — is really the shortest path between a and b. One possible way to verify the result

is to generate all possible paths from a to b, and then check against them whether P (G,a,b) is really the shortest path.

However, it may not be practically feasible to generate all possible paths from a to b as the number of possible paths grows

exponentially with the number of vertices. Although the oracle problem exists for testing the program P , we can make use of

some properties to partially verify the result. For example, an MR can be derived from the following property: If the vertices

a and b are swapped, the length of the shortest path will remain unchanged, that is, | f (G,b,a) | = | f (G,a,b) |. Based on this

MR, we need two test executions, one with the source test case (G,a,b) and the other with the follow-up test case (G,b,a).

Instead of verifying the result of a single test execution, we verify the results of the multiple executions against the MR — we

check whether the relation |P (G,b,a) | = |P (G,a,b) | (where we simply replace f by P ) is satisfied or violated. If a violation

is detected, we can then say that P is faulty.

The following is a formal presentation of the MT methodology.

Definition 1 (Metamorphic Relation (MR)). Let f be a target function or algorithm. Ametamorphic relation
(MR) is a necessary property1 of f over a sequence of two or more inputs ⟨x1, x2, . . . , xn⟩, where n ⩾ 2, and their

corresponding outputs ⟨f (x1), f (x2), . . . , f (xn )⟩. It can be expressed as a relation R ⊆ Xn × Yn , where ⊆ denotes

the subset relation, and Xn and Yn are the Cartesian products of n input and n output spaces, respectively. Following

standard informal practice, we may simply write R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
to indicate that

⟨x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )⟩ ∈ R.

For ease of presentation, we will write “target function or algorithm” as “target algorithm” in the remaining part of
this paper.

For instance, the property from Example 1, “If the vertices a and b are swapped, the length of the shortest path will
remain unchanged”, is a necessary property of the target algorithm f . | f (G,b,a) | = | f (G,a,b) | is the MR corresponding
to this property.

1A necessary property of an algorithm means a condition that can be logically deduced from the algorithm.
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Definition 2 (Source Input and Follow-up Input). Consider anMRR
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
.

Suppose that each x j (j = k+1,k+2, . . . ,n) is constructed based on ⟨x1, x2, . . . , xk , f (x1), f (x2), . . . , f (xk )⟩ according
to R. For any i = 1,2, . . . ,k , we refer to xi as a source input. For any j = k + 1,k + 2, . . . ,n, we refer to x j as a follow-
up input. In other words, for a given R, if all source inputs xi (i = 1,2, . . . ,k ) are specified, then follow-up inputs

x j (j = k + 1,k + 2, . . . ,n) can be constructed based on the source inputs and, if necessary, their corresponding outputs.

In Example 1, (G,a,b) is the source input and (G,b,a) is the follow-up input constructed by using the same graph G
and swapping the start and end nodes (a and b). Obviously, (G,a,b) and (G,b,a) can be used as test cases for MT (and
are referred to as the source and follow-up test cases, respectively).

Definition 3 (Metamorphic Group of Inputs (MG)). Consider an MR

R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
. The sequence of inputs ⟨x1, x2, . . . , xn⟩ is defined as a meta-

morphic group (MG) of inputs for the MR. More specifically, the MG is the sequence of source inputs ⟨x1, x2, . . . , xk ⟩

and follow-up inputs ⟨xk+1, xk+2, . . . , xn⟩ related to R.

In Example 1, ⟨(G,a,b), (G,b,a)⟩ is an MG.

Definition 4 (Metamorphic Testing (MT)). Let P be an implementation of a target algorithm f . For an MR R,

suppose that we have R
(
x1, x2, . . . , xn , f (x1), f (x2), . . . , f (xn )

)
. Metamorphic testing (MT ) based on this MR for

P involves the following steps:

(1) Define R ′ by replacing f by P in R.

(2) Given a sequence of source test cases ⟨x1, x2, . . . , xk ⟩, execute them to obtain their respective outputs

⟨P (x1), P (x2), . . . , P (xk )⟩. Construct and execute a sequence of follow-up test cases ⟨xk+1, xk+2, . . . , xn⟩ accord-

ing to R ′ and obtain their respective outputs ⟨P (xk+1), P (xk+2), . . . , P (xn )⟩.

(3) Examine the results with reference to R ′. If R ′ is not satisfied, then this MR has revealed that P is faulty.

If conducting MT for Example 1, f would first be replaced by P in the MR to give the expected relation |P (G,b,a) | =
|P (G,a,b) |. Given the MG ⟨(G,a,b), (G,b,a)⟩, the program would then be executed so that we could examine whether
|P (G,b,a) | = |P (G,a,b) | is satisfied or violated.

With MT, it is not necessary to investigate whether P (xi ) = f (xi ) for any individual test case xi — which would
require a test oracle. MT therefore alleviates the oracle problem in testing.

2.3 Advantages of MT

Based on the definitions in the previous section, we next summarize MT’s main advantages. Note that although these
advantages are not unique to metamorphic testing, MT is one of the few techniques that have all of them.

Advantage 1: Simplicity in concept. Both the intuition and technical content of MT are simple and elegant. As
shown in previous studies [55, 73], testers, even those without much experience or expertise, could learn how to use
MT in a few hours and then correctly apply it to test a variety of systems.

Advantage 2: Straightforward implementation. According to Definition 4 (Section 2.2), implementing MT is
straightforward. Both test case generation and test result verification are implemented based on MRs. Previous studies
of MT, especially those related to MT applications where a large number of MRs are identified, suggest that MR
identification is not a very difficult task even though it cannot be completely automated. The success of using a very
simple MR to detect hundreds of real-life bugs in two popular compilers [50] is strong evidence that identification
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6 T. Y. Chen et al.

of good MRs may not be difficult at all. It should also be straightforward for users to develop MT tools for their own
specific domains [84, 100].

Advantage 3: Ease of automation given the availability of MRs. Apart from the MR identification process, it
should not be difficult to automate the major steps in MT, including test case generation, execution, and verification. The
construction of individual test cases is simple. Source test cases can be generated through existing testing methods while
follow-up test cases can be constructed through transformations according to MRs. Test case execution is normally
straightforward also, and thus may be the most easily automated process for almost all testing methods. Test result
verification in MT can also be automated by creating scripts to check test outputs against the relevant MRs. In the
entire MT procedure, the only part that might not be fully automated is MR identification, but this can be improved
based on the recent influential study of systematic MR identification [25]. Although tools already exist that implement
the entire MT process for certain application domains [84, 100], further research is still required to develop a general
framework incorporating and automating every MT step as much as possible.

Advantage 4: Low costs. Compared with traditional testing techniques, MT requires a process of identifying MRs,
and incurs marginal additional computational costs for generation and execution of follow-up test cases, and test result
verification. Although MR identification involves some manual work and hence incurs some overheads, it is expectable
and unavoidable. Similar manual processes are necessary in traditional testing, such as the requirements analysis for
specification-based testing, the construction of formal models for model-based testing, the identification of assertions,
and the design of fitness functions for search-based testing. As explained above, follow-up test cases are easily generated
through transformations according to MRs, and usually incur very low cost. Although test result verification involves
checking outputs against MRs, the associated overhead is relatively low compared with the cost of result verification
when the oracle problem exists.

Another important factor affecting costs is the scalability problem, by which we mean that the required number of
test cases or required testing efforts is exponentially growing with the size of the program under test. For example,
the multiple-condition coverage criterion, widely regarded as “one of the most popular criteria in software testing
practice” [101], aims to design test cases that cover all possible combinations of condition outcomes in a decision for a
given program. For a given program, such a testing criterion requests a minimum number of test cases to satisfy its
original objective. In contrast, there exist several techniques, such as MT and random testing, that do not have this kind
of constraint on the minimum number of test cases. MT can be applied with a test suite of any size, independent from the
size and complexity of the program under test. How large or small the test suite is does not affect the implementation
of MT. Thus, MT does not have the scalability problem as encountered by the multiple-condition test case selection
method. Some may argue that MT may require many test cases to guarantee the detection of certain software failures.
However, this issue is related to the failure rate of the program under test and fault-detection capability rather than
scalability.

3 FREQUENTLY MISUNDERSTOOD CONCEPTS IN MT

In our research, we have identified the following MT concepts that were frequently overlooked or misunderstood — they
appear to be the cause of most inquiries from readers, reviewers, and software practitioners. In this section, therefore,
we highlight and address each one of them, providing a more comprehensive picture of MT and thus enabling a deeper
understanding of MT’s capabilities.

Concept 1: Not all necessary properties areMRs.MRs are necessary properties of the target algorithm in relation
to multiple inputs and their corresponding expected outputs. Not all necessary properties of the algorithm, therefore,
Manuscript submitted to ACM
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are MRs. For example, although −1 ≤ sin(x ) ≤ 1 is a necessary property of the sine function, it only involves a single
instance of the input and thus cannot be considered an MR — even though, obviously, violation of this property implies
that the relevant program is faulty. It should be noted that such a property involving only one input has been used
in other techniques, such as assertion checking [79], which also addresses the oracle problem but in a different way
and less effective than MT in detecting various faults [41, 97]. There are also development and testing approaches
that involve multiple executions using the same input: N -version programming [61] and differential testing [35], for
instance, verify the test results against the property that various versions of the same software should produce the
same results given the same input. However, because such a property does not involve multiple different inputs (even
though it involves multiple executions across various versions), it is not regarded as an MR.

Concept 2: Not all MRs separate into input-only and output-only sub-relations. Many previously studied
MRs consist of two separate or independent components: one sub-relation involving only the inputs and the other one
involving only the outputs. Consider the shortest path program P (G,a,b) in Example 1 (Section 2.2), where G is an
undirected graph, a is the start node, b is the end node, and the output is a shortest path from a to b. The given MR, “If
the vertices a and b are swapped, the length of the shortest path will remain unchanged”, which we denote as MR1, can
be decomposed into two separate sub-relations: Rin (a relation only involving the inputs: “the start and end nodes, a
and b, are swapped”) and Rout (a relation only involving the outputs: “|P (G,b,a) | = |P (G,a,b) |”). Although this type of
MR is often identified, it should be noted that there are other types that cannot be decomposed into input-only and
output-only sub-relations. Consider a second MR, denoted as MR2: |P (G,a,c ) | + |P (G,c,b) | = |P (G,a,b) | where c is
a node appearing in the shortest path from a to b in graph G. In MR2, the follow-up test cases (G,a,c ) and (G,c,b)

depend on the output of the source test case (G,a,b). Although MR2 is different from MR1, which is in the form of Rin

and Rout, MR2 does still comply with Definition 1.
Concept 3: Not all MRs are equality relations. Although many of the MRs studied to date have involved equality

relations, this is not a requirement in the original MR definition (Definition 1). Consider the following example.

Example 2. Suppose that a database query commandq extracts data from the database using the condition c1∨c2∨. . .∨cn .

One possible MR for q is: If any ci (1 ≤ i ≤ n) is removed, the new extracted data should be a subset of the original extracted

data, that is, q(c1 ∨ c2 ∨ . . . ∨ ci−1 ∨ ci+1 ∨ . . . ∨ cn ) ⊆ q(c1 ∨ c2 ∨ . . . ∨ cn ).

Unlike the MR defined in Example 1, which involves an equality relation, the MR in Example 2 involves a relation that
is not an equality. Furthermore, some studies have considered the use of nondeterministic or probabilistic relations as a
kind of extension to MT [38, 66]. In fact, the MR definition was never constrained to specific relation types. Although
other techniques (such as the data diversity approach for fault tolerance [2]) specifically involve the use of equality
relations, MRs may include but are not limited to equality relations. This makes MT intrinsically different from other
techniques. Interested readers who wish to further explore the differences between MT and these other techniques may
consult our previous studies [29, 55].

Concept 4: MT can be applied with or without an oracle. Although MT has been extensively applied to the
testing of programs with the oracle problem, it can also be applied when a usable oracle is available — something
that has been overlooked or misunderstood by many researchers. In fact, MT has revealed real-life faults that had
remained undetected for years in some small-sized and extensively-tested programs — such as the famous Siemens
programs [77, 93], which will be discussed in Section 4.2. This means that MT can be used as a test case generation
strategy regardless of whether or not a usable test oracle exists. As will be shown in Section 5.1, MT with semi-proving
can reveal conditions of inputs that lead to violations of an MR (if such violations exist). These conditions are useful for
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debugging, regardless of whether the test oracle exists or not. In summary, MT is a useful and effective method even
when a test oracle exists.

4 MT IN TESTING

4.1 MT as an approach to alleviating the oracle problem

State of the art. Although it has widely been acknowledged that MT can effectively alleviate the oracle problem
in testing, one can never completely solve it. MRs are necessary properties of the target algorithm in relation to
multiple inputs and their expected outputs, but because there are usually a huge number of these properties, it is almost
impossible to obtain a complete set of MRs representing all of them. Even if it were possible to obtain such a complete
set of MRs, they might still not be equivalent to a test oracle due to the necessary (but not sufficient) nature of the
properties. Nevertheless, a recent empirical study [55] has delivered very encouraging results, demonstrating how a
small number of diverse MRs appear to be very close to the test oracle in terms of software fault-detection ability. For
each of the six subject programs in the study, MT only required an average of three to six diverse MRs to reveal at least
90% of the faults that could be detected by an oracle.

The effectiveness of MT in alleviating the oracle problem has been shown repeatedly in numerous studies, covering
many different domains, including bioinformatics [16, 75, 76, 80]; web services [14, 84]; embedded systems [13, 44, 49];
components [8, 59]; compilers [50, 86]; databases [52]; machine learning classifiers [65, 67, 91]; online search functions
and search engines [98, 99]; software product lines [82, 83]; and security [20]. In particular, MT has detected real-life
faults in some frequently used programs with the oracle problem. For example, when testing a program analyzing
gene regulatory networks, Chen et al. [16] identified some MRs involving simply altering the basic network structure
(through deletion of a node, or addition of an edge, for instance). It was surprising to observe that a fault was revealed by
a very simple MR that added a zero-weight edge. Other examples of MT detecting real-life faults include its application
in embedded systems [49], in three famous Siemens programs [77, 93], and with two popular C compilers [50, 86].
Readers can refer to the recent survey [81] for the details on how MT has addressed the oracle problems in these
different application domains. We will not repeat the detailed discussions in this paper. Instead, we will now summarize
the similarity among these studies. Most studies have used random testing (RT) as the benchmark for evaluating
the fault-detection effectiveness of MT, either explicitly or implicitly. Usually, faults are seeded into a base program
(automatically and/or manually) to generate a set of faulty versions called mutants. The base program can then be used
as the oracle. RT with the oracle provides the upper bound of the fault-detection effectiveness. RT without the oracle
provides the lower bound — in which case we can only detect faults related to program crashes, such as segmentation
faults. It is usually reported that MT always detects more faults than RT without the oracle. Obviously, any program
crash will lead to the violation of MRs, whereas some faults do not necessarily trigger crashes but may result in MR
violations. On the other hand, the more MRs used, the closer will be the number of faults detected by MT to that for RT
with the oracle. Furthermore, if a sufficient number of diverse MRs are used, then the fault-detection effectiveness of
MT is found to approach that of the oracle [55].

In addition to RT, MT has also been compared with another technique for addressing the oracle problem, assertion
checking [41, 97]. Although incurring a slightly higher computational cost, MT has been observed to detect more faults
than assertion checking. MT was also found to be complementary to error trapping, a commonly used spreadsheet
testing technique [74]. Because MT and error trapping find different types of faults, it has been proposed that they
should both be used when testing spreadsheets.
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Challenge 1: Comprehensive empirical studies for a unified understanding of MT. The increasing number
of real-world programs tested using MT is indicative of its wide acceptance [81], but a thorough evaluation of MT’s
overall effectiveness is still lacking. Many experimental studies [12, 55] have used mutation analysis to evaluate the
fault-detection effectiveness of MT — evaluating how well MT, or more specifically a set of MRs, can alleviate the oracle
problem based on how many mutants can be killed. However, most of these studies either focused on one particular
application domain, or were based on a set of small or medium-sized subject programs. In addition to the appropriate
effectiveness measurement (such as the mutation-based metrics), further empirical studies involving large and complex
subject programs, from a variety of application domains, will be needed to develop a full picture of MT’s fault-detection
effectiveness. Such projects are labor-intensive and time-consuming, and should be conducted through collaborations
across different research groups with complementary strengths. Furthermore, some previous MT experiments have
yielded contradictory results. As discussed in a previous survey [81], for instance, the effectiveness of MRs (such as
those in [17, 62]) has not been conclusively determined. It is therefore critical that all these experiments be summarized
and analyzed. Based on these analyses, more comprehensive and thorough empirical studies should be designed and
conducted. It is hoped that such comprehensive studies will lead to a more unified understanding of MT, enabling
provision of clearer directions and guidelines for further MT research.

Challenge 2: Systematic MR identification and selection. Effective MRs are the key to MT alleviating the oracle
problem. Although many MRs have been identified for various application domains (as mentioned in Section 2.3), and
were reportedly not difficult to identify, most of these identifications were conducted in an ad hoc and arbitrary way.
Several studies have been conducted examining how to systematically identify MRs [25, 56] and how to select “good”
MRs [12, 17, 55, 62] (the results of these studies have been summarized by Segura et al. [81]). However, both systematic
identification and selection of appropriate MRs still face several critical challenges.

Research into MR identification is important, but still at a preliminary stage, with most techniques proposed so far
having limited applicability. Currently, MR identification strategies can be classified as either ad hoc or systematic, with
most previous MT studies requiring testers to identify MRs in an ad hoc manner, without any systematic mechanism.
Recently, however, research has been emerging on systematic methods for MR identification. Zhang et al. [96], for
example, proposed identifying MRs from multiple executions of the program under test. On the one hand, MRs based on
program executions may be erroneous if the implementation is faulty. The latter is exactly what we set out to test. On
the other hand, even though these MRs may not be valid, they provide users with clues and inspirations for identifying
appropriate MRs.

Some MR identification techniques can only be applied in specific application domains [47, 96, 100], or may require
the existence of initial MRs [33, 56]. Other recent work, however, has yielded much higher applicability and MR
identification without a need for existing MRs: METRIC [25], for instance, is based on the concepts of category and
choice [24] from the software specifications. Categories refer to input parameters or environmental conditions that
affect the execution of the software under test, while choices are disjoint partitions of each category that cover sets of
possible values for the category. Technically speaking, MRs are part of the specifications, and hence, intuitively, should
be identifiable from them — an intuition that motivated the technique on which METRIC is based. However, in spite
of its systematic approach, METRIC still relies somewhat on the testers’ expertise and experience in identifying MRs.
Consider the following example.
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Example 3. For the sine function, its specification is usually given by the equation

sin(x ) = x −
x3

3!
+
x5

5!
− · · · (1)

With this specification, it may not be difficult to identify the MR “sin(−x ) = − sin(x )”. However, it is not trivial to derive
some other MRs from Equation (1), such as “sin(π − x ) = sin(x )” or “sin(x + 2π ) = sin(x )”, because the final cancellation
of all π ’s after replacing x by (π − x ) or (x + 2π ) in the equation involves difficult mathematical operations.

On the other hand, if the sine function is defined to be the ratio of the opposite side to the hypotenuse in a right-angled

triangle, then the MRs “sin(π − x ) = sin(x )” and “sin(x + 2π ) = sin(x )” should be easily identifiable — because they follow

directly from the definition or specification.

Current practices in specifications engineering aim mainly to help developers understand the required functionality
of the software to be developed, with a view to delivering a system that satisfies user needs. It will therefore be a
challenge to investigate new specification practices that would support the identification of MRs. This research direction
may bring a new perspective to specifications engineering.

Although work has been conducted into providing guidelines for “good” MR selection [12, 17, 55, 62], these guidelines
remain rather qualitative and their implementation is still a relatively subjective process. More work is needed to
produce the formal, objective, and measurable criteria that can be used to guide selection of appropriate MRs to
effectively alleviate the oracle problem. Potential criteria include the code coverage of MRs, the differences in execution
profiles (such as branch hits and branch counts) of source and follow-up test cases for an MR [12], the logical hierarchy
of MRs, and so on.

A promising direction for future research will be to integrate the selection of “good” MRs with the systematic
identification of MRs. The resultant is an advanced technique achieving both MR identification and selection. It would
not only identify MRs without the need for existing ones, but could also systematically select a set of MRs that would
be most effective in detecting various faults.

4.2 MT as a new test case generation strategy

State of the art. As already discussed, MT was proposed as a test case generation strategy that could be used regardless
of whether or not the oracle problem exists. Previous studies have shown that in addition to alleviating the oracle
problem, MT is effective at revealing real-life faults, even for widely-used programs, such as the famous Siemens
programs [77, 93], C compilers [50, 86], bioinformatics software [16], and wireless embedded systems [49]. Segura et
al. [81] reported that MT had detected about 295 real-life faults, emphasizing the effectiveness of the technique. Among
these detected faults, two results are worth highlighting for further analysis: the detection of three faults in the Siemens
suite and the detection of over 100 faults in two popular C compilers (GCC and LLVM).

MT detected three real-life faults in three out of seven programs [77, 93] in the Siemens suite [43]. The Siemens
suite had been extensively used as a benchmark for evaluating many test case selection strategies for the previous two
decades. Furthermore, the programs are of relatively small size. It was therefore particularly surprising that such faults
had remained undetected for so long in spite of the small program sizes and the thorough testing by a large number of
test case selection strategies. This clearly demonstrates that MT complements existing test case selection strategies.
The success in revealing these previously undetected faults is due to MT’s innovative approach to generating test cases
based on a perspective different from those used before. In MT, testers need to consider the necessary properties of the
target algorithm — not the implementation. Even without a complete specification, testers can still identify MRs that
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describe particular properties, and thus can generate test cases that may reveal faults violating these properties. This
situation emphasizes the importance of the concept of test case diversity. Programmers may make a variety of errors,
including unexpected ones. Correspondingly, test cases should be designed from different perspectives such that they
can trigger as many distinct kinds of execution behaviors as possible. Interested readers may consult our work on the
role of diversity in effective test cases [21, 22].

Recently, Le et al. [50] developed a technique to test compilers and detected over 100 faults in the popular GCC and
LLVM C compilers. The same technique was also applied to detect over 50 new bugs in OpenCL (Open Computing
Language) compilers [51]. The technique is basically MT, as observed by different researchers [51, 78], with a specific
instance of the following MR: If source programs SP and SP ′ are equivalent for input I , then their object programs OP
and OP ′, respectively, are also equivalent on I . Their method constructs SP ′ from SP by removing the statements in
SP that are not executed with input I . Compared with the Siemens test suite, the two compilers are extremely large.
Although we do not know the testing history of the two compilers, it is very likely that they were tested with fewer
testing methods than the Siemens suite — because the latter has been extensively used as a benchmark for evaluating the
effectiveness of testing methods. However, since these two compilers are popular, they must have been used extensively,
and thus, it is a surprise that so many faults have been detected. This again demonstrates the effectiveness of MT in
revealing real-life faults. In fact, Le et al. are not the first researchers to use MT to test compilers. Tao et al. [86] had
previously also used MT, but had only found one fault in the GCC compiler and one in the UCC compiler. This dramatic
difference in the number of detected faults also emphasizes the significant impact MR choice has on the fault-detection
effectiveness of MT.

Compared with other testing strategies, the main MT overheads relate to the identification of MRs, as well as
the generation and execution of follow-up test cases. However, a major advantage of MT is that it does not have
the scalability problem that has rendered many other testing techniques unusable on large software, as discussed in
Section 2.3. Furthermore, the MR that Le et al. [50] used to test the two compilers is remarkably simple, in spite of the
technical complexity of compilers, and can be defined without referring to such complex technical content. In fact, the
used MR is applicable to compilers for other programming languages, not restricted to the C compilers.

Challenge 3: Effective test case generation. The effectiveness of MT depends on the MRs and MGs used, while
follow-up test cases depend on source test cases and the relevant MR. Thus, the effectiveness of MT actually depends on
both the MRs and the source test cases. Nevertheless, research has mainly focused on the impact of MRs (as discussed in
Section 4.1), with the impact of source test cases on MT’s fault-detection effectiveness having somehow been neglected.
Previous studies have focused mainly on the identification of “good” MRs, often overlooking the issue of generating
“good” test cases — in terms of fault-detection effectiveness. In most previous studies, source test cases were either
randomly generated [7, 55], or were special values [19], or both [16]. As observed by Segura et al. [81], 57% of source test
cases in previous studies were randomly generated and 34% were from existing test suites. In other words, investigation
of the impact of source test cases on MR (and MT) effectiveness is an area yet to be explored. Some initial work in this
area has begun, including attempts to generate source test cases using more advanced techniques, such as fault-based
testing [28] and ART [5, 7]. The studies so far conducted are still at relatively initial stages, and it is quite challenging
to assess and guarantee the effectiveness of test cases generated for MT, which depends on a variety of factors. It will
be worthwhile to more deeply investigate how to generate effective source test cases and consequently follow-up test
cases that maximize fault detection.
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5 EXTENSION OF MT BEYOND TESTING

This section examines how MT has been extended beyond the context of testing, into MR proving (Section 5.1) and as a
unified framework for verification, validation, and quality assessment (Section 5.2).

5.1 Proving MRs

State of the art. In MT, MRs are tested and not proven, which means that, even if there is no MR violation, it still
cannot be concluded that the program satisfies the relevant MRs for all inputs. A natural line of investigation, therefore,
will be to examine how to prove that a program satisfies MRs for the entire input domain — abbreviated as proving MRs,
hereafter. To the best of our knowledge, very few investigations in this direction have so far been conducted: one by
Chen et al. [27, 29] and one by Gotlieb and Botella [37].

Chen et al. [27, 29] developed a semi-proving method that uses symbolic analysis techniques to prove MRs. In addition
to providing a general framework for proving, they showed that semi-proving can be combined with testing and
debugging, as illustrated by the following example.

Example 4. Consider a program P implementing a function f (x ) that has the following MR: f (k × x ) = k × f (x )

(denoted by MRo ), where k is a non-zero integer. Suppose semi-proving has successfully proven that the program P satisfies

MRo on the entire input domain. Now, test P using a concrete test case, such as x = 2, and suppose that the output is correct.
Then, based on this result and the proven MR, it can be concluded that P (4), P (6), P (8), . . . must all be correct — even

though the program P has never been tested using these concrete test cases.

As shown above, semi-proving enables extrapolation from the correctness of a program for tested inputs to the
correctness for related but untested inputs, thus combining testing and proving. It was also observed that proving the
correctness of a program could sometimes be achieved by proving a set of MRs [27, 29]. In this way, semi-proving
provides a new and automated way to do proving. For complex programs where symbolic analysis cannot be applied
globally, semi-proving can be performed on a finite set of selected paths, making it a symbolic testing technique.
When semi-proving finds that an MR is not satisfied by the program, it provides a constraint on the inputs for which
the relevant MR is violated. For example, suppose that the program has two input parameters, a and b, and that the
constraint is a = (2 × b) + 5. Whenever the input parameters satisfy the constraint, the MR will be violated. Obviously,
such a constraint is more informative than a concrete test case (such as a = 11 and b = 3) for revealing the nature of the
defect.

Gotlieb and Botella [37] used constraint logic programming to generate test cases that cause violations of given
MRs. Their testing framework first translates the program under test into an Equivalent Constraint Logic Program
over Finite Domains (eclp ( f d )), and then generates the negation of the given MR, expressed as a goal to solve with the
eclp ( f d ). Because a contradiction of the constraint system means that the MR is satisfied, their technique can prove the
satisfaction of MRs for certain programs.

Challenge 4: Metamorphic proving. Geller [36] proposed using test cases to prove program correctness by first
testing the program using a sample test case, showing that the output is correct, and then proving that the program’s
output and the specified target function “are perturbed in the same fashion” as the input values change. In this way,
one can generalize from the given test case to a larger domain. Although metamorphic relations are obvious candidates
for the generalization, how to make use of them for program proving or disproving, in combination with testing, is a
challenge. In particular, extensive research is required to balance the fault-detection effectiveness of the MRs (their
proving power) with the difficulty level of the proofs.
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To elaborate this point, consider again program P in Example 4, which implements the function f (x ) that has the
MRo : f (k × x ) = k × f (x ), where k is a non-zero integer. We have shown that proving MRo can be very useful because
it enables extrapolation from the program’s correctness for a single test case to the program’s correctness with infinitely
many untested inputs. In practice, however, the verifier might find that MRo is too difficult to prove for P . In this
situation, the verifier should look for other MRs that are easier to prove, such as MRn : f (−x ) = −f (x ). Although MRn
is weaker than MRo , proving MRn for P could be more practical, and a successful proof of P (−x ) = −P (x ) will still be
very useful as it will double the effectiveness of concrete test cases.

Many different proving techniques exist, each with advantages and limitations. For the existing MT-based proving
techniques [27, 29, 37], their applicability and scalability rely on their related support tools. Further research is needed
to identify the usefulness, advantages, and limitations of MR proving techniques beyond symbolic evaluation and
constraint logic programming.

5.2 A framework for verification, validation, and quality assessment

State of the art. Software verification checks whether the products of a given development phase (such as design
documents or program code) satisfy the specified requirements. Software validation, on the other hand, checks whether
these products meet the user’s actual needs. Boehm [9] famously explained the difference as questions of “building the
product right” (verification) and “building the right product” (validation).

Although MT was originally proposed as a verification technique, it was later also found to be useful for validation.
In a study of testing machine learning classifier software [91], it was observed that implementations of two classifiers,
k-Nearest Neighbor (kNN) and Naive Bayes, violated some of the identified MRs. Careful investigation later revealed
that some of the violated MRs were not actually necessary properties of the target algorithms — but they were properties
expected by the users. For example, although users reported expecting that the order of the class labels would not
affect the final classification, the kNN algorithm did not have this property, which resulted in MR violations when the
implemented program was tested. This observation led to the understanding that MT could also be used as a validation
technique — if the MRs are identified based on actual user expectations rather than on the target algorithm.

While verification and validation focus on the functionality and correctness of software, software quality assessment,
as an activity, covers a much broader range of characteristics than just functional correctness [98]. MT has, for
the first time, been formally introduced as a unified framework for software verification, validation, and quality
assessment with large scale empirical studies of major search engines (including Google, Bing, and Baidu) [98]. The
investigated software quality (sub)characteristics included functional correctness, capacity, operability, user error
protection, maturity, effectiveness, and context completeness. As an example, it was found that the search engines
under study had performance degradation when searching large domains, which means that MT is useful for assessing
software scalability. The main difference is the source of MRs: in verification, they are derived from the specifications;
in validation, they are derived from the user expectations; and in quality assessment, they can be defined by various
stakeholders.

Consider again the case of search engines [98], which, due to the lack of a tangible test oracle, can be difficult to test
or assess. Because knowledge of the algorithms, or detailed system specifications of these search engines (which could
be commercial secrets), was not available, a user-oriented approach was adopted to perform MT — MRs were identified
from the users’ perspective. These MRs reflected what users actually care about and were not based on the algorithms
or designs chosen by the search engine developers. On the one hand, they allowed users to validate the search engines
and assess their various quality characteristics. On the other hand, the test results were helpful for the developers to

Manuscript submitted to ACM



14 T. Y. Chen et al.

reveal defects and weaknesses in the search engines and, hence, to improve the quality of service. The search engine
developers could repeat some of the reported MR violations and confirm that they were indeed caused by software
faults or design flaws. This means that the user-oriented MRs were also useful for developers conducting verification.

In summary, MRs have evolved from being just the necessary properties of the target algorithm in relation to multiple
inputs and their expected outputs (Definition 1), to additionally including the properties expected by users.

Challenge 5: A unified and comprehensive framework. Research into software validation and quality assess-
ment using MT is still at an initial stage, but the ultimate goal should be the development of a comprehensive MT
framework supporting verification, validation, and quality assessment. A major task is to formulate MRs not only
from the perspective of the target algorithm, but also from various stakeholders’ perspectives, including those of
developers, user groups, and independent testers. The identification and formalism of MRs can be quite different for
various purposes (including verification, validation, and quality assessment), which are associated with requirements in
distinct specification paradigms. Hence, it is challenging to develop a unified framework that can capture and express
MRs for different purposes and application domains. In particular, it is a very challenging job to propose a specification
language that not only supports the unified expression of MRs by different stakeholders for various purposes, but also
facilitates the transformation of individual MRs to a set of automated procedures for constructing MT test cases, bearing
in mind that the follow-up test cases may depend not only on the source test cases but also their outputs.

Another major task is to involve a variety of quality characteristics and their associated metrics in the framework.
Zhou et al. [98] identified five MRs for search engines and showed how they could be used to evaluate some standard
quality (sub)characteristics [85], such as functional correctness, operability, and maturity. Although the majority of MT
research has focused on the functional correctness of the software under test, it will be necessary to extend further into
the broader context of software quality, addressing such aspects as reliability [70], performance [18], and security [20].
The development of MRs to evaluate the different quality characteristics of various software types will be an important
job. The characteristics of different software, combined with the multiple aspects of verification and validation activities,
will mean that the integration of all these things into a single comprehensive (MT) framework will be both rewarding
and challenging.

6 INTEGRATIONWITH OTHER TECHNIQUES

State of the art. In addition to alleviating the oracle problem in the context of testing, MT has also been widely applied
to address similar problems in other software engineering areas. Because other techniques, such as debugging, analysis,
fault tolerance, and program repair, may normally assume the presence of an oracle, integration with MT should extend
their applicability, especially when the oracle does not exist. Other than the small constraint of involving at least two
inputs, MT is quite straightforward and should easily achieve integration [3, 45, 46, 57, 92, 93]. In fact, the integration
process can be facilitated by the following two-component framework:

• The correspondence between a single test case and an MG (which involves multiple test cases); and
• The correspondence between the pass/fail outcome of a test case and the satisfaction/violation of an MR for the
relevant MG.

Using this integration framework, the technique under study can be extended through the application of the two
mappings with any appropriate modifications to the original technique.

For example, consider the technique of debugging with slicing [46, 93], which conventionally works as follows: “If the
program is tested with an input that reveals a failure, then we find the relevant slice, called the execution slice, for this
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failure-causing input, and debug it.” The rationale is that the execution slice must contain the relevant faulty statement.
Using the integration framework, we can modify the debugging with slicing technique as follows: “If the program is
tested with an MG that reveals the violation of an MR, we find the relevant slice for this MR-violating MG and debug
it.” A possible way of modification is to replace the execution slice used in the original technique with the union of
execution slices for all the test cases (both source and follow-up) in the MG. The rationale is that the faulty statement
must be in the union of the MG-related execution slices, thus giving rise to the MR violation. With this modification,
the technique can then be extended to application domains without a test oracle.

Consider Spectrum-Based Fault Localization (SBFL) [92] as another example. Given a test suite that contains at least
one failure-causing test case, SBFL statistically estimates the likelihood that a program entity (such as a statement)
is faulty. SBFL involves examining each statement to determine how many failure-causing and non-failure-causing
test cases have executed it as well as how many have not, thereby generating four measures for each statement. The
four measures are then used to calculate a risk value, which can be used to prioritize statements for debugging. The
reasoning behind SBFL is that (1) a statement executed by more failure-causing test cases is more likely to be faulty and
(2) a statement executed by more non-failure-causing test cases is less likely to be faulty.

Using the integration framework, the original SBFL method can be extended in the following three steps. First, “a
given test suite with at least one failure-causing test case” becomes “a given set of MGs with at least one MR-violating
MG”. Secondly, “a statement executed by a test case” corresponds to “a statement executed by an MG”. Finally, “a
statement not executed by any test case” corresponds to “a statement not executed by any test case in any MG”.

The new SBFL process then determines how many MR-violating and non-MR-violating MGs have executed each
statement as well as how many have not, thereby generating four new measures for each statement. These four new
measures are then used instead of the respective original ones to calculate the risk values, which in turn can be used
to prioritize the statements for debugging. The reasoning behind the new technique integrating SBFL and MT is that
(1) a statement executed by more MR-violating MGs is more likely to be faulty and (2) a statement executed by more
non-MR-violating MGs is less likely to be faulty. In this way, SBFL can be extended to those application domains that
face the oracle problem.

Of course, it may not be universally possible to use MT to enhance every relevant method to render it applicable
to programs with the oracle problem. Nevertheless, the simplicity of the integration framework makes it generally
applicable in the vast majority of cases.

Challenge 6: Development of new concepts. The integration of MT with other software engineering techniques
can lead to the development of new concepts, such as metamorphic slicing, which was proposed in recent work on
debugging [93]. Slicing is an important concept in program analysis, testing, and debugging. Many slice types have
been developed, such as static slices, dynamic slices, execution slices, and conditioned slices [94]. Nevertheless, the slice
definitions to date are basically data-oriented or data-driven. Metamorphic slicing has been introduced to integrate
MT with debugging and fault localization techniques [92, 93]. A new family of slices has been proposed, including
static metamorphic slices, dynamic metamorphic slices, execution metamorphic slices, and conditioned metamorphic
slices. Unlike their conventional counterparts, metamorphic slices are not only data-oriented but also property-oriented
because they are related to MRs. This has opened a new research area in slicing.

Although many studies integrating MT with other techniques have already been conducted [3, 45, 46, 57, 92, 93],
few new concepts have so far been formally developed. Finding a technique to which MT can be applied is the first
challenge, after which it may be possible to develop a new concept. Obviously, even when a technique can be integrated
with MT, it does not necessarily mean that new concepts will then be developed. Furthermore, the development of new
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concepts may not be straightforward. Refer to the example of metamorphic slicing. Although Xie et al. [92, 93] only
described one execution metamorphic slice construction (through the set union of execution slices of the related MG),
there are many possible ways to group the execution slices to form execution metamorphic slices. Generally speaking,
the intended application of the metamorphic slices will influence their definition in terms of conventional slices. Clearly,
integration of MT with other techniques and the related development of new concepts will be challenging.

Challenge 7: Development of new techniques. Since its first appearance in the literature in 1998, MT has been
integrated with many other techniques, resulting in a family of new methods in various areas, including debugging [93],
fault localization [3, 92], fault tolerance [57], and program repair [45]. However, some integration attempts face
challenging problems.

There are parallels between the use of MT in testing and its use in other software engineering techniques. In the
context of testing, for instance, a single test case and its corresponding pass/fail outcome in test result verification
relate to an MG and the corresponding MR satisfaction/violation. However, there are some challenging differences
when MT is applied in other contexts. A main aim of software testing is to reveal a fault, which, in MT, can be indicated
by the violation of an MR. Once an MR is violated, the major task of testing has been fulfilled — it does not matter
too much which test cases in the MG are actually related to the fault. In contrast, failure detection is only the starting
point in some software engineering areas such as debugging. Precise knowledge of which test cases are failure-causing
may be necessary to be able to proceed, such as with debugging [93], fault localization [3, 92], fault tolerance [57],
and program repair [45]. This is not a problem for conventional techniques that use single test cases for verification —
the pass/fail outcomes simply correspond to the non-failure-causing/failure-causing test cases, respectively. However,
with an MR violation, it is only possible to say that at least one test case in the MR-violating MG is related to the
fault, unless we do have a test oracle. It is not clear precisely which test case is related. Such a precision problem is an
intrinsic characteristic of MT, and is therefore an unavoidable cost when MT is used to address the oracle problem
for other software engineering techniques. Consider, for example, fault tolerance techniques. Traditionally, because
of the assumption of an oracle’s existence, once an input causes an incorrect output, a fault tolerance mechanism is
applied to provide an alternative correct output. To address the oracle problem in fault tolerance, one simple strategy of
metamorphic fault tolerance [57] works as follows: Multiple inputs are first constructed according to some equality
MRs, and then executed simultaneously. Next, the associated outputs are verified against the MRs to decide whether or
not the original input (source input in the MT context) results in a “trustworthy” output (in terms of its correctness). If
the original output is regarded as untrustworthy, the most trustworthy output is selected from all the outputs associated
with the follow-up inputs. A naive mechanism for metamorphic fault tolerance is shown in the following example.

Example 5. Suppose t1 is the original input of a system S , for which three equality MRs, namely MRi , MRii , and MRiii ,

have been identified. Suppose further that another three inputs are constructed as follows: t2 is constructed as the follow-up

input based on t1 as the source input, using MRi ; t3 is constructed as the follow-up input based on t2 as the source input,

using MRii ; and t4 is constructed as the follow-up input based on t1 as the source input, using MRiii . In other words, the

MGs for MRi , MRii , and MRiii are ⟨t1,t2⟩, ⟨t2,t3⟩, and ⟨t1,t4⟩, respectively. (Note that t1 does not need to be source input

for all MRs.)

Consider the following two different scenarios:

• MRi and MRiii are satisfied by their corresponding MGs, while MRii is violated. In such a scenario, since t1 is not

involved in any MR violation, it can be regarded as trustworthy, and its corresponding output (that is, the output of

the original input) can be used.
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• MRi and MRii are satisfied by their corresponding MGs, while MRiii is violated. In such a scenario, since t1 is

involved in one MR violation while t2 is not involved in any MR violation, t2 can be regarded as more trustworthy

than t1, and its corresponding output should be used.

However, such a mechanism may result in both false negatives and false positives. On the one hand, a non-failure-
causing input involved in an MR-violating MG may be mistakenly judged as untrustworthy and hence discarded — thus
a false negative occurs. On the other hand, it is possible to select a failure-causing input as the most trustworthy one
and thereby give an incorrect output — thus a false positive occurs. Such an imprecision brings in new challenges, for
example, in the accurate evaluation of trustworthiness among multiple inputs and outputs.

In spite of the test case precision challenges, MT has demonstrated its applicability and effectiveness in other software
engineering areas [3, 45, 46, 57, 92, 93]. Furthermore, there is great potential to develop new methods to further improve
the precision, and thus further enhance the effectiveness. A ranking mechanism, for instance, could be introduced after
MT verification. In such a mechanism, individual test cases could be ranked according to their probability of being
related to faults (provided that there are statistically sufficient data on the relationships among test cases, MRs, MGs,
and the satisfaction/violation outcomes). The ranking results could in turn be used with other software engineering
techniques. For example, the test cases most likely related to faults would be the first ones used in the next steps of
debugging, fault localization, or program repair. Any resultant methods would no longer be the simple combination of
MT and other techniques, but rather new methods, specifically developed and used to be more precise and accurate.

7 MORE RESEARCH OPPORTUNITIES

In addition to the research challenges highlighted in Sections 4 to 6, we next describe seven further opportunities
for MT research. This list of opportunities is not exhaustive, but focuses on those research areas we consider most
promising. Areas that have already been deeply studied in previous work, such as MT in ubiquitous computing [58, 90],
will not be discussed here.

Opportunity 1: Theory of MT. Although extensive studies have been conducted demonstrating the applicability
and effectiveness of MT in addressing the oracle problem for software testing and many other software engineering
areas, there is a lack of comprehensive work on the fundamental theory of MT. Liu et al. [55], for instance, recommended
that a small number of diverse MRs be sufficient by themselves to achieve a fault-detection capability similar to the
oracle, and thus to effectively alleviate the oracle problem. However, the concept of diversity was not formally defined,
and testers were asked to use their own intuitions to judge the diversity and similarity among MRs. It is therefore not
surprising to observe that various testers have different interpretations of diversity, and thus have distinct schemes for
classifying MRs — the lack of unified and formulated definitions for diversity has resulted in the ad hoc and arbitrary
manner of MR identification and selection.

One possible solution is based on the concepts of category and choice used in METRIC [25], which have been used
to create a measure to gauge the dissimilarities among test cases [6]. This metric assesses how different two test cases
are based on how many distinct categories and choices they are associated with. In the METRIC framework [25], each
MR is associated with a set of categories and choices, so it should be feasible to convert the concept of dissimilarity
among test cases into a new metric to assess the diversity among MRs. Such a diversity metric will significantly assist
MT research in a number of ways, including helping testers to systematically select a set of diverse MRs that could
alleviate the oracle problem effectively [55]. It could also help detect and remove “redundant” MRs — in a group of MRs
showing zero diversity with one another, only one such MR would be needed in testing. The diversity metric will also
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facilitate measurement of the effectiveness of a group of MRs — it is intuitively expected that the more diverse the MRs
are, the more effective they will be in alleviating the oracle problem.

In addition to the diversity metric, a lot of work can be done regarding a fundamental theory of MT. Such work will
involve investigating the systematic identification of MRs; determining the characteristics of effective MRs; examining
how likely a group of MRs mimic a test oracle (if it exists); determining the overall fault-detection effectiveness of MT;
exploring the impact of the choice of source test cases on the fault-detection effectiveness of MT; and prioritizing MRs.
This theoretical research into MT will enable breakthroughs not only in software testing, but also in the broader area of
software engineering, including debugging, proving, specifications engineering, and quality assurance.

Opportunity 2: Teaching and training. As MT has been increasing in popularity, how to teach it to students,
professional software engineers and testers, and end users has become an issue of the utmost importance. Teaching
experiences by MT researchers [54, 63, 64] indicate that university-level computer science students accept MT and
can apply it easily. Reports [87, 88] of how MT, in particular MR identification, has prompted a higher level of student
engagement in software testing indicate MT’s potential use to encourage student creativity. On the other hand, students
have encountered challenges related to the availability of appropriate learning materials and activities. Further work
will be required to design the best training materials and methods.

Although various experiences from different universities have shown the ease of teaching and learning MT’s basic
concepts, which are arguably simple to grasp, a more challenging job will be to improve the learners’ ability to
derive good and effective MRs, something that will involve a certain degree of art and craftsmanship. Practice and
apprenticeship shall play an important role in in-depth teaching and learning of how to effectively conduct MT.

Opportunity 3: New metrics for coverage and confidence. Similar to how the statement coverage criterion
enables us to design a set of test cases that execute each reachable statement at least once, an MR coverage criterion
may guide us to design a set of MGs that verify every MR in question at least once. More specifically, at least one MG
should be generated for each MR. MRs are normally identified from specifications, thus, MR coverage can be considered
as an additional black-box test adequacy criterion. Furthermore, the MR coverage and white-box coverage criteria are
complementary and thus can work together. For example, a set of test cases satisfying the statement coverage can be
used as source test cases to construct follow-up test cases based on a set of MRs. Obviously, the resultant set of MGs
shall satisfy both the black-box (MR) and white-box (statement) coverage criteria. Unlike statement or branch coverage
criteria, however, development of the MR coverage criterion will require that several additional issues be addressed. For
example, different people may derive different sets of MRs for the same program — something that is not a problem
for the application of statement or branch coverage criteria. The quality and effectiveness of MRs should therefore
be considered when applying any MR coverage criterion. One possible way to ensure the quality of MRs used for a
coverage criterion is to construct a set of very diverse MRs that achieves a good coverage of the functionalities of the
software under test. In other words, the theory of MT in Opportunity 1 may help us improve the effectiveness of the
MR coverage criterion.

MRs can also be used as a quality measure for open source software (OSS). Given an OSS project, sets of MRs can
be posted for its validation and verification. When examining programs that implement the relevant functionality,
users can be guided by information regarding which programs have been verified and validated through which MRs —
selecting the programs whose MRs are most relevant, as illustrated in the following example.

Example 6. Consider an OSS project that implements the sine function. Suppose that two MRs are identified for the

function, namely, MRa : sin(−x ) = − sin(x ) and MRb : sin(x + 2π ) = sin(x ). Suppose also that a program S-A in the project
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has only been tested with MRa (not MRb ) and another program S-B has only been tested with MRb (not MRa ). If the users

are land surveyors, they normally deal with positive (anti-clockwise) and negative (clockwise) angles and are not interested

in angles larger than 2π . As a result, MRa is more meaningful and program S-A is preferred to S-B. On the other hand, if

the users are electrical engineers, they are very likely to use the periodical properties of the sine function. As a result, MRb is

more meaningful and program S-B is preferred to S-A.

Obviously, information about the extent to which an OSS program has been tested is a key guide when choosing which
programs to use. From the perspective of program selection, intuitively, users may prefer to know which properties
(reflected in the MRs) have been tested and satisfied, rather than how extensively the source code has been executed
(as measured, perhaps, by the percentage coverage achieved). For users, satisfying a property may deliver a higher
confidence on the software than covering a certain percentage of the code.

These new MR-based metrics also provide a new perspective on how to make use of test oracle and any technique
addressing the oracle problem. Traditionally, the test oracle and related techniques have only been used for test result
verification, but the MR-based metrics may inspire a new research area for measuring the adequacy of a test suite.

Opportunity 4: End-user testing.With the advances in development platforms (such as spreadsheets, MATLAB,
and Labview) and human interfaces for advanced systems, end-user programming has been growing at a very fast
rate. An increasing number of programs are actually developed by non-IT domain experts rather than professional
software engineers. Some of these end-user developed programs are even used in safety-critical systems [48]. However,
because end-user programmers do not often have formal software engineering training, it is not reasonable to expect
such software to exhibit the same level of quality as that developed by professionals. As a result, end-user software
engineering [48] has become a major research area aiming at guaranteeing and improving the quality of end-user
developed software.

Software testing is a systematic approach towards software quality, but it is challenging to develop specific testing
techniques for end-user programmers. Most testing methods involve a substantial amount of technical software testing
knowledge, as well as a general understanding of software engineering. However, because end-user programmers
normally have no formal training in software testing or software engineering, it is difficult for them to fully understand
the limitations and technical issues of these testing methods. Even if they were able to understand the technical details,
it would still be quite challenging for them to implement the methods, which often involve large-scale and highly
complex programming, and thus should be done by professional programmers. Furthermore, end-user programmers
may not be able to access relevant automated testing tools, even if they are available, because such tools may be quite
expensive and not ordinarily affordable. Some of these automated testing tools or methods require quite sophisticated
parameter settings in order to ensure cost-effective usage. It may be a very challenging task for end-user programmers
to properly set such parameters.

In view of the above problems and constraints, an appropriate testingmethod should have the following characteristics.
First, it must be simple, easily understood, and easy to learn. Secondly, its implementation must be simple. Thirdly, it
must be easily automated, or automated tools must be available. Finally, it must be easy for the end users to provide
domain-specific information to enhance its effectiveness. As previously explained [23], because MT possesses all four
of the characteristics above, it may be the most appropriate testing technique for end-user programmers.

The concept of MT is very simple and can easily be learned in a few hours. The MT testing process can simply
be managed by non-professional end-user programmers, who can also prepare test scripts to automate the process.
MRs are necessary properties of the target algorithm in relation to multiple inputs and their expected outputs, often
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identified from the domain knowledge of the system under test. In many cases, therefore, end-users may be even more
appropriate or knowledgeable than developers for defining good MRs [55, 98]. In other words, end-user programmers
should often be able to effectively use MT without much difficulty. A recent systematic investigation [73] of how to
apply MT in end-user testing of spreadsheet systems looked at how a team of non-professionals identified MRs for a
set of five spreadsheets with real-life faults. Even though the MRs were identified in an ad hoc way, they were able
to detect all the faults, demonstrating the effectiveness of MT as an end-user testing method for such systems. In the
future, more research projects should investigate the performance of MT for different development platforms and in
various end-user development domains.

Opportunity 5: Cloud and crowd. Orso and Rothermel [69] have advocated the use of cloud computing and
crowdsourcing for testing, where it would be natural to embed MT, with the aim of improving the effectiveness and
efficiency of MT’s implementation. Cloud computing provides new opportunities to enhance the efficiency of testing
tasks, including those for MT. In any case, a preliminary project [89] was recently conducted to show the usefulness of
cloud-enabled technologies for MT implementation. Much more studies are required to develop a unified cloud-based
framework for MT and to investigate its feasibility, applicability, efficiency, and effectiveness. The cloud resources are
obtained and allocated through virtual machines (VMs) [10], which are created and destroyed on demand, and only
exist for the duration of the testing. When conducting MT in the cloud, different MRs can be used in parallel, thus
improving the overall efficiency of MT. Each MR is by itself a standalone entity, so it will be feasible to allocate one
VM to each MR for the corresponding test case generation, execution, verification, and test result reporting. It will
also be possible to assign a VM specifically for generating source test cases that can then be used by multiple MRs,
executing these test cases, and storing their execution results for comparison with those of the follow-up test cases
generated in other VMs. The decomposition of a task into sub-tasks for multiple VMs is natural and straightforward
in MT. Furthermore, because many cloud-enabled platforms can flexibly allocate computing resources (such as VM
locations, time, and types), it is possible to automatically adjust VMs for specific tasks, depending on the resource
usage [95]. Since various MRs may require different resources, the flexibility of the cloud-enabled computing platforms
will result in optimal resource allocation for MT and ultimately enable a highly efficient MT implementation.

Crowdsourcing is an innovative way of obtaining contributions frommany different people, especially through online
communities. In MT, the most challenging task is the identification and selection of appropriate MRs, a task that cannot
be fully automated, as it requires human intelligence, domain knowledge, and relevant experience. Previous studies [55]
have shown that the MRs identified by different individuals naturally contain a degree of diversity, which is strongly
correlated with high effectiveness in fault detection. It is thus intuitively appealing to make use of crowdsourcing
to brainstorm and decide MRs for a particular system. A variety of personnel can be employed in a crowdsourcing
environment, including users, developers, and testers, all of whom can provide various perspectives of domain knowledge
for identifying diverse MRs. Since people from different backgrounds need to work together, a major challenge is the
need for a formalized framework to support the unified identification and description of MRs. The recent study of MR
identification [25] should provide insights in this area.

Opportunity 6: Big data. Big data is popularly defined as data with the 3Vs: high volume, velocity, and variety [70].
It is normally so large and complex that traditional software testing techniques may no longer suffice. Its huge size and
various types and formats mean that the oracle problem is prevalent, making testing a major challenge. MT has been
recommended as an effective approach for testing big data analytics software [32, 70]. Although Otero and Peter [70]
proposed a set of possible MRs related to synonyms, antonyms, and negations, more complicated relations should also
be explored, such as those related to subset, intersection, and union. Due to the wide distribution and fast growth of
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the data, it is difficult to test big data systems at run-time. Setting up sample data is an essential part of the big data
testing process. Attempts have been made to construct data samples that reflect the characteristics of the actual data.
Alexandrov et al. [1], for example, proposed generation of synthetic data sets based on the actual big data using the data
schema, constraints, and other statistical information. When testing big data software, MRs not only cover necessary
properties of the system under test, but may also cover properties of the data itself. Similar to the program-related
properties, these data-related properties can help produce additional follow-up data to form the sample data, and to
verify the test results, especially when the oracle problem exists (which is not rare in big data software). It will be
interesting to investigate the extent to which the source and follow-up data, according to various MRs, can together
reflect the characteristics of the actual data sets. In addition to the production of sample data, since MRs can relate to
the properties of the big data itself, they can help verify, validate, or even prove whether the big data software satisfy
properties related to 3Vs, just like what has been done for other software systems[91, 98].

Otero and Peter [70] suggested that MT can be applied beyond testing to other areas of big data software engineering.
For example, MRs could be used to create “monitors capable of detecting misbehavior,” thus helping assure the reliability
of big data software. We believe that MT can be applied to many other aspects of big data. It was recently used to test
security software [20], and could therefore naturally be extended into strengthening the protection of big data software
from security attacks. Big data analytics involves a variety of learning algorithms, some of which are mathematically
complex and not easily understood by programmers or users. The degree to which these algorithms actually meet the
users’ needs is, therefore, not easily verified. Because MRs are a clear, explicit, and easily understood representation
of the necessary properties of the algorithm or user’s expectation — with a demonstrated effectiveness in verifying
and validating machine learning software [65, 91] — it is natural to expect MT to be applicable in big data software
verification and validation.

Opportunity 7: Agile development. Agile development has become one of the most popular paradigms for
developing software systems. It normally involves rapid, incremental development, frequent releases of working
software, evolutionary requirements improvements, and close collaboration and communication among developers
and clients [30]. Although some work has been conducted using MRs in the agile testing of databases [52, 53], the
advantages of MT (Section 2.3) suggest that it can easily be applied throughout the entire agile development process.

The most obvious application of MT will be to test software released in every iteration of development, ensuring
that each version of the software satisfies the identified MRs. Due to the evolutionary nature of the requirements, the
MRs would also require regular updating and fine-tuning. Such updating would not only mean changes to specific MRs,
but also the adoption of new MRs and the removal of obsolete ones. Nevertheless, given the close collaboration among
stakeholders in agile development, such changes would not represent a difficult task. Furthermore, MRs can provide a
simple yet effective way of facilitating the communications between customers and developers — they are the necessary
properties that are of the most relevance and interest to the customers, and are clear, non-technical expressions of what
must be considered as the software is developed. Moreover, the rapid development and release of successive versions
make efficient regression testing critical. If MRs are extensively involved in agile development, then new regression
testing techniques involving minimization, prioritization, and augmentation of MRs and MGs will need to be developed
and applied. Another potential research direction relates to exploring how to balance the benefits of applying MT in
agile development against the cost of maintaining MRs for rapidly changing requirements (especially when an oracle is
available). It should be noted that because an MR reflects a specific property, incremental changes in requirements may
only cause the updating of a small number of MRs — in other words, the maintenance of MRs in agile development
should only incur a small overhead.
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8 CONCLUSION

Metamorphic testing (MT) first appeared in 1998 as a methodology for generating follow-up test cases based on
successful test cases, guided by some necessary properties of the system under test, called metamorphic relations (MRs).
Since then, MT has mainly been used as a simple, but effective, approach to alleviating the oracle problem, with MRs as
test result verification mechanisms. MT has successfully detected various faults in a variety of application domains, and
advanced techniques have been developed by integrating it with other software engineering methods, often addressing
the oracle problem in those other areas. MT has also been applied outside of testing, including in validation, quality
assessment, debugging, fault localization, fault tolerance, program repair, and proving.

In this paper, we have reviewed a variety of research topics related to MT, highlighted challenges that need to
be addressed, and unveiled some of the most promising opportunities for future MT research. In contrast to — and
complementary to — a traditional literature review [81], we have focused on the most important and influential
MT studies, providing a more in-depth discussion (including a formal and comprehensive description of MT and a
clarification of the major and common misunderstandings of MT) and offering a higher-level vision of MT research and
application (including a framework to support integration of MT with other techniques). Our investigation also showed
many opportunities to further improve the existing MT research areas, including MR identification, source test case
generation, and the application of MT in new domains such as end-user software engineering and big data software.
We have also highlighted MT’s promise as a novel approach to bolstering other related areas, including measurements
for coverage and confidence, cloud-based quality assurance, and agile software development.

MT has evolved from originally defining MRs as necessary properties of the target algorithm in relation to multiple
inputs and their expected outputs, to additionally including the properties expected by users. This evolution, of both
MT and MRs, is expected to continue.

The concluding statement of this paper is a recommendation to researchers who may be developing new software
engineering methods that somehow assume or require a test oracle. It is advisable to consider MT in the development,
which may alleviate the oracle requirement, extend the method’s scope and applicability, and even facilitate the
development of a more comprehensive method.
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