
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2019

Metamorphic Testing of Driverless Cars Metamorphic Testing of Driverless Cars

Zhi Q. Zhou
University of Wollongong, zhiquan@uow.edu.au

Liqun Sun
University of Wollongong, ls168@uowmail.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation

Zhou, Zhi Q. and Sun, Liqun, "Metamorphic Testing of Driverless Cars" (2019). Faculty of Engineering and

Information Sciences - Papers: Part B. 2384.

https://ro.uow.edu.au/eispapers1/2384

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F2384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F2384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F2384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/2384?utm_source=ro.uow.edu.au%2Feispapers1%2F2384&utm_medium=PDF&utm_campaign=PDFCoverPages

Metamorphic Testing of Driverless Cars Metamorphic Testing of Driverless Cars

Abstract Abstract
On March 18, 2018, Elaine Herzberg became the first pedestrian in the world to be killed by an
autonomous vehicle after being hit by a self-driving Uber SUV in Tempe, AZ, at about 10 p.m. Video
released by the local police department showed the self-driving Volvo XC90 did not appear to see
Herzberg, as it did not slow down or alter course, even though she was visible in front of the vehicle prior
to impact. Subsequently, automotive engineering experts raised questions about Uber's LiDAR
technology.12 LiDAR, or "light detection and ranging," uses pulsed laser light to enable a self-driving car to
see its surroundings hundreds of feet away.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Zhou, Z.Q. & Sun, L. (2019). Metamorphic Testing of Driverless Cars. Communications of the ACM, 62 (3),
61-67.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/2384

https://ro.uow.edu.au/eispapers1/2384

Metamorphic Testing of Driverless Cars

ZHI QUAN ZHOU and LIQUN SUN, University of Wollongong, Australia

http://dx.doi.org/10.1145/3241979 (to become available after March 2019)

1 THE FATAL ACCIDENT

On March 18, 2018, Elaine Herzberg became the �rst pedestrian to be killed by an autonomous vehicle after being hit

by a self-driving Uber SUV in Tempe, Arizona, at about 10 pm. Footage released by police showed that the self-driving

Volvo XC90 did not appear to see Herzberg—the car did not slow down or alter its course even though the pedestrian

was visible in front of the vehicle prior to the collision. Subsequently, experts raised questions about Uber’s LiDAR

technology [12]. LiDAR stands for “Light Detection and Ranging,” which uses pulsed laser light to enable the car to see

surroundings hundreds of feet away.

The supplier of the Uber vehicle’s LiDAR technology, Velodyne, said that “our LiDAR is capable of clearly imaging

Elaine and her bicycle in this situation. However, our LiDAR doesn’t make the decision to put on the brakes or get out

of her way,” “we know absolutely nothing about the engineering of their [Uber’s] part . . . It is a proprietary secret

and all of our customers keep this part to themselves” [15], and that “our LiDAR can see perfectly well in the dark, as

well as it sees in daylight, producing millions of points of information. However, it is up to the rest of the system to

interpret and use the data to make decisions. We do not know how the Uber system of decision-making works” [11].

2 A QUESTION CONCERNING EVERY HUMAN LIFE

Regardless of the investigation outcomes, the Uber fatal accident raised a serious question concerning the perception

capability of self-driving cars:

Are there situations where a driverless car’s on-board computer system could incorrectly “interpret and use”

the data sent from a sensor such as a LiDAR sensor, making the car unable to detect a pedestrian or an obstacle

on the roadway?

This question is not speci�c to Uber cars, but is general enough to cover all types of autonomous vehicles, and

the answer to this question concerns every human life. Our answer to this question is, unfortunately, a�rmative.

Even though we could not access the Uber system, we have managed to test Baidu Apollo, the well-known real-world

self-driving software controlling many autonomous vehicles on the road (http://apollo.auto). Using a novelmetamorphic

testing method, we have detected critical software errors that could cause the Apollo’s perceptionmodule to misinterpret

Authors’ address: Zhi Quan Zhou; Liqun Sun, Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of

Wollongong, Wollongong, NSW 2522, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

Published in the Communications of the ACM, March 2019, vol. 62, no. 3, pp 61-67
Available: http://dx.doi.org/10.1145/3241979

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://apollo.auto
zhiquan
Highlight

zhiquan
Highlight

2 Zhi Quan Zhou and Liqun Sun

the point cloud data sent from the LiDAR sensor, making some pedestrians and obstacles undetectable. The Apollo

system uses Velodyne’s HDL64E LiDAR sensor [1], exactly the same type of LiDAR involved in the Uber accident [16].

We reported this issue to the Baidu Apollo self-driving car team on March 10, 2018, MST (UTC -7), eight days before

the Uber accident. Our bug report was logged online as issue #3341 (https://github.com/ApolloAuto/apollo/issues/3341).

We did not receive a response from Baidu until 10:25 pm, March 19, 2018, MST—24 hours after the Uber accident. In the

reply, the Apollo perception team con�rmed the error.

Before presenting further details of our �ndings, we will �rst discuss the challenges for testing complex computer

systems, with a focus on software testing for autonomous cars.

3 THE TESTING CHALLENGE

Testing is a major approach to software quality assurance. Deploying inadequately tested software can have serious

consequences [22]. Software testing, however, is fundamentally challenged by the oracle problem. An oracle is a

mechanism that testers use to determine whether the outcomes of test case executions are correct [2, 24]. Most software

testing techniques assume that an oracle exists. This assumption, however, does not always hold when testing complex

applications. This is known as the oracle problem, a situation where an oracle is unavailable or is too expensive to

be applied. For example, when testing a compiler, determining the equivalence between the source code and the

compiler-generated object program is di�cult. When testing a web search engine, it is very hard for the tester to assess

the completeness of the search results.

To achieve a high standard of testing, the tester needs to generate, execute, and verify a large number of tests. These

tasks can hardly be accomplished without test automation. For the testing of autonomous vehicles, however, it is hard

to construct a fully automated test oracle. Although, in some situations, the human tester could serve as an oracle,

manual monitoring is expensive and error-prone. In the Uber accident, for example, the safety driver was not doing any

safety monitoring, and this is not surprising because “humans monitoring an automated system are likely to become

bored and disengaged,” which makes this kind of testing “particularly dangerous” [12].

The oracle problem is also re�ected by the di�culty in creating detailed system speci�cations against which the

autonomous car’s behavior can be checked, as it essentially involves recreating the logic of a human driver [21]. Besides,

even for highly quali�ed human testers with full system speci�cations, it can still be di�cult or even impossible for

them to determine the correctness of every behavior of an autonomous vehicle. For example, in a complex road network,

it is hard for the tester to decide whether the driving route selected by the autonomous car is optimal [3]. Similarly, it is

not easy to verify whether the software system has correctly interpreted the huge amounts of point cloud data sent

from a LiDAR sensor, normally at a rate of more than a million data points per second.

Even more challenging is negative testing: While positive testing focuses on ensuring that a program does what it is

supposed to do for normal inputs, negative testing serves to ensure that the program does not do what it is not supposed

to do when the inputs are unexpected, normally involving some random factors or events. Resource constraints and

deadline pressures often result in development organizations skipping negative testing, potentially allowing safety and

security issues to persist into the released software [5, 22].

In the context of negative software testing for autonomous vehicles (if ever attempted by the development organiza-

tion), how can the tester identify the conditions under which the vehicle could potentially do something wrong (for

example, striking a pedestrian)? To a certain degree, tools called fuzzers could help to perform this kind of negative

software testing. During fuzzing, or fuzz testing, the fuzzer generates a random or semi-random input, and feeds it into

the system under test, hoping to crash the system or cause it to misbehave [22]. However, the oracle problem makes

Manuscript submitted to ACM

https://github.com/ApolloAuto/apollo/issues/3341

Metamorphic Testing of Driverless Cars 3

the veri�cation of the fuzz test results (outputs for millions of random inputs) extremely di�cult, if not impossible [5].

Therefore, in fuzzing, the tester looks only for software crashes (such as aborts and hangs). This not only means that

huge amounts of test cases might need to be run before a crash, but also means that logic errors, which do not crash the

system but instead produce incorrect output, cannot be detected [5]. For example, fuzzing cannot detect the error when

a calculator returns “1 ` 1 “ 3.” Neither can simple fuzzing detect misinterpretation of LiDAR data.

4 METAMORPHIC TESTING (MT)

Metamorphic testing (MT) [6] is a property-based software testing technique that can e�ectively address two fundamental

problems in software testing: the oracle problem and automated test case generation problem. The main di�erence

between MT and other testing techniques is that the former does not focus on the veri�cation of each individual output

of the software under test (and therefore can be performed in the absence of an oracle). MT checks the relations among

the inputs and outputs of multiple executions of the software. Such relations are called metamorphic relations (MRs),

which are necessary properties of the intended program’s functionality. If, for certain test cases, an MR is violated, then

the software must be faulty. Consider, for example, the testing of a search engine. Suppose that the tester entered a

search criterion C1 and that the search engine returned 50,000 results. It may not be easy to verify the accuracy and

completeness of these 50,000 results. Nevertheless, an MR can be identi�ed as follows: The search results for C1 must

include those for C1 AND C2, where C2 can be any additional condition (such as a string or a �lter). If the actual search

results violate this relation, the search engine must be at fault. Here, the search criterion “C1 ANDC2” is a new test case

that can be automatically constructed based on the source test case “C1” (whereas C2 could be generated automatically

and randomly) and the satisfaction of the MR can also be automatically veri�ed using a testing program.

A growing body of research from both industry and the academia has examined the concept of MT and proved it

to be highly e�ective [4, 7–9, 13, 18–20]. The increasing interest in MT is not only because it can alleviate the oracle

problem and automate test generation, but also because the perspective of MT has seldom been used in previous testing

strategies and, as a result, MT has detected a large number of previously unknown faults in many mature systems such

as the GCC and LLVM compilers [10, 17], the web search engines Google and Bing [25], and code obfuscators [5].

5 MT FOR TESTING AUTONOMOUS MACHINERY

Several research groups have started to apply MT to alleviate the di�culties in testing autonomous systems, yielding

encouraging results.

Researchers from the Fraunhofer Center for Experimental Software Engineering, Maryland, USA, developed a

simulated environment in which the control software of autonomous drones was tested using MT [14]. Their MRs made

use of geometric transformations, such as rotation and translation, in combination with di�erent formations of obstacles

in the �ying scenarios of the drone. They looked for behavioral di�erences of the drone when it was �ying under these

di�erent (but supposedly equivalent) scenarios. Their MRs required that the drone should have consistent behavior;

however, they found that in some situations the drone behaved inconsistently, revealing multiple software defects.

For example, one of the bugs was in the sense-and-avoid algorithm, which made the algorithm sensitive to certain

numerical values and hence misbehave under certain conditions, causing the drone to crash. They detected another bug

after running hundreds of tests using di�erent rotations of the environment: The drone had landing problems in some

situations. This was because they rotated all the objects in the environment but not the sun, and this unexpectedly

caused a shadow to fall on the landing pad in some orientations, revealing issues in the drone’s vision system. The

researchers solved this issue by using a more robust vision sensor that was less sensitive to lighting changes.

Manuscript submitted to ACM

4 Zhi Quan Zhou and Liqun Sun

(a) original (b) with added rain

Fig. 1. A pair of input pictures used in a metamorphic test, revealing inconsistent and erroneous behavior of a DNN (https://
deeplearningtest.github.io/deepTest [21]).

Researchers from the University of Virginia and Columbia University tested three di�erent Deep Neural Network

(DNN) models for autonomous driving [21]. The inputs to the models are pictures from a camera and the outputs

are steering angles. To verify the correctness of the outputs, the researchers used a set of MRs based on image

transformations. The MRs stated that the car should behave similarly for variations of the same input (for example, the

same scene under di�erent lighting conditions). Using these MRs, they generated realistic synthetic images based on

seed images. These synthetic images mimic real-world phenomena such as camera lens distortions and di�erent weather

conditions. Using MT, together with a notion of neuron coverage (the number of neurons activated), the researchers

found a large number of corner case inputs leading to erroneous behavior in three DNN models. Figure 1 shows such

an example, where the original trajectory (the blue arrow) and the second trajectory (the red arrow) are inconsistent,

revealing dangerous erroneous behavior of the DNN model under test.

Recently, we have applied MT to test Google Maps services that can be used to navigate autonomous cars [3]. We

identi�ed a set of MRs for the navigation system. For example, one of the MRs is stated as “a restrictive condition such

as avoiding tolls should not result in a more optimal route.” Using these MRs, we have detected a large number of

real-life bugs in Google Maps, one of which is shown in Figure 2: The origin and destination points were almost at the

same location; however, Google Maps returned a route of 4.9 miles, which was obviously unacceptable.

6 THE DETECTION OF REAL-LIFE LIDAR DATA INTERPRETATION ERRORS

The scope of the study conducted by the researchers from the University of Virginia and Columbia University [21] was

limited to DNN models only. A DNN model is but part of the perception module of a self-driving car’s software system.

Furthermore, while a DNN can take input from di�erent sensors such as camera and LiDAR, they only studied the

ordinary 2D picture input from a camera, and the output considered was the steering angle calculated by the DNN

model based on the input picture. The software that they tested was not real-life systems controlling autonomous cars,

but instead was deep learning models that “won top positions in the Udacity self-driving challenge.”

Manuscript submitted to ACM

https://deeplearningtest.github.io/deepTest
https://deeplearningtest.github.io/deepTest

Metamorphic Testing of Driverless Cars 5

Fig. 2. MT detected a real-life bug in Google Maps [3, 20]: The origin and destination were almost at the same point but Google

Maps generated an “optimal” route of 4.9 miles.

In contrast to their work, this article reports our testing of the real-life system Apollo, which is the on-board software

of Baidu’s self-driving vehicles. Baidu also claims that users can directly use this software to build their own autonomous

cars (http://apollo.auto/cooperation/detail_en_01.html).

6.1 The So�ware Under Test

More speci�cally, we tested Apollo’s perception module (http://apollo.auto/platform/perception.html), which has two

key components: 3D Obstacle Perception, and Tra�c Light Perception. We tested the 3D Obstacle Perception component,

which consisted of three subsystems: LiDAR Obstacle Perception, RADAR Obstacle Perception, and Obstacle Results

Fusion. Although our testing method is applicable to all three subsystems, we only tested the �rst subsystem, LiDAR

Obstacle Perception (this subsystem is referred to as LOP hereafter). LOP takes the 3D point cloud data as input,

generated by Velodyne’s HDL64E LiDAR sensor.

LOP resolves the raw point cloud data using the following pipeline (the following are excerpts of the Apollo website

https://github.com/ApolloAuto/apollo/blob/master/docs/specs/3d_obstacle_perception.md):

(1) HDMap Region of Interest (ROI) Filter (tested in our experiments): The Region of Interest (ROI) speci�es the

drivable area that includes road surfaces and junctions that are retrieved from the HD (high-resolution) map. The

HDMap ROI �lter processes LiDAR points that are outside the ROI, removing background objects, e.g., buildings

and trees around the road. What remains is the point cloud in the ROI for subsequent processing.

(2) Convolutional Neural Networks (CNN) Segmentation (tested in our experiments): After identifying the

surrounding environment using the HDMap ROI �lter, Apollo obtains the �ltered point cloud that includes only

the points inside the ROI (i.e., the drivable road and junction areas). Most of the background obstacles, such as

buildings and trees around the road region, have been removed, and the point cloud inside the ROI is fed into the

Manuscript submitted to ACM

http://apollo.auto/cooperation/detail_en_01.html
http://apollo.auto/platform/perception.html
https://github.com/ApolloAuto/apollo/blob/master/docs/specs/3d_obstacle_perception.md

6 Zhi Quan Zhou and Liqun Sun

segmentation module. This process detects and segments out foreground obstacles, e.g., cars, trucks, bicycles,

and pedestrians. Apollo uses a deep CNN for accurate obstacle detection and segmentation. The output of this

process is a set of objects corresponding to obstacles in the ROI.

(3) MinBox Builder (tested in our experiments): This object builder component establishes a bounding box for

the detected obstacles. The main purpose of the bounding box is to estimate the heading of the obstacle (e.g.,

vehicle) even if the point cloud is sparse. Equally, the bounding box is used to visualize the obstacles.

(4) HM Object Tracker (not tested in our experiments): This tracker is designed to track obstacles detected by

the segmentation step.

(5) Sequential Type Fusion (not tested in our experiments): To smooth the obstacle type and reduce the type

switch over the entire trajectory, Apollo utilizes a sequential type fusion algorithm.

Our software testing experiments involved (1), (2) and (3), but not (4) and (5), because the �rst three are the most

critical and fundamental features.

6.2 Our Testing Method: MT in Combination with Fuzzing

Based on the Baidu speci�cation of the HDMap Region of Interest (ROI) Filter described above, we identi�ed the following

metamorphic relation, where the software under test is the LiDAR Obstacle Perception subsystem (LOP), A and A
1

denote two inputs to LOP, and O and O 1 denote LOP’s outputs for A and A1, respectively:

MR1: Let A and A1 be two frames of 3D point cloud data that are identical except that A1 includes a small

number of additional LiDAR data points randomly scattered in regions outside the ROI. Let O and O 1 be

the sets of obstacles identi�ed by LOP for A and A1, respectively (LOP only identi�es obstacles within the

ROI). Then, the following relation must hold: O Ď O
1.

In MR1, the additional LiDAR data points in A
1 could represent small particles in the air, or could just be some noise

from the sensor, whose existence is very possible [23]. MR1 states that the existence of some particles, or some noise

points, or their combination, in the air far away outside the ROI should not cause an obstacle on the roadway to become

undetectable. As an extreme example, a small insect 100 meters away outside the ROI should not a�ect the detection of

a pedestrian in front of the vehicle. This requirement is intuitively valid and agrees with the Baidu speci�cation of the

HDMap ROI Filter. In fact, we could also require thatO “ O
1. According to the user manual, the HDL64E, which can be

mounted on top of the vehicle, delivers a 3600 horizontal �eld of view and a 26.80 vertical �eld of view, capturing a

point cloud with a range of up to 120 meters.

Next, we describe the design of three series of experiments to test the LOP using MR1. The Apollo Data Open

Platform (http://data.apollo.auto) provides a set of “Vehicle System Demo Data”—the sensor data collected at real scenes.

We downloaded the main �le of this dataset, named demo-sensor-demo-apollo-1.5.bag (8.93GB). This �le included point

cloud data collected by Baidu engineers using the Velodyne LiDAR sensor in the morning of September 6, 2017. In each

series of experiments, we �rst randomly extracted 1000 frames of the point cloud data—we call each frame a source

test case. For each source test case t , we ran the LOP software to identify its ROI and to generate O , the set of detected

obstacles for t . We then constructed a follow-up test case t 1 by randomly scattering n additional points into the 3D space

outside the ROI of t—the value of the z coordinate of each point was determined by choosing a random value between

the minimum and maximum z-coordinate values of all points in t . Using a similar approach, we also generated a d value

(the re�ected intensity of the laser) for each added point. The d value was needed for each point, in addition to the 3D

coordinates. We then ran the LOP software for t 1, producing O 1, the set of detected obstacles. Finally, we compared O

Manuscript submitted to ACM

http://data.apollo.auto

Metamorphic Testing of Driverless Cars 7

Table 1. Summary of test results (for each value of n, 1000 pairs of results were compared).

number of added points (n) |O| > |O'| |O| = |O'| |O| < |O'|
10 27 951 22

100 121 781 98
1000 335 533 132

27
121

335

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n=10 n=100 n=1000

|O| < |O'| |O| = |O'| |O| > |O'|

(a) total

25
116

303

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n=10 n=100 n=1000

|O| < |O'| |O| = |O'| |O| > |O'|

(b) car

3 18 61
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n=10 n=100 n=1000

|O| < |O'| |O| = |O'| |O| > |O'|

(c) pedestrian

3 15 47
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n=10 n=100 n=1000

|O| < |O'| |O| = |O'| |O| > |O'|

(d) cyclist

1 7 130%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

n=10 n=100 n=1000

|O| < |O'| |O| = |O'| |O| > |O'|

(e) unknown

Fig. 3. Results of experiments by category: 100% stacked column charts. Each vertical column represents the comparisons of 1000 pairs

of results, where the blue subsection implies MR1 violations. Each blue subsection is labeled with the actual number of |O | ą |O 1|
cases (out of the 1000 pairs).

and O 1. We conducted three series of experiments for n “ 10, 100, 1000. Therefore, the LOP software was run for a

total of p1000 ` 1000q ˆ 3 “ 6000 times, processing 3000 source test cases and 3000 follow-up test cases.

6.3 Test Results

In our experiments, for ease of implementation of MR1, we did not check the subset relation O Ď O
1, but instead we

compared the numbers of objects contained in O and O 1, denoted by |O| and |O 1|, respectively. Note that O Ď O
1 Ñ

|O| ď |O 1| (hence, the condition we actually checked was less strict than MR1). In other words, if |O| ą |O 1| then there

must be something wrong, as one or more objects in O must be missing in O 1.

The results of experiments are quite surprising. Table 1 summarizes the overall results. The violation rates (that is,

cases for |O| ą |O 1| out of 1000 pairs of outputs) are 2.7% (“ 27˜1000), 12.1% (“ 121˜1000), and 33.5% (“ 335˜1000),

for n “ 10, 100, and 1000, respectively. This means that, as few as 10 sheer random points dispersedly scattered in the

vast 3D space outside the ROI can cause the autonomous car to fail to detect an obstacle on the roadway, with a 2.7%

probability. When the number of random points increases to 1000, the probability becomes as high as 33.5%. According

to the HDL64E user manual, the LiDAR sensor generates more than a million data points per second, and each frame

of point cloud data used in our experiments normally contained more than 100,000 data points. As thus, the random

points we added to the point cloud frames are trivial.

Manuscript submitted to ACM

8 Zhi Quan Zhou and Liqun Sun

(a) Original (101,676 LiDAR data points; green boxes were gener-

ated by the Apollo system to depict the detected cars).

(b) A�er adding 1000 random data points outside the ROI, the

three cars inside the ROI could no longer be detected.

(c) Original (104,251 LiDAR data points; the small pink mark was

generated by the Apollo system to depict a detected pedestrian).

(d) A�er adding only 10 random data points outside the ROI, the

pedestrian inside the ROI could no longer be detected.

Fig. 4. MT detected real-life fatal errors in LiDAR point cloud data interpretation within the Apollo perception module: three missing

cars and one missing pedestrian.

The LOP software categorizes the detected obstacles into four types: “detected car, pedestrian, cyclist and unknown are

depicted by bounding boxes in green, pink, blue and purple respectively” (http://apollo.auto/platform/perception.html).

Figures 3b to 3e summarize the test results of these four categories, and Figure 3a shows the overall results corresponding

to Table 1.

Each vertical column of Figure 3 has a subsection in blue, corresponding toMR1 violations. These blue subsections are

labeled with the actual numbers of |O| ą |O 1| cases. It is observed that all these numbers are greater than 0, indicating

critical errors in the perception of all four types of obstacles: car, pedestrian, cyclist and unknown. Relatively speaking,

the error rate of the “car” category is the highest, followed by “pedestrian,” “cyclist,” and “unknown.”

Manuscript submitted to ACM

http://apollo.auto/platform/perception.html

Metamorphic Testing of Driverless Cars 9

Figures 4a and 4b show a real-world example revealed by our test, where three cars inside the ROI could not be

detected after 1000 random points were added outside the ROI. Figures 4c and 4d show another example, where a

pedestrian inside the ROI (the Apollo system depicted this pedestrian using the small pink mark as shown in

Figure 4c) could not be detected after only 10 random points were added outside the ROI (as shown in Figure 4d,

the small pink mark is missing). As mentioned in Section 2, we reported the bug to the Baidu Apollo self-driving

car team on March 10, 2018 (https://github.com/ApolloAuto/apollo/issues/3341). On March 19, 2018, the Apollo team

con�rmed the error by acknowledging that “it might happen” and suggesting that “for cases like that, models can be

�ne tuned using data augmentation”—data augmentation is a technique that alleviates the problem of lack of training

data in machine learning by in�ating the training set through transformations of the existing data. Obviously, our

failure-causing metamorphic test cases (those with the random points) could serve the purpose.

7 CONCLUSION

The Uber fatal crash revealed inadequacy of conventional testing approaches for mission-critical autonomous systems.

We have shown that MT alleviates this problem and enables automatic detection of fatal errors in self-driving machinery

that operates on either conventional algorithms or deep learning models. We have introduced an innovative testing

strategy that combines MT with fuzzing, and reported how we used this strategy to detect previously unknown fatal

errors in the real-life LiDAR Obstacle Perception system of the Baidu Apollo self-driving software.

The scope of this study is limited to LiDAR obstacle perception. Apart from LiDAR, an autonomous machinery may

also be equipped with radar. According to the Apollo website (http://data.apollo.auto), “radar could precisely estimate

the velocity of moving obstacles, while LiDAR point cloud could give a better description of object shape and position.”

Furthermore, there can also be cameras, which are particularly useful for the detection of visual features such as the

color of tra�c lights. Our testing technique can be equally applied to radar, camera, and other types of sensor data, as

well as obstacle fusion algorithms involving multiple sensors. In future research, we plan to collaborate with industry

to develop MT-based testing techniques, in combination with existing veri�cation and validation methods, to make

driverless cars safer.

ACKNOWLEDGMENTS

This work was supported in part by a linkage grant of the Australian Research Council (project ID: LP160101691). We

would like to thank Suzhou Insight Cloud Information Technology Co., Ltd. for supporting this research.

REFERENCES

[1] Baidu, Inc. March 2018. Apollo Reference Hardware. http://apollo.auto/platform/hardware.html. (March 2018).

[2] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The oracle problem in software testing: A survey. IEEE

Transactions on Software Engineering 41, 5 (2015), 507–525.

[3] Joshua Brown, Zhi Quan Zhou, and Yang-Wai Chow. 2018. Metamorphic testing of navigation software: A pilot study with Google Maps. In

Proceedings of the 51st Annual Hawaii International Conference on System Sciences (HICSS-51). 5687–5696. Available: http://hdl.handle.net/10125/50602.

[4] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Metamorphic testing: A review of

challenges and opportunities. ACM Computing Surveys 51, 1 (2018), 4:1–4:27.

[5] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Je�rey Voas, and Zhi Quan Zhou. 2016. Metamorphic testing for

cybersecurity. Computer 49, 6 (2016), 48–55.

[6] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. 2003. Fault-based testing without the need of oracles. Information and Software Technology 45, 1 (2003), 1–9.

[7] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated Testing of Graphics Shader Compilers. Proceedings of the

ACM on Programming Languages 1, OOPSLA (2017), 93:1–93:29.

Manuscript submitted to ACM

https://github.com/ApolloAuto/apollo/issues/3341
http://data.apollo.auto
http://apollo.auto/platform/hardware.html
http://hdl.handle.net/10125/50602

10 Zhi Quan Zhou and Liqun Sun

[8] Darryl C. Jarman, Zhi Quan Zhou, and Tsong Yueh Chen. 2017. Metamorphic testing for Adobe data analytics software. In Proceedings of the

IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET ’17), in conjunction with the 39th International Conference on Software Engineering

(ICSE ’17). 21–27. https://doi.org/10.1109/MET.2017.1

[9] Upulee Kanewala, Laura L. Pullum, Sergio Segura, Dave Towey, and Zhi Quan Zhou. 2016. Message from the workshop chairs. In Proceedings of the

IEEE/ACM 1st International Workshop on Metamorphic Testing (MET ’16), in conjunction with the 38th International Conference on Software Engineering

(ICSE ’16). ACM Press.

[10] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’14). 216–226.

[11] Dave Lee. March 23, 2018. Sensor �rm Velodyne ‘ba�ed’ by Uber self-driving death. http://www.bbc.com/news/technology-43523286. (March 23,

2018).

[12] Sam Levin. March 23, 2018. Uber crash shows ‘catastrophic failure’ of self-driving technology, experts say. https://www.theguardian.com/technology/

2018/mar/22/self-driving-car-uber-death-woman-failure-fatal-crash-arizona. (March 23, 2018).

[13] Mikael Lindvall, Dharmalingam Ganesan, Ragnar Árdal, and Robert E. Wiegand. 2015. Metamorphic model-based testing applied on NASA DAT –

an experience report. In Proceedings of the IEEE/ACM 37th International Conference on Software Engineering (ICSE ’15). 129–138.

[14] Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph Schulze. 2017. Metamorphic model-based testing of autonomous systems. In

Proceedings of the IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET ’17), in conjunction with the 39th International Conference on

Software Engineering (ICSE ’17). 35–41.

[15] Alan Ohnsman. March 23, 2018. LiDAR maker Velodyne ‘ba�ed’ by self-driving Uber’s failure to avoid pedestrian. https://www.forbes.com/sites/

alanohnsman/2018/03/23/lidar-maker-velodyne-ba�ed-by-self-driving-ubers-failure-to-avoid-pedestrian. (March 23, 2018).

[16] Matt Posky. March 23, 2018. LIDAR supplier defends hardware, blames Uber for fatal crash. http://www.thetruthaboutcars.com/2018/03/

lidar-supplier-blames-uber/. (March 23, 2018).

[17] John Regehr. June 20, 2014. Finding Compiler Bugs by Removing Dead Code. http://blog.regehr.org/archives/1161. (June 20, 2014).

[18] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A survey on metamorphic testing. IEEE Transactions on Software

Engineering 42, 9 (2016), 805–824.

[19] Sergio Segura and Zhi Quan Zhou. 2017. Metamorphic Testing: Introduction and Applications. https://event.on24.com/wcc/r/1451736/

8B5B5925E82FC9807CF83C84834A6F3D. (2017). ACM SIGSOFT Webinar.

[20] Sergio Segura and Zhi Quan Zhou. 2018. Metamorphic testing 20 years later: A hands-on introduction. In Proceedings of the IEEE/ACM 40th

International Conference on Software Engineering (ICSE ’18). ACM.

[21] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated testing of deep-neural-network-driven autonomous cars. In

Proceedings of the IEEE/ACM 40th International Conference on Software Engineering (ICSE ’18).

[22] Apostol Vassilev and Christopher Celi. 2014. Avoiding cyberspace catastrophes through smarter testing. Computer 47, 10 (October 2014), 102–106.

[23] White Paper. 2007. Velodyne’s HDL-64E: A High De�nition LIDAR Sensor for 3-D Applications. www.velodynelidar.com. (2007).

[24] Zhi Quan Zhou, Dave Towey, Pak-Lok Poon, and T. H. Tse. 2018. Introduction to the Special Issue on Test Oracles. Journal of Systems and Software

136 (2018), 187–187. https://doi.org/10.1016/j.jss.2017.08.031 Editorial.

[25] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. 2016. Metamorphic testing for software quality assessment: A study of search engines. IEEE

Transactions on Software Engineering 42, 3 (2016), 264–284.

Zhi Quan Zhou (zhiquan@uow.edu.au) is an associate professor in software engineering with the School of Computing
and Information Technology, University of Wollongong, Wollongong, NSW, Australia.

Liqun Sun (ls168@uowmail.edu.au) is working toward the MPhil degree in computer science in the University of

Wollongong, Australia. He is a software engineer with Itree, Australia.

Manuscript submitted to ACM

https://doi.org/10.1109/MET.2017.1
http://www.bbc.com/news/technology-43523286
https://www.theguardian.com/technology/2018/mar/22/self-driving-car-uber-death-woman-failure-fatal-crash-arizona
https://www.theguardian.com/technology/2018/mar/22/self-driving-car-uber-death-woman-failure-fatal-crash-arizona
https://www.forbes.com/sites/alanohnsman/2018/03/23/lidar-maker-velodyne-baffled-by-self-driving-ubers-failure-to-avoid-pedestrian
https://www.forbes.com/sites/alanohnsman/2018/03/23/lidar-maker-velodyne-baffled-by-self-driving-ubers-failure-to-avoid-pedestrian
http://www.thetruthaboutcars.com/2018/03/lidar-supplier-blames-uber/
http://www.thetruthaboutcars.com/2018/03/lidar-supplier-blames-uber/
http://blog.regehr.org/archives/1161
https://event.on24.com/wcc/r/1451736/8B5B5925E82FC9807CF83C84834A6F3D
https://event.on24.com/wcc/r/1451736/8B5B5925E82FC9807CF83C84834A6F3D
www.velodynelidar.com
https://doi.org/10.1016/j.jss.2017.08.031

	Metamorphic Testing of Driverless Cars
	Recommended Citation

	Metamorphic Testing of Driverless Cars
	Abstract
	Disciplines
	Publication Details

	障碍物感知出错.提前Uber 致命事故8天预报软件故障
	1 The Fatal Accident
	2 A Question Concerning Every Human Life
	3 The Testing Challenge
	4 Metamorphic Testing (MT)
	5 MT for Testing Autonomous Machinery
	6 The Detection of Real-Life LiDAR Data Interpretation Errors
	6.1 The Software Under Test
	6.2 Our Testing Method: MT in Combination with Fuzzing
	6.3 Test Results

	7 Conclusion
	References

