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Abstract

Background: Metagenomes provide access to the taxonomic composition and functional capabilities of microbial

communities. Although metagenomic analysis methods exist for estimating overall community composition or

metabolic potential, identifying specific taxa that encode specific functions or pathways of interest can be more

challenging. Here we present MetAnnotate, which addresses the common question: “which organisms perform my

function of interest within my metagenome(s) of interest?” MetAnnotate uses profile hidden Markov models to

analyze shotgun metagenomes for genes and pathways of interest, classifies retrieved sequences either through a

phylogenetic placement or best hit approach, and enables comparison of these profiles between metagenomes.

Results: Based on a simulated metagenome dataset, the tool achieves high taxonomic classification accuracy for a

broad range of genes, including both markers of community abundance and specific biological pathways. Lastly,

we demonstrate MetAnnotate by analyzing for cobalamin (vitamin B12) synthesis genes across hundreds of aquatic

metagenomes in a fraction of the time required by the commonly used Basic Local Alignment Search Tool

top hit approach.

Conclusions: MetAnnotate is multi-threaded and installable as a local web application or command-line tool

on Linux systems. Metannotate is a useful framework for general and/or function-specific taxonomic profiling

and comparison of metagenomes.
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Background
Metagenomics has revolutionized the study of microbial

communities, with major applications in numerous fields

including microbial ecology, medicine, and biotech-

nology [1]. Whereas traditional approaches required cul-

turing and microbiological characterization of individual

microbial isolates, metagenomics involves sequencing

and analysis of DNA fragments from the collective com-

munity of microbes present in an environmental sample.

Metagenomic datasets capture both the taxonomic

composition and the potential functional capabilities of

microbial communities, exploring both “who is present?”

and “what are they doing?”

As metagenomic datasets accumulate in size and

sample throughput, bioinformatic analysis of the raw

sequence data remains a considerable challenge. Major

tasks include determining the taxonomic identity of

sequenced fragments, the relative abundance of com-

munity members, the metabolic and physiological capabil-

ities of these individuals, as well as the functions encoded

by a microbial community in its entirety [2].

Two classes of methods exist for estimating micro-

bial community abundance from metagenomic data-

sets: composition-based and identity-based methods.

Composition-based methods, such as TETRA [3] and

PhyloPythia [4], assign taxonomy to reads by comparing

their composition (i.e., k-mer nucleotide profiles) to exist-

ing profiles from reference genomes. Composition-based

methods have the advantage of being potentially applic-

able to sequences that lack homologs in reference data-

bases but can be inaccurate when applied to shorter

(<1,000 base) sequences [5].

Identity-based methods assign taxonomies through

identification of similar sequences in reference databases.

A standard approach is to search reference databases (e.g.,

National Center for Biotechnology Information’s (NCBI’s)

RefSeq or non-redundant database) using Basic Local
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Alignment Search Tool (BLAST) [6], assigning taxonomy

based on the best hit or lowest common ancestor of the

most similar hits [7, 8]. Because the top BLAST hits are

not always the nearest phylogenetic neighbors [9], these

methods generally work well only when close homologs

exist in databases [5, 7, 9]. Advanced methods therefore

incorporate a phylogenetic approach into taxonomic clas-

sification [10–13]. The tools CARMA [10] and TreePhyler

[12] scan metagenomic reads against the PFAM database

[14] and build trees from the combined PFAM and meta-

genomic hits, thereby allowing the hits to be classified

based on their phylogenetic placement relative to known

reference annotations. The recently developed Phylosift

[13] uses pplacer [15] to place identified metagenomic

reads onto reference phylogenies pre-built with FastTree

[16]. Additionally, hybrid methods for metagenomic taxo-

nomic classification, such as PhymmBL [5], FCP [17], and

others [18–20], combine both composition and reference

sequence similarity, benefiting from the advantages of

both approaches.

In addition to taxonomic profiling and estimation of

community abundance from metagenomic data, a sec-

ond class of methods exist for assessing the metabolic

activities and pathways encoded by a microbial com-

munity. Commonly, functional annotation of individual

or assembled reads can be performed by BLAST [6], and

the collective set of functions are mapped onto reference

pathway databases such as KEGG [21] or SEED [22] sub-

systems. More recent databases such as FunGene [23] and

MetaPathways [24] have been developed with a focus on

important “ecofunctional” gene markers and analysis pipe-

lines relevant for environmental metagenomes.

Although existing tools are well equipped to assess the

overall community composition or broad functional con-

tent of metagenomes, identifying the set of taxa that

perform a particular function of interest within a meta-

genome remains a challenge. Moreover, often the bio-

logist aims to analyze a particular gene or function that

does not necessitate a large-scale, and often lengthy,

analysis pipeline. This problem of function-specific taxo-

nomic profiling is challenging because each function re-

quires a custom analysis with a custom set of genes that

may require a degree of user intervention and control.

For a recent example, we assessed the microbial pro-

ducers of cobalamin (vitamin B12) across a wide collec-

tion of 430 metagenomes from aquatic environments by

targeting a customized collection of genes specific to the

cobalamin synthesis pathway [25]. This process involved

carefully selecting a set of genes/proteins representative

of the pathway of interest, selecting a set of hidden

Markov models (HMMs) representing those protein

families, and searching for their homologs in a large

number of metagenomes. We classified the hits taxo-

nomically using methods described above and compared

results among metagenome datasets. Owing to a lack of

existing tools that automate this process and allow user

flexibility and control, such analyses can be tedious and

involve significant manual intervention.

Here we present MetAnnotate, a pipeline for function-

specific taxonomic profiling and comparative analysis

of metagenomes. MetAnnotate automates metagen-

ome taxonomic profiling in the form of a user-

friendly interface that can be installed either as a local,

command line tool or as a web server for large-scale job

handling. Using MetAnnotate, the user can choose any

biological function, pathway, or set of proteins (repre-

sented as a set of HMMs), and these are scanned and

taxonomically classified across selected metagenomes.

MetAnnotate is therefore applicable to estimation of both

function-specific and overall community relative abun-

dance. MetAnnotate provides two separate taxonomic

assignment methods: best hit assignment as well as phylo-

genetic placement onto reference trees that are uploaded

or computed on the fly. The interface also facilitates easy

comparison between metagenomes, thus highlighting

functionally important changes in microbial community

composition. To demonstrate the capabilities of MetAnno-

tate, we have benchmarked it on a commonly used simu-

lated metagenome dataset, as well as used it to reproduce

in a fully automated fashion the results of a previous

analysis profiling aquatic cobalamin producers [25].

The project and open source code are available online at

http://metannotate.uwaterloo.ca and https://bitbucket.org/

doxeylab/metannotate, respectively.

Implementation
MetAnnotate pipeline and features

1. Select query proteins/functions

The HMM search and taxonomic classification pipe-

line (Fig. 1) begins with a user selecting from a set of

available profile HMMs, or uploading HMMs of interest

(Fig. 2, top). Available HMMs can be any PFAM [14] or

TIGRFAM [26] protein families. Alternatively, a user

can specify Genome Properties [26] or Gene Ontology

(GO) identifiers [27] representing entire pathways or

broader biological functions of interest, and the HMMs

for different protein families attributed to that function

are then retrieved automatically as queries. Functions

and protein families are also searchable by keyword.

2. Choose metagenomes for homology search

The user then chooses metagenomes of interest. These

can be in the form of unassembled metagenomic DNA

sequences, protein sequences in a FASTA file, or a col-

lection of pre-computed metaproteomes within a user-
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specified directory. If a nucleotide FASTA file is

uploaded, it can be translated (6X) into open reading

frames. Next, each HMM is searched via hmmsearch

[28] against a reference database (NCBI RefSeq by de-

fault) to identify reference homologs, and against all

user-selected metagenomes to identify metagenomic

homologs. Hits are collected if E-values fall below a

user-specified threshold (default E = 1e − 6).

3. Taxonomic classification

The metagenomic hits with detected similarity to the

input HMM profile can then be taxonomically assigned

using one or both of two approaches. In the default

approach, the usearch [29] rapid sequence clustering

algorithm is used to identify the best hit for each meta-

genomic homolog among the set of RefSeq homologs.

Alternatively, phylogenetic classification can be done

using an approach similar to that used by PhyloSift [13].

With this alternative approach, reference and metage-

nomic homologs identified by hmmsearch are re-aligned

using hmmalign, and alignment positions corresponding

to HMM match states are used to build a phylogenetic

tree for reference homologs using FastTreeMP with de-

fault parameters. Trees are built on the fly but can be

saved and uploaded as input for later runs. The identi-

fied metagenomic homologs are then placed onto the

reference tree using pplacer, which is especially import-

ant because the aligned regions may differ. MetAnnotate

reports the most common taxa at all taxonomic levels

(e.g., genus, species) for the subtree containing the

placed metagenomic sequence. Both pplacer (tree-based)

and usearch (similarity search) approaches can be com-

pared in the final result, giving the user flexibility re-

garding choice of taxonomic classification method.

4. Results and visualization

Once analyses have completed, the user may wish to

obtain an overview of predicted taxonomic profiles, with

the possibility of subdividing the results by metagenomic

dataset and by query HMM. MetAnnotate provides

three types of reports for this purpose (Fig. 2):

(I) Online (HTML) and offline (tab-separated) tables

of detailed annotations for each metagenomic read

(II) Interactive Krona charts [30] summarizing

taxonomic composition

(III) Heatmap tables of taxonomic abundance

(I) HTML table: this is the lowest level perspective,

most appropriate for inspection of individual reads. The

user can select the columns (i.e., annotations) they wish

to view and sort by any feature. Individual reads can be

viewed and their placed position within the phylogenetic

tree can be displayed along with the reference hits used

in classification of that read. Because different reads may

be best assigned at different taxonomic levels, Met-

Annotate can also estimate this level using the pplacer

classification method by determining the lowest com-

mon ancestor in the read’s subtree that is present above

a specified percentage (default is 80 %).

(II) Krona charts: these are most appropriate for a

broad overview of the taxonomic composition of an in-

dividual metagenome dataset. These data displays (Fig. 2)

allow for an interactive overview of the taxonomic

profile as a “zoomable” pie chart. If multiple HMMs or

Fig. 1 Backend MetAnnotate pipeline for Hidden Markov Model

(HMM) search and taxonomic classification. GO Gene Ontology,

ORF open reading frame
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datasets are used, Krona charts for each can be accessed

quickly through a dropdown list for comparison.

(III) Heatmap tables: these are most appropriate for

comparison of results between HMMs and datasets. The

heatmap table (Fig. 2) shows the proportion of each taxa

in each dataset, further subdivided by HMM. This facili-

tates a side-by-side comparison of taxonomic profiles for

different metagenomes or HMM-specific functions. The

user can choose the level of taxonomic analysis (e.g.,

class, genus, species) they wish to perform. These

heatmaps are therefore useful for several applications:

First, they may highlight differences in taxonomic com-

position between metagenomes. Second, they may reveal

how different genes or functions are represented by dif-

ferent sets of taxa. Third, they may reveal how the taxo-

nomic profile for a particular function may differ from

overall community abundance.

Predicted annotations (tab-separated text files), trees

(newick files), and multiple sequence alignments (aligned

FASTA files) can be downloaded for further offline analysis.

Results and Discussion
Benchmarking and accuracy

To measure the accuracy of taxonomic predictions, we

used MetAnnotate to analyze a commonly used bench-

marking dataset, the Simulated High Complexity Meta-

genome (simHC; [31]). For query proteins, we selected a

set of five taxonomic markers [32], as well as five markers

of specific metabolic pathways chosen from the FunGene

database [23]. We then measured the precision (i.e., frac-

tion of reads annotated correctly) at multiple taxonomic

levels (Table 1, Fig. 3). Unclassified reads were counted as

incorrect predictions, but were rare occurrences (<5 %)

and thus had a negligible effect on accuracy estimates.

Fig. 2 Screenshots of the MetAnnotate web interface
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For taxonomic markers, MetAnnotate assigned 61.8,

87.4, and 94.5 % of reads correctly at the species, genus,

and phylum levels, respectively, using the usearch (best

hit) method (Table 1, Fig. 3a). Using these markers,

MetAnnotate also reproduced the known taxonomic

composition of the simHC dataset with high accuracy

(r = 0.82, Spearman correlation), which was greater

than the accuracy obtained using four other methods

[17, 20, 33], including the widely used MG-RAST [33]

server (r = 0.75, Spearman correlation) (Additional file 1:

Figure S1).

For markers of specific biological functions, which are

likely to be more diverse and may exhibit uneven taxo-

nomic distributions, MetAnnotate correctly assigned

47.4, 78.7, and 83.3 % of reads at the species, genus, and

phylum level (Table 1, Fig. 3b). As expected, taxonomic

classification accuracy also increased with read length

(Fig. 3c) and sequence similarity to the best database hit

(Fig. 3d).

Best hit versus phylogenetic classification

Because metagenomes containing a high proportion of

novel sequences may be difficult to annotate using a best

hit approach, MetAnnotate also includes an alternate

phylogenetic classification method. Although slower and

less accurate on short reads (Table 2), this method ex-

hibits comparable accuracy to the best hit approach

overall (Table 1), and is more accurate for novel se-

quences with lower sequence identity to the database

(Table 2). Another major advantage is its ability to clas-

sify virtually all sequences (high sensitivity), whereas the

usearch method will result in unclassified sequences

when they are too dissimilar from the database (i.e.,

below 40–50 % identity). This can be a sizeable portion

of a metagenome depending on its degree of taxonomic

novelty [34].

Table 1 Taxonomic classification accuracy [proportion of

correctly assigned sequences (%)] for MetAnnotate’s best hit

and phylogenetic classification approach

Annotation method Species Genus Phylum

Taxonomic markers

Best hit 61.8 87.4 94.5

Phylogenetic 60.0 87.6 97.3

Function markers

Best hit 47.4 78.7 83.3

Phylogenetic 46.2 80.8 90.1

Fig. 3 Taxonomic classification accuracy of MetAnnotate based on a simulated metagenome dataset and the best hit classification method. The

proportion of correct taxonomic annotations assigned to detected homologs is shown for five different taxonomic markers (a) and five markers

of biological functions (b), as well as different read lengths (c) and metagenomic-to-reference sequence identities (d). Results for (c) and (d) are

based on all taxonomic marker homologs identified in (a)
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Example application: fast taxonomic profiling of

cobalamin producers in aquatic metagenomes

To demonstrate the capabilities of MetAnnotate, we rep-

licated an earlier study assessing the taxonomic compos-

ition of aquatic cobalamin (vitamin B12) producers [25].

In our earlier study, 431 metagenome samples from a

diverse range of aquatic habitats were scanned for 11

proteins in the cobalamin synthesis pathway. These hits

were then annotated taxonomically by subsequent BLAST

searches against the RefSeq database, a procedure that

took several days of computing time on an eight-core

Linux workstation.

Using an instance of MetAnnotate on the same re-

source, we reproduced the previously published analysis

in under an hour (Fig. 2, bottom right). In addition,

MetAnnotate reproduced previous results with a high

degree of consistency. For instance, the four phyla

highlighted previously as dominant cobalamin producers

[25] were present in almost identical proportions in the

current analysis: Proteobacteria (55 % previous, 55 %

current), Thaumarchaeota (16 % previous, 15 % current),

Cyanobacteria (14 % previous, 13 % current), and

Bacteroidetes/Chlorobi (5 % previous, 5 % current).

Such substantial speed improvements stem from sev-

eral heuristics used by MetAnnotate. First, all reference

homologs of an HMM are identified initially in a single

step, which avoids unnecessary re-computation. Second,

pplacer and usearch annotation steps are significantly

faster than BLASTp searches against the full database.

Third, only reference HMM hits are used for database

searching, which reduces database size.

Comparison between environments and between HMMs

MetAnnotate predicted the taxonomic composition of co-

balamin producers across eight metagenomes, and did so

using 11 different genes within the cobalamin synthesis

pathway (Fig. 4). Consistent with our previous results [25],

this analysis revealed that the taxonomic composition of

cobalamin producers was significantly different between

sampled environments. For example, cobalamin gene

representation was dominated by the family Nitroso-

pumilaceae (phylum Thaumarchaeota) in deep or polar

environments, such as the Guaymas Basin Deep Sea

Metagenome and the Microbial Initiative in Low Oxygen

areas of Conception and Oregon (MILOCO) metagen-

ome. In other sampled marine habitats, Prochlorococca-

ceae (phylum Cyanobacteria), Rhodobacteraceae (phylum

Proteobacteria), or other taxa were the dominant sources

of cobalamin genes.

In addition, this repeated MetAnnotate analysis demon-

strated that the predicted taxonomic profiles were highly

consistent between the 11 different cobalamin synthesis

marker genes. This consistency provided independent

Table 2 The effect of length and similarity to database on

taxonomic classification accuracy (genus-level) using best hit

and phylogenetic classification. Numbers indicate proportion of

correctly assigned sequences (%)

Best hit Phylogenetic

Length (nuceloteides)

100 72.3 58.1

300 81.3 81.2

500 82.7 81.3

Sequence Identity to reference (%)

40–60 77.6 82.8

60–80 85.2 83.4

80–100 92.4 89.6

Fig. 4 Example application: taxonomic profiling of cobalamin (vitamin B12) producers in aquatic metagenomes using MetAnnotate. Taxonomic

profiles (family level) based on 11 cobalamin synthesis proteins are shown for eight metagenomes. See [25] for additional information
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verification of the predicted taxonomic profiles; the 11

separate profiles are averaged by MetAnnotate to provide

a more accurate statistic of overall abundance. Offline,

these data can be examined further to distinguish taxa

contributing partial versus complete pathways.

Novelty of MetAnnotate

Although there are numerous existing methods designed

for metagenome community profiling [3–5, 10, 12, 13, 17–

20, 33, 35], the novelty of MetAnnotate lies in its ability to

perform custom analyses of taxonomic composition using

any user-defined set of proteins. This makes it capable of

both searching and taxonomically profiling specific bio-

logical functions across a large number of metagenomes.

MetAnnotate has a range of novel features that distinguish

it from other metagenome analysis tools: automated func-

tion selection (PFAM HMMs, GO terms and pathways),

easy integration of custom HMMs, on-the-fly search and

taxonomic classification, a built-in web server and queue

capabilities for larger-scale job handling, and a web inter-

face for comparative analysis and results visualization. A

useful methodological feature is the ability to compare re-

sults from best hit and phylogenetic classification, each of

which have their advantages. Overall, we anticipate that

MetAnnotate will be useful in the functional and com-

parative analyses of shotgun metagenomes.

Availability and Requirements
MetAnnotate is designed to run on Linux systems and is

available at http://metannotate.uwaterloo.ca. Source code is

available at https://bitbucket.org/doxeylab/metannotate, and

an archived version is available at Zenodo [36]. Software is

distributed under a MIT license. All computations reported

in this manuscript were performed on a Lenovo Thinksta-

tion E31 machine (Intel Xeon e3-1275v2 3.5 Ghz processor,

32Gb EC RAM) running Ubuntu Linux 14.04.1.

Additional file

Additional file 1: Figure S1. MetAnnotate estimates microbial

community abundance with high accuracy, demonstrated by estimated

class-level taxonomic composition of the Simulated High Complexity

Metagenome (simHC) dataset based on the taxonomic markers in

Fig. 3a. The community abundance prediction made by MG-RAST

(default parameters, LCA option) and three other methods are included

for comparison. The Spearman correlations between known and estimated

taxonomic abundance are: r= 0.82 (MetAnnotate); r= 0.75 (MG-RAST); r= 0.70

(MiniKraken); r= 0.65 (FCP NB-BL); r = 0.68 (FCP Epsilon-NB). (PDF 44 kb)

Abbreviations

NCBI: National Center for Biotechnology Information; BLAST: Basic Local

Alignment Search Tool; HMM: Hidden Markov Model; simHC: Simulated High

Complexity Metagenome; GO: Gene Ontology.
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