

Open access • Posted Content • DOI:10.1101/2021.03.10.434754

Metapopulation Structure of Diatom-associated Marine Bacteria — Source link 🗹

Liping Qu, Liping Qu, Xiaoyuan Feng, Yuerong Chen ...+5 more authors Institutions: The Chinese University of Hong Kong, Shantou University Published on: 10 Mar 2021 - bioRxiv (Cold Spring Harbor Laboratory) Topics: Population, Roseobacter and Metapopulation

Related papers:

- Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations
- Ecosystem-specific selection pressures revealed through comparative population genomics.
- Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites.
- Maintenance of Sympatric and Allopatric Populations in Free-Living Terrestrial Bacteria.
- Sympatric and allopatric differentiation delineates population structure in free-living terrestrial bacteria

1	Metapopulation Structure of Diatom-associated Marine Bacteria
2	
3	Liping Qu ^{1,2^} , Xiaoyuan Feng ^{3,2^} , Yuerong Chen ¹ , Lingyu Li ¹ , Xiaojun Wang ^{3,2} , Zhong Hu ^{1,4} ,
4	Hui Wang ^{1,4*} , Haiwei Luo ^{3,2*}
5 6 7 8 9 10 11 12	¹ Biology Department, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, and Institute of Marine Sciences, Shantou University, Shantou, China ² Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China ³ Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ⁴ Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
13 14 15 16	[^] These authors contributed equally to this study.
17	*Corresponding author:
18	Haiwei Luo
19	School of Life Sciences, The Chinese University of Hong Kong
20	Shatin, Hong Kong SAR
21	Phone: (+852) 39436121
22 23	E-mail: hluo2006@gmail.com
24	Hui Wang
25	Biology Department, College of Science, Shantou University
26	Shantou, China
27	Phone: (+86) 754 86502721
28	E-mail: wanghui@stu.edu.cn
29	
30 31	Running Title:
32	Key words: Roseobacter, Sulfitobacter, diatom, phycosphere, population structure

33 Abstract

34 Marine bacteria-phytoplankton interaction ultimately shapes ecosystem productivity. The 35 biochemical mechanisms underlying their interactions become increasingly known, yet how 36 these ubiquitous interactions drive bacterial evolution has not been illustrated. Here, we 37 sequenced genomes of 294 bacterial isolates associated with 19 coexisting diatom cells. These 38 bacteria constitute eight genetically monomorphic populations of the globally abundant 39 Roseobacter group. Six of these populations are members of *Sulfitobacter*, arguably the most 40 prevalent bacteria associated with marine diatoms. A key finding is that populations varying at 41 the intra-specific level have been differentiated and each are either associated with a single 42 diatom host or with multiple hosts not overlapping with those of other populations. These closely 43 related populations further show functional differentiation; they differ in motility phenotype and 44 they harbor distinct types of secretion systems with implication for mediating organismal 45 interactions. This interesting host-dependent population structure is even evident for demes 46 within a genetically monomorphic population but each associated with a distinct diatom cell, as 47 shown by a greater similarity in genome content between isolates from the same host compared 48 to those from different hosts. Importantly, the intra- and inter-population differentiation pattern 49 remains when the analyses are restricted to isolates from intra-specific diatom hosts, ruling out 50 distinct selective pressures and instead suggesting coexisting microalgal cells as physical barriers 51 of bacterial gene flow. Taken together, microalgae-associated bacteria display a unique 52 microscale metapopulation structure, which consists of numerous small populations whose 53 evolution is driven by random genetic drift.

54

55 Since marine phytoplankton contribute one-half of global primary production (1) and 56 since heterotrophic bacterioplankton process 40-50% of the carbon fixed by marine 57 phytoplankton (2, 3), bacteria-phytoplankton interaction is an important process that ultimately 58 drives carbon cycling and regulates ecosystem productivity. The physical interface mediating 59 these ubiquitous interactions is a microzone of a few cell diameters immediately surrounding an 60 individual phytoplankton cell, which is termed as 'phycosphere' (4). In the phycosphere of 61 eukaryotic marine phytoplankton lineages (e.g., diatoms, dinoflagellates, coccolithophores, and 62 green pico-algae), bacterial communities are consistently dominated by a handful of taxa 63 including *Rhodobacteraceae* (mostly the Roseobacter group), *Alteromonadaceae*, and 64 *Flavobacteriaceae* (4, 5), and the bacterial community assembly at the phycosphere of a given 65 phytoplankton species is reproducible (6). These recurrent patterns in part result from the innate 66 ability of phytoplankton to modulate their bacteria consortia by secreting secondary metabolites 67 such as rosmarinic acid and azelaic acid released by a diatom species, which promote the 68 attachment and growth of certain roseobacters but suppress opportunistic bacteria (7). Another 69 important mechanism is the resource-based niche partitioning among these major bacterial 70 associates at nutrient-enhanced phycosphere (8, 9). For example, diatoms may use their abundant 71 metabolites such as 2,3-dihydroxypropane-1-sulfonate (DHPS) for targeted feeding of beneficial 72 symbionts among which roseobacters represent a dominant group (10). 73 Recent studies have revealed a greater diversity of the mechanisms underlying the

symbiosis between Roseobacter lineages and phytoplankton species than previously appreciated.
Some roseobacters such as *Sulfitobacter* spp., *Ruegeria* spp. and *Dinoroseobacter* spp. establish
mutualistic interactions with diatoms and microscopic green algae by providing growth factors
such as vitamins and indole-3-acetic acid (IAA) to phytoplankton hosts in exchange for labile

78 organic matter (10-12), whereas others such as *Sulfitobacter* spp. are virulent to coccolithophores 79 by releasing algicides (13). In another type of interaction, some roseobacters including 80 *Phaeobacter* spp. and *Dinoroseobacter* spp. each act initially as a mutualist and later as a 81 parasite of coccolithophores and dinoflagellates, respectively (14, 15). An important implication 82 from these studies is that closely related roseobacters (e.g., members of *Sulfitobacter*) may 83 employ different mechanisms to interact with phytoplankton. This high diversity of roseobacter-84 phytoplankton interaction therefore suggests that the phycosphere may act as an effective barrier 85 of gene flow among symbiotic roseobacters associated with different phytoplankton cells, 86 leading to independent evolution of even closely related roseobacter populations in the 87 seemingly well mixed seawater.

88 To test this hypothesis, we sought to determine the population structure of roseobacters 89 colonizing the phycosphere of coexisting microalgal cells. A few environmental factors 90 including nutrient availability (16), interactions with phages (17) and phytoplankton or particles 91 (18) are known to drive roseobacter population differentiation. To single out diatom phycosphere 92 from other confounding factors that may drive roseobacter evolution, populations associated with 93 diatoms isolated from a single seawater sample were analyzed. We collected 1 L of seawater 94 from the Pearl River Estuary located at the northern boundary of the South China Sea, isolated 95 45 diatom cells varying at the level of phylogenetic relatedness (Fig. 1A, Table S1), cultivated 96 over 850 roseobacters associated with 19 of these diatoms (Fig. 1A, Table S2), and sequenced 97 294 genomes of these roseobacters (Table S3), among which six genomes are complete and 98 closed (Table S4) by additional sequencing with Nanopore (Supplemental Text 1.1-1.3). These 99 newly sequenced roseobacters comprise eight clades (Fig. 1B; see methods in Supplemental Text 100 1.4), among which six are related to three species of Sulfitobacter, a roseobacter genus most

101	commonly found on diatoms (19). These include clade-2a and clade-2b related to Sulfitobacter
102	pseudonitzschiae, clade-2c related to S. geojensis, clade-2d, clade-2e1 and clade-2e2 related to S.
103	mediterraneus (Fig. 1B). The remaining clade-1 and clade-3 are related to Marivita
104	cryptomonadis and Ponticoccus sp. LZ-14, respectively, which are distantly related to
105	Sulfitobacter. Members within each clade share identical 16S rRNA genes, display whole-
106	genome average nucleotide identity (ANI) over 99.99% (Fig. S1), and vary up to 45 non-
107	singleton single nucleotide polymorphisms (SNPs) in which the rare variant occurs in at least
108	two genomes (Table S5). Despite this genetic monomorphism, there is ample evidence that the
109	within-clade members are predominantly from the environment rather than a result of clonal
110	replications during the laboratory cultivation of the diatom cells, a required process prior to
111	roseobacter isolation (see Supplemental Text 2, Fig. S2 and Table S5).
112	A key finding is that closely related roseobacter populations associated with different
113	diatom cells are often genetically differentiated (see methods in Supplemental Text 1.6). This is
114	clearly supported by populations diverged at different phylogenetic depths. The two clades
115	(clade-2a and clade-2b) related to S. pseudonitzschiae share 94.16% ANI (Fig. S1), which is at
116	the boundary (95% ANI) delineating a distinct species (20). The SNP density within each clade
117	is extremely low across the whole genome but becomes very high between the clades (Fig. S3),
118	indicating that these two clades each have fixed distinct alleles and are thus genetically isolated.
119	The clade-2a is composed solely of members isolated from Skeletonema menzelii 26 (abbreviated
120	as 'SM26'), whereas the clade-2b comprise members from five diatom cells of the class
121	Coscinodiscophyceae affiliated with three species including Skeletonema costatum (SC1 &
122	SC33), Mediolabrus comicus (MC36 & MC52), and Thalassiosira tenera (TT37), and one
123	diatom cell of a distantly related class Mediophyceae affiliated with the species Trieres chinensis

124 (TC12) (Fig. 1B, Table S2). Among the three clades related to S. mediterraneus, clade-2e1 and 125 clade-2e2 share 97.78% ANI, suggesting that they have not yet separated into two distinct 126 species. However, a dramatic increase in SNP density of between-clade comparisons compared 127 to the within-clade comparisons across the whole genome (Fig. S4A,B,C) indicates that these 128 two clades are under ongoing speciation. The clade-2d is more divergent, showing 89.34% ANI 129 to clade-2e1 and 89.51% ANI to clade-2e2, though it shares with the latter two clades very high 130 similarities (99.86% and 99.93%, respectively) at the 16S rRNA gene sequence. The SNP 131 density derived from the comparison between clade-2e1 and clade-2e2 is much lower than when 132 each is compared to clade-2d (Fig. S4C,D,E), suggesting that the genomes are differentiated to a 133 greater extent when the phylogenetic depth becomes larger for these overall very closely related 134 clades. Importantly, these clades each have a distinct host range. Members of clade-2e1 are 135 exclusively associated with a single diatom host (SC5), whereas members of clade-2e2 are from 136 three hosts of the same diatom species (SC2, SC4 and SC7) and members of clade-2d are from 137 hosts of two different families (SC1 and MC36) (Fig. 1B, Table S2). Population differentiation 138 of the sampled clades is further supported by genome rearrangement in both chromosome and 139 plasmids, as shown by the more conserved gene order of within-clade members (Fig. S2) 140 compared to that of between-clade members (Fig. S5) for clade-2a and clade-2b. Multiple 141 genome rearrangement events were also observed between clade-2d and clade-2e2 (Fig. S6), though within-clade comparisons cannot be made because no more closed genomes are available 142 143 in both clades. 144 Diatom-dependent differentiation is also evident from the more closely related

145 roseobacter demes associated with different hosts but sharing membership of the same clade.

146 Because of the genetic monomorphism at the core genomes (Table S5), the within-clade

147	members do not show a reliable phylogenetic structure. We therefore turned to explore the
148	accessory genes which are shared by a subset of the genomes under comparison. A simple
149	clustering based on the presence and absence pattern of the accessory genes identified clusters
150	corresponding to distinct diatom hosts. In clade-2b, for example, members associated with SC33
151	largely constitute an independent cluster separated from members associated with other hosts
152	(Fig. 2A). Likewise, in clade-2c, members from Minutocellus polymorphus 20 (MP20) are
153	overall well separated from those associated with Thalassiosira rotula 60 (TR60) (Fig. 2B); in
154	clade-2e2, most members associated with SC2 are separated from those with other hosts (Fig.
155	2C); and in clade-3, members from SC2 and those from SC6 are generally clustered into two
156	separate groups (Fig. 2D). For the remaining clades (clade-2d & clade-1) with members
157	associated with multiple hosts, host-dependent clustering is not obvious (Fig. S7).
158	We further identified important evidence for population differentiation at the functional
159	level. The secretion systems are well known to mediate bacteria-bacteria and bacteria-host
160	interactions. Interestingly, the presence and absence pattern of three secretion systems
161	differentiates the clade-2e1, clade-2e2 and clade-2d related to S. mediterraneus (Table S6).
162	Specifically, the type VI secretion system (T6SS) transports effector proteins into both
163	prokaryotic and eukaryotic cells in a contact-dependent manner (21, 22). This system was
164	reported in only a few roseobacter lineages (23, 24). We showed an exclusive presence of a
165	T6SS gene cluster on the chromosome of clade-2d members. Another uncommon secretion
166	system in roseobacters, thus far only reported in the roseobacter species Marinovum algicola
167	(25), is the type II secretion system (T2SS), which promotes the release of folded proteins,
168	mainly extracellular enzymes such as proteases, lipases, phosphatases, and polysaccharide
169	hydrolases, to the extracellular milieu or displayed on the cell surface (26) . We found an

170 exclusive occurrence of a T2SS cluster on a plasmid of the clade-2d members. In terms of the 171 type IV secretion system (T4SS), the *virB/D4* type secretes effector proteins and plasmid DNA 172 to target both bacteria and hosts (27-29), whereas the *trb* type transports plasmid DNA between 173 bacteria (29). While the virB/D4 is commonly found among roseobacters (30), the trb is rare in 174 these bacteria. Consistent with this pattern, a *virB/D4* gene cluster was found in all three clades, 175 but a trb gene cluster was exclusively identified on the chromosome of clade-2e2 members. In 176 the case of the S. pseudonitzschiae related clades, both clade-2a and clade-2b carry the virB/D4-177 based T4SS, but they differ in copy numbers. The *virB/D4* copy number difference was similarly 178 found between the three S. mediterraneus related clades, but a unique observation was that the 179 clade-2d members possess an additional copy on their chromosomes instead of the plasmids 180 where this type of secretion system usually locates. No other secretion systems were found in 181 clade-2a and clade-2b. Gene clusters encoding all secretion systems locate within the genomic 182 islands except the T6SS of clade-2d (Table S6), suggesting that roseobacter-diatom and/or 183 roseobacter-bacteria interactions are highly dynamic. 184 Since these secretion systems may mediate either pathogenic, or commensal, or 185 mutualistic relationships with hosts and/or other bacteria (21, 26, 28, 29, 31, 32), their 186 differential presence among the clades suggests that distinct clades may exert different and even 187 opposite physiological effects on the diatom hosts. This motivated us to set up experimental 188 assays (Supplemental Text 1.7) to compare the effects of co-culture of diatom and roseobacter, 189 the latter represented by each of the S. mediterraneus and S. pseudonitzschiae clades, on the 190 growth of the diatom. Among the 11 tested roseobacter isolates, eight significantly promoted the 191 growth of the diatom, whereas the remaining three did not significantly change the growth rate of 192 the diatom (Fig. S8). We did not observe consistent differences between closely related clades

193 regarding their effects on the diatom growth (Fig. S8). While this assay was motivated by the 194 observation of clade-specific secretion systems, there is no direct link between the algal growth 195 change and the differential presence of the secretion systems in the bacterial symbionts. 196 Another important metabolic trait relevant to roseobacter-phytoplankton interaction is the 197 bacterial motility (33), which is differentially present among these related roseobacter clades. 198 Three phylogenetically distinct flagellar gene clusters (FGCs) designated as *fla1*, *fla2* and *fla3* 199 (Fig. 3A) have been identified in the Roseobacter group, and carrying any of them may enable 200 motility (34, 35). Among these, *fla2* is present in a plasmid of the S. pseudonitzschiae related 201 clade-2e1, clade-2e2 and clade 2d, whereas *fla1* was exclusively found on the chromosome of 202 clade-2e2 (Fig. 3A, Table S6; see methods in Supplemental Text 1.8). Despite the presence of 203 the flagellum-encoding gene clusters, the flagella were not detected by transmission electron 204 microscopy (Fig. 3B) and the motility phenotype was not observed under the experimental 205 condition (Fig. 3B; Supplemental Text 1.9). The lack of flagella and motility in these related 206 clades is likely due to inappropriate physicochemical conditions set in the laboratory experiment, 207 as temperature (36), pH (37), salinity (38) and metal ions (39) were demonstrated to induce the 208 expression of the FGC genes in other bacteria. In terms of the S. pseudonitzschiae related clade-209 2a and clade-2b, they did not possess any type of FGC (Table S6), but both instead carry 210 homologs of two candidate gene clusters (i.e., type-IVb tight adherence pilus gene cluster; Table 211 S6) recently hypothesized to be responsible for dendritic motility (34). We showed that the 212 clade-2b members possess an additional copy located within a genomic island compared to 213 clade-2a members, consistent with the greater swimming and dendritic motilities observed in the 214 former (Fig. 3C).

215 Previous studies demonstrated that selection for niche adaptation drives sympatric 216 population differentiation in free-living prokaryotic lineages (18, 40-42). In the present study, we 217 provided evidence that closely related but genetically discrete populations of several sympatric 218 Roseobacter lineages each have a distinct diatom host range. The pattern of Sulfitobacter 219 mediterraneus related populations (clade-2e1, clade-2e2, clade-2d) is of particular interest. This 220 is because populations of this species varying at different stages of differentiation, including 221 those at the very beginning (i.e., within-clade demes differentiated only by accessory gene 222 content), at the middle (i.e., closely related clade under ongoing speciation), and at the 223 completion of speciation, were captured and each found to be associated with different hosts of 224 the same diatom species *Skeletonema costatum*. Since members of the same microalgal species 225 likely release a similar set of organic compounds to the phycosphere and impose other 226 physicochemical parameters (e.g., reactive oxygen species) at similar levels, the observed 227 differentiation of the symbiotic bacterial populations is less likely driven by ecological selection 228 imposed by differential exposure to different microalgal exudates. Instead, symbiotic bacteria 229 may be trapped in the phycosphere (43), leading to a reduced opportunity of recombination 230 between bacteria associated with different diatom cells compared to those within the same 231 phycosphere. This is a new mechanism of bacterial population differentiation in the pelagic 232 ocean and represents one of the few examples of population differentiation at the sympatric scale 233 due to physical barriers of gene flow. To put it in context, previous cases of bacterial population 234 differentiation in a sympatric pelagic environment were linked to ecological barriers of gene 235 flow, such as differentiated populations colonizing organic particles of different sizes (41) or 236 those inhabiting the bulk seawater versus phycosphere/particles (18).

237 Our observation of subdivision of highly closely related populations each showing 238 genetic monomorphism has important implications for understanding the population structure of 239 the diatom-associated symbiotic roseobacters. Similar population structure was previously 240 demonstrated in obligately host-dependent bacteria such as endosymbionts subjected to repeated 241 bottlenecks during transmissions to new hosts in small numbers of bacterial cells (44), and also 242 proposed for generalist marine bacteria such as *Vibrio* spp. which experience short bursts as a 243 result of intensive use of ephemeral resources like organic particles followed by dispersal and 244 colonization of new particles with low numbers of cells (45). These two known mechanisms lead 245 to the formation of "metapopulation structure", in which the population is divided into 246 subpopulations each colonizing a transient resource such as hosts and particles (45). Our results 247 suggest that the population structure of the diatom-associated roseobacters aligns well with the 248 metapopulation structure. Hence, phycosphere colonization represents a new mechanism leading 249 to bacterial metapopulation structure in the pelagic ocean. The exact processes leading to the 250 formation of metapopulation structure of these diatom-associated roseobacters remains unknown, 251 however. It could be a result of short burst owing to intensive use of the organic substrates 252 enriched in the phycosphere. It is also possible that bacteria-diatom associations have been 253 maintained at the evolutionary timescale, such that diatom host-dependent population 254 differentiation is evident even at the completion of speciation.

Formation of metapopulation structure in a bacterial species leads to a reduced effective population size (N_e) of the species (45), a key parameter in understanding the population genetic mechanism underpinning biological evolution and defined as the size of an ideal population carrying the same amount of the neutral genetic diversity as is observed in the real population (45, 46). Because N_e is the inverse of the power of random genetic drift (45), the reduced N_e of a 260 bacterial species owing to the formation of metapopulation structure suggests an increased power 261 of genetic drift in driving the evolution of diatom-association roseobacters. As a consequence, 262 the diatom-associated roseobacter populations are predicted to more readily accept the 263 horizontally transferred genetic elements, which are often mildly deleterious owing to the selfish 264 propagation of most mobile genetic elements at the expense of cellular fitness (47) but may also 265 carry functional traits such as antimicrobial genes that increase competitive advantages of the 266 bacteria at the phycosphere. Given that diatoms and roseobacters are among the most abundant 267 phytoplankton and bacterial groups, respectively, in today's ocean (19), our findings have 268 important implications for biogeochemical cycles mediated by bacteria-phytoplankton 269 interactions.

It is important to clarify that while the concept of phycosphere has been adopted in this and many other studies, there has been no direct experimental evidence for its occurrence because of technological challenges in separating this microenvironment from the bulk seawater (4). Prior studies established microalgal phycosphere as a hotspot of carbon and nutrient cycling in the pelagic ocean. Here, we revealed that phycosphere of diatom cells may act as an effective physical barrier of gene flow between nearly identical symbiotic roseobacters, thereby conferring a new role of phycosphere in driving the evolution of pelagic marine bacteria.

277

278

279 **References**

- C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components. *Science* 281, 237-240 (1998).
 F. Azam, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, F. Thingstad, The
- 283 ecological role of water-column microbes in the sea. *Marine Ecology Progress Series* 10, 257-263 (1983).
- J. J. Cole, S. Findlay, M. L. Pace, Bacterial production in fresh and saltwater ecosystems:
 A cross-system overview. *Marine Ecology Progress Series* 43, 1-10 (1988).
- 4. J. R. Seymour, S. A. Amin, J.-B. Raina, R. Stocker, Zooming in on the phycosphere: the
 ecological interface for phytoplankton–bacteria relationships. *Nature Microbiology* 2,
 17065 (2017).
- A. Buchan, G. R. LeCleir, C. A. Gulvik, J. M. Gonzalez, Master recyclers: features and
 functions of bacteria associated with phytoplankton blooms. *Nature Reviews Microbiology* 12, 686–698 (2014).
- J. Mönnich, J. Tebben, J. Bergemann, R. Case, S. Wohlrab, T. Harder, Niche-based
 assembly of bacterial consortia on the diatom *Thalassiosira rotula* is stable and
 reproducible. *The ISME Journal* 14, 1614-1625 (2020).
- A. A. Shibl, A. Isaac, M. A. Ochsenkühn, A. Cárdenas, C. Fei, G. Behringer, M. Arnoux,
 N. Drou, M. P. Santos, K. C. Gunsalus, C. R. Voolstra, S. A. Amin, Diatom modulation
 of select bacteria through use of two unique secondary metabolites. *Proceedings of the National Academy of Sciences* 117, 27445-27455 (2020).
- 300 8. H. Fu, M. Uchimiya, J. Gore, M. Moran, Ecological drivers of bacterial community
 301 assembly in synthetic phycospheres. *Proceedings of the National Academy of Sciences*302 117, 201917265 (2020).
- F. X. Ferrer-González, B. Widner, N. R. Holderman, J. Glushka, A. S. Edison, E. B.
 Kujawinski, M. A. Moran, Resource partitioning of phytoplankton metabolites that
 support bacterial heterotrophy. *The ISME Journal* 15, 762-773 (2021).
- B. P. Durham, S. Sharma, H. Luo, C. B. Smith, S. A. Amin, S. J. Bender, S. P. Dearth, B.
 A. S. Van Mooy, S. R. Campagna, E. B. Kujawinski, E. V. Armbrust, M. A. Moran,
 Cryptic carbon and sulfur cycling between surface ocean plankton. *Proceedings of the National Academy of Sciences* 112, 453-457 (2015).
- S. A. Amin, L. R. Hmelo, H. M. van Tol, B. P. Durham, L. T. Carlson, K. R. Heal, R. L.
 Morales, C. T. Berthiaume, M. S. Parker, B. Djunaedi, A. E. Ingalls, M. R. Parsek, M. A.
 Moran, E. V. Armbrust, Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. *Nature* 522, 98-101 (2015).
- M. B. Cooper, E. Kazamia, K. E. Helliwell, U. J. Kudahl, A. Sayer, G. L. Wheeler, A. G.
 Smith, Cross-exchange of B-vitamins underpins a mutualistic interaction between *Ostreococcus tauri* and *Dinoroseobacter shibae*. *The ISME Journal* 13, 334-345 (2019).
- N. Barak-Gavish, M. J. Frada, C. Ku, P. A. Lee, G. R. DiTullio, S. Malitsky, A. Aharoni,
 S. J. Green, R. Rotkopf, E. Kartvelishvily, U. Sheyn, D. Schatz, A. Vardi, Bacterial
 virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. *Science Advances* 4, eaau5716 (2018).
- 321 14. I. Wagner-Dobler, B. Ballhausen, M. Berger, T. Brinkhoff, I. Buchholz, B. Bunk, H.
- 322 Cypionka, R. Daniel, T. Drepper, G. Gerdts, S. Hahnke, C. Han, D. Jahn, D. Kalhoefer,
- 323 H. Kiss, H.-P. Klenk, N. Kyrpides, W. Liebl, H. Liesegang, L. Meincke, A. Pati, J.

324		Petersen, T. Piekarski, C. Pommerenke, S. Pradella, R. Pukall, R. Rabus, E. Stackebrandt,
325		S. Thole, L. Thompson, P. Tielen, J. Tomasch, M. von Jan, N. Wanphrut, A. Wichels, H.
326		Zech M Simon The complete genome sequence of the algal symbiont <i>Dinoroseobacter</i>
327		shibae: a hitchhiker's guide to life in the sea. The ISME Journal 4, 61-77 (2010).
328	15	E Segev T P Wyche K H Kim I Petersen C Ellebrandt H Vlamakis N Barteneva
329	101	I N Paulson L Chai I Clardy R Kolter Dynamic metabolic exchange governs a
330		marine algal-bacterial interaction <i>eLife</i> 5 e17473 (2016)
331	16	Y Sun Y Zhang I T Hollibaugh H Luo Ecotype diversification of an abundant
332	10.	Roseobacter lineage <i>Environmental Microbiology</i> 19 1625-1638 (2017)
333	17	F C Sonnenschein K F Nielsen P D'Alvise C H Porshy I Melchiorsen I
334	17.	Heilmann P G Kalatzis M Lopez-Perez B Bunk C Sproer M Middelboe L Gram
335		Global occurrence and beterogeneity of the Roseobacter-clade species <i>Ruggeria mobilis</i>
336		The ISMF Journal 11 569-583 (2017)
337	18	X Wang V Zhang M Ben T Xia X Chu C Liu X Lin V Huang Z Chen A Van
338	10.	H. Luo, Cryptic speciation of a pelagic Roseobacter population varying at a few thousand
339		nucleotide sites. <i>The ISME Journal</i> 14, 3106-3119 (2020).
340	19.	S. A. Amin, M. S. Parker, E. V. Armbrust, Interactions between diatoms and bacteria.
341		Microbiology and Molecular Biology Reviews 76, 667-684 (2012).
342	20.	C. Jain, L. M. Rodriguez-R, A. M. Phillippy, K. T. Konstantinidis, S. Aluru, High
343		throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
344		Nature Communications 9, 5114 (2018).
345	21.	T. G. Sana, A. Hachani, I. Bucior, C. Soscia, S. Garvis, E. Termine, J. Engel, A. Filloux,
346		S. Bleves, The second type VI secretion system of <i>Pseudomonas aeruginosa</i> strain PAO1
347		is regulated by quorum sensing and Fur and modulates internalization in epithelial cells.
348		Journal of Biological Chemistry 287 , 27095-27105 (2012).
349	22.	J. M. Silverman, Y. R. Brunet, E. Cascales, J. D. Mougous, Structure and regulation of
350		the type VI secretion system. Annual Review of Microbiology 66, 453-472 (2012).
351	23.	Y. Zhang, Y. Sun, N. Jiao, R. Stepanauskas, H. Luo, Ecological genomics of the
352		uncultivated marine Roseobacter lineage CHAB-I-5. Applied and Environmental
353		<i>Microbiology</i> 82 , 2100-2111 (2016).
354	24.	A. J. Collins, M. S. Fullmer, J. P. Gogarten, S. V. Nyholm, Comparative genomics of
355		Roseobacter clade bacteria isolated from the accessory nidamental gland of <i>Euprymna</i>
356		scolopes. Frontiers in Microbiology 6, 123 (2015).
357	25.	O. Frank, M. Göker, S. Pradella, J. Petersen, Ocean's Twelve: flagellar and biofilm
358		chromids in the multipartite genome of <i>Marinovum algicola</i> DG898 exemplify functional
359		compartmentalization. Environmental Microbiology 17, 4019-4034 (2015).
360	26.	M. Nivaskumar, O. Francetic, Type II secretion system: A magic beanstalk or a protein
361		escalator. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1843, 1568-
362		1577 (2014).
363	27.	R. Fronzes, P. J. Christie, G. Waksman, The structural biology of type IV secretion
364		systems. Nature Reviews Microbiology 7, 703-714 (2009).
365	28.	K. Wallden, A. Rivera-Calzada, G. Waksman, Microreview: Type IV secretion systems:
366		versatility and diversity in function. Cellular Microbiology 12, 1203-1212 (2010).
367	29.	L. Chen, Y. Chen, D. W. Wood, E. W. Nester, A New Type IV Secretion System
368		Promotes Conjugal Transfer in Agrobacterium tumefaciens. Journal of Bacteriology 184,
369		4838-4845 (2002).

370 371	30.	H. Luo, M. A. Moran, Evolutionary ecology of the marine Roseobacter clade.
371	31	K V Korotkov M Sandkvist W G I Hol The type II secretion system: biogenesis
372	51.	K. V. Kolotkov, W. Salukvist, W. G. J. Hol, The type II Secretion system. Diogenesis, molecular architecture and mechanism. <i>Nature Reviews Microbiology</i> 10 , 336-351
373		(2012)
374	27	(2012). M. S. Nalson, M. I. Sadawsky, Sacration systems and signal avalance between nitrogen
276	52.	fixing rhizohig and logumon. Front Plant Soi 6, 401, 401 (2015)
270	22	H Cong B Balos Moloculer mochanisms underlying rescobator, phytoplankton
270	<i>33</i> .	H. Geng, K. Belas, Molecular mechanisms underlying roseobacter-phytopiankton
3/8 270	24	Symbloses. Current Opinion in Biotechnology 21, 332-338 (2010).
3/9	34.	P. Barting, J. Volimers, J. Petersen, The first world swimming championsmps of
380		roseobacters—Phylogenomic insights into an exceptional motility phenotype. Systematic
381	25	and Applied Microbiology 41, 544-554 (2018).
382	35.	V. Michael, O. Frank, P. Bartling, C. Scheuner, M. Goker, H. Brinkmann, J. Petersen,
383		Biofilm plasmids with a rhamnose operon are widely distributed determinants of the
384	26	'swim-or-stick' lifestyle in roseobacters. <i>The ISME Journal</i> 10, 2498-2513 (2016).
385	36.	O. A. Soutourina, P. N. Bertin, Regulation cascade of flagellar expression in Gram-
386	~-	negative bacteria. FEMS Microbiology Reviews 27, 505-523 (2003).
387	37.	R. A. Alm, P. Guerry, T. J. Trust, The Campylobacter sigma 54 flaB flagellin promoter is
388	• •	subject to environmental regulation. <i>Journal of Bacteriology</i> 175 , 4448-4455 (1993).
389	38.	C. Karlsen, S. M. Paulsen, H. S. Tunsjø, S. Krinner, H. Sørum, P. Haugen, NP.
390		Willassen, Motility and flagellin gene expression in the fish pathogen Vibrio
391		salmonicida: Effects of salinity and temperature. Microbial Pathogenesis 45, 258-264
392		(2008).
393	39.	A. Guzzo, C. Diorio, M. S. DuBow, Transcription of the <i>Escherichia coli fliC</i> gene is
394		regulated by metal ions. Applied and Environmental Microbiology 57, 2255-2259 (1991).
395	40.	F. M. Cohan, Transmission in the origins of bacterial diversity, from ecotypes to phyla.
396		Microbiology Spectrum 5, (2017).
397	41.	B. J. Shapiro, J. Friedman, O. X. Cordero, S. P. Preheim, S. C. Timberlake, G. Szabó, M.
398		F. Polz, E. J. Alm, Population genomics of early events in the ecological differentiation
399		of bacteria. Science 336, 48-51 (2012).
400	42.	H. Cadillo-Quiroz, X. Didelot, N. L. Held, A. Herrera, A. Darling, M. L. Reno, D. J.
401		Krause, R. J. Whitaker, Patterns of gene flow define species of thermophilic Archaea.
402		<i>PLOS Biology</i> 10 , e1001265 (2012).
403	43.	JB. Raina, V. Fernandez, B. Lambert, R. Stocker, J. R. Seymour, The role of microbial
404		motility and chemotaxis in symbiosis. Nature Reviews Microbiology 17, 284-294 (2019).
405	44.	LM. Bobay, H. Ochman, Factors driving effective population size and pan-genome
406		evolution in bacteria. BMC Evolutionary Biology 18, 153 (2018).
407	45.	C. Fraser, E. J. Alm, M. F. Polz, B. G. Spratt, W. P. Hanage, The bacterial species
408		challenge: making sense of genetic and ecological diversity. <i>Science</i> 323 , 741-746
409		(2009).
410	46.	B. Charlesworth, Effective population size. <i>Current Biology</i> 12 , R716-R717 (2002).
411	47.	R. J. Hall, F. J. Whelan, J. O. McInerney, Y. Ou, M. R. Domingo-Sananes, Horizontal
412		Gene transfer as a source of conflict and cooperation in Prokaryotes. Frontiers in
413		<i>Microbiology</i> 11 , (2020).

414	48.	Y. Liu, Q. Lin, J. Feng, F. Yang, H. Du, Z. Hu, H. Wang, Differences in metabolic
415		potential between particle-associated and free-living bacteria along Pearl River Estuary.
416		Science of The Total Environment 728, 138856 (2020).
417	49.	P. Daste, D. Neuville, B. Victor-Baptiste, A simple procedure for obtaining clonal
418		isolation of diatoms. British Phycological Journal 18, 1-3 (1983).
419	50.	R. R. L. Guillard, J. H. Ryther, Studies of marine planktonic diatoms. I. Cyclotella nana
420		Hustedt, and Detonula confervacea (cleve) Gran. Canadian Journal of Microbiology 8.
421		229-239 (1962).
422	51.	M. Sapp, A. S. Schwaderer, K. H. Wiltshire, H. G. Hoppe, G. Gerdts, A. Wichels,
423		Species-specific bacterial communities in the phycosphere of microalgae? <i>Microbial</i>
424		<i>Ecology</i> 53 , 683-699 (2007).
425	52.	J. Zhou, M. A. Bruns, J. M. Tiedie, DNA recovery from soils of diverse composition.
426		Applied and Environmental Microbiology 62 , 316 (1996).
427	53	L Hu X Peng J Zhou Y Zhang S Xu X Mao Y Gao J Liang Characterizing the
428	001	interactions among a dinoflagellate flagellate and bacteria in the phycosphere of
429		Alexandrium tamarense (Dinophyta). Frontiers in Marine Science 2, 100 (2015).
430	54	M Johnson I Zaretskava Y Raytselis Y Merezhuk S McGinnis T L Madden NCBI
431	0 11	BLAST: a better web interface. <i>Nucleic Acids Research</i> 36 , W5-W9 (2008).
432	55	F Sievers A Wilm D Dineen T I Gibson K Karplus W Li R Lopez H
433	001	McWilliam M Remmert I Soding Fast scalable generation of high - quality protein
434		multiple sequence alignments using Clustal Omega Molecular Systems Biology 7, 539-
434		530 (2011)
435	56	S Capellagutierrez I M Sillamartinez T Gabaldon trimAl: a tool for automated
437	50.	alignment trimming in large-scale phylogenetic analyses <i>Bioinformatics</i> 25 1072-1073
438		(2009)
439	57	L-T Nouven H A Schmidt A von Haeseler B O Minh IO-TREE: a fast and
440	57.	effective stochastic algorithm for estimating maximum-likelihood phylogenies
441		Molecular Biology and Evolution 32 , 268-274 (2014)
442	58	S Kalvaanamoorthy B O Minh T K F Wong A von Haeseler I. S Jermiin
443	50.	ModelFinder: fast model selection for accurate phylogenetic estimates <i>Nature Methods</i>
444		14 587-589 (2017)
445	59	D T Hoang O Chernomor A von Haeseler B O Minh L S Vinh UFBoot?
446	57.	Improving the ultrafast bootstrap approximation <i>Molecular Biology and Evolution</i> 35
447		518-522 (2018)
448	60	I Letunic P Bork Interactive Tree Of Life (iTOL) v4: recent undates and new
449	00.	developments Nucleic Acids Research 47 W256-W259 (2019)
450	61	H Wang H D t Laughinghouse M A Anderson F Chen F Williams A R Place
451	01.	O Zmora Y Zohar T Zheng R T Hill Novel bacterial isolate from Permian
452		groundwater canable of aggregating notential biofuel-producing microalga
453		Nannochloropsis oceanica IMET1 Applied and Environmental Microbiology 78 1445-
454		1453 (2012)
455	62	D H Parks M Chuvochina D W Waite C Rinke A Skarshewski P Chaumeil P
456	02.	Hugenholtz A standardized bacterial taxonomy based on genome nhylogeny
457		substantially revises the tree of life <i>Nature Riotechnology</i> 36 996-1004 (2018)
458	63	S Nurk A Bankevich D Antinov A A Gurevich A Korobevnikov A Lanidus A D
459	05.	Prijbelski A Pyshkin A Sirotkin V Sirotkin R Stenanauskas S R Clingenneel T
тJJ		rijoeiski, A. i ysikin, A. Shotkin, T. Shotkin, K. Stepanauskas, S. K. Chilgenpeer, T.

460		Woyke, J. S. McLean, R. Lasken, G. Tesler, M. A. Alekseyev, P. A. Pevzner,
461		Assembling single-cell genomes and mini-metagenomes from chimeric MDA products.
462		Journal of Computational Biology 20, 714-737 (2013).
463	64.	D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM:
464		assessing the quality of microbial genomes recovered from isolates, single cells, and
465		metagenomes. Genome Research 25, 1043-1055 (2015).
466	65.	Y. Chen, F. Nie, SQ. Xie, YF. Zheng, Q. Dai, T. Bray, YX. Wang, JF. Xing, ZJ.
467		Huang, DP. Wang, LJ. He, F. Luo, JX. Wang, YZ. Liu, CL. Xiao, Efficient
468		assembly of nanopore reads via highly accurate and intact error correction. <i>Nature</i>
469		<i>Communications</i> 12 , 60 (2021).
470	66.	M. Kolmogorov, J. Yuan, Y. Lin, P. A. Pevzner, Assembly of long, error-prone reads
471		using repeat graphs. <i>Nature Biotechnology</i> 37 , 540-546 (2019).
472	67.	R. Vaser, I. Sovic, N. Nagarajan, M. Sikic, Fast and accurate de novo genome assembly
473		from long uncorrected reads. Genome Research 27, 737-746 (2017).
474	68.	B. J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, C. A. Cuomo,
475		Q. Zeng, J. Wortman, S. K. Young, A. M. Earl, Pilon: an integrated tool for
476		comprehensive microbial variant detection and genome assembly improvement. <i>Plos One</i>
477		9 , e112963 (2014).
478	69.	R. R. Wick, M. B. Schultz, J. Zobel, K. E. Holt, Bandage: interactive visualization of de
479		novo genome assemblies. Bioinformatics 31, 3350-3352 (2015).
480	70.	T. Seemann, Prokka: rapid prokaryotic genome annotation. <i>Bioinformatics</i> 30 , 2068-2069
481		(2014).
482	71.	T. Brettin, J. J. Davis, T. Disz, R. A. Edwards, S. Gerdes, G. J. Olsen, R. Olson, R.
483		Overbeek, B. Parrello, G. D. Pusch, M. Shukla, J. A. Thomason, R. Stevens, V. Vonstein,
484		A. R. Wattam, F. Xia, RASTtk: A modular and extensible implementation of the RAST
485		algorithm for building custom annotation pipelines and annotating batches of genomes.
486		Scientific Reports 5, 8365 (2015).
487	72.	M. Kanehisa, S. Goto, S. Kawashima, A. Nakaya, S. K. S, KEGG: kyoto encyclopaedia
488		of genes and genomes. Nucleic Acids Research 28, 27-30(24) (2000).
489	73.	G. S. Vernikos, J. Parkhill, Interpolated variable order motifs for identification of
490		horizontally acquired DNA: revisiting the Salmonella pathogenicity islands.
491		<i>Bioinformatics</i> 22, 2196-2203 (2006).
492	74.	D. H. Parks, C. Rinke, M. Chuvochina, PA. Chaumeil, B. J. Woodcroft, P. N. Evans, P.
493		Hugenholtz, G. W. Tyson, Recovery of nearly 8,000 metagenome-assembled genomes
494		substantially expands the tree of life. Nature Microbiology 2, 1533-1542 (2017).
495	75.	M. Simon, C. Scheuner, J. P. Meierkolthoff, T. Brinkhoff, I. Wagnerdobler, M. Ulbrich,
496		H. Klenk, D. Schomburg, J. Petersen, M. Goker, Phylogenomics of Rhodobacteraceae
497		reveals evolutionary adaptation to marine and non-marine habitats. The ISME Journal 11,
498		1483-1499 (2017).
499	76.	J. Rozewicki, S. Li, K. M. Amada, D. M. Standley, K. Katoh, MAFFT-DASH: integrated
500		protein sequence and structural alignment. Nucleic Acids Research 47, W5-W10 (2019).
501	77.	T. J. Treangen, B. D. Ondov, S. Koren, A. M. Phillippy, The Harvest suite for rapid core-
502		genome alignment and visualization of thousands of intraspecific microbial genomes.
503		<i>Genome Biology</i> 15 , 524 (2014).

504	78.	C. Jain, L. M. Rodriguezr, A. M. Phillippy, K. T. Konstantinidis, S. Aluru, High
505		throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
506		Nature Communications 9, 5114 (2018).
507	79.	R. C. Team, R: A language and environment for statistical computing. MSOR
508		<i>connections</i> 1 , 12-21 (2014).
509	80.	A. C. Darling, B. Mau, F. R. Blattner, N. T. Perna, Mauve: multiple alignment of
510		conserved genomic sequence with rearrangements. Genome Research 14, 1394-1403
511		(2004).
512	81.	A. J. Page, C. A. Cummins, M. Hunt, V. K. Wong, S. Reuter, M. T. Holden, M. Fookes,
513		D. Falush, J. A. Keane, J. Parkhill, Roary: rapid large-scale prokaryote pan genome
514		analysis. <i>Bioinformatics</i> 31 , 3691-3693 (2015).
515	82.	C. Chen, H. Chen, Y. Zhang, H. R. Thomas, M. H. Frank, Y. He, R. Xia, TBtools: An
516		integrative toolkit developed for interactive analyses of big biological data. Molecular
517		<i>Plant</i> 13 , 1194-1202 (2020).
518	83.	L. Marquez, G. A. Morales, M. A. S. De Rodriganez, E. Almansa, F. J. Moyano, M.
519		Diaz, Comments on the calculation of the specific growth rate in experiments with
520		untagged individuals. Scientia Marina 79, 505-508 (2015).
521	84.	R. P. Trenkenshu, Calculation of the specific growth rate of microalgae. Marine
522		<i>Biological Journal</i> 4 , 100-108 (2019).
523	85.	D. Pfeiffer, D. Schüler, Quantifying the benefit of a dedicated "magnetoskeleton" in
524		bacterial magnetotaxis by live-cell motility tracking and soft agar swimming assay.
525		Applied and Environmental Microbiology 86, e01976-01919 (2020).
526	86.	D. Krysciak, J. Grote, M. Rodriguez Orbegoso, C. Utpatel, K. U. Förstner, L. Li, C.
527		Schmeisser, H. B. Krishnan, W. R. Streit, RNA Sequencing analysis of the broad-host-
528		range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to
529		quorum sensing-dependent regulation in the background of a tral and ngrl deletion
530		mutant. Applied and Environmental Microbiology 80, 5655 (2014).
531	87.	E. Teira, S. Martínez-García, C. Lønborg, X. A. Alvarez-Salgado, Growth rates of
532		different phylogenetic bacterioplankton groups in a coastal upwelling system.
533		Environmental microbiology reports 1, 545-554 (2009).
534	88.	Y. Sun, K. E. Powell, W. Sung, M. Lynch, M. A. Moran, H. Luo, Spontaneous mutations
535		of a model heterotrophic marine bacterium. The ISME Journal 11, 1713-1718 (2017).
536		
537		

538 Acknowledgements

539	We thank Xingqin Lin for helpful discussion. We also thank Qingyu Li for assisting
540	microalgal isolation and identification, Min Yang for helping with microalgal cell counting,
541	Fumin Yang, Qing Zhang and Huiling Chen for their help in bacteria isolation, Xiaoyu Yang for
542	assisting a preliminary experiment of the motility assays. H.W. was supported by the National
543	Natural Science Foundation of China (41676116), Key Special Project for Introduced Talents
544	Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
545	(GML2019ZD0606), and Guangdong Science and Technology Department
546	(2019A1515011139). H.L. was supported by the Hong Kong Research Grants Council General
547	Research Fund (14163917) and the Hong Kong Research Grants Council Area of Excellence
548	Scheme (AoE/M-403/16).

549

550 Author Contributions

551 H.L. conceptualized the work, designed this study, directed the bioinformatics analyses, 552 interpreted the data, and wrote the main manuscript. H.W. directed the sampling work, diatom 553 isolation, and roseobacter cultivation, experimental assay, and related writing, co-interpreted the 554 data, and provided comments to the manuscript. L.Q. collected the sample, performed cultivation 555 and characterized the cultures. X.F. and L.Q. performed all the bioinformatics, co-interpreted the 556 data, drafted the technical details, and prepared figures and tables. L.L. contributed to bacterial 557 isolation, and L.L. and Y.C. performed physiological assays. X.W. contributed to the 558 bioinformatics. H.Z. contributed to the discussion and provided comments to the manuscript. 559

560 **Conflict of Interest**

561 The authors declare no competing commercial interests in relation to the submitted work.

562

563 Data availability

- 564 The 18S rRNA gene sequences of the diatoms are available at NCBI under the accession
- number MW494549 MW494585. The raw genomic sequencing data and assembled genomes of
- the 294 isolates are available at NCBI under the accession number PRJNA691705.

567

Fig 1. Phylogenetics of diatoms and Roseobacters isolated from this study. (A) Maximum likelihood (ML) tree showing the phylogenetic positions of diatoms isolated in this study. The phylogeny was inferred using IQ-TREE based on the 18S rRNA gene sequences with lengths longer than 1,600 bp. Three *Synurophyceae* strains were used as the outgroup. Solid circles in the phylogeny indicate nodes with ultrafast bootstrap (UFBoot) values > 95%. Diatom strains used for bacteria cultivation and other isolated microalgae are marked with red and gray dots, respectively. The photos of microalgae obtained under an optical microscope are shown on the right panel. (B) ML phylogenomic tree showing the phylogenetic positions of roseobacters isolated from this study. The phylogeny was inferred using IQ-TREE based on the concatenation of 120 conserved bacterial proteins (see methods). Solid circles in the phylogeny indicate nodes with UFBoot values > 95%. The associated microalgae of bacterial strains are differentiated with colors. The six complete and closed genomes are marked with red arrows.

Fig. 2. The clustering of accessory genes in the genomes of (A) clade-2b, (B) clade-2c, (C) clade-2e2 and (D) clade-3. The dendrogram of genome clustering was generated based on the presence and absence of their orthologous gene families (OGs), which are colored in blue and gray, respectively. The associated microalgae of bacterial strains are differentiated with colors. The complete and closed genomes are marked with red arrows.

Fig. 3. The metabolic traits. (A) ML phylogenetic tree of the three homologous types of flagellar gene clusters (FGCs) found in the Roseobacter group. This phylogeny was built based on four marker flagellar proteins (FliF, FlgI, FlgH and FlhA). Solid circles in the phylogeny indicate nodes with UFBoot values > 95%. (B, C) Photos showing the cellular morphology under a transmission electron microscope (TEM), motility on the 2216E agar plates with 0.2% or 0.3% agar, and sedimentation phenotypes in the liquid 2216E medium. Eleven representative strains were used in the assay, including two from clade-2d (B), three from clade-2e2 (B), three from clade-2a (C) and three from clade-2b (C). All strains from clade-2e1 were lost.

595	Supplementary Materials for
596	
597	Metapopulation Structure of Diatom-associated Marine Bacteria
598	
599	Liping Qu, Xiaoyuan Feng, Yuerong Chen, Lingyu Li, Xiaojun Wang, Zhong Hu, Hui Wang*,
600	Haiwei Luo*
601	
602	*Hui Wang. Email: wanghui@stu.edu.cn
603	*Haiwei Luo. Email: hluo2006@gmail.com
604	
605	
606	
607	
608	This PDF file includes:
609	
610	Supplementary Text
611	Figs. S1 to S8
612	
613	
614	Other Supplementary Materials for this manuscript include the following:
615	Data S1 to S6
616	
617	

618 Text 1. Methods

619 1.1 Isolation, identification and phylogenetic analysis of the microalgae

620 One-liter of seawater (0.5 m below surface) was collected from the Pearl River Estuary 621 (113.7221° E, 21.9935° N) in January 2018 (48), stored in a cooler (4 °C) and transferred to the 622 laboratory within 24 hours. Single cells of microalgae were isolated from the seawater using 623 micropipettes under optical microscope following a previously described method (49). The 624 microalgal cells were then washed repeatedly using fresh axenic F/2 medium (50) to remove the 625 free-living bacteria and loosely associated bacteria around microalgal cells (51). The washed 626 microalgal cells each were inoculated in a 24-well plate containing 1 mL of fresh F/2 medium to 627 increase the cell density. After incubation at 20°C with 12 h/12 h light-dark cycle at 200 µmol 628 photons m⁻² s⁻¹ for 3-5 days, the microalgal culture in each well was transferred into a conical 629 flask with 30 mL of fresh F/2 medium to increase the biomass of microalgae. In the exponential 630 growth phase, 15 mL of the cultures each were fixed with 1% Lugol's solution and sent to the 631 Fujian Provincial Department of Ocean and Fisheries for morphological characterization and 632 species identification. Besides, the taxonomy of microalgae was further validated using 18S 633 rRNA genes. The DNA was extracted from another 10 mL of the microalgal cultures using the 634 CTAB method (52). The 18S rRNA genes were amplified using primers (SSU-F: 5'-635 ACCTGGTTGATCCTGCCAGT-3' and SSU-R: 5'-TCACCTACGGAAACCTTGT-3') 636 following a previous study (53) and sent for sequencing using the Sanger platform. These 18S 637 rRNA gene sequences were subjected to a maximum likelihood (ML) phylogenetic analysis 638 along with a few reference sequences, which were selected based on a preliminary BLASTn (54) 639 result against the NCBI nt database. These sequences were aligned using Clustal Omega v1.2.4 640 (55) with default parameters and trimmed using trimAl v1.4.rev15 (56) with '-automated1'

641 option. The phylogenetic tree was constructed using IQTREE v1.6.12 (57) with the Modelfinder

642 (58) for model selection, and 1,000 ultrafast bootstrap replicates were sampled to assess the

643 robustness of the phylogeny (59). The phylogenetic tree was visualized using iTOL v5.6 (60).

644 *1.2 Isolation and identification of bacteria in phycosphere*

645 The 1 mL of microalgal cultures each were collected during the logarithmic growth phase 646 followed by a 10-fold serial dilution. Solid 2216E agar plates (BD Bioscience, USA) were spread 647 with 100 µL of each dilution and incubated at 25°C for one week. Single colonies were selected 648 and repeatedly streaked on 2216E agar plates to isolate and purify bacterial strains initially 649 associated with microalgae. The purified bacterial strains were subjected to the colony 650 polymerase chain reaction (colony PCR) to retrieve the 16S rRNA genes for taxonomy 651 identification. The 16S rRNA genes were amplified using the universal primers 27F and 1492R 652 as described previously (61) and were partially (\sim 700 bp) sequenced using 27F on the Sanger 653 platform at Invitrogen Trading (Shanghai) Co., Ltd. Their taxonomy was inferred using BLASTn 654 on the NCBI website, and a total of 294 strains with top BLAST hit to the Roseobacter group 655 were kept for genome sequencing.

656 1.3 Genome sequencing, assembly and annotation

657 The genomic DNA of 294 Roseobacter genomes was extracted using the Bacterial Genome

658 DNA Rapid Extraction Kit (Guangzhou Dongsheng Biotech Co., Ltd.) and sequenced at the

659 Beijing Genomics Institute (BGI, China) using the Illumina Hiseq xten PE150 platform. Raw

reads were quality trimmed using Trimmomatic v0.39 (62) with options

661 'SLIDINGWINDOW:4:15 MAXINFO:40:0.9 MINLEN:40' and assembled using SPAdes

 $v_{3.10.1(63)}$ with '-careful' option. Only contigs with length > 1,000 bp and sequencing depth >

5x were retained. Genome completeness, contamination, and strain heterogeneity (Table S3)

664 were calculated using CheckM v1.1.2 (64).

665 Six isolates (SM26-46, SC33-45, SC33-90, MC52-69, SC1-11 and SC7-37) were

additionally sequenced with the Nanopore platform (Nextomics Biosciences Co., Ltd.) to retrieve

667 complete and closed genomes. The mismatches between Nanopore and Illumina reads were

reconciled according to the following procedure. Raw reads of the Nanopore sequencing were

669 first corrected by Necat v0.0.1 (65) with 'PREP_OUTPUT_COVERAGE=100

670 CNS_OUTPUT_COVERAGE=50' parameters. The polished reads were then assembled using

671 Flye v2.6 (66) with the '--plasmids' parameter. The initial assemblies were corrected twice using

the polished Nanopore sequencing reads by Racon v1.4.13 (67) with '-m 8 -x -6 -g -8 -w 500'

673 options and five times using the Illumina sequencing reads by Pilon v1.23 (68) with default

674 parameters. The Bandage v0.8.1 (69) was used to check whether the final assembled

675 chromosomes and plasmids were closed, which showed that the chromosome and plasmids in all

676 six genomes are closed except the plasmid 2b_P2 in MC52-69 and plasmid 2b_P5 in SC33-90

677 (Table S4).

678 Protein-coding genes were identified using Prokka v1.14.6 (*70*) with default parameters, and 679 their functions were annotated using online RAST (*71*) and KEGG server (*72*). Genomic islands 680 were predicted using Alien_hunter v1.7 (*73*) with default parameters.

681 *1.4 Phylogenomic tree construction*

An ML phylogenetic tree was constructed based on 120 conserved bacterial genes (74) at the amino acid level to identify the phylogenetic position of 294 sequenced Roseobacter genomes. Other reference Roseobacter genomes included in the phylogeny were used following previous studies (*35*, *75*). The 120 conserved proteins each were aligned using MAFFT v7.222 (76) with default parameters and trimmed using trimAl with '-resoverlap 0.55 -seqoverlap 60' options. The
trimmed alignments were linked together to form a super-alignment for each genome. The
phylogenetic tree was constructed using IQTREE v1.6.12 (*57*) with the Modelfinder (*58*) for
model selection, and a total of 1,000 ultrafast bootstrap replicates were sampled to assess the
robustness of the phylogeny (*59*). The phylogenetic tree was visualized using iTOL v5.6 (*60*).

691 *1.5 Plasmid identification for the clade-2e1 members*

Since a closed genome was not available to the clade-2e1, we used the following procedure to detect whether a contig is part of the chromosome or plasmid. Contigs of clade-2e1 genomes were aligned to the complete and closed genome of clade-2e2 (SC7-37) using Parsnp v1.2 (77). The contig was considered to be located on the chromosome or plasmid if > 80% region of this contig was aligned to the chromosome or plasmid of SC7-37. The remaining contigs were considered as unassigned.

698 1.6 Population genomics analyses

699 The whole-genome average nucleotide identity (ANI) was calculated using FastANI v1.3 700 (78) to assess the genomic sequence similarity within and between clades. Besides, single 701 nucleotide polymorphisms (SNPs) were identified using Parsnp v1.2 (77) with default 702 parameters, and the SNP density was calculated using 10 Kbp sliding windows and plotted with 703 custom scripts in R v3.6.1 (79). To investigate the genomic structural variation between clades, 704 two complete and closed genomes (SC1-11 in clade-2d and SC7-37 in clade-2e2) were aligned 705 using Mauve v2015-02-26 (80) with default parameters and the segment arrangement of the 706 chromosome and the plasmid was visualized using Mauve with the 'Min LCB weight' parameter 707 around 2,000. A similar comparison was also performed for two complete and closed genomes

708	from clade-2a (SM26-46) and clade-2b (SC33-45), and for three complete and closed genomes
709	within clade-2b (SC33-45, SC33-90 and MC52-69), respectively.
710	The clustering of accessory genes within clade was used to investigate whether the
711	association with different hosts caused the differentiation of roseobacters at the genome content
712	level. Orthologous gene families (OGs) were predicted using Roary v3.13.0 (81) with default
713	parameters for genomes of the eight clades separately. The presence/absence pattern of accessory
714	OGs was summarized as a binary matrix. The Euclidean distance of each pair of genomes was
715	calculated using TBtools v1.0695 (82), and then genomes were clustered with the 'complete'
716	method and visualized using TBtools.
717	1.7 Co-cultivation of an axenic diatom culture and the Roseobacter isolates
718	The 11 Roseobacter representatives each were co-cultured with an axenic diatom culture

719 Phaeodactylum tricornutum CCMP2561 to verify the effect of these roseobacters on the 720 microalgal growth. The axenic microalgal culture was obtained from the Institute of 721 Hydrobiology, Chinese Academy of Sciences, Wuhan, China. The diatom was inoculated in axenic F/2 medium at 20°C with 12 h/12 h light-dark cycle at 200 μ mol photons m⁻² s⁻¹. The 722 723 microalgal cells were counted three times each day using the Beckman Coulter Z2 (Beckman 724 Coulter Inc., America) until they reached the logarithmic growth phase. The initial cell concentration of the microalgae used for growth assay was about 10⁶ cells mL⁻¹. 725 726 The 11 Roseobacter strains each were inoculated in 5 mL of 2216E liquid medium and 727 incubated at 25°C with 150 rpm shaking until the OD₆₀₀ reached 0.6 - 0.7. For each strain, 3 mL 728 of bacterial culture was centrifuged for 1 min at 12,000 rpm, and pellets were washed three times 729 with sterile seawater and re-suspended in 100 µL of sterile seawater.

The 100 μ L of bacterial suspension was inoculated in 30 mL of axenic microalgal culture as the experimental group, and another 30 mL of the axenic microalgal culture without bacterial inoculations were used as the negative control. Three replicates were set for all control and experimental groups. The microalgal cells were counted in triplicate at the third day of the coculture experiment. The specific growth rate of the microalgae (μ_c for the control group and μ_e for the experimental groups) over three days was calculated as:

736
$$\mu = (\ln B_2 - \ln B_1)/(t_2 - t_1)$$

737 where B_1 and B_2 were the cellular density (concentration) in the culture at t_1 (0 d) and t_2 (3 738 d), respectively (83, 84). The significance level between μ_c and μ_e was estimated using the 739 Student's t-test.

740 1.8 Phylogenetic analysis for flagellar gene clusters

741 Three homologous and phylogenetically distinguishable types of flagellar gene cluster 742 (FGC) have been identified in the Roseobacter group (35). While none of them were identified in 743 closely related clade-2a and clade-2b members, its homologs were found in clade-2d, clade-2e1 744 and clade-2e2 members. Next, phylogenetic analysis was performed for all the 83 genomes from 745 the latter three clades to identify their FGC type. Four flagellar marker genes (*fliF*, *flgH*, *flgI*, and 746 flhA) (35) were aligned at the amino acid level using MAFFT v7.222 (76) with default 747 parameters and trimmed using trimAl with '-resoverlap 0.55 -seqoverlap 60' options. The 748 trimmed alignments were concatenated and a phylogenetic tree was constructed using IQTREE 749 v1.6.12 (57) with the Modelfinder (58) function. A total of 1,000 ultrafast bootstrap replicates 750 were sampled to assess the robustness of the phylogeny (59), and the phylogenetic tree was 751 visualized using iTOL v5.6 (60).

752 1.9 Motility assay

753	Eleven roseobacters were used in the motility assay, including three strains in clade-2a, three
754	in clade-2b, two in clade-2d, and three in clade-2e2. The clade-2e1 was not included because all
755	strains in this clade were lost. The 11 strains each were inoculated in 5 mL of 2216E liquid
756	medium and incubated at 25°C with 150 rpm shaking until the optical density value at 600 nm
757	(OD ₆₀₀) reached 0.6-0.7. The flagella and pili were observed under a transmission electron
758	microscope (TEM; JEM-F200, Japan), and the motility of representative strains was tested on
759	solid and liquid medium.
760	Aliquots (6 mL) of liquid culture for each bacterial strain was centrifuged at 1,000 rpm for
761	10 min. The pellets were rinsed with axenic water 2-3 times. Pellets were fixed overnight with 1
762	mL of 2.5% glutaraldehyde solution at 4°C. Fixed cells were resuspended with axenic water and
763	stabilized on the 200-mesh copper grid (Beijing Zhongjingkeyi Technology Co., Ltd) with the
764	carbon support film. Stabilized cells were stained with 2% sodium phosphotungstate solution for
765	1-2 min and observed by TEM.
766	The motility of the 11 strains were tested on soft agar plates with 0.2% and 0.3% agar (w/v)
767	following previously study (34, 85). Soft agar plates were point inoculated with 3 μ L of bacterial
768	pre-cultures and incubated at 25°C for 6 d. The motility was also tested using sedimentation
769	assays by inoculating 100 μ L of bacterial cultures in 5 mL of fresh 2216E liquid medium and
770	incubated at room temperature for 24 h without shaking (86).

771

772 Text 2. Supplemental result

High genetic similarities of within-clade members are not due to clonal replication during laboratory cultivation

775 Considering that all members of each clade showed extremely high genetic identity at the 776 DNA sequence level, it is possible that the collected isolates can be a mix of cells each 777 representing a distinct genotype originally inhabiting the wild environment and cells replicated 778 clonally during the laboratory cultivation of the microalgae. The latter situation needs to be 779 considered since roseobacter isolation was performed after the one-month incubation of 780 microalgae and since roseobacters divide approximately once per day (87). It is important to 781 differentiate these two scenarios because the inference of population structure could be biased if 782 laboratory clones dominated our collections. Here, we provide several lines of evidence against 783 the laboratory replication hypothesis.

If all members of a clade would have been laboratory replicates from a single ancestor, we asked whether the observed SNPs could be explained by mutations during the period of laboratory cultivation of the diatoms. If a simple assumption is made that each SNP site was caused by a mutation, then the expected number of mutations (*S*) can be estimated based on the spontaneous mutation rate (μ), bacterial growth rate or number of cell divisions per day (*G*), the alignment length (*L*), laboratory cultivation time (*T*) and number of genomes under comparison (*N*), according to the following equation:

791

$$S = \mu * G * L * T * N$$

To make it simple, we used the mutation rate of the model Roseobacter strain, *Ruegeria pomeroyi* DSS-3 ($\mu = 1.39 \times 10^{-10}$ per nucleotide per generation) (88) and the doubling time of wild roseobacters (*G* = *approximately one generation per day*) (87). Given that *L* = 4.34, 4.84, 4.37, 3.89, 3.56, 3.87, 3.74 and 4.31 Mb, and N = 29, 15, 100, 32, 16, 19, 48 and 35 genomes, for clade-1, clade-2a, clade-2b, clade-2c, clade-2d, clade-2e1, clade-2e2 and clade-3, respectively, the expected number of mutations of these clades are 0.53, 0.30, 1.82, 0.52, 0.24, 0.31, 0.75 and 0.63, respectively, under 30 days of laboratory cultivation of the diatoms. Since the expected numbers of mutations are all below one except clade-2b but there are a few dozen SNPs in six of the eight clades (Table S5), the observed SNPs cannot arise from mutations during the laboratory cultivation period.

802 One may argue that some of the SNPs could result from sequencing error. While it is 803 difficult to distinguish between mutations and sequencing errors for singleton SNPs, presence of 804 non-singleton SNPs (the rare variant found in at least two genomes) is convincing evidence 805 against sequencing errors owing to the extremely low chance of having sequencing errors at the 806 same sites. We identified non-singleton SNPs in six out of the eight clades (Table S5). In 807 particular, all sequenced genomes from clade-1 and clade-2a each exhibited a unique 808 combination of the non-singleton SNPs, suggesting that none of them represent laboratory clones 809 (Table S5). For members from clade-2b, clade-2e1, clade-2e2 and clade-3, we identified 26, 14, 810 9 and 14 unique combinations of the non-singleton SNPs in 100, 19, 48 and 35 genomes, 811 respectively, suggesting that at least a sizable number of the members in these clades represent 812 the wild genotypes. In the case of the remaining two clades, clade-2c and clade-2d, no non-813 singleton SNPs were found in the 32 and 16 members, respectively. 814 It is important to note that the SNP analysis is restricted to the core DNA shared by all 815 members of a clade, and members without displaying biologically meaningful SNPs in their core 816 genomes may differ in their accessory genomes. We therefore asked whether genomes from each 817 clade each harbor a unique combination of accessory genes (Table S5). However, this analysis is

818 compromised by the incomplete genome assembly of reads derived from Illumina sequencing. 819 This issue is mitigated, but not eradicated, when the genes missing in the complete and closed 820 genome are used. For the four clades (clade-2a, clade-2b, clade-2d and clade-2e2) with at least 821 one complete and closed genome, all of genomes each exhibit a unique combination of accessory 822 genes (Table S5), which is evidence against the laboratory clonal replication hypothesis. 823 A higher-level marker to discriminate between genomes is gene order and genome 824 rearrangement, which is best characterized using complete and closed genomes. We therefore 825 closed three genomes (SC33-45, SC33-90 and MC52-69) from the same clade (clade-2b) each 826 with additional sequencing by Nanopore (Table S4). Particularly, two of them (SC33-45 and 827 SC33-90) are barely differentiated at the accessory genome content level (Fig. 2A), further 828 highlighting the potential value of the genome rearrangement analysis. These three genomes 829 (SC33-45, SC33-90 and MC52-69) differ in chromosomal DNA length (3,836,086 bp, 3,834,406 830 bp and 3,850,659 bp, respectively), and one DNA inversion event has occurred on their 831 chromosome involving an orthologous DNA segment varying in their length (4644 bp, 4648 bp 832 and 1164 bp, respectively; Fig. S2). They possess seven homologous plasmids, of which five are 833 closed for all three genomes and thus are useful for comparison. While these five closed 834 plasmids each have conserved gene order, they differ slightly in their lengths. Here are 835 assembled lengths of these five closed plasmids in the three isolates: 2b P1 (82,238 bp, 82,229 836 bp and 82,397 bp), 2b_P3 (290,592 bp, 290,600 bp and 290,590 bp), 2b_P4 (281,159 bp, 837 281,160 bp and 281,166 bp), 2b_P6 (210,913 bp, 210,913 bp and 210,915 bp), and 2b_P7 838 (110,566 bp, 110,566 bp and 110,565 bp). 839 Taken together, the available patterns of non-singleton SNPs in the core genomes, the strain-840 specific gene combination in the accessory genomes, the length of chromosomal DNA and

- 841 plasmid DNA, and strain-specific order of genomic fragments strongly favor the hypothesis that
- 842 most of the analyzed roseobacters each represents a distinct genotype originally from the wild
- 843 environment.
- 844

Fig. S1. The whole-genome average nucleotide identity (ANI) and/or 16S rRNA gene identity for (A) clade-2a and clade-2b, (B) clade-2d, clade-2e1, and clade-2e2, (C) clade-1, (D) clade-2c, and (E) clade-3. The 16S rRNA gene identity is not shown for clade-1, clade-2c, and clade-3 because the 16S rRNA genes are identical within each clade.

: The boundaries of chromosome and plasmids P: plasmid 2b: clade-2b

Fig. S2. The genome arrangement of (A) chromosome and (B) plasmids of the three complete and closed genomes (MC52-69, SC33-45 and SC33-90) in clade-2b. Homologous regions shared by the three genomes are represented using locally collinear blocks (LCBs) with connected lines. The minimum LCB weight is 3485, which represents the minimum number of matching nucleotides identified in all LCBs. A similarity profile is shown within each LCB, and the height of the similarity profile represents the conservation level of the alignment. LCBs above and below the centerline represent genomic regions on the forward and reverse strand, respectively. The boundaries of replicons (chromosome and plasmids) are represented by red vertical lines.

Fig. S3. The density of non-singleton SNPs (A) within clade-2a, (B) within clade-2b, and (C) between these two clades. The SNP density was calculated with a window size of 10 Kbp. The aligned region is shown at the bottom of each panel. The boundary between chromosome and plasmid is shown using a red vertical dotted line.

Fig. S4. The density of non-singleton SNPs (A) within clade-2e1, (B) within clade-2e2, (C) between clade-2e1 and clade-2e2, (D) between clade-2d and clade-2e1, and (E) between clade-2d and clade-2e2. The SNP density of clade-2d is not shown because no SNP was found within this clade. The SNPs density was calculated with a window size of 10 Kbp. The aligned region was shown at the bottom of each panel. The boundary between chromosome and plasmid is shown using a red vertical dotted line.

Fig. S5. The genome arrangement of (A) chromosome and (B) plasmids of the two complete genomes in clade-2a (SM26-46) and clade-2b (SC33-45). Homologous regions shared by the two genomes are represented using locally collinear blocks (LCBs) with connected lines. The minimum LCB weight is 2249, which represents the minimum number of matching nucleotides identified in all LCBs. A similarity profile is shown within each LCB, and the height of the similarity profile represents the conservation level of the alignment. LCBs above and below the centerline represent genomic regions on the forward and reverse strand, respectively. The boundaries of replicons (chromosome and plasmids) are represented by red vertical lines.

Fig. S6. The genome arrangement of (A) chromosome and (B) plasmids of the two complete genomes from clade-2d (SC1-11) and clade-2e2 (SC7-37). Homologous regions shared by the two genomes are represented using locally collinear blocks (LCBs) with connected lines. The minimum LCB weight is 2209, which represents the minimum number of matching nucleotides identified in all LCBs. A similarity profile is shown within each LCB, and the height of the similarity profile represents the conservation level of the alignment. LCBs above and below the centerline represent genomic regions on the forward and reverse strand, respectively. The boundaries of replicons (chromosome and plasmids) are represented by red vertical lines.

Fig. S7. The clustering of accessory genes in the genomes of clade-2d (A) and clade-1 (B). The dendrogram of genome clustering was generated based on the presence and absence of their orthologous gene families (OGs), which are colored in blue and gray, respectively. The associated microalgae of bacterial strains are differentiated with colors. The complete and closed genome is marked with a red arrow.

Fig. S8. The specific growth rates of microalgal strains after three days of **co-culture.** The microalgal specific growth rate in the control groups (μ_c) and experimental groups (μ_e) are shown in purple and green columns, respectively. The significance level *p* < 0.05 and *p* < 0.01 compared to the control group is shown using * and **, respectively.