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Classic studies on phylotype profiling are limited to the identification of microbial

constituents, where information is lacking about the molecular interaction of these

bacterial communities with the host genome and the possible outcomes in host biology.

A range of OMICs approaches have provided great progress linking the microbiota

to health and disease. However, the investigation of this context through proteomic

mass spectrometry-based tools is still being improved. Therefore, metaproteomics

or community proteogenomics has emerged as a complementary approach to

metagenomic data, as a field in proteomics aiming to perform large-scale characterization

of proteins from environmental microbiota, such as the human gut. The advances

in molecular separation methods coupled with mass spectrometry (e.g., LC-MS/MS)

and proteome bioinformatics have been fundamental in these novel large-scale

metaproteomic studies, which have further been performed in a wide range of samples

including soil, plant and human environments. Metaproteomic studies will make major

progress if a comprehensive database covering the genes and expresses proteins

from all gut microbial species is developed. To this end, we here present some of the

main limitations of metaproteomic studies in complex microbiota environments, such

as the gut, also addressing the up-to-date pipelines in sample preparation prior to

fractionation/separation and mass spectrometry analysis. In addition, a novel approach

to the limitations of metagenomic databases is also discussed. Finally, prospects

are addressed regarding the application of metaproteomic analysis using a unified

host-microbiome gene database and other meta-OMICs platforms.

Keywords: mass spectrometry based proteomics, fecal metaproteome, gut microbiota, metabolomics, microbiota

genome catalog, OMICS, LC-MS/MS

INTRODUCTION

The use of mass spectrometry in biomolecular identification is responsible for incalculable progress
in the biomedical and health field. This progress is directly related to the significant technologic
improvement in these detection tools concerning qualitative and quantitative aspects (Aebersold
and Mann, 2003). In this context, proteome-wide scale analysis may be considered one of the
main tools in disease biomarker identification (Zhang A. et al., 2016). This is clearly observed
in several tissue targets (e.g., cardiac, skeletal muscle, adipose and hepatic tissue, as well as body
fluids, blood, urine, and saliva) in health and disease-related fields, such as physical activity, cancer,
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cardiovascular and metabolic disturbance (Diamandis, 2004; Hu
et al., 2005; Mira-Pascual et al., 2015; Petriz et al., 2015; Savas
et al., 2016; Thomas et al., 2016).

In the past few years, metagenomic studies have linked the gut
microbiota to the pathogenesis of obesity. In this context, several
mechanisms were investigated, including enhanced energy
extraction from complex polysaccharides during digestion,
SCAFS production with direct effect on the energy-homeostasis
center in the hypothalamus axis and the stimulation of pro-
inflammatory signaling (Turnbaugh et al., 2006). Some of these
obesogenic factors are thought to occur by the interaction of
selective microbiota community with gut genes, influencing the
host metabolism. Thus, gut transcriptome studies have brought
some interesting insights to this aspect, also revealing novel
candidates linking microbiota to obesity and cardiovascular
disease (Ussher et al., 2013; Tang and Hazen, 2014; Gregory et al.,
2015; Li et al., 2015; Aron-Wisnewsky and Clément, 2016).

Besides the increasing data linking obesity, type 2 diabetes
(Cai et al., 2015; Forslund et al., 2015) and auto-immune
disorders, such as diabetes type I (Burrows et al., 2015)
to alterations within the gut microbiota, recent studies have
also associated lower levels of certain bacterial families (e.g.,
Veillonellaceae) with increased blood pressure. This was
observed in salt-sensitive and Dahl salt-resistant rat strains,
pointing to some new insights in the interaction of host-gut
microbiota and the regulation of blood pressure (Mell et al.,
2015). In addition, the progression of cardiovascular risk factors,
such as atherosclerosis has also been linked to gut microbiota
(Howitt and Garrett, 2012; Ussher et al., 2013; Gregory et al.,
2015). Thus, further conclusions concerning this aspect are still
limited.

The various OMICs approaches have led to great progress
linking the microbiota profile to health and disease. However, the
investigation of this area through proteomic mass spectrometry-
based tools is still being improved. As a result, there is a large
gap in this field, where the identification of gene products from
the gut’s microbiota will lead to meaningful and complementary
information about the relationship between host-microbiota
and the outcomes of this close interaction in health and in
the pathogenesis of complex diseases, such as obesity and
cardiovascular disorders.

Taking this into consideration, in this review, we present the
application and the main limitations of metaproteomic studies
in complex microbiota environments, such as the gut, also
addressing the up-to-date pipelines in sample preparation prior
to fractionation/separation and mass spectrometry analysis. In
addition, a novel approach to the limitations of metagenomic
databases is also discussed. Finally, the prospects for the
application of metaproteomic analysis using a unified host-
microbiome gene database are addressed.

FROM METAGENOME TO
METAPROTEOME ANALYSIS OF GUT
MICROBIOTA

Considering the gastrointestinal tract as one of the most
complex biological ecosystems ever studied, high-throughput

metagenomic studies (e.g., 16S rRNA profiling) have done a good
job in delivering some interesting insights on the compositions of
the host microbial communities, and their effect on host health
and disease status (Round and Mazmanian, 2009). Due to these
studies, intestinal microbes are linked to key roles in host defense,
including their action against pathogen invasion, innate immune
regulation and inflammatory responses, nutrient processing, and
energy balancing throughmetabolic process. Also, an unbalanced
microbiota profile may be related to metabolic disorders, such
as obesity and diabetes (Ley et al., 2006; Ridaura et al., 2013),
and even cardiovascular disease, such as atherosclerosis (Gregory
et al., 2015; Li et al., 2015).

However, these classic phylotype profiling studies are
limited to the identification of microbial constituents, where
poor information is known about the molecular interaction
of these bacterial communities with the host genome and
the possible outcomes in host biology. It is possible that
this gap had influenced the development of complementary
and more sensitive tools to better investigate the entire
scene. The study of the environmental proteome seemed to
fulfill this gap, also leading to significant clinical potential
(Haange and Jehmlich, 2016). Compared to metagenomics
and metatranscriptomics, the major positive aspect of
metaproteomics relies on “function” information. Identification
of proteins and their assignment to specific taxa and how
they interact within the host are key elements in better
understanding the host physiology under physiologic and
pathologic conditions. Thus, after a decade, the technical aspects
of this analysis are still a major challenge to the field (Wilmes
et al., 2015).

Considering the host gut-proteome as a fundamental element
for maintaining the mutualistic relationship, also reporting on
the status of the interaction of host-to-microbiota, it is very
important to identify and address the function of as many
proteins encoded by the gut microbes as possible. This is a
key factor to enhance our understanding of the host-microbe
interactions in the gut ecosystem. Also, from this perspective,
novel complementary treatment for metabolic disorders and
even inflammatory bowel disease may be formulated. Therefore,
metaproteomics or community proteogenomics has emerged as
a complementary approach to metagenomic data, as a field in
proteomics aiming to perform large-scale characterization of
proteins from environmental microbiota, such as the human gut
(Wilmes and Bond, 2004).

In the past decade, this approach evolved from few
proteins uncovered by classic 2-DE and de novo sequencing
to thousands of proteins resolved by shotgun LC-MS/MS
permitting simultaneous protein separation, quantification and
identification (Wilmes et al., 2015). The advances in molecular
separation methods coupled with mass spectrometry (e.g., LC-
MS/MS) and proteome bioinformatics were fundamental to these
novel large-scale metaproteomic studies, which have further been
performed in a wide range of samples from soil, to plant and
human environments (Püttker et al., 2015; Xiong et al., 2015a;
Zampieri et al., 2016). However, it must be considered that the
complexity of environmental samples is higher than the classic
proteomics studies, owing to the lack of a well-known genome
database.
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Despite the great advances in this field in the past decade,
the characterization of the microbiome proteome presents
a high level of complexity, especially when considering the
gastrointestinal environment. It is estimated that in fecal samples
with approximately>21,000 taxa, there aremore than 63,000,000
unique proteins (Wilmes et al., 2015), of which 2900 were
identified as the host-microbiota signature of Crohn’s disease
(Erickson et al., 2012). Besides the high complexity of fecal
and gut microbial content, severe proteolytic events in the
gastrointestinal tract may also affect its analysis (Lichtman et al.,
2013). Thus, recently, major progress has beenmade to overcome
these methodological limitations.

METAPROTEOMICS IN GUT MICROBIOTA

In the gastrointestinal environment, metaproteomic studies were
initially applied to investigate the microbial mucosa-lumen
interface in several intestinal loci (Li et al., 2011), as done
in the comparison of healthy and inflamed mucosa in an
inflammatory bowel disease study (Presley et al., 2012). Others
have found significant variation in intestinal epithelial barrier
proteins between Crohn’s disease patients and healthy individuals
(Erickson et al., 2012). Thus, the analysis of gut metaproteome
and metagenome are usually conducted with fecal samples, not
only because they are easily accessible matrices that permit
collections in several temporal points, but also because they
present a great amount of biomass. Moreover, the analysis of
fecal samples collected at different time-points may reflect the
intestinal conditions under healthy and pathologic conditions,
which has been extensively analyzed in metagenomic studies
(Serino et al., 2012; Petriz et al., 2014).

The first large-scale metaproteomic study of the human
fecal sample identified up to 1340 non-redundant proteins
(Verberkmoes et al., 2009). It was observed that 30% of the
measured spectra were matched to the human protein database,
indicating that the host proteome plays a significant role in fecal
metaproteomics. The study of the fecal metaproteome is also
being conducted to understand the process of gut colonization
better, since metaproteomic data may provide more insights
about the characterization of metabolic activity and host-microbe
interaction, being a complement to infant metagenomic data
(Morowitz et al., 2011; Sharon et al., 2013). In this sense, it
must be considered that the presence of host-cells protein’s and
endogenous factors are some of the many challenging events
in the analysis of the gut metaproteome (Xiong et al., 2015a).
Furthermore, the preparation and optimization of the fecal
sample prior to mass spectrometry (MS) is possibly essential for
efficient metaproteomic analysis.

Considering the complexity of metaproteomic studies applied
to a wide range of microbial consortia, experts in the field have
suggested a series of considerations for this field (for a full review
see Wilmes et al., 2015; Smirnov et al., 2016). In a general way,
a metaproteomic study performed by shotgun is conducted by
considering three to four main steps, which include: (1) efficient
extraction of proteins from the entire microbial community;
(2) sample clean-up from chemicals used in the extraction
process, usually detergents and other compounds that interfere

with the enzymatic digestion and MS analysis; (3) depletion
of host cells and the enrichment of microbial cells to avoid
host-cell contamination (this step is usually used in complex
samples, such as gastrointestinal content); (4) reduction of
sample complexity through the pre-fractionation of proteins and
peptides before MS analysis. Considerable attention must be paid
to the extraction process, since the microbiota is composed of a
wide range of microorganisms (e.g., Gram-negative and Gram-
positive bacteria, fungi), and it is suggested that the depletion of
species with higher resistance to lysis methods should be avoided.
For example, it has been shown that the combination of bead-
beating with freeze-thawing enhances protein extraction from
yeast and Gram-positive bacteria (Tanca et al., 2014). A general
metaproteomic analysis workflow is presented in Figure 1.

MASS SPECTROMETRY ANALYSIS IN
FECAL METAPROTEOMICS

Considering metaproteomics as a relatively novel analytical
procedure, more effort is required to enhance and improve
the process of sample preparation in the analysis of gut
metaproteome. As mentioned in the previous section, in
addition to the challenging aspects of fecal samples (e.g., the
sample’s large diversity in gut microbial composition, wide
dynamic range of protein abundance and poor or insufficient
genome information), fecal metaproteomic analysis is commonly
impaired by the high number of host-cells and proteins, which
overshadow the microbial proteome.

It was recently observed that microbial peptides that are
co-eluted with dominant human peptides are ion suppressed,
limiting their identification upon MS/MS analysis (Xiong et al.,
2015b). To overcome part of these limitations, differential
centrifugation is commonly used in fecal samples in order to
enrich microbial cell content (Verberkmoes et al., 2009; Erickson
et al., 2012). However, the amount of fecal sample is still a
limiting issue. For this reason, a double filtering (DF) separation
step was proposed by Xiong et al. (2015b) as an alternative
to enrich microbial biomass, while depleting human cells and
proteins prior to the separation and identification by 2D LC-
MS/MS. Authors reported that this strategy successfully enriched
low-abundant microbial proteins, also preserving the relative
distributions of protein abundance in each analyzed sample.

In shotgun metaproteomics, the absence of available database
for peptide spectra matching (PSM) is one the main limitations
in the analysis of the gut metaproteome, also limiting cross-
study comparisons. To date, customized databases composed
of a series of unknown gut microbial genome are often
used (Erickson et al., 2012; Kolmeder et al., 2012) instead
of high sequence coverage databases (e.g., NCBI-nr) because
of their time-consuming process and less sensitive peptide
identifications when using false discovery rate filtering (FDR)
(Jagtap et al., 2013). However, it must be considered that
these synthetic databases present some limitations, because
a number of intestinal microbes are uncultivable with un-
sequenced genomes. In the best scenario, functionally annotated
metagenomes derived from whole genome sequencing from
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FIGURE 1 | Representation of a workflow in a metaproteomic analysis of fecal sample extracted from the gut, starting from the bacterial extraction

process, followed by microbial protein extraction and enrichment, protein and peptide separation, identification, and quantification and MS/MS

search against genome databases. FASP; filtered-aided sample preparation.

the same sample would enhance the protein identification in
metaproteomic studies. This approach was used in the study of
Kolmeder et al. (2012), where metagenome and single genome
sequence data from thousands of mass spectra from each sample
generated∼1000 peptides per sample, indicating also∼1000 core
proteins per sample. Thus, when this is not an option, a matched
metagenome database is suggested as an alternative to manual
customized databases.

It has been shown that the sensitivity of peptide and protein
identification was enhanced by a two-step approach, in which a
target-only database was primarily used to generate a narrower
database, followed by second target-decoy database research
(Jagtap et al., 2013). Thus, major progress has been made
with the combination of a matched metagenome database with
the two-step approach, where 13,000 peptides, corresponding
to 3000 proteins were identified from mice cecum samples
(Tanca et al., 2014). Here an optimized pipeline, including
sample extraction by bead-beating and freeze-thawing, sample
cleanup and digestion by filtered-aided sample preparation
(FASP) and a single run nanoLC-MS/MS was proposed as a
straightforward method for metaproteome analysis (Tanca et al.,
2014). It is suggested that single run nanoLC-MS/MS is a
less laborious and time-consuming approach compared to two-
dimensional LC-tandemmass spectrometry (MS/MS) (Schneider

and Riedel, 2010). It has also been suggested that the approach
for protein identification and analysis leads to significant impacts
on metaproteomic data (Tanca et al., 2013). Thus, the pipeline
proposed by Tanca et al. (2014) was tested on two samples
of murine fecal microbiota with separate LC-MS/MS analysis
being conducted for each fecal sample. The obtained MS spectra
were searched against a matched metagenomic database with
archived ORFs (open reading frames) from all experimental
sequencing from the entire fecal metagenome, including mouse
and soybean proteome and the sequences from fungal and
archaeal. This proposed platform was shown to be more
time-effective than 2D-LC-MS/MS, also presenting an in-depth
characterization of gut microbiota by uncovering proteins from
over 600 different microbial species and 250 functional protein
families.

Metaproteomic studies will make major progress if a
comprehensive database covering the genes and expresses
proteins from all gut microbial species is developed. As
an example, a recent study used the well-annotated human
(9.9 Gut million genes) (Li et al., 2014) and mouse (2.6
million genes) (Xiao et al., 2015) gut microbial gene database
(available at: http://gigadb.org/) to set an improved and universal
approach for metaproteomic identification and quantification
(MetaPro-IQ) (Zhang X. et al., 2016). MetaPro-IQ analysis led
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to the quantification of ∼120,000 peptides, corresponding to
30,000 protein groups. A significant improvement in database
limitations was also addressed in the recent study of Chatterjee
et al. (2016) where the authors designed a scalable set of sequence
databases. Thence, the authors developed ametagenomic analysis
method (ComPIL) by integrating three protein sequencing
databases (ProtDB, MassDB and SeqDB) with a proteomic search
engine (Blazmass) for rapid matching of MS MudPIT spectra.
Using this method, intracellular and secreted microbial proteins
from five human stool samples in three technical replicates were
identified on an average of more than 9000 protein loci per
sample. Lastly, metaproteomic studies are mostly conducted in
in vivo experiments. However, it must be considered that ex
vivo gastrointestinal model systems (e.g., tissue cultures extracted
from colon or rectumGrivel andMargolis, 2009) can also be used
to validate and obtain more mechanistic information about the
relationship and interaction between the host and its microbiota
(Fritz et al., 2013). This was observed recently, when Tsilingiri
et al. (2012) used this approach to demonstrate the effect of
probiotics and postbiotics on the inflammatory properties of
Salmonella.

PROSPECTS

In comparison to metagenomics and metatranscriptomics, the
study of the metaproteome is still restricted and far from its full
potential. Nevertheless, it is a consensus that metaproteomics
delivers a great amount of valuable data for responding to diverse
biologic questions concerning the host biology in health and
disease. It is also notable that this approach still faces some
technical challenges (e.g., sample preparation and analytical data
acquisition and quantification). In order to reach its expected
potential, these emerging technologies should be improved
in order to reduce the wide dynamic ranges of different
metaproteomics, also focusing on detecting methods for protein
modifications and the integration of the meta-omics platforms

for in-depth characterization of diverse microbial communities
(Wilmes et al., 2015).

As occurred with metagenomics and metatranscriptomics,
rapid technical advance is expected in the upcoming years to
lower the cost of metaproteomics and routinely pair it up with
the other meta-OMICs data in the study of gut microbiota, which
also include the metabolomics approach (Smirnov et al., 2016).
As an integrated approach to metaproteome, metabolomics has
also delivered a comprehensive analysis of several biological
sources (e.g., tissue, plasma, urine, faces), in order to track and
monitor metabolites from the host and its microbes, and their
co-metabolites (Palau-Rodriguez et al., 2015). However, in fecal
samples, metabolomics is performed in other to trackmetabolites
originating from the host, its microbes and food components,
whichmay be an extremely useful tool for investigatingmetabolic
disorders in the host and in relation to in situ alterations
(Smirnov et al., 2016).

Still, as shown recently by Smirnov et al. (2016) an ISI Web
of Science search indicated that the majority of publications
concerning fecal metabolomics are attributed to disease-related

issues, such as inflammatory bowel disease, cancer, infection, and
obesity. In addition, this search indicated that when compared
to 16S sequencing, metagenomics, and metabolomics, the field
of metaproteomics is less explored, with fewer publications,
indicating a vast field to be researched.
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