
ABSTRACT

Title of Thesis: METAREASONING APPROACHES
TO THERMAL MANAGEMENT
DURING IMAGE PROCESSING

Michael K. Dawson Jr.
Master of Science

Thesis Directed by: Professor Jeffrey Herrmann
Department of Mechanical Engineering

Resource-constrained electronic systems are present in many semi- and fully-autonomous

systems and are tasked with computationally heavy tasks such as image processing. Without

sufficient cooling, these tasks often increase device temperature up to a predetermined

maximum, beyond which the task is slowed by the device firmware to maintain the

maximum. This is done to avoid decreased processor lifespan due to thermal fatigue

or catastrophic processor failure due to thermal overstress. This thesis describes a study

that evaluated how well metareasoning can manage the central processing unit (CPU)

temperature during image processing (object detection and classification) on two devices:

a Raspberry Pi 4B and an NVIDIA Jetson Nano Developer Kit.

Three policies that employ metareasoning were developed; one which maintains a

constant image throughput, one which maintains a constant expected detection precision,

and a third that trades between throughput and precision losses based on a user-defined

parameter. All policies used the EfficientDet series of object detectors. Depending

on the policy, these networks were either switched between, delayed, or both. This

thesis also considered cases that used the system’s built-in throttling policy to control

the temperature.

A policy was also created via reinforcement learning. The policy was able to adjust

the detection precision and program throughput based on a set of states corresponding to

the possible temperatures, neural networks, and processing delays.

All three designed metareasoning policies were able to stabilize the device temperature

without relying on thermal throttling. Additionally, the policy created through reinforcement

learning was able to successfully stabilize the device temperature, though less consistently.

These results suggest that a metareasoning-based approach to thermal management in

image processing is able to provide a platform-agnostic and programmatic way to comply

with constant or variable temperature constraints.

METAREASONING APPROACHES TO THERMAL
MANAGEMENT DURING IMAGE PROCESSING

by

Michael K. Dawson Jr.

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2022

Advisory Committee:
Professor Jeffrey Herrmann, Chair/Advisor
Assistant Professor Yancy Diaz-Mercado
Associate Professor Mark Fuge

© Copyright by
Michael K. Dawson Jr.

2022

Dedication

To my parents, Mike and Beth, and my sister, Molly, with love.

ii

Acknowledgments

This thesis was made possible by the help of those around me.

First, I would like to thank my advisor, Dr. Jeffrey Herrmann, for supporting my

work and pushing me to think of new ideas. His patience and thoughtfulness encouraged

me to continually refine my work. I’d also like to thank Dr. Fuge and Dr. Diaz-Mercado

for their membership in my thesis committee.

I’d like to thank my colleagues in the Keystone Program, especially Kevin Calabro,

for supporting me through my first year in graduate school. My experience with ENES100

and those who support is a constant source of inspiration and motivation. Thank you, also,

to the Laboratory Teaching Fellows for their help in working with Linux and Python.

I want to acknowledge the Maryland Robotics Realization Laboratory for their

generous loan of an NVIDIA Jetson Nano Test Kit.

Finally, I’d like to thank the U.S. Army Research Laboratory for its funding throughout

my second year in graduate school.

iii

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations ix

Chapter 1: Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3

1.2.1 Designed Metareasoner . 4
1.2.2 Learned Metareasoner . 5

1.3 Overview . 5

Chapter 2: Background 6
2.1 Thermal Management . 6

2.1.1 Internal Management . 7
2.1.2 External Management . 7

2.2 Image Processing . 8
2.3 Metareasoning . 9
2.4 Reinforcement Learning . 10

Chapter 3: Designed Policies 12
3.1 Research Question . 12
3.2 Experimental Approach . 12

3.2.1 Hardware . 13
3.2.2 Software . 14
3.2.3 Throughput Adjustment Policy - Policy 1 17
3.2.4 Network Switching Policy - Policy 2 19
3.2.5 Hybrid Policy - Policy 3 . 22

3.3 Results . 25
3.3.1 Throughput Adjustment Policy - Policy 1 25

iv

3.3.2 Network Switching Policy - Policy 2 47
3.3.3 Hybrid Policy - Policy 3 . 51

3.4 Discussion . 61
3.5 Summary . 70

Chapter 4: Learned Policies 71
4.1 Research Question . 71
4.2 Reinforcement Learning Policy - Policy 4 71

4.2.1 Q-Learning . 72
4.2.2 States . 73
4.2.3 Actions . 73
4.2.4 Reward Schedule . 74
4.2.5 Exploration vs Exploitation . 75
4.2.6 Validation . 75

4.3 Results . 77
4.4 Discussion . 81

Chapter 5: Conclusion 83

Bibliography 86

v

List of Tables

1.1 Metareasoning policies. 4

3.1 EfficientDet-Lite specifications . 15
3.2 Policy 1 test matrix. 18
3.3 Policy 2 strategies. 20
3.4 TAC variants. 23
3.5 Policies 2 and 3 test matrix. 24

5.1 Policy summary. 85

vi

List of Figures

3.1 Raspberry Pi 4B Setup . 13
3.2 Raspberry Pi 4B Setup . 14
3.3 Linear Quintiles . 21
3.4 Exponential Quintiles . 22
3.5 EDL-4 RPi Temperature . 25
3.6 EDL-3 RPi Temperature . 26
3.7 EDL-2 RPi Temperature . 26
3.8 EDL-1 RPi Temperature . 27
3.9 EDL-0 RPi Temperature . 27
3.10 EDL-4 Nano Temperature . 28
3.11 EDL-3 Nano Temperature . 29
3.12 EDL-2 Nano Temperature . 29
3.13 EDL-1 Nano Temperature . 30
3.14 EDL-0 Nano Temperature . 30
3.15 EDL-4 RPi Loop Length . 31
3.16 EDL-3 RPi Loop Length . 32
3.17 EDL-2 RPi Loop Length . 33
3.18 EDL-1 RPi Loop Length . 34
3.19 EDL-0 RPi Loop Length . 35
3.20 EDL-4 Nano Loop Length . 36
3.21 EDL-3 Nano Loop Length . 37
3.22 EDL-2 Nano Loop Length . 38
3.23 EDL-1 Nano Loop Length . 39
3.24 EDL-0 Nano Loop Length . 40
3.25 EDL-4 RPi CPU Usage . 41
3.26 EDL-3 RPi CPU Usage . 42
3.27 EDL-2 RPi CPU Usage . 42
3.28 EDL-1 RPi CPU Usage . 43
3.29 EDL-0 RPi CPU Usage . 43
3.30 EDL-4 Nano CPU Usage . 44
3.31 EDL-3 Nano CPU Usage . 45
3.32 EDL-2 Nano CPU Usage . 45
3.33 EDL-1 Nano CPU Usage . 46
3.34 EDL-0 Nano CPU Usage . 46
3.35 S1-TN RPi Overview . 47

vii

3.36 S2-TN RPi Overview . 48
3.37 S3-TN RPi Overview . 48
3.38 S1-TN Nano Overview . 49
3.39 S2-TN Nano Overview . 50
3.40 S3-TN Nano Overview . 50
3.41 S1-T0 RPi Overview . 51
3.42 S2-T0 RPi Overview . 52
3.43 S3-T0 RPi Overview . 52
3.44 S1-T1 RPi Overview . 53
3.45 S2-T1 RPi Overview . 53
3.46 S3-T1 RPi Overview . 54
3.47 S1-T2 RPi Overview . 54
3.48 S2-T2 RPi Overview . 55
3.49 S3-T2 RPi Overview . 55
3.50 S1-T0 Nano Overview . 56
3.51 S2-T0 Nano Overview . 57
3.52 S3-T0 Nano Overview . 57
3.53 S1-T1 Nano Overview . 58
3.54 S2-T1 Nano Overview . 58
3.55 S3-T1 Nano Overview . 59
3.56 S1-T2 Nano Overview . 59
3.57 S2-T2 Nano Overview . 60
3.58 S3-T2 Nano Overview . 60
3.59 EDL-3,4 RPi Topology . 63
3.60 EDL-1,2 RPi Topology . 63
3.61 EDL-0 RPi Topology . 63
3.62 EDL-3,4 Nano Topology . 64
3.63 EDL-1,2 Nano Topology . 64
3.64 EDL-0 Nano Topology . 64
3.65 Strategy 1 TAC Showcase . 67
3.66 Strategy 2 TAC Showcase . 67
3.67 Strategy 3 TAC Showcase . 67
3.68 Strategy 1 TAC Showcase . 68
3.69 Strategy 2 TAC Showcase . 68
3.70 Strategy 3 TAC Showcase . 68

4.1 Raspberry Pi policy 4 map. 77
4.2 Raspberry Pi policy 4 validation test. 78
4.3 Raspberry Pi policy 4 map. 79
4.4 Raspberry Pi policy 4 validation test. 80

viii

List of Abbreviations

ARM Advanced RISC Machine
COCO Common Objects in Context
CPU Central Processing Unit
DVFS Dynamic Voltage and Frequency Scaling
EDL EfficientDet-Lite
FPS Frames per Second
GHz Gigahertz
GPIO General-purpose Input/Output
GPU Graphics Processing Unit
IPD Initial Pause Duration
MR Metareasoning
MSTE Mean Square Temperature Error
MTTF Mean Time to Failure
PAC Pause Adjustment Coefficient
RAM Random Access Memory
RL Reinfocement Learning
RPi Raspberry Pi
RISC Reduced Instruction Set Computer
SoC System on a Chip
TAC Throughput Adjustment Coefficient
TF TensorFlow
TFLite TensorFlow Lite

ix

Chapter 1: Introduction

Many autonomous systems rely on image processing for object recognition. These

applications require a computer to take an input image or video feed and output what

objects are present and what their locations are in the image or video. Though occasionally

performed via processes such as edge detection, neural networks have become increasingly

popular as a method for image processing in recent years. Tesla autopilot, for example,

uses video feeds from cameras around the vehicle to recognize people, stop signs, and

many other objects critical to the driving experience [1]. This need to quickly process

images using neural networks, which require millions of computations, increases the

processor’s temperature [2].

Any processes performed on a computer processor will increase its temperature.

Normally, the processor’s temperature will fluctuate as the computational load varies, but

when a computationally heavy task such as image processing is performed continuously,

the temperature may increase enough to damage the processor [3]. This is a common risk

associated with heavy compute loads. Thus, it is important to have a thermal management

policy that can maintain the processor’s temperature within an acceptable range.

This thesis describes the design and performance of three metareasoning policies

which maintain a desired temperature while modifying detection precision and throughput.

1

The metareasoner can monitor the device temperature in order to control the image processing

procedure by switching between different neural networks and adjusting the processing

frequency via pauses of varying length to adapt to changes in both the ambient and device

temperatures. The metareasoner maintains a record of expected detection precision,

temperature, and detection frequency to adjust the policy parameters for on-the-fly adjustments

to the detection algorithm in accordance with a desired trade-off between precision and

throughput.

1.1 Motivation

Object detection is an important subset of image processing in various fields, as it

provides the benefits of human-like recognition capabilities applied at scale. Networks

trained in object detection are used in tasks such as pedestrian detection, facial and text

recognition, sign detection, and more [4]. When characterized by the rate and overall

quantity of images to be processed, object detection tasks can be split into two groups.

The first group of tasks requires a constant throughput of images and therefore puts

a constant thermal load on the active processor. The second group of tasks involves

processing images on-demand, placing the active processor under acute thermal stress.

The first scenario is associated with thermal fatigue and failure due to cyclic changes in

temperature, while the second is associated with thermal overstress and failure due to

one-time significant changes in temperature [5].

When designing systems that will perform tasks that fall into the first group, designers

will typically consider the thermal capacity, or maximum sustainable heat generation, of

2

their compute devices. Therefore, they can structure their object detection task such that

it operates at a certain temperature within the limits of the compute device. Systems

that must perform tasks in the second group, however, must rely on the device’s built-in

thermal throttling technique, which augments the device’s functionality to limit temperature

increase. The method by which the device maintains a maximum temperature, as well as

the maximum temperature itself, varies from device to device. For example, a Raspberry

Pi 4B has a thermal throttling temperature of approximately 82 ◦C [6], while an NVIDIA

Jetson Nano Developer Kit has a throttling temperature of 97 ◦C [7].

It is therefore advantageous for system designers to be able to specify a desired

temperature for a certain task across multiple devices with different hardware. This

allows thermal reliability models to be based on software parameters rather than hardware

specifications because a consistent thermal load can be expected, regardless of task precision

or throughput.

1.2 Contributions

This thesis details the design and performance of a novel metareasoning approach

to thermal throttling during image processing. Four policies are presented: three designed

based on empirical evidence, and another learned by a reinforcement learning agent.

These policies monitor the device’s temperature, the task’s throughput, and the recent

detection accuracy to make decisions about which neural network to use and whether

or not the overall throughput should be decreased or increased. These policies, shown

in Table 1.1 are designed to solve the issue of decreased performance due to spikes in

3

computational load for tasks that fall into group two [8], as well as provide a platform-

agnostic method for temperature-aware object detection for consistent thermal reliability

studies.

Table 1.1: Metareasoning policies.

Metareasoner Category Policy

Designed
Policy 1
Policy 2
Policy 3

Learned Policy 4

1.2.1 Designed Metareasoner

Rather than utilizing dynamic voltage and frequency scaling (DVFS), these policies

attempt to adjust for temperature changes by inserting pauses after each image is processed.

On longer time scales, this mimics the effect of DVFS without reducing the total computational

capacity of the central processing unit (CPU), without the drawbacks associated with on-

demand tasks during DVFS which are noted by Wang et al. [8]. If throughput is of a

higher priority than precision, the metareasoner will also switch to progressively smaller

neural networks, each requiring fewer computations to process an image.

The results of our experiments showed that these designed metareasoning policies

are able to maintain a chosen desired temperature while prioritizing either detection

precision or throughput on multiple hardware platforms.

4

1.2.2 Learned Metareasoner

This policy performed the same function as the designed metareasoner, but learn

an optimal policy through Q-learning. This metareasoner determines the state of the

system and learns a desired action based on an estimated future reward associated with

the squared temperature error.

The policy resulting from reinforcement learning training was also able to stabilize

the temperature, though less consistently than the designed policies.

1.3 Overview

Chapter 2 details background information about the problem of thermal management

and reviews related studies. It also provides information about different image processing

techniques, metareasoning, and reinforcement learning. Chapter 3 describes the experimental

methodology for the designed metareasoning policies. This includes the experimental

apparatus, policy descriptions, results, and discussion. Chapter 4 details the experimental

methodology for the learned metareasoning policy, including the policy descriptions,

results, and discussion. Chapter 5 summarizes the results of the performed experiments

and draws relevant conclusions.

5

Chapter 2: Background

2.1 Thermal Management

Central Processing Units (CPUs), or processors, are made of transistors. When

transistors are in their “off” state, they have a high resistance compared to the “on” state.

In their “on” state, current flows through the transistor, encountering a low, but non-zero

resistance. When this happens, energy is dissipated in the form of waste heat.

The processor has a limited range of temperatures at which it can operate. Each

processor has a minimum operating temperature recommended by the manufacturer. Below

this temperature, damage to the device’s circuitry may occur due to thermal contraction.

On the other end, each processor also has a maximum specified operating temperature.

Above this temperature, the risk of permanent damage increases. Thermal expansion can

physically damage components by separating circuits. Additionally, silicon’s resistivity

decreases as temperature increases, which causes more current to flow and more heat

to be generated, and so on. This thermal overstress can lead to the CPU becoming

nonfunctional.

Even if the temperature is not high enough to significantly damage the device,

periodic increases and decreases in temperature, known as thermal fatigue, can eventually

lead to failure of the CPU [5].

6

Therefore, the fundamental problem of thermal management arises from two conflicting

characteristics of a processing unit: (i) when active, the device generates heat at a rate that

is proportional to the number of computations performed (which increases its temperature),

but (ii) the device lifetime is inversely correlated with the mean operating temperature.

This has led to the development of thermal throttling strategies as processing units are

pushed towards ever-higher computation rates. These strategies fall into two main categories

depending on what actuator they are using to control the temperature.

2.1.1 Internal Management

Internally-managed systems rely on changes to the input to the processing unit to

lower the number of computations performed, thereby lowering the operating temperature.

A popular strategy for achieving this is dynamic voltage and frequency scaling (DVFS)

[9]. This method adjusts the input frequency to the processing unit to slow computation

frequency. The slower computation frequency also leads to a lower operating temperature

and power consumption.

2.1.2 External Management

Alternatively, the temperature of the processor can be controlled by changing the

environment in which it operates. Typically, this is done by providing increased cooling

through increased conductive or convective heat transfer.

Convection can be increased passively by increasing the surface area of the processor

through fins, or actively by increasing the convection coefficient through increased mass

7

flow [10].

Benoit-Cattin et al. [11] showed that dynamic active cooling can increase the

efficiency of image processing on a Raspberry Pi. Their approach, which used an external

fan that was controlled by the Raspberry Pi 4B, increased the image processing throughput.

2.2 Image Processing

One of the main tasks that CPUs are required to perform is image processing. This

task can take many forms, but the one which is of particular interest in recent years is

object detection [4, 12].

Object detectors are a variant of image classifiers which themselves are a type of

neural network. These neural networks take as input the gray scale or color values of an

input image and perform a series of linear and non-linear operations on them until a set

of values is output. For image classifiers, these outputs are a set of probabilities associated

with a “class” of image. This network learns which class is correct via supervised learning,

a process in which the network is provided with a set of inputs and associated, labeled

outputs. In this process, it modifies the weights between each node to determine the value

which provides the correct output most often. An object detector modifies the output of an

image classifier to additionally locate where each object, predicted with at least a certain

confidence, is in the scene.

8

2.3 Metareasoning

Metareasoning is a higher-level form of programmatic thinking that can lead to

improved performance in autonomous agents. Metareasoning achieves this by monitoring

the agent and its decision-making environment to determine how to approach its current

decision [13, 14]. Without intervention, many programs operate toward the maximum

confines of their environment. Autonomous rovers, for example, may travel at high speeds

while searching an unknown environment, unknowingly shortening their battery life and

leading to increased time between charging and shorter lifespans. Metareasoning provides

a way for designers to help autonomous agents better understand the larger context of their

mission so they can perform better in metrics for which they would otherwise not be able

to account. In the case of this thesis, this means providing the program with knowledge

of the device temperature, processing throughput, and detection precision so that it can

optimally perform its task under external constraints.

I am unaware of any work explicitly detailing metareasoning as a method for thermal

management specific to image processing. There is, however, some use of metareasoning

in related areas - particularly, image processing.

Nguyen et al. [15] used “frame skipping” to achieve a desired output video quality.

Given a set input frame rate, their system was designed to discard certain images if a

consistent output frame rate was not maintainable due to limited computational resources

on the client-side of the gaming system. Although this was not explicitly considered

metareasoning by the authors, their implementation involved a “decision engine” which

would “decide the optimal frame rate given the current system status.” Thus, this is a type

9

of metareasoning.

Lee et al. propose “Virtuoso,” a metareasoner which picks an object detector and

tunes its parameters to optimally perform video processing based on user-defined energy,

accuracy, and speed requirements [16]. This method finely adjusts neural networks so

that they perform as best as possible.

Although DVFS is a proven methodology for power and thermal management, it

does not perform optimally with tasks that require short bursts of high CPU utilization

[8]. Additionally, not all devices can be cooled externally, so the work by Benoit-Cattin

et al. cannot be applied to systems that rely only on passive cooling. The approach used

by Nguyen et al. is designed to maintain a desired frame rate, but it does not account for

temperature. Virtuoso also does not account for temperature. While the energy constraints

could be intelligently defined by the user, the metareasoner is not explicitly aware of the

temperature of the processor.

Thus, the method in chapter 3 sought to determine whether a metareasoning approach

would be able to control a processor’s temperature, which would be useful in situations

where other techniques are infeasible or expensive.

2.4 Reinforcement Learning

Reinforcement learning is a field of machine learning in which an agent learns

which actions to perform in a certain state based on the reward associated with each

state. One method of doing this Q-learning, wherein an agent in an environment learns an

optimal pairing of states and actions, known as a policy [17].

10

Das et al. researched the effectiveness of thermal management via reinforcement

learning in 2014. Their approach sought to control the frequency of the CPUs as well as

the assignment of certain processing threads to certain CPU cores. Their approach offered

a two to three times improvement in the mean time to failure (MTTF) for the processor,

depending on whether it was applied within or across different programs [18].

This approach addresses many of the same goals in this thesis, but is unable to

affect the decisions made within a program, only how the CPU distributes and paces the

program tasks. Therefore, the approach demonstrated in chapter 4 of this thesis is unique

in that it allows the reinforcement agent to take actions within the program, particularly

switching between neural networks.

11

Chapter 3: Designed Policies

3.1 Research Question

A trade-off is present between processing speed and detection precision of neural

network object detectors [19, 20, 21]. Their performance is additionally constrained by

the maximum temperature at which the device is capable of operating. Considering that

temperature is a key factor in the performance and lifespan of electronic devices, is there

a way to use metareasoning to sacrifice (i) speed, (ii) precision, or (iii) both to maintain a

certain temperature across devices?

3.2 Experimental Approach

To answer this question, two different policies were developed to reduce the processing

throughput or detection precision. A third policy was developed as a generalization of the

first two policies which is able to trade off between both throughput and precision while

maintaining temperature.

12

3.2.1 Hardware

3.2.1.1 Raspberry Pi 4B

Tests were performed on a Raspberry Pi 4B. This device was chosen because of its

low price, popularity, and our familiarity with the default operating system, Raspbian.

The Raspberry Pi uses a Broadcom BCM2711 system on a chip (SoC), which

contains a quad-core Cortex-A72 processor [22]. The temperature measured by the SoC’s

internal sensor is read from the Linux “/sys” directory [22, 23].

A 3D-printed case was created for the device [24]. A small 5V fan was installed in

the case and controlled with the GPIO Python package [25]. The final setup is shown in

Figure 3.2.

Figure 3.1: Raspberry Pi 4B in its case with fan.

13

3.2.1.2 NVIDIA Jetson Nano Developer Kit

Tests were additionally performed on an NVIDIA Jetson Nano Developer Kit. This

device was chosen for its excellent ability to perform neural network operations, as well

as its popularity in the machine learning field.

The Nano has a Quad-core ARM A57 SoC which operates at 1.43 GHz. It additionally

has a 128-core Maxwell GPU; GPUs are notable for their competence in performing

operations in parallel, a feat which is desirable in machine learning [26]. For the purposes

of consistency between devices, the GPU was not used to accelerate object detection on

the Nano.

Figure 3.2: The NVIDIA Jetson Nano Devloper Kit [26].

3.2.2 Software

Object detection was performed via the EfficientDet architecture, created by Tan et

al. in 2019 [27]. This family of efficient object detectors provides sufficient recognition

precision with low latency on resource-constrained devices. The authors provide eight

individual architectures, D0-D7, which each accepts a different input image resolution.

14

As the network increases in size, its detections are increasingly accurate but take longer

to perform. This is shown in Table 3.1 [28].

EfficientDet D0-D4 were used during testing. Each was trained on the COCO2017

dataset [29] in TensorFlow by the TensorFlow Team [30]. The models were then optimized

to be compatible with TFLite, TensorFlow’s mobile neural network framework. They are

therefore referred to as EfficientDet-Lite[0-4] (EDL-[0-4]). The important characteristics

for these neural networks is shown in table 3.1.

Table 3.1: EfficientDet D0-D4 (for TFLite) characteristics. Measurements performed by
the TensorFlow Team on a Pixel 4 using the 2017 COCO validation dataset.

Model Architecture Size (MBs) Latency (ms) Average Precision Identifier
EfficientDet-Lite0 4.4 37 25.69% Network4
EfficientDet-Lite1 5.8 49 30.55% Network3
EfficientDet-Lite2 7.2 69 33.70% Network2
EfficientDet-Lite3 11.4 116 37.70% Network1
EfficientDet-Lite4 19.9 260 41.96% Network0

Note: Adapted from Object Detection with TensorFlow Lite Model Maker by the
TensorFlow Team, 2022.

Each test used the same fundamental script with changes only occurring depending

on parameter values and the metareasoning policy. This program is shown in Algorithm

1.

Three different metareasoning policies were tested. The first, policy 1, adjusts the

throughput of the image processing to maintain a desired temperature. The second, policy

2, changes which neural network performs image processing while maintaining a constant

throughput to maintain a desired temperature. The third, policy 3, does what both policy

1 and 3 do, but uses a parameter to determine how much throughput should be increased

15

Algorithm 1 Main Program
Ts ← 50◦C ▷ Set start temperature

Require: T ≤ Ts

t0 ← 0s ▷ Set test start time
ts ← [300, 600]s ▷ Set test duration for policy [1,2]
Td ← [70, 55]◦C ▷ Set desired temperature for [RPi, Nano]
pd ← pd ▷ Set initial pause duration
pa ← pa ▷ Set pause adjustment coef.
TAC ← TAC ▷ Set throughput adjustment coef.
Strategy ← Strategy ▷ Set switching strategy
Network ← Network4 ▷ Set starting network
Ndmax ← Ndmax ▷ Set maximum network duration
Thmax ← 1/Ndmax ▷ Set maximum throughput
Pmin ← Pmin ▷ Set minimum network precision
Pmax ← Pmax ▷ Set maximum network precision
while t < ts do ▷ t is the program time

Process image
Record Nd ▷ The processing duration
Record T ▷ The current temperature
Perform Policy [1 | 2 | 3]
Record Ld ▷ The loop duration
Record T

end while

for each unit of precision decrease.

Because these tests depend on the temperature of the SoC, it was important that all

tests began at the same temperature and have similar ambient thermodynamic environments.

While idle, the temperature of the SoC in a 22◦C room and without active cooling is

approximately 57◦C. Between tests, the device was cooled via convective heat transfer

by the 5V fan attached to the case. The cooling cycle, which ran before each test if the

temperature was greater than the set starting temperature, activated the fan until a specific

temperature was reached. So this cycle was activated even if the device was near its idle

temperature, the starting temperature was chosen to be 50◦C, which is below the idle

temperature.

16

The Nano has excellent passive cooling in the form of fins on its SoC. Its idle

temperature is measured to be approximately 35 ◦C. Because the idle temperature is so

low, 50 ◦C was chosen to be the starting test temperature. If the temperature is too low

before the start of a test, EfficientDet-Lite4 is run continuously until the start temperature

is reached. Between tests, cooling occurs via natural convection.

The desired temperature for each device was chosen so that it was reachable during

each test. This way, metareasoning would actively modify the image processing loop

during at least some portion of the test. The desired temperature for the RPi was chosen to

be 70 ◦C so that even the least computationally intensive network, EfficientDet-Lite0, was

able to reach the desired temperature. The desired temperature for the Nano was chosen to

be 55 ◦C. Because the Nano is more efficiently able to remove heat from its CPU than the

RPi thanks to its large set of fins, its temperature rises more slowly. Therefore, the desired

temperature had to decrease so that it could be reached within the same time constraints.

We tracked multiple variables during each test, measured once after the image was

processed and again after the pause was inserted. The most important of these were the

following: SoC temperature, SoC CPU use, pause duration, processing duration, loop

duration, and average expected precision.

3.2.3 Throughput Adjustment Policy - Policy 1

To alleviate computational load, the computational rate must be decreased. The

proposed method does this on a “macro” level by inserting a pause of varying duration

during an image processing loop. While paused, the device idles at a low CPU load.

17

On average, this decreases the computational frequency, therefore lowering the SoC heat

output and the measured temperature.

Algorithm 2, inserts a pause with a duration proportional to the overshoot of the

desired temperature. Because only one network is used, average precision remains constant

while throughput drops over time to maintain a constant temperature.

Algorithm 2 Throughput Adjustment Policy (Policy 1)
pd ← pd + pa × (T − Td)
if pd < 0s then

pd ← 0s
end if
Wait pd seconds

For Algorithm 2, 25 tests were performed for each network. The values of both pa

and pd were incremented to create the set of tests, which are shown with their identifiers in

Table 3.2. For each value of pd, a test was performed where pa was zero. This represents

a program where the loop length is static and metareasoning is inactive.

Table 3.2: Policy 1 test matrix.

pd (s)
pa (s/◦C)

0 0.05 0.1 0.15 0.2
0 1 2 3 4 5

0.5 6 7 8 9 10
1 11 12 13 14 15

1.5 16 17 18 19 20
2 21 22 23 24 25

In these tests on the RPi, the temperature reaches a maximum of approximately

82◦C. This occurs because, whenever the temperature of the Raspberry Pi 4B is above

75◦C, the CPU operating speed is lowered via DVFS [6]. In practice, the observed

throttling temperature is 82◦C.

18

Meanwhile, on the Nano, the cooling is sufficient that the thermal throttling temperature

of 97 ◦C is not reached [7].

Because 125 tests had to be performed and iterated upon, a test duration of five

minutes was used. This allowed for a full set of tests to be performed over the course of

a day.

3.2.4 Network Switching Policy - Policy 2

Algorithm 3, switches between the variants EfficientDet on an ordinal scale. Switching

occurs if a certain temperature threshold is met. The threshold for each network depends

on the switching strategy. Neither pa nor pd needed to be varied because they were not

used in the program. Therefore, each test was performed for a duration of 10 minutes

because fewer tests needed to be perfomed.

Algorithm 3 Network Switching Policy (Policy 2)
Wait pd seconds
Perform Switching Strategy [1 | 2 | 3]
pd ← Ndmax −Nd ▷ Nd is the next network duration
Pavg ← Precision ▷ Average expected precision across the current and last 4 frames
if Pavg = Pmin then

pd,old ← pd
Perform Policy 1 ▷ Calculate new pause duration
pd ← pd,new + pd,old

end if

Three different switching strategies were implemented. The first strategy iterates

through the set of networks in order of descending or ascending computational complexity,

the second, the networks to a linearly scaling range of temperatures, and the third assigns

the networks to a range of exponentially scaling temperature ranges. The summary of

switching strategies which were tested are listed in Table 3.3.

19

Table 3.3: Policy 2 strategies.

Strategy Summary

1
“Upshift” or “downshift” between EDL variants when the temperature

error is too low or too high, respectively.

2
Each variant of EDL is assigned to a temperature range between the

start temperature and desired temperature. The five temperature ranges
are equally sized.

3

Each variant of EDL is assigned to a temperature range between the
start temperature and desired temperature. The five temperature ranges

decrease in size exponentially as the temperature approaches the
desired temperature.

Strategy 1 is shown in Algorithm 4. Each loop, this strategy iterates once through

the network list in decreasing order of computation time while the measured temperature

is greater than the desired temperature. Otherwise, it iterates through the list in the

opposite direction from the last network used.

Algorithm 4 Switching Strategy 1
i← NetworkIndex
if T < Td then

if i ̸= 4 then
Network ← Networki+1

else
Network ← Networki

end if
else

if i ̸= 0 then
Network ← Networki−1

else
Network ← Networki

end if
end if

Strategy 2 is shown in Algorithm 5 and creates five thermal zones between the

starting temperature and the desired temperature. Whenever a threshold is crossed, the

next network is switched to. For example, suppose that the first quintile extends from 50

20

◦C to 55 ◦C. In the image processing loop, EfficientDet D4 is used to detect objects, then

the temperature is measured to be 56 ◦C. Metareasoning will switch the neural network

for the next loop to be EfficientDet D3 and insert a pause which will maintain the overall

image throughput. Therefore, a small precision trade-off is made to preserve constant

temperature and precision. A depiction of the quintiles used for the Raspberry Pi are

shown in Figure 3.3.

Algorithm 5 Switching Strategy 2
qlin ← (Td − Ts)/5
i← 0
while T < (Ts + qlin) do

i← i+ 1
qlin ← (Td − Ts)/5 ∗ i
if i = 4 then

Break
end if

end while
Network = Networki

Figure 3.3: Linear quintiles for the Raspberry Pi tests using switching strategy 2.

Strategy 3, shown in Algorithm 6, instead uses five exponentially smaller thermal

21

zones. A depiction of these zones is shown in figure 3.4. Each quintile is half the size of

the one below it, except for the uppermost two, which are the same size.

Algorithm 6 Switching Strategy 3
qexp ← (Td − Ts)/2
i← 0
while T < (Ts + qexp) do

i← i+ 1
qexp ← qexp + (Td − (qexp + Ts))/2
if i = 4 then

Break
end if

end while
Network = Networki

Figure 3.4: Exponential quintiles for the Raspberry Pi tests using switching strategy 3.

3.2.5 Hybrid Policy - Policy 3

Metareasoning policy 3, rather than prioritizing solely precision or throughput,

provides a trade-off between both. The ratio of the trade-off is determined by a throughput

22

adjustment coefficient (TAC). It represents the preference for throughput loss rather than

precision loss, with larger values representing increased throughput loss per unit of precision

change. Its units are 1/s because it is a measure of the frames processed per second per

precision loss. The TACs which were tested are shown in table 3.4.

Table 3.4: TAC variants.

TAC Expectation
0 Throughput remains constant while precision decreases. Mimics policy 2.
1 Throughput decreases slightly as precision decreases.
2 Throughput decreases moderately as precision decreases.

In each loop, the switching strategy is used to determine which network will be used

in the next cycle. Then, the average expected precision across the previous five frames

is calculated. The difference between this value and the maximum expected precision

is multiplied by the TAC to find the decrease in throughput between this loop and the

next. Then, the pause duration is calculated from the difference. This policy is shown

in Algorithm 7. Because the pause length assigned in policy 3 is independent of the

temperature, this policy is best framed as a variant of policy 2.

Algorithm 7 Hybrid Policy (Policy 3)
Wait pd seconds
Perform Switching Strategy [1 | 2 | 3]
Pavg ← Precision
Thd ← Thmax − (Pmax − Pavg) ∗ TAC
lld ← 1/Thd ▷ Calculate desired loop length from desired throughput
pd ← lld −Nd

if Pavg = Pmin then
pd,old ← pd
Perform Policy 1
pd ← pd,new + pd,old

end if

23

To determine the expected duration of each network, five images were processed

for each version of EfficientDet-Lite and the average processing duration was calculated.

In total, 12 tests are performed for policies 2 and 3. These are identified in Table

3.5.

Table 3.5: Policies 2 and 3 test matrix.

Strategy
TAC (1/s)

Policy 2 Policy 3
N/A 0 1 2

1 S1-TN S1-T0 S1-T1 S1-T2
2 S2-TN S2-T0 S2-T1 S2-T2
3 S3-TN S3-T0 S3-T1 S3-T2

24

3.3 Results

3.3.1 Throughput Adjustment Policy - Policy 1

There are three main records of interest for policy 1. These are the temperature of

the SoC, the loop length, and the CPU usage. To emphasize the effect of metareasoning

on each program variant, Tests 1, 5, 20, and 25 are shown for each network.

3.3.1.1 Raspberry Pi 4B Temperature

The record of temperature over time for these tests on the RPi are shown in Figures

3.5, 3.6, 3.7, 3.8, and 3.9.

Figure 3.5: EfficientDet-Lite4 metareasoning effect on temperature on the RPi.

25

Figure 3.6: EfficientDet-Lite3 metareasoning effect on temperature on the RPi.

Figure 3.7: EfficientDet-Lite2 metareasoning effect on temperature on the RPi.

26

Figure 3.8: EfficientDet-Lite1 metareasoning effect on temperature on the RPi.

Figure 3.9: EfficientDet-Lite0 metareasoning effect on temperature on the RPi.

27

3.3.1.2 NVIDIA Jetson Nano Developer Kit Temperature

The record of temperature over time for these tests on the Nano are shown in Figures

3.10, 3.11, 3.12, 3.13, and 3.14.

Figure 3.10: EfficientDet-Lite4 metareasoning effect on temperature on the Nano.

28

Figure 3.11: EfficientDet-Lite3 metareasoning effect on temperature on the Nano.

Figure 3.12: EfficientDet-Lite2 metareasoning effect on temperature on the Nano.

29

Figure 3.13: EfficientDet-Lite1 metareasoning effect on temperature on the Nano.

Figure 3.14: EfficientDet-Lite0 metareasoning effect on temperature on the Nano.

30

3.3.1.3 Raspberry Pi 4B Loop Length

The record of the program loop length over time for these tests on the RPi are shown

in Figures 3.15, 3.16, 3.17, 3.18, and 3.19.

Figure 3.15: EfficientDet-Lite4 metareasoning effect on loop length on the RPi.

31

Figure 3.16: EfficientDet-Lite3 metareasoning effect on loop length on the RPi.

32

Figure 3.17: EfficientDet-Lite2 metareasoning effect on loop length on the RPi.

33

Figure 3.18: EfficientDet-Lite1 metareasoning effect on loop length on the RPi.

34

Figure 3.19: EfficientDet-Lite0 metareasoning effect on loop length on the RPi.

35

3.3.1.4 NVIDIA Jetson Nano Developer Kit Loop Length

The record of the program loop length over time for these tests on the Nano are

shown in Figures 3.20, 3.21, 3.22, 3.23, and 3.24.

Figure 3.20: EfficientDet-Lite4 metareasoning effect on loop length on the Nano.

36

Figure 3.21: EfficientDet-Lite3 metareasoning effect on loop length on the Nano.

37

Figure 3.22: EfficientDet-Lite2 metareasoning effect on loop length on the Nano.

38

Figure 3.23: EfficientDet-Lite1 metareasoning effect on loop length on the Nano.

39

Figure 3.24: EfficientDet-Lite0 metareasoning effect on loop length on the Nano.

40

3.3.1.5 Raspberry Pi 4B CPU Usage

The record of the CPU usage over time for these tests on the RPi are shown in

Figures 3.25, 3.26, 3.27, 3.28, and 3.29. Note that the CPU presented in these figures is a

20-second moving average of the raw CPU usage data. This is more representative of the

trend in usage.

Figure 3.25: EfficientDet-Lite4 metareasoning effect on CPU usage on the RPi.

41

Figure 3.26: EfficientDet-Lite3 metareasoning effect on CPU usage on the RPi.

Figure 3.27: EfficientDet-Lite2 metareasoning effect on CPU usage on the RPi.

42

Figure 3.28: EfficientDet-Lite1 metareasoning effect on CPU usage on the RPi.

Figure 3.29: EfficientDet-Lite0 metareasoning effect on CPU usage on the RPi.

43

3.3.1.6 NVIDIA Jetson Nano Developer Kit CPU Usage

The record of the CPU usage over time for these tests on the Nano are shown in

Figures 3.30, 3.31, 3.32, 3.33, and 3.34.

Figure 3.30: EfficientDet-Lite4 metareasoning effect on CPU usage on the Nano.

44

Figure 3.31: EfficientDet-Lite3 metareasoning effect on CPU usage on the Nano.

Figure 3.32: EfficientDet-Lite2 metareasoning effect on CPU usage on the Nano.

45

Figure 3.33: EfficientDet-Lite1 metareasoning effect on CPU usage on the Nano.

Figure 3.34: EfficientDet-Lite0 metareasoning effect on CPU usage on the Nano.

46

3.3.2 Network Switching Policy - Policy 2

3.3.2.1 Raspberry Pi 4B

For policy 2, temperature, loop length, and CPU usage are still important measurements.

Additionally, however, network used in each loop must be tracked. Therefore, a measure

of network usage frequency as a function of time is also shown. Note that each bin in

this representation covers units of 10 seconds. Data overviews for policy 2 on the RPi are

shown in Figures 3.35, 3.36, and 3.37.

Figure 3.35: Overview of test for metareasoning policy two with switching strategy 1 on
the RPi.

47

Figure 3.36: Overview of test for metareasoning policy two with switching strategy 2 on
the RPi.

Figure 3.37: Overview of test for metareasoning policy two with switching strategy 3 on
the RPi.

48

3.3.2.2 NVIDIA Jetson Nano Developer Kit

Data overviews for policy 2 on the Nano are shown in Figures 3.38, 3.39, and 3.40.

Figure 3.38: Overview of test for metareasoning policy two with switching strategy 1 on
the Nano.

49

Figure 3.39: Overview of test for metareasoning policy two with switching strategy 2 on
the Nano.

Figure 3.40: Overview of test for metareasoning policy two with switching strategy 3 on
the Nano.

50

3.3.3 Hybrid Policy - Policy 3

3.3.3.1 Raspberry Pi 4B

Data overviews for policy 3 and switching strategy 1 on the RPi are shown in

Figures 3.41, 3.42, and 3.43. Overviews for policy 3 and switching strategy 2 and shown

in Figures 3.44, 3.45, and 3.46. Overviews for policy 3 and switching strategy 3 on the

RPi are shown in Figures 3.47, 3.48, and 3.49.

Figure 3.41: Overview of test for metareasoning policy 3 with switching strategy 1 and a
TAC of 0 on the RPi.

51

Figure 3.42: Overview of test for metareasoning policy 3 with switching strategy 2 and a
TAC of 0 on the RPi.

Figure 3.43: Overview of test for metareasoning policy 3 with switching strategy 3 and a
TAC of 0 on the RPi.

52

Figure 3.44: Overview of test for metareasoning policy 3 with switching strategy 1 and a
TAC of 1 on the RPi.

Figure 3.45: Overview of test for metareasoning policy 3 with switching strategy 2 and a
TAC of 1 on the RPi.

53

Figure 3.46: Overview of test for metareasoning policy 3 with switching strategy 3 and a
TAC of 1 on the RPi.

Figure 3.47: Overview of test for metareasoning policy 3 with switching strategy 1 and a
TAC of 2 on the RPi.

54

Figure 3.48: Overview of test for metareasoning policy 3 with switching strategy 2 and a
TAC of 2 on the RPi.

Figure 3.49: Overview of test for metareasoning policy 3 with switching strategy 3 and a
TAC of 2 on the RPi.

55

3.3.3.2 NVIDIA Jetson Nano Developer Kit

Data overviews for policy 3 and switching strategy 1 on the Nano are shown in

Figures 3.50, 3.51, and 3.52. Overviews for policy 3 and switching strategy 2 on the

Nano are shown in Figures 3.53, 3.54, and 3.55. Overviews for policy 3 and switching

strategy 3 are shown in Figures 3.56, 3.57, and 3.58.

Figure 3.50: Overview of test for metareasoning policy 3 with switching strategy 1 and a
TAC of 0 on the Nano.

56

Figure 3.51: Overview of test for metareasoning policy 3 with switching strategy 2 and a
TAC of 0 on the Nano.

Figure 3.52: Overview of test for metareasoning policy 3 with switching strategy 3 and a
TAC of 0 on the Nano.

57

Figure 3.53: Overview of test for metareasoning policy 3 with switching strategy 1 and a
TAC of 1 on the Nano.

Figure 3.54: Overview of test for metareasoning policy 3 with switching strategy 2 and a
TAC of 1 on the Nano.

58

Figure 3.55: Overview of test for metareasoning policy 3 with switching strategy 3 and a
TAC of 1 on the Nano.

Figure 3.56: Overview of test for metareasoning policy 3 with switching strategy 1 and a
TAC of 2 on the Nano.

59

Figure 3.57: Overview of test for metareasoning policy 3 with switching strategy 2 and a
TAC of 2 on the Nano.

Figure 3.58: Overview of test for metareasoning policy 3 with switching strategy 3 and a
TAC of 2 on the Nano.

60

3.4 Discussion

The results for policy 1 demonstrate the successful control of device temperature via

metareasoning. In each figure, the control test increases beyond the desired temperature,

the static pause length test remains at a temperature below the desired temperature, while

tests with a non-zero pause adjustment coefficient stabilize the desired temperature regardless

of the initial pause duration.

The mean squared temperature error (MSTE) on the RPi, that is the squared difference

squared between the current temperature and desired temperature, is shown in Figures

3.59, 3.60, and 3.61. In these figures, the mean squared temperature error is plotted as a

function of the value of pa and pd for each test.

The control test, where metareasoning is inactive, for each set of tests in policy 1

corresponds to pa = 0s/◦C and pd = 0s. It is notable that, in these tests, the MSTE is

highly dependent on the network being used. Notice in Figure 3.59 the control error of

approximately 60 ◦C, whereas the control error is approximately 25 ◦C in Figure 3.61.

This is likely due to the trend that, despite using the same portion of the CPU, more

“complex” networks tend to produce more heat than “simpler” networks.

Similarly, for tests where pa = 0s/◦C, the MSTE increases as pd incerases. This

increase is accelerated for “simple” networks. EDL-0 shows an increase in MSTE from

25 ◦C to 225 ◦C over a range of 0s ≤ pd ≤ 2s, while EDL-2 shows an increase from 25

◦C to 180 ◦C over the same pd range.

Especially notable is the effect that pa has on the MSTE. For all tests where pa >

0s/◦C, the average temperature error remains between 10 ◦C and 30 ◦C, depending on

61

the network. This is true regardless of the initial pause duration, pd.

Similar trends are seen on the Nano, shown in Figures 3.62, 3.63, and 3.64.

62

Figure 3.59: EfficientDet-Lite4 and EfficientDet-Lite3 temperature error trend as a
function of pa and pd on the RPi.

Figure 3.60: EfficientDet-Lite2 and EfficientDet-Lite1 temperature error trend as a
function of pa and pd on the RPi.

Figure 3.61: EfficientDet-Lite0 temperature error trend as a function of pa and pd on the
RPi.

63

Figure 3.62: EfficientDet-Lite4 and EfficientDet-3 temperature error trend as a function
of pa and pd on the Nano.

Figure 3.63: EfficientDet-Lite2 and EfficientDet-Lite1 temperature error trend as a
function of pa and pd on the Nano.

Figure 3.64: EfficientDet-Lite0 temperature error trend as a function of pa and pd on the
Nano.

64

The results for policy 2 show that a constant throughput is successfully maintained

over the course of the tests for each switching strategy on both the RPi and the Nano.

Note that there are occasional spikes in the loop length, the inverse of the throughput.

These likely correspond to periodic background tasks performed by the Raspberry Pi

which request additional CPU usage, therefore increasing the processing duration. The

program is running on the Raspbian operating system, which is additionally tasked with

communicating with remote viewers via the RealVNC (Virtual Network Computing)

software, for example.

While switching strategy 1 optimizes the image processing loop to use maximum

precision for as long as possible, seen in Figure 3.35, strategies 2 and 3 operate at lower

temperatures for a longer duration, sacrificing a surplus of detection precision for lower

average temperature, seen in Figures 3.36 and 3.36. Switching strategy 3 more closely

approaches the success of switching strategy 1.

Results for policy 2 are similar on the Nano, with switching strategy 1 successfully

optimizing precision while constrained by a minimum throughput and maximum temperature,

shown in Figure 3.38. Again, spikes in the program loop length can be seen in the Nano,

likely caused by similarly periodic background tasks.

The results for policy 3 show that the strategy is successful in generalizing policy

2. For example, Figures 3.41, 3.42, and 3.43, where TAC = 0, successfully mimic

metareasoning policy 2. For tests where TAC = 1, results are similar to that of TAC = 0

but the throughput slowly increases over time, representing the 1:1 sacrifice of precision

to throughput. This is seen in Figures 3.44, 3.45, and 3.46. Test results where TAC = 2

show an even larger throughput loss than when TAC = 1, as expected. These results are

65

shown in Figures 3.47, 3.48, and 3.49.

Testing on the Nano, showed similar success as on the RPi, but note that for all

switching strategies, there are occasional climbs in loop length when precision reaches

its minimum. This corresponds to a contingency that if the average expected detection

precision is at the minimum possible, policy 1 augments the pause duration created by

policy 3. Therefore, when the minimum precision is reached for 5 consecutive program

loops the pause length begins to increase beyond what policy 3 is capable of creating.

This is clearly visible in Figures 3.50, 3.51, 3.52, 3.53, 3.56, 3.57, and 3.58.

Figures 3.65, 3.66, and 3.67 show the precision vs throughput graphs for each value

of TAC and for each switching strategy on the RPi. Figures 3.68, 3.69, and 3.70 show the

same for the Nano.

Note that for strategy 2 on the RPi, EDL-4 was only used once before the temperature

entered the next thermal zone, therefore, the average precision remains relatively low

throughout the test. This is clearly visible in Figure 3.66. Also, for each strategy on the

Raspberry Pi, the occasional spikes in the loop length are apparent in Figures 3.65, 3.66,

and 3.67.

Policy 3 has a notable caveat in its parameter assignment. As seen in Algorithm

7, the desired loop length is assigned the inverse of the desired throughput, which itself

is assigned by subtracting the product of the precision loss and TAC from the maximum

throughput. With high TACs, it is therefore possible to obtain a negative desired throughput

and a corresponding loop length with negative duration. The pause length is then assigned

a negative value which, to prevent the breaking of the loop, is set to zero. Therefore, the

TAC parameter for policy 3 must be tuned to a value such that when the precision reaches

66

its minimum the desired throughput is a positive, if small value.

Figure 3.65: Throughput vs precision for policy 3, strategy 1 on the RPi. Lighter colors
are associated with higher temperatures.

Figure 3.66: Throughput vs precision for policy 3, strategy 2 on the RPi. Lighter colors
are associated with higher temperatures.

Figure 3.67: Throughput vs precision for policy 3, strategy 3 on the RPi. Lighter colors
are associated with higher temperatures.

67

Figure 3.68: Throughput vs precision for policy 3, strategy 1 on the Nano. Lighter colors
are associated with higher temperatures.

Figure 3.69: Throughput vs precision for policy 3, strategy 2 on the Nano. Lighter colors
are associated with higher temperatures.

Figure 3.70: Throughput vs precision for policy 3, strategy 3 on the Nano. Lighter colors
are associated with higher temperatures.

68

There is a clear trade-off between each metareasoning policy. Policy 1 favors high

detection precision while sacrificing throughput. For use cases where the fraction of true

positives must be high, though speed is not as important, policy 1 is a good choice. If the

object detection is only required intermittently, then this policy will provide high precision

detection with minimal loss in throughput. It additionally does not require any user-

specified parameters, as any non-zero pause adjustment coefficient value will similarly

reduce the temperature error.

Policy 2 favors high throughput consistency while sacrificing detection precision.

This policy is therefore favorable where a program pipeline requires near constant input

but the detection precision is less important. For example, commercial applications of

object detection often provide video output with a near-constant frame rate for the benefit

of the customer, but do not always require consistently high precision. The policy requires

the specification of the switching strategy, though switching strategy 1 would likely be the

best choice in most scenarios.

Policy 3 provides a generalization of both policies 1 and 2, but requires more user

input. Given the image processing networks which are chosen, an appropriate TAC must

be defined so as to avoid creating a negative desired throughput. Additionally, like policy

2, a switching strategy must be chosen. Given this input, though, a highly-tailored version

of the policy could be created for the user.

It should be noted that in the cases of policies 2 and 3, the program operates in a

fashion similar to that of a hybrid control system. Branicky highlights that the internal

stability of hybrid systems is not guaranteed by the stability of the component systems

[31]. Even if each component system is internally stable, it is sometimes possible to

69

create a switching strategy that makes the hybrid system unstable. Our testing has shown

that the hybrid systems designed for policies 2 and 3 are stable.

3.5 Summary

Results from testing on the Raspberry Pi 4B and NVIDIA Jetson Nano Developer

Kit demonstrate that all three designed metareasoning policies, given the right input

parameters, are able to stabilize the temperature of their device during processing. Policy

1 is able to do so for any value of pause adjustment coefficient, no matter the initial pause

duration. Policy 2 is able to do so with any switching strategy, though only switching

strategy 1 is able to maximize the average detection precision given minimum throughput

and maximum temperature constraints. For most input parameters, policy 3 is able to

stabilize the device temperature. Careful consideration of the TAC is required before

using this policy for consistent temperature stability. In the case of EDL-[0-4], a TAC

between zero and four on the Raspberry Pi can provide a throughput-precision trade-off

tailored to the user’s preference.

70

Chapter 4: Learned Policies

4.1 Research Question

Chapter 3 describes how different metareasoning policies can control the temperature

of an electronic device during image processing. Given this information, is it possible to

create a policy that may combine policies 1 and 2 using reinforcement learning?

4.2 Reinforcement Learning Policy - Policy 4

This system can be framed as a reinforcement learning problem because it has an

agent which performs actions in an environment [17]. The agent is the image processing

program. The environment is the SoC temperature, pause duration, and current network.

The program is then able to take actions in its environment by modifying the pause

duration or active network. Therefore, a reinforcement learning approach can be taken

to address this problem. The full training program, which will train policy 4, is described

in Algorithm 8. For each device, a five-hour training session was provided for policy 4 to

be learned.

71

Algorithm 8 Reinforcement Learning Policy (Policy 4) Training
Ts ← 50◦C ▷ Set start temperature

Require: T ≤ Ts

t0 ← 0s ▷ Set test start time
ts ← 300s ▷ Set test duration
Td ← [70, 55]◦C ▷ Set desired temperature for [RPi, Nano]
pd ← 0s ▷ Set initial pause duration
pa ← 0.2s/◦C ▷ Set pause adjustment coef.
Network ← Network4 ▷ Set starting network
Ndmax ← Ndmax ▷ Set maximum network duration
tmax ← 1/Ndmax ▷ Set maximum throughput
ϵ← 0.9
γ ← 0.9
α← 0.2
Initialize Q-table ▷ Table of values of each state-action pair
while t < ts do ▷ t is the program time

T ← T ▷ Measure temperature
Process image
Record Nd ▷ The processing duration
Record T ▷ The current temperature
Get state st
Take action at
Wait pd seconds
Record Ld ▷ The loop duration
Record T
Get new state st+1

Get reward rt
Update Q-table

end while
Save Q-table

4.2.1 Q-Learning

Q-learning was chosen as the type of reinforcement learning to be used for this

problem. Q-learning is a value iteration method which updates the value, Q(st, at), of

a state-action pair, st, at, given the reward, rt, received for entering the new state and

the value of the new state-action pair, Q(st+1, a) [17]. The update equation is shown in

equation 4.1:

72

Q(st, at) = Q(st, at) + α(rt + γmax
at

Q(st+1, a)−Q(st, at)) (4.1)

where α is the learning rate and γ is the discount factor [17].

4.2.2 States

The state st of the system can be described by the temperature, T , of the processor,

the duration of the pause, pd, and the current network, N . These three values can characterize

every possible state that the agent can be in during normal operation. Particularly, the

operating ranges of T , pd, and N are:

• T : [40, 95.1] ◦C, in intervals of 0.1 ◦C

• pd: [0, 10] seconds, in intervals of 0.1s.

• N : [0, 5]

The number of possible states for the system is the number of points in the grid

composed of these two coordinate vectors. Therefore, there are a total of 300,500 states

in which the system can be.

4.2.3 Actions

The agent must be able to interact with its environment, so it was provided four

possible actions to perform. Action 1 leaves the pause duration and current network

unchanged. Actions 2 and 3 iterate up or down and adjust the pause duration to maintain

a constant throughput. This is what metareasoning policy 2 does. Action 4 increases the

73

pause duration in the same way that metareasoning policy 1 does. Note that pd could not

take on a value. The actions which can be taken are the following:

1. pd← pd, Networki← Networki

2. pd← 1/tmax −Nd, Networki← Networki+1

3. pd← 1/tmax −Nd, Networki← Networki−1

4. pd← pd + pa(T − Td), Networki← Networki

4.2.4 Reward Schedule

The environment provided a reward to the agent corresponding to the error between

the current temperature, T , and the desired temperature, Td. The reward schedule for this

environment is shown in equation 4.2:

rt =



1/D2 − 1 D < 1

0 D = 0

−D2 + 1 D > 1

(4.2)

where D =| T − Td |.

Note that the threshold between positive and negative rewards was chosen to be 1 ◦C

difference between the measured temperature and desired temperature. This is because

a 1 degree temperature error was considered acceptable, but any error beyond that was

not preferable. This schedule was chosen because it provides a strong incentive to stay

around the desired temperature, Td.

74

4.2.5 Exploration vs Exploitation

To encourage the agent to explore its environment and assign values to state-action

pairs that it has not yet encountered, it will occasionally choose a random action rather

than the one which would provide the maximum value. The frequency of this exploration

is controlled by the parameter epsilon, ϵ [17].

Before the agent chooses an action, a random number between zero and one is

generated. If epsilon is greater than that number, a random action is chosen. Otherwise,

the action which has the most value is chosen.

4.2.6 Validation

The learned policy was validated by using a snapshot of the q-table at the end of

training as a static policy where the program is run under the same conditions. This

program is shown in Algorithm 9.

75

Algorithm 9 Reinforcement Learning Policy (Policy 4)
Ts ← 50◦C

Require: T ≤ Ts

t0 ← 0s
ts ← 300s
Td ← [70, 55]◦C
pd ← 0s
pa ← 0.2s/◦C
Network ← Network4
Ndmax ← Ndmax

tmax ← 1/Ndmax

γ ← 0.9
Load Q-table ▷ Load the trained Q-table
while t < ts do

T ← T
Process image
Record Nd

Record T
Get state st
Take action at
Wait pd seconds
Record Ld

Record T
end while

76

4.3 Results

Results for both Q-table training and validation are necessary to understand the

effectiveness of policy 4. The Q-table is shown as a 3D plot that presents each action as a

color located according to its corresponding state values for pause duration, temperature,

and neural network. The policy map for the Raspberry Pi 4B is shown in Figure 4.1, while

the map for the Nano is shown in Figure 4.3.

Validation tests were performed for 600 seconds. The RPi validation test is shown

in Figure 4.2, while the validation test for the Nano is shown in Figure 4.4.

Figure 4.1: Raspberry Pi policy 4 map.

77

Figure 4.2: Raspberry Pi policy 4 validation test.

78

Figure 4.3: Raspberry Pi policy 4 map.

79

Figure 4.4: Raspberry Pi policy 4 validation test.

80

4.4 Discussion

The results from the Q-table training provide policy maps full of information. Figure

4.1, the RPi policy map, shows concentrations of state-action pairs around a temperature

of 70 ◦C, the desired temperature. This is likely caused by the drastic change in the

provided reward as the temperature gets further from the desired temperature. If the

reinforcement learning agent “steps” away from the desired temperature by more than 1

◦C, it will be assigned a large negative award. Therefore, the agent tended to stay near the

desired temperature unless it was exploring.

Additionally, the number of desirable actions learned tends to positively corresponds

to the pause duration associated with each network. Therefore, as the network index

increases from 0 to 4, the pause duration where learned state-action values are most dense

corresponds to the maximum loop length minus the expected network duration. Variations

in the pause duration associated with each state-action value tend to increase as the desired

temperature is reached.

Qualitatively, action 2 seems to be the best choice for many states when EDL-4 is

in use and the temperature is higher than the desired temperature. This means that when

the temperature was too high and the network EDL-4 is in use, the agent learned to switch

to EDL-3. This is analogous to what is performed during metareasoning policy 2.

Figure 4.2 shows that the policy was successful in maintaining a certain temperature,

but not consistently. The policy trends toward using less computationally intensive neural

networks while occasionally adjusting the pause length to bring the temperature from

highs around 75 ◦C to below the threshold. This is not an optimal strategy, but mimics

81

trends seen in policy 1 and 2 to some success.

The Q-table trained on the Nano, shown in Figure 4.4, is vastly different from

the table trained on the RPi. The values of far fewer state-action pairs were learned,

while those that were were concentrated around either the static pause lengths assigned

to maintain a constant throughput, or zero. Additionally, temperatures above 54 ◦C were

never reached in training, so the policy acts randomly above that temperature.

The validation test in Figure 4.4 is indeed equally different from the RPi validation

test. While it can be said that the policy maintained a temperature less than the threshold,

it does not optimize for throughput or precision. It therefore performs less efficiently than

either policy 1 or 2.

82

Chapter 5: Conclusion

This thesis proposed four different metareasoning policies for managing the SoC

temperature on electronic devices during image processing. These policies directly modified

the image processing program during each loop. Policy 1 did so by adding pauses to the

program, with each pause duration dependent on the difference between the current and

desired temperatures. Policy 2 did so by switching between different neural networks and

adding a static pause length for each so as to maintain a static image throughput. It did so

using one of three different switching strategies. Policy 3 combined the principles of both

policies 1 and 2 by switching between neural networks and adding pauses with increasing

length depending on the decrease in detection precision and a user-defined parameter,

TAC. Policy 4 was trained via Q-learning to take actions associated with both policy 1

and policy 2.

For each policy, a range of tests were performed with a range of parameter values.

Tests were performed on a Raspberry Pi 4B and an NVIDIA Jetson Nano Developer

Kit. These tests were performed in the same thermal environment, with a controlled start

temperature, and with as few simultaneously running programs as possible.

Testing results show that policies 1 and 2 are successful at maximizing either detection

precision or minimizing throughput variance for a range of parameter values. Results for

83

policy 3 show that the TAC parameter can be tuned to maintain a constant temperature

while performing a user-defined trade-off between detection throughput and precision.

Results for policy 4 show some success in maintaining a constant temperature, though

neither device-specific policy maximized detection precision or maintained a consistent

throughput while doing so.

Policy 1 would be best used when operating as a part of a system that mandates a

certain average expected detection precision. If an autonomous agent must maintain an

average detection precision of at least 0.4, but does not mandate a constant throughput,

policy 1 using EDL-4 would be satisfactory, where the other policies would not be.

Policy 2 would be best used where consistent throughput is always prioritized over

consistent detection accuracy. One example use case would have a human viewing the

output object defections in real-time and making judgments based on the defections.

Humans generally perform better at consistently high frame rates, so maintaining a constant

throughput would be important in this scenario [32, 33].

Policy 3 would be best used in cases similar to that of policy 2. If a certain

throughput loss tolerance can be found through use-case studies involving real-time human

viewing, an appropriate TAC can be assigned and a higher average expected precision can

be maintained than in policy 2. A summary of policy descriptions and use cases is shown

in Table 5.1.

Future work in this area may involve more variants on the policies listed in this

thesis. Insight could be gathered from testing policies 1 and 3 with a wider range of input

parameters. Policy 2 may benefit from the addition of more neural networks, the testing

of networks with purposes other than object detection, or additional switching strategies.

84

Table 5.1: Policy summary.

Policy Summary Use Case

Throughput
Adjustment

(1)

Adjusts throughput to maximize
detection precision while

remaining below a temperature
threshold.

Consistent detection precision is
valued more than consistent

detection precision.

Network
Switching

(2)

Switches between neural
networks to maximize detection
precision while remaining at a
desired throughput and below a

temperature threshold.

Consistent throughput is valued
more than consistent detection

precision.

Hybrid (3)

Switches between neural
networks to maximize detection

precision while increasing
throughput and remaining below

a temperature threshold.

A tolerance for throughput loss
as a function of detection

precision is known.

An additional direction of research may involve modifying policy 3 so that it is viable at

a larger range of TAC values. Policies 1, 2, and 3 could benefit by being formalized as

control systems for the purposes of optimal parameter selection, or, in the case of policies

2 and 3, internal stability. Finally, there is much potential for reinforcement learning or

other machine learning strategies to improve upon policy 4. Additional training time,

larger action set, precision-based rewards, or increased variation in training parameters

could lead to a more consistently successful version of this policy.

85

Bibliography

[1] Tesla Inc. Autopilot, 2022. https://www.tesla.com/AI.

[2] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–
2826, 2016.

[3] V. Lakshminarayanan and N. Sriraam. The effect of temperature on the reliability
of electronic components. In 2014 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT), pages 1–6, 2014.

[4] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, Jieping Ye, and Senior Member. Object
detection in 20 years: A survey. 5 2019.

[5] Qianfan Xin. Durability and reliability in diesel engine system design. Diesel
Engine System Design, pages 113–202, 1 2013.

[6] Raspberry Pi Ltd. Raspberry Pi Documentation - Frequency Management and
Thermal Control.

[7] NVIDIA. Nvidia jetson nano thermal design guide. 2021.

[8] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien An Lai, Masazumi Matsubara,
and Calton Pu. Impact of dvfs on n-tier application performance. In Proceedings of
the First ACM SIGOPS Conference on Timely Results in Operating Systems, TRIOS
’13, New York, NY, USA, 2013. Association for Computing Machinery.

[9] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. Frame-
based dynamic voltage and frequency scaling for a mpeg decoder. In Proceedings
of the 2002 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’02, page 732–737, New York, NY, USA, 2002. Association for Computing
Machinery.

[10] J. H. Lienhard, IV and J. H. Lienhard, V. A Heat Transfer Textbook. Dover
Publications, Mineola, NY, 5th edition, December 2019.

86

[11] Théo Benoit-Cattin, Delia Velasco-Montero, and Jorge Fernández-Berni. Impact
of thermal throttling on long-term visual inference in a cpu-based edge device.
Electronics, 9(12), 2020.

[12] Victor Wiley and Thomas Lucas. Computer vision and image processing: A paper
review. International Journal of Artificial Intelligence Research, 2:22, 6 2018.

[13] Michael T. Cox and Anita Raja, editors. Metareasoning: Thinking About Thinking.
MIT Press. OCLC: ocn611551144.

[14] Samuel T. Langlois, Oghenetekevwe Akoroda, Estefany Carrillo, Jeffrey W.
Herrmann, Shapour Azarm, Huan Xu, and Michael Otte. Metareasoning structures,
problems, and modes for multiagent systems: A survey. IEEE Access, 8:183080–
183089, 2020.

[15] Duc V. Nguyen, Huyen T. T. Tran, and Truong Cong Thang. A delay-aware
adaptation framework for cloud gaming under the computation constraint of user
devices. In MultiMedia Modeling: 26th International Conference, MMM 2020,
Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II, page 27–38, Berlin,
Heidelberg, 2020. Springer-Verlag.

[16] Jayoung Lee, PengCheng Wang, Ran Xu, Venkat Dasari, Noah Weston, Yin Li,
Saurabh Bagchi, and Somali Chaterji. Virtuoso: Video-based intelligence for real-
time tuning on socs, 2021.

[17] Richard S Sutton and Andrew G Barto. Reinforcement learning: An Introduction
(2nd edition 2018), volume 3. 2018.

[18] Anup Das, Bashir M. Al-Hashimi, Rishad A. Shafik, Akash Kumar, Geoff V.
Merrett, and Bharadwaj Veeravalli. Reinforcement learning-based inter-and intra-
application thermal optimization for lifetime improvement of multicore systems.
Proceedings - Design Automation Conference, 2014.

[19] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Benchmark
analysis of representative deep neural network architectures. IEEE Access, 6:64270–
64277, 2018.

[20] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,
and Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object
detectors. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3296–3297, 2017.

[21] Jayoung Lee, Pengcheng Wang, Ran Xu, Venkat Dasari, Noah Weston, Yin Li,
Saurabh Bagchi, and Somali Chaterji. Benchmarking video object detection
systems on embedded devices under resource contention. In Proceedings of the
5th International Workshop on Embedded and Mobile Deep Learning, EMDL’21,
page 19–24, New York, NY, USA, 2021. Association for Computing Machinery.

87

[22] Raspberry Pi Ltd. Raspberry Pi Documentation - Processors.

[23] Vivek Gite. How to find out Raspberry Pi GPU and ARM CPU temperature
on Linux, 2021. https://www.cyberciti.biz/faq/linux-find-out-raspberry-pi-gpu-and-
arm-cpu-temperature-command/.

[24] Malolo. Malolo’s screw-less / snap fit customizable Raspberry Pi 4 Case and Stands,
2019. https://www.thingiverse.com/thing:3723561.

[25] Ben Croston. RPi.GPIO: A module to control Raspberry Pi GPIO channels.
http://sourceforge.net/projects/raspberry-gpio-python/.

[26] NVIDIA Corporation. Nvidia jetson nano developer kit — nvidia developer, 2022.

[27] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient
object detection. 2019.

[28] TensorFlow Team. Object detection with tensorflow lite model maker.

[29] COCO Consortium. COCO - Common Objects in Context, 2017.
https://cocodataset.org/home.

[30] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[31] M.S. Branicky. Multiple lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475–482,
1998.

[32] Benjamin F. Janzen and Robert J. Teather. Is 60 fps better than 30? the impact of
frame rate and latency on moving target selection. In CHI ’14 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’14, page 1477–1482, New York,
NY, USA, 2014. Association for Computing Machinery.

[33] Jessie Y. C. Chen and Jennifer E. Thropp. Review of low frame rate effects on
human performance. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 37(6):1063–1076, 2007.

88

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Contributions
	Designed Metareasoner
	Learned Metareasoner

	Overview

	Background
	Thermal Management
	Internal Management
	External Management

	Image Processing
	Metareasoning
	Reinforcement Learning

	Designed Policies
	Research Question
	Experimental Approach
	Hardware
	Software
	Throughput Adjustment Policy - Policy 1
	Network Switching Policy - Policy 2
	Hybrid Policy - Policy 3

	Results
	Throughput Adjustment Policy - Policy 1
	Network Switching Policy - Policy 2
	Hybrid Policy - Policy 3

	Discussion
	Summary

	Learned Policies
	Research Question
	Reinforcement Learning Policy - Policy 4
	Q-Learning
	States
	Actions
	Reward Schedule
	Exploration vs Exploitation
	Validation

	Results
	Discussion

	Conclusion
	Bibliography

