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ARTICLE

Metascape provides a biologist-oriented resource
for the analysis of systems-level datasets
Yingyao Zhou1, Bin Zhou1, Lars Pache2, Max Chang 3, Alireza Hadj Khodabakhshi1, Olga Tanaseichuk1,

Christopher Benner3 & Sumit K. Chanda2

A critical component in the interpretation of systems-level studies is the inference of enri-

ched biological pathways and protein complexes contained within OMICs datasets. Suc-

cessful analysis requires the integration of a broad set of current biological databases and the

application of a robust analytical pipeline to produce readily interpretable results. Metascape

is a web-based portal designed to provide a comprehensive gene list annotation and analysis

resource for experimental biologists. In terms of design features, Metascape combines

functional enrichment, interactome analysis, gene annotation, and membership search to

leverage over 40 independent knowledgebases within one integrated portal. Additionally, it

facilitates comparative analyses of datasets across multiple independent and orthogonal

experiments. Metascape provides a significantly simplified user experience through a one-

click Express Analysis interface to generate interpretable outputs. Taken together, Metascape

is an effective and efficient tool for experimental biologists to comprehensively analyze and

interpret OMICs-based studies in the big data era.
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I
t has become a standard practice to employ one or more
OMICs assays to deconstruct the molecular mechanisms
underlying a biological system. Since each study ultimately

results in a list containing dozens or hundreds of gene candidates,
it is essential to leverage existing biological knowledge through
understanding the representation of known pathways or com-
plexes within these datasets. Providing this molecular context can
facilitate the interpretation of systems-level data and enable new
discoveries. Common queries include: What pathways or bio-
chemical complexes are enriched?1; What are the functional roles
of identified protein complexes?2; Which candidate proteins are
secreted, contain a transmembrane domain, or are otherwise
druggable?3; Or are there any chemical probes available for a
rapid candidate validation4 ? Critically, when multiple gene lists
are analyzed, either from common or orthogonal platforms, the
identification of consistent underlying pathways or networks can
help decipher authentic signals above the experimental noise5.
Conversely, pathways selectively enriched in specific lists can help
elucidate critical molecular features that distinguish experimental
conditions. Thus, gene-list analysis web portals have become a
necessity for modern biological research. For example, DAVID6,
a popular web-based annotation tool has been employed by more
than 4000 published studies per year since 2014, underscoring the
importance of OMICs analysis engines in biological research.

To guide the development of a next-generation tool, we studied
25 existing data analysis portals7,8, focusing on database updates,
coverage of analyses, coherence of interfaces, and interpretability
of outputs. While each platform maintains strong feature sets
(Supplementary Data 1), multiple portals are required to
accomplish a complete systems-level analysis workflow, leading to
a fragmented user experience. For example, a user analyzing
proteomics data may need to use one tool to convert protein
identifiers into gene symbols, a second tool to perform pathway
enrichment analysis, a third tool to assess protein interaction
networks, followed by other tools to produce high-quality
visualizations of the data. Users are not only required to learn
the details behind how to use each interface successfully, but they
must also learn how to integrate the outputs from multiple types
of analyses and file formats in order to generate useful results. For
the inexperienced user, this can pose a significant barrier to entry.
Thus, it is likely that significant levels of existing biological
knowledge are often inadvertently omitted during the analysis of
OMICs datasets due to the disintegrated nature of data sources
and analysis tools. Ideally, a broad range of biological relation-
ships and classifications can be assessed within one integrated
portal.

Additionally, the increased accessibility of systems-level tech-
nology platforms has promoted experimental strategies that rely
on orthogonal OMICs approaches, including transcriptome
analysis, genetic screens, and proteomics, to interrogate an
experimental system. This approach enables a more compre-
hensive assessment of the molecular features of a biological
process and reduces false positive/negative activities associated
with individual platforms9. Thus, meta-analysis of multiple gene
lists to identify commonly-enriched and selectively-enriched
pathways is likely to become an essential component of large-
scale data analysis. Methods for the analysis of multiple gene lists
continue to be an area of active investigation, which highlights the
necessity to develop analytical strategies that extend beyond the
consolidation and analysis of individual lists, and implement
approaches that will enable emergent insights that cannot be
extracted using current approaches10,11. Our survey found that
multi-gene-list meta-analysis is a feature often missing from
existing tools (Supplementary Data 1).

In addition to a combination of diverse knowledgebases and
the synthesis of analysis results across related gene lists, we

propose that biologist-oriented portals would need to incorporate
additional critical features, including future-proofing, usability,
and interpretability, to maximize their utility. Specifically, analysis
portals must continually be kept up to date, since using outdated
databases can severely impact analysis and interpretation of
OMICs data. It has been estimated that 67% of ~3900 publica-
tions in 2015 missed 74% of potential new biological insights as a
consequence of the use of obsolete database content in many
analysis portals7. This remains a concern to date, as the databases
underpinning the interpretation of a majority of published studies
are over 2 years old12.

Additionally, a well-designed interface that requires a minimal
number of user interactions (clicks) reduces the barrier to entry
for new users, or those with limited computational training.
Nevertheless, simplification must be balanced with providing
users sufficient information to understand and, if required, adjust
statistical and computational criteria within the analysis work-
flow. This feature would provide expanded access to data analysis
tools and sources for experimentalists that have limited experi-
ence with OMICs analysis, while enabling more advanced users to
adjust analytical parameters to customize analyses.

Furthermore, it is essential that analysis results are readily
decipherable, highlighting the key, non-redundant results that
will be critical for informing future studies. Platforms that go
beyond exporting tabular annotation information to produce
graphical summaries of results tend to enhance the global inter-
pretation of complex OMICs datasets. The resulting output
analyses should also adopt presentation formats that facilitate
data dissemination among scientists.

With these design criteria in mind, we developed Metascape to
harness the best practices of OMICs data analyses that have
emerged over the last decade into one integrated portal. Here, we
describe the features of this platform, which provide enhanced
rendition of systems-level data, designed to promote the devel-
opment of actionable hypotheses. These include data-engineering
solutions for over 40 knowledgebases, as well as integrated and
simplified workflows for gene annotation, membership search,
and multi-list comparative analysis. Furthermore, we describe
unique graphical outputs that enhance reporting and boost data
comprehension. Taken together, Metascape provides an inte-
grated and user-friendly web tool designed to facilitate multi-
platform OMICs data analysis and interpretation for the experi-
mental research community.

Results
User experience overview. To illustrate the features and cap-
abilities of Metascape, we utilized three previously published
influenza genetic screens13–15 as examples in this study (see
Methods). These studies utilize genome-wide RNAi screening in
cells to identify host factors that modulate influenza replication
rates. Specifically, single-gene-list analyses were performed with
gene targets identified in the Brass et al. study13, and multi-gene-
list analyses were performed with the combination of Brass et al.,
Karlas et al14., and Konig et al.15 target lists. The step-by-step
illustration of the Metascape analysis interface for both single-
and multiple-list input scenarios are available in Supplementary
Figures 1–7. While these examples showcase the analysis of RNAi
functional genomics studies, Metascape is equally capable of
analyzing lists of genes from multiple assay types, including
transcriptomics, epigenetics, proteomics, and others.

The primary Metascape user experience is provided through a
one-click analysis interface (Express Analysis, Supplementary
Fig. 1). The user first provides a single or multiple input gene lists,
then launches an automated analysis workflow consisting of four
major components: identifier conversion, gene annotation,
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membership search, and enrichment analysis (CAME). An
analysis report summarizing key results is produced, accompa-
nied by an Excel workbook, a PowerPoint presentation, and a Zip
package containing all supporting data files (Fig. 1).

The Metascape interface was designed to limit user operations
to a minimum number of interactions. Input data is automatically
processed to recognize identifier types, such as Entrez Gene ID,
gene symbol, RefSeq number, Ensembl ID, etc., without user
specification. The file input supports multiple flexible formats
(Supplementary Figure 1) and can incorporate an optional
background gene list to customize the enrichment analysis. Gene
identifiers from ten popular model organisms are recognized by
Metascape (see Methods), and automatic orthologue mapping
enables gene lists to be analyzed in the context of species-specific
databases across any of these ten organisms. The target analysis
species is human by default, since human-centric databases are
often the most comprehensive. Importantly, we have observed
that 63% of Metascape analyses to date utilize human datasets.

The concept behind Express Analysis is to encapsulate the
most widely used analysis options and best analysis practices into
a streamlined approach. For example, Express Analysis auto-
matically includes gene annotation metadata that are likely to
provide valuable context for candidate interpretation in most
cases, such as their brief description, key biological processes
involved, protein functions, subcellular locations, and roles in
canonical pathways (Supplementary Figure 3). It incorporates a
core set of default ontologies for enrichment analysis, including
GO processes16, KEGG pathways17, Reactome gene sets18,
canonical pathways19, and CORUM complexes20 (Supplementary
Figure 5). Express Analysis also automatically sets statistical filters
to remove ontology terms and interactome networks that do not
meet minimal statistical requirements (Supplementary Figure 5).
As an alternative to the Express Analysis, advanced users can
control the four individual steps of the CAME workflow and
overwrite default settings through the Custom Analysis workflow
(Fig. 1, Supplementary Figures 2–6).

Identifier conversion analysis. The first step of the Metascape
analysis workflow is gene identifier conversion (Supplementary
Figure 2). Metascape automatically recognizes the popular gene
identifier types described above, as well as primary locus names

from various model organism databases, such as SGD21, Fly-
Base22, WormBase23, etc. Source identifiers are mapped onto a
unique Entrez Gene ID list prior to analyses, as a significant
number of bioinformatics knowledgebases underlying Metascape
rely on Entrez Gene IDs as their primary keys. Deprecated Entrez
Gene IDs are also recognized and replaced by successor IDs when
encountered.

Many gene annotation, pathway, and protein interaction
databases are primarily compiled for human genes/proteins. For
instance, the size of the mouse interactome encompasses only
~6% of the available human interactome24, even though many of
these interactions are likely conserved across species. Therefore, it
can be beneficial to cast gene candidates obtained in model
organisms into their human orthologs prior to analysis. Ortholog
mapping is a built-in feature and can be triggered by explicitly
choosing the target analysis species (Supplementary Fig. 1), which
will instruct subsequent analysis steps to use resources for that
particular species.

Gene annotation. Detailed annotations for genes provide biolo-
gical context to serve as important selection criteria when
choosing candidates for follow-up studies. Metascape integrates
annotation information from over 40 knowledgebases (Supple-
mentary Figure 8, Supplementary Data 2), encompassing gene
descriptions, gene summaries, disease implications, genomic
variants, subcellular localizations, tissue expression, the avail-
ability of chemical probes, etc. Express Analysis delivers nine
descriptive fields by default, however, as illustrated in Supple-
mentary Figure 3, the Custom Analysis feature allows the user to
append up to 47 columns of metadata to a gene annotation
spreadsheet.

To assimilate this level of information using current tools, the
experimentalist is required to first identify the appropriate
knowledgebases that contain the required information. Since
many of these portals do not incorporate gene list upload features
for batch annotation, users must, in certain cases, search
individual gene candidates one at a time. For example, it becomes
an onerous undertaking to identify all extracellular proteins
through UniProt25, or all chemical probes through DrugBank26,
using a list with hundreds of gene candidates. Thus, Metascape’s
automated gene annotation feature provides users with detailed
annotation information not otherwise easily accessible, aiding in
data interpretation of large-scale datasets and providing prior-
itization criteria for candidate genes.

Membership search. The membership search feature in the
Custom Analysis workflow allows users to apply specific query
keywords, such as “infection” or “kinase”, against knowledgebase
category term names and description fields, then review and
select those matched terms that most accurately describe the
process of interest (Supplementary Figure 4). Metascape will then
dynamically construct a column of binary flags indicating whe-
ther each gene in the input gene list is a member of the matched
ontology terms. This allows the user to identify genes with spe-
cific functions or features, and reduces the reliance on existing
hierarchical ontologies during data interpretation. For example,
Metascape offers two approaches to identify transmembrane
proteins candidates. First, there are pre-integrated transmem-
brane predictions provided by Ensembl27 or UniProt that are
extractable through the gene annotation feature as described
above. An alternative is to use the Membership tools to search the
keyword “transmembrane” within the GO Cellular Component
catalog to identify member genes. Although these two approaches
are complementary in this specific example, membership search
becomes critical when metadata is not readily available through
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Fig. 1 Schematic outline of the Metascape analysis workflow. Upon gene list

submission, Custom Analysis enables users to navigate the analysis

workflow and output a report. The Express Analysis instead takes a

streamlined approach by running the analysis steps with popular default

settings, simplifying the user experience
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pre-integrated data sources. For instance, highlighting known
infection-related genes for an influenza study cannot be accom-
plished via standard gene annotation. Despite the fact that this
knowledge is embedded in the ontology databases, it has not been
explicitly compiled in most annotation resources and, thus, is not
readily accessible to experimentalists. The binary result data from
membership searches can also be visualized within nested pie
charts (Supplementary Figure 9).

Enrichment clustering. Enrichment analysis comprises the core
of most existing gene annotation portals. During enrichment
analysis, the input gene list is compared to thousands of gene sets
defined by their involvement in specific biological processes,
protein localization, enzymatic function, pathway membership, or
other features. Gene sets whose members are significantly over-
represented in the input gene list are reported to users to serve as
putative biological insights into their study. A neglected problem
in most current analyses is that redundancies in descriptors and
ontologies can often complicate interpretation of the output. For
example, ontology terms found in GO form a hierarchical
structure of increasing granularity, making the terms inherently
redundant. Terms across different ontology sources, such as GO,
KEGG, and MSigDB19, etc. can be closely related as well. As a
result, functional enrichment analysis can identify overlapping or
related terms, making it difficult to extract non-redundant and
representative processes to report in the analysis output. This
problem is demonstrated in examples from other analysis portals
using the Brass list (Fig. 2a, b), which report the enrichment of
dozens of highly-related categories. During post-processing of
data generated through the Metascape analysis, Kappa simila-
rities28 among all pairs of enriched terms are computed and used
to first hierarchically cluster terms into a tree then cast subtrees
into clusters of similar terms (see Methods). By absorbing most
redundancies into representative clusters, enrichment clustering
eliminates confounding data interpretation issues that can arise
from the reporting of multiple ontologies.

In comparison with Fig. 2a–c, d shows the Metascape
enrichment analysis results of the Brass list, where bars are
discretely colored to encode p-values of increasing statistical
significance. The bar graph representation nevertheless does not
capture inter-cluster similarities and intra-cluster redundancies.
To address this, we have implemented a visualization approach
called enrichment networks. As shown in Fig. 2e, enrichment
networks are created by representing each enriched term as a
node and connecting pairs of nodes with Kappa similarities above
0.3, forming a network that can be depicted using Cytoscape29.
Nodes can be colored to reflect either their statistical p-values or
cluster memberships. Redundant terms within a cluster naturally
drive the formation of tight local complexes due to their high
intra-cluster similarities, while clusters are occasionally bridged
through terms with similarities reflecting the relatedness of two
separate processes.

Although Metascape introduces the above features to facilitate
the interpretation of enrichment analysis results, it is not
designed to supersede existing functional enrichment analysis
portals. For users solely conducting enrichment analysis for a
single gene-list, some existing tools, such as Enrichr30 and
ToppFunc31, contain additional gene signature collections and
they remain a powerful approach to enrichment analysis.

Protein network analysis. Analyzing gene lists in the context of
protein interactions can help illuminate biochemical complexes
or signal transduction components that govern biological out-
puts32. However, a typical gene list of a few hundred human
proteins can form highly complicated network layouts, making

interpretation difficult. This is readily exemplified by the network
output of other analysis portals using the Brass list (Fig. 2f). These
are colloquially referred to as hairball networks. Although such
large networks are generally statistically significant, they do not
yield directly actionable insights unless the experimentalist has
specific expectations of the data. To infer more biologically
interpretable results, Metascape applies a mature complex iden-
tification algorithm called MCODE33 to automatically extract
protein complexes embedded in the large network. Taking
advantage of Metascape’s functional enrichment analysis cap-
ability, the three most significantly enriched ontology terms are
combined to annotate putative biological roles for each MCODE
complex. As shown in the example, Metascape results are rela-
tively simple to visualize and interpret (Fig. 2g, h).

Multi-gene-list meta-analysis. The proliferation and general
adaptation of orthogonal OMICs platforms, including pro-
teomics, genomics, functional genetic screens, and metabolomics,
has made the meta-analysis of multiple gene lists a critical and
largely unaddressed need. Routine comparative approaches
include the use of Venn diagrams to identify hits that are com-
mon or unique to certain gene lists. We, and others, have pre-
viously reported that an overlap between OMICs datasets is more
readily apparent at the level of pathways or protein
complexes9,34,35, which can be considerably more challenging to
implement without extensive computational expertise.

Metascape has been designed to allow cross comparison of an
arbitrary number of gene lists across both gene identities and
ontologies. Specifically, upon the submission of multiple gene
lists, all candidates are merged into one list, while encoding the
original lists as additional binary membership columns (Supple-
mentary Fig. 10). This pivoted layout greatly simplifies the
representation of analysis results, as both gene annotation and
membership search can be applied to the combined list the same
way as in a single gene list input. Using a single output
spreadsheet to incorporate evidence collected from each gene list
thus enables efficient global gene filtering and prioritization. The
overlap among the gene lists is visualized using a Circos plot36

(Supplementary Fig. 11), which is a more intuitive and scalable
representation compared to a Venn diagram.

To facilitate the understanding of pathways (and pathway
clusters) that are shared between, or selectively ascribed to,
specific gene lists, additional visualizations were developed for
Metascape. First, Metascape depicts top enriched clusters and
their enrichment patterns across multiple gene lists as a clustered
heatmap (Fig. 3a). The heatmap is complemented by an
enrichment network where each network node is represented
by a pie chart, where the sector size is proportional to the number
of genes originated from each gene list (Fig. 3b). This
representation is designed to be a biologically intuitive illustration
of selective or shared pathway clusters. Importantly, this
approach can also be applied to visualize protein–protein
interaction networks to enable the elucidation of common/
selective complex components enriched across OMICs datasets
(Fig. 3c, Supplementary Fig. 12).

Maintaining updated data sources. Metascape integrates over 40
knowledgebases (Supplementary Fig. 8) to support comprehensive
analyses over ten highly studied organisms. Over time, some
underlying data sources may adopt new access mechanisms,
rename file packages, or be impacted by modifications to cross-
referenced databases. Even if each data source is 99% robust, a
system relying on 40 independent sources can only be 67% reli-
able. As the result of this compound effect, unexpected changes
are encountered during data synchronization processes at
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frequencies significant enough to hinder attempts to automate
content updates, which eventually results in outdated portals.
DAVID6, a heavily utilized annotation tool accounting for over
80% of all functional enrichment portal usage, was not updated
between 2010 and 2016, and then again not since 201612. Our

latest analyses on DAVID indicated 4–10% of the input gene
candidates (varied by identifier types) are not recognized. Further
analysis of the human GO archive data indicated 44% of anno-
tation records have been added or modified since its last update.
This is in agreement with a semantic similarity measure suggesting
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GO:0043408: regulation of MAPK cascade
GO:0046777: protein autophosphorylation
GO:0009266: response to temperature stimulus
R-HSA-8953854: metabolism of RNA
GO:0019080: viral gene expression
GO:1903311: regulation of mRNA metabolic process
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Fig. 3 Visualizations of meta-analysis results based on multiple gene lists. a Heatmap showing the top enrichment clusters, one row per cluster, using a

discrete color scale to represent statistical significance. Gray color indicates a lack of significance. The category GO:0016032 (viral process) is common to

all studies, while GO:0046777 (protein autophosphorylation) is enriched exclusively in a single study, and is therefore likely a process associated with one

particular experimental system. b Enrichment network visualization for results from the three gene lists, where nodes are represented by pie charts

indicating their associations with each input study. Cluster labels were added manually. Color code represents the identities of gene lists. The network

shows that processes such as viral gene expression, nucleocytoplasmic transport, and cellular response to external stimuli are generally shared among all

three lists. RNA metabolism is shared between the Brass and Karlas lists; cellular development processes are mostly shared between the Karlas and Konig

lists. c Selected MCODE components identified from the combined list of 541 genes, where each node represents a protein with a pie chart encoding its

origin. The complex related to viral process is shared among all three lists, while the complex related to the MAP kinase cascade is specific to the Konig list.

Supplementary Figure 12 presents all MCODE components identified

Fig. 2 Visualizations of functional enrichment and interactome analysis results. a Screenshot of a portion of the directed acyclic graph rendered by

Babelomics53 based on enriched GO terms. b Screenshot of a portion of the gene-term association matrix rendered by g:profile42, where enriched GO

terms are organized hierarchically. c Screenshot of a portion of the tabular display of enriched terms rendered by DAVID based on all GO terms, KEGG

pathways, Reactome, and CORUM. The terms related to “viral gene expression” were missed in the visualizations generated by Babelomics and g:profile,

but were identified by DAVID (in cluster 8 with ranks around 20). d Metascape bar graph for viewing top non-redundant enrichment clusters, one per

cluster, using a discrete color scale to represent statistical significance. e Metascape enrichment network visualization showing the intra-cluster and inter-

cluster similarities of enriched terms, up to ten terms per cluster. Cluster annotations are shown in color code. f A complex interactome network generated

by g:profile with the Brass gene list. g Metascape visualization of the interactome network formed by all 121 gene candidates from the Brass list, where the

MCODE complexes are colored according to their identities. h Seven MCODE complexes automatically identified in Metascape, colored by their identities.

Their functional labels are generated based on the top-three functional enriched terms, if available
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that 20% of genes change their functional identity over a two-year
period37. Along with other outdated portals, it was estimated that
thousands of studies were affected, and the potential impact on
follow-up studies could last for years to come7.

Metascape has adopted a novel two-phase approach to
overcome this critical issue and ensure monthly updates (Fig. 4).
In the first phase, individual data sources are automatically
crawled, wrangled, and assembled according to a predefined
topological order of dependency, where gene identifier resources
are processed before dependent annotation resources. When
significant changes or unexpected errors occur while processing a
data source, a database’s last known compatible copy from a
previous update is reused, and an internal alert is issued to
Metascape quality control (QC) developers (see below). Using
this strategy, conflicts in any given database component will not
stop the timely completion of the Metascape update cycle. It is
important to note that more subtle inconsistencies in data content
can be harder to detect and may not trigger these exceptions. For
example, the accidental deletion of records for a certain model
organism in NCBI38 may go undetected. The Metascape pipeline
automatically carries out a detailed comparison between the
current database and the new updated database, summarizing
count differences into a bar graph web report, indicating the
number of data records that are added or removed as illustrated
in Fig. 4. In the second phase, a Metascape QC member inspects
the graphical report for suspicious changes in record counts. If no
concerning issues are identified, the release candidate is approved,
and the database update goes to production. Alerts received
during the whole process are manually examined and addressed
in parallel. Taken together, this workflow ensures that Metascape
users are not adversely impacted by outdated data sources.

Usage and citation analysis. Metascape has been in development
since 2014, and a beta version of the software was initially
released in late 2015. The portal usage data, as well as feedback
from users, have been decisive in correcting or refining under-
lying concepts that drove the architectural design and features of
Metascape. Some usage statistics are particularly enlightening.
Among all recently recorded analysis sessions, ~78% users chose
Express Analysis over Custom Analysis, implying that Express
Analysis successfully captures a set of core algorithms and set-
tings suitable for the majority of analysis needs. Six percent of
analyses contained more than one gene list, indicating a demand
for meta-analysis in the current research landscape. Data col-
lected on input identifier types indicates gene symbol and syno-
nyms are the most widely used (77%), followed by Ensembl
identifiers (11%), Entrez Gene ID (4%), and RefSeq (3%). The
remaining IDs are mostly UniProt IDs and model-organism-
specific IDs. Microarray IDs are hardly used (<0.2%), likely
reflecting the shift of the gene expression technology platform
from microarrays to next-generation sequencing. About 63% of
analyses were performed using human identifiers, followed by
31% using mouse. Other model organisms such as D. rerio, R.
norvegicus, A. thalianai, etc. accounted for the remainder. Inter-
estingly, 3% usage took advantage of the ortholog mapping fea-
ture to mostly cast mouse/rat gene lists into human context for
analysis. These data validate a need to support multiple gene/
protein identifiers and multiple model organisms.

At the time of writing, our citation survey using Google Scholar
identified 62% of the citations have adopted Metascape graphical
outputs directly in publications (Supplementary Data 5), under-
scoring the utility of tools that generate high-quality data
visualizations (Fig. 5a). The top three most used visualizations

Previous snapshots

Crawling robot
Visual review

Troubleshooting

Change statistics

Exception

Added

Deleted

Release

Data sources

Fig. 4 Schematic diagram of the semi-automatic data synchronization workflow
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Fig. 5 Citation statistics illustrating the use of Metascape visualizations in publications. a 62% of publications adopted visualizations prepared by

Metascape. b Visualization types sorted according to their popularity, where the enrichment bar graph, network, and heatmap are frequently used to

summarize functional enrichment outputs
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are the enrichment bar graph, enrichment network, and
enrichment heatmap, highlighting the utility of the tool for
functional enrichment analyses (Fig. 5b). In addition to graphical
outputs, Metascape analysis generates two Excel spreadsheets
providing gene annotation and functional enrichment results
(Supplementary Data 3, 4, Supplementary Figure 7). These data
outputs have been directly used in over 16% of publications as
supplementary materials to support analysis conclusions (Sup-
plementary Data 5). Since Circos plots and enrichment heatmaps
are two visualization tools specifically designed for multiple gene
lists only, and a bar graph is only used for a single gene list, we
estimated that 70% of the published studies studied a single gene
list and 30% studied multiple gene lists. This finding, together
with our web portal usage data, highlight the increasing usage of
multi-OMICs approaches in current studies, and suggest that
meta-analysis has become an important tool for the analysis of
OMICs datasets.

Discussion
The systematic categorization of genes by their functions by the
Gene Ontology Consortium (GO) has initiated the widespread
practice of functional enrichment analysis; many portals have
been developed over the years and have led to the continual
refinement of gene list analysis algorithms39–41. Metascape was
not developed to replace existing specialized tools, but to provide
a pipeline to assimilate many of the powerful features of these
analysis platforms to enable integrative, end-to-end analysis of
OMICs-level datasets.

Our study of 25 existing analysis portals found that the
underlying databases were often out-of-date (Supplementary
Data 1). Although portals such as g:profile42, PANTHER43,
TopFun31, InterMine44, GoEast45, and GeneTrail246 provide up-
to-date knowledgebases, a significant portion of portals (60%)
relied on knowledgebases older than one year (Supplementary
Data 1). Due to the inclusion of over 40 unique data sources in
Metascape, a fully automated synchronization pipeline becomes
unstable due to changes in the underlying resources. This moti-
vated us to develop a workflow that combines an automated robot
crawling phase with a supervised human review phase (Fig. 4).
This data-engineering solution has demonstrated success through
our monthly data refresh cycles, providing a viable data syn-
chronization model for complex portals facing similar challenges.

In addition to regular database updates, gene annotation and
membership search are two features that are not readily addressed
by existing portals (Supplementary Data 1). Although the term
gene annotation is occasionally used by existing portals as a
synonym for enrichment analysis44,47,48, here we consider gene
annotation as a method to extract a diverse set of metadata, such
as identifying extracellular proteins or associated chemical
probes, for hundreds to thousands of gene candidates at once.
Membership search is a closely related yet complementary service
that dynamically highlights genes known to be involved in spe-
cific biology, such as host-pathogen interactions. Typically,
retrieving these metadata requires querying specific portals, often
one gene at a time, and compiling outputs into a centralized
format for analysis. Metascape enables the batch extraction of
contents from over 40 databases in an extremely efficient manner
(Supplementary Figures 3–4).

Analyzing multiple gene lists simultaneously through robust
meta-analysis is another unmet need in the current OMICs data
analysis landscape (Supplementary Data 1). Evaluated portals
provide no, or only limited, support for this activity. For example,
GoEast45 and agriGO49 provide some meta-analysis functions
using a two-step process, where users analyze gene lists indivi-
dually first, then reupload their enrichment results for cross

comparison. However, GoEast analyzes a maximum of three lists
and agriGO only supports organisms of agricultural relevance.
GeneCodis50 supports a maximum of two lists. GoMiner51 can
compute enrichment terms for multiple lists in parallel, however,
the separate outputs are not further integrated and cross com-
pared. g:Cocoa, a component in g:profile, compiles a tabular
output conceptually similar to Metascape’s enrichment heatmap.
However, it currently lacks an enrichment clustering feature and
does not support interactome meta-analysis (Fig. 2b). Metascape’s
architecture is designed to support a seamless user experience
towards the analysis and visualization of an arbitrary number of
gene lists, only limited by available computing time and memory
space.

The integration of Circos plots overcomes the limitation of
Venn diagrams to graphically visualize the overlaps among many
lists (Supplementary Figure 11), and enrichment heatmaps
(Fig. 3a) are applicable to the number of lists encountered in
practice (Fig. 3a). Metascape also builds on previous imple-
mentations of enrichment network maps52 by depicting enriched
terms as pie charts, which more readily indicate common and
selective pathways enriched across multiple gene lists (Fig. 3b).

While interactome analysis is implemented in Babelomics53,
Intermine44, and ConsensusPathDB54, Metascape’s interactome
analysis is distinguished by two notable features. First, in addition
to the BioGrid knowledgebase, Metascape integrates the more
recent human interactome datasets InWeb_IM55 and Omni-
Path56, resulting in a tripling of human interactome coverage
(Supplementary Figure 13). Second, Metascape automatically
extracts protein complexes and annotates their respective func-
tions (Fig. 2h, Supplementary Figure 12). Compared to existing
visualization approaches (Fig. 2f), Metascape is designed to
highlight dense interactome neighborhoods and facilitate the
interpretation of interactome data in a biological context; it fur-
ther integrates with Cytoscape29 to leverage its rich set of visua-
lization and interactive features.

Critically, Metascape was designed to provide more inter-
pretable and actionable results for experimentalists. The redun-
dancy among ontology terms presents a significant obstacle in
result interpretation. The primary strategy adopted by existing
portals, as seen in g:Profiler42, WebGestalt8, Babelomics53, and
others, is to utilize directed acyclic graph (DAG) or tree structures
embedded within ontologies such as GO16 (examples in Fig. 2a, b).
WebGestalt provides an option only using a subset such as
GOSlim16 to reduce redundancy. However, these strategies are not
applicable to reduce redundancies across different ontology sour-
ces. Metascape and DAVID6, by contrast, adopt a dynamic clus-
tering solution that avoids the above-mentioned shortcomings.
Metascape further simplifies the result presentation via bar graph
(Fig. 2d) and heatmap (Fig. 3a) visualizations, compared to
DAVID’s tabular presentation (Fig. 2c). Although p-value is used
as the default representation metric for ranking enriched terms, it
nevertheless has its limitations. Users may need to consider using
alternative metrics, such as the multi-test corrected q-value or the
biological context-sensitive enrichment factor. All popular
enrichment metrics, including detailed gene counts, are computed
and made available for offline analyses. Metascape further
enhances the interpretability of analysis results through advanced
graphical and spreadsheet outputs, a concise PowerPoint pre-
sentation (Supplementary Figure 7), and a journal-style web-based
Analysis Report containing additional method descriptions and
references (Supplementary Figure 7). Offline analysis is facilitated
by a Zip export containing third-party compatible data files, such
as the Cytoscape29 and JTreeView57 formats.

In conclusion, Metascape has been designed for experi-
mentalists (bench biologists) to apply powerful computational
analysis pipelines to analyze and interpret large-scale datasets. To
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ensure that its content is kept current, a new knowledgebase
synchronization pipeline was engineered. To address gaps in
current analysis tools, Metascape introduces a workflow inte-
grating gene annotation, membership analysis, and multi-gene-
list meta-analysis capabilities. Its rich set of analysis tools are
accessible through a convenient one-click Express Analysis
interface and results are communicated via an article-like analysis
report. We expect that the wider adoption of Metascape will
significantly enhance biological interpretation of OMICs studies
by enabling experimentalists to directly analyze their data to
identify novel therapeutic targets, mechanisms of action, or
molecular insight into disease. Metascape is an open-access
resource available at http://metascape.org.

Methods
Architecture and data source. Metascape is a web resource compatible with all
major browsers. The backend knowledgebase is a relational database managed by
MySQL. The front-end user interface is implemented by Angular JavaScript fra-
mework to provide a rich interactive user experience. The server-side computa-
tional logic is mostly implemented in Python and leverages several packages
provided by the community (https://pypi.org). Each analysis request is associated
with a randomly-generated unique session ID (Supplementary Figure 2), which can
be used to access analysis results interactively through the web or to download all
result data in a Zip package for offline use, before the data is removed from the
server (Supplementary Figure 7).

The rich analyses of Metascape sit on top of over 40 bioinformatics
knowledgebases maintained by the scientific community (Supplementary Figure 8,
Supplementary Data 2). A data synchronization pipeline, as described in Fig. 4, is
applied monthly to process data into an Entrez Gene ID-centric relational data
format. Metascape currently supports ten organisms: H. sapiens, M. musculus, R.
norvegicus, D. rerio, D. melanogaster, C. elegans, S. cerevisiae, A. thaliana, S. Pombe,
and P. falciparum.

Functional enrichment analysis. Metascape utilizes the well-adopted hypergeo-
metric test58 and Benjamini-Hochberg p-value correction algorithm59 to identify
all ontology terms that contain a statistically greater number of genes in common
with an input list than expected by chance. By default, Metascape pathway
enrichment analysis makes use of Gene Ontology16, KEGG17, Reactome18,
MSigDB19, etc. Distinguishing it from many existing portals, Metascape auto-
matically clusters enriched terms into non-redundant groups, where it implements
similar logic as found in DAVID6. Briefly, pairwise similarities between any two
enriched terms are computed based on a Kappa-test score28. The similarity matrix
is then hierarchically clustered and a 0.3 similarity threshold is applied to trim the
resultant tree into separate clusters. Metascape chooses the most significant (lowest
p-value) term within each cluster (Supplementary Data 4) to represent the cluster
in bar graph and heatmap representations. The analysis provides other popular
enrichment metrics in addition to p-values.

Interactome analysis. Metascape utilizes physical protein–protein interactions
captured in BioGrid24 as the main data source. In addition, it integrates more
recent human interactome datasets including InWeb_IM55 and OmniPath56 to
provide additional interactome coverage (Supplementary Figure 13). Given a list of
proteins, it first automatically extracts a protein interaction network formed by
these candidates. Then for each connected network component, it iteratively
applies the MCODE algorithm33, with modifications for performance improve-
ments, to identify densely-connected complexes. For each complex, it further
applies function enrichment analysis and uses the top three enriched terms for the
annotation of its biological roles (Fig. 2h, Supplementary Figure 12). All network
visualizations are generated with Cytoscape29 and exported in multiple formats.

Datasets. Previously published host factors that regulate influenza replication were
used as example gene lists in this study. The 121 host factors identified by Brass
et al.13 were used as a single gene list input for all portals studied in Supplementary
Data 1 and Fig. 2. To demonstrate meta-analysis capabilities, three influenza gene
lists were used as the input, including 121 host factors from Brass et al.13, 168 from
Karlas et al.14, and 294 from Konig et al.15. All gene lists were downloaded from the
IAV database9.

User interface. Supplementary Figures 1–7 describe the Metascape user interface
step-by-step for gene-list analyses using the above-mentioned datasets. Screenshots
specific to the single gene list analysis are outlined in orange; those specific to the
multiple gene list meta-analysis are outlined in green; common screenshot com-
ponents are outlined in gray. During the Express Analysis, the submission of gene
list(s) (Supplementary Figure 1) directly leads to an analysis report (Supplementary
Figure 7) without the need to step through the intermediate operations

(Supplementary Figures 2–6). Conversely, the detailed analysis interface (Supple-
mentary Figures 2–6) is only accessible through Custom Analysis.

Usage statistics. To avoid statistics bias due to new users, who tested and learned
Metascape using either example gene lists provided on the portal site or users’ own
lists, all analysis sessions associated with an exact same input gene-list group were
considered duplicates, regardless of users’ IP address and the time of submission.
With such duplicates being removed first, statistics on web site analysis pattern
were compiled based on over 70,000 most recent sessions by the time of writing.
The relative percentage usage of Metascape visualizations and spreadsheets are
derived based on a total of 241 publications (2016-current), implying a maximum
standard deviation of 3% in the estimations.

Data availability
Gene lists referenced in this study are available in Supplementary Data 3.

Code availability
Custom code used in this study is available from the corresponding authors upon

reasonable request.
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