
Metascheduling for Continuous Media

DAVID P. ANDERSON

Sonic Solutions

Next-generation distributed systems will support corLtLzLzLousmedLa (digztal audio and video) in

the same framework as other data. Many applications that use continuous media need guaran-

teed end-to-end performance (bounds on throughput and delay). To reliably support these

requirements, system components such as CPU schedulers, networks, and file systems must

offer performance guarantees. A rnetasclzedtder coordinates these components, negotiating end-

to-end guarantees on behalf of clients. The CM-resource model, described in this paper, provides

a basis for such a metascheduler. It defines a workload parameterizatlon, an abstract interface to

resources, and an algorithm for reserving multiple resources. The model uses an economic

approach to dividing end-to-end delay, and it allows system components to “work ahead,”

improving the performance of nonreal-time workload.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-

tributed Systems—dzstrzb uted applzcatLons; C.4 [Computer Systems Organization]: Perfor-

mance of Systems—perforzna nce attributes; D.4. 1 [Operating Systems]: Process Management

—schedzdmg; D.4.4 [Operating Systems]: Communications Management—bufiermg, network

communicat~ozz; D.4.7 [Operating Systems]: Organization and Design—reaMmze and embed-

ded systems

General Terms: Algorithms, Design, Economics, Performance

Additional Key Words and Phrases: Multimedia, resource management

1. INTRODUCTION

We call audio and video continuous media (CM) because they are perceived

as changing continuously over time. CM can be used in the user interface of

computer systems. We say that a distributed computer system supports

integrated CM if

—The system stores and transmits CM data in digital form.

—CM data is handled by the same hardware (CPU, networks, 1/0 system)

as other data.

—CM data is handled in the same software framework (operating system,

file system, protocol stack) as other data.

This work, done at the University of California at Berkeley, was supported by NSF PYI grant

CCR-86-57529, by IBM Corp., Sun Microsystems, and the California MICRO program.

Author’s address: 1891 East Francisco Blvd., San Rafael, CA 94901.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

(!2 1993 ACM 0734-2071/93/0800-0226 $01.50

ACM Transactions on Computer Systems, Vol 11, No 3, August 1993, Pages 226-252

Metascheduling for Continuous Media . 227

a) remote playback

file server workstation

.......................................:... application .<..+. CM 1/0

w

audiolvldeo aiata
compression and

*
1/0 hardware

conlrol .,
-.!-

b) telephony

workstation workstation

El

,+.;........

El

..............................

application -[...:,., CM 110 CM 1/0 ,<..+ application
server sewer

J J

compression and compression and

I/O hardware I/o hardware

Fig. 1. Remote playback and telephony are typical applications in distributed systems that

support continuous media.

Typical application programs in an integrated CM system, remote playback

and telephony, are shown in Figure 1. Both programs convey CM data on

network connections and use a CM I\O seruer [4, 7] to handle 1/0 at the

user interface.

CM applications have performance requirements [16, 43]. One requirement

is end-to-end throughput: in remote playback, for example, data must be

transferred from disk to display hardware at a fixed average rate. This rate is

determined by the data representation; for example, the rates of stereo

CD-quality audio and DVI compressed video are 1.4 Mbps and 1.2 Mbps

respectively [27]. A second type of requirement involves end-to-end delay: for

telephony the upper bound on delay is typically in the range of 100-200

milliseconds, while musical applications (e.g., distributed rehearsal) may

need delay as low as a few milliseconds [26].

Achieving CM performance requirements involves interrelated factors in

the areas of hardware, OS mechanisms [15], and scheduling policies. This

paper is concerned with the latter area. There are many approaches to

scheduling for CM. For example, Hanko et al. [17] describe a “soft” model in

which applications dynamically vary their data rates to adapt to system load.

This model is well-suited to environments in which the demand on CM-related

ACM Transactions on Computer Systems, Vol 11, No. 3, August 1993

228 . David P. Anderson

applications

171
requirement

1 J

/“”

specification

-

access

Fig. 2. A metascheduler acts as a mediator between applications and real-time system compo-

nents It reserves capacity on behalf of clients; the clients then access the components directly.

hardware regularly exceeds its capacity. For hardware-rich environments,

and for applications like professional audio where a fixed quality must be

maintained, a “hard” approach, such as that proposed by Jeffay [18], is more

appropriate. In this approach, a CM application asks the system for a

guarantee that its requirements will be met. The request may be rejected, in

which case the application can either lower its requirements or wait until

resources become available.

In order to make hard end-to-end guarantees, system components (CPU,

file system, network, and so on) must provide a reservation mechanism.

Compatible reservations must then be made through the entire chain of

components. We call the agent that makes these reservations a metasched-

zder (see Figure 2). A metascheduler “reserves” components on behalf of

client applications; it is not involved in the actual usage of the components.

A metascheduler must define a uniform model of how the components

operate and interact. Design goals for this model include:

End-to-end semantics: CM application requirements apply to the en-

tire data path from input device to output device. The model must

therefore encompass all system components: CPU, storage, networks,

and so on.

Flexible abstraction: The model should define an abstract interface for

system components that accommodates a range of scheduling policies,

allowing existing hardware and software components to be used with

minimal modification.

Coexistence: The model should allow real-time and nonreal-time work-

load to coexist, and the impact of CM on the response time of nonreal-time

traffic should be minimized.

The CiW-resowce model provides a basis for metascheduling. In the CM-

resource model, clients reserve resources based on their worst-case needs,

ACM Transactions on Computer Systems, Vol 11, No 3, August 1993

Metaschedulmg for Continuous Media . 229

and resources offer hard performance bounds. However, unlike traditional

hard real-time systems, the model allows resources to “work ahead, making

more resource capacity available to bursty nonreal-time clients. The CM-re-

source model is an outgrowth of the DASH distributed system’s Real-time

message stream abstraction [I.]. The model uses ideas of Rene Cruz [10, 11]

and was developed by Martin Andrews, Robert Wahbe, Shin-Yuan Tzou,

Ramesh Govindan and the author [3].

The paper is organized as follows. Section 2 defines the idea of resources,

subsystems that store, manipulate, or communicate CM data and that may

be reserved in sessions with workload, delay, and cost parameters. Section 3

defines and explores compound sessions. Section 4 gives an algorithm for

establishing compound sessions. Section 5 describes techniques for schedul-

ing a CPU and a token-ring network in conformance with the CM-resource

model. Section 6 discusses related work, and Section 7 is the conclusion.

2. RESOURCES AND SESSIONS

The CM-resource model decomposes a distributed system into a set of re-

sources. A resource may be a single schedulable device such as a CPU, or a

complex subsystem such as a network. Resources provide a standard inter-

face, described in this section, for reservation.

2.1 Describing Workload

The CM-resource model defines a parameterization of workload, i.e., the

arrival process at a particular interface in the system. Workload is described

in terms of discrete messages (units of work, typically blocks of CM data).

Definition. N1(tO, t ~) denotes the number of messages arriving at interface

1 in the time interval [to,tl).

In the CM-resource model, arrival processes are described as follows:

Definition. A linear bounded arrival process (LBAP) is a message arrival

process with three parameters:

M = maximum message size (bytes),

R = maximum message rate (messages/second), and

W = workahead limit (messages)

that, for all to< tl,satisfies

N1(to,tl)< Rltl – ql + W. (1)

This workload description was originally devised by Rene Cruz to analyze

multiprocessor interconnection networks [10, 11],

The long-term data rate of an LBAP is Ml? bytes per second. The parame-

ter W allows programs and devices to generate “bursts” of messages that

would otherwise exceed this rate. This reflects messages that have arrived

ACM TransactIons on Computer Systems, Vol. 11, No, 3, August 1993.

230 . David P. Anderson

“ahead of schedule,” not burstiness in the underlying data stream. The extent

to which messages arrive ahead of schedule is quantified as follows:

Definition. The workahead w(t) of an LBAP at time t is

w(t) = max{O, N(tO, t) ‘Rlt – tol}.
to<t

(2)

We observe without proof that w(t) is well-defined. Intuitively, W(t) is the

largest amount by which the rate R is exceeded during any time interval

ending at t.More concretely, w(t) increases by 1 on each message arrival,

decreases with slope –R at other times, and remains nonnegative (see

Figure 3).

CLAIM 1. w(t) < W for all t.

PROOF. The claim follows from Eqs. 1 and 2. ❑

A bound on arrivals during a time interval can be given in terms of

workahead at its endpoints:

CLAIM 2. For all tl < tz,

~(tl, t2) < W(t2) – w(tl) +Rltz – tn.

PROOF. From Eq. 2, let to be such that

W(tl) =N(tl, to) –Rltl – tol

Then

W(t2) >~(to, tz) –Ritz – tol

=N(to, tl) +N(tl, t2) –Rltl – tol –Rlt2 – tll

= w(tl) +N(tl, t2) –Rlt2 – tll

from which the claim follows. ❑

2.2 Describing Delay

It seems fair that if a message m arrives ahead of schedule at a resource and

is queued there, the delay should be charged to the previous resource until

the scheduled arrival time of m. We use a notion of delay that takes this into

account. For a given LBAP, let m. “”” mn denote the sequence of messages,

and let a. “”” an denote their arrival times.

Definition. The loglcal arrwal time 1(m,) of a message m, is

l(m,) = a, + w(a,)/R.

Equivalently, 1(m) can be computed as follows:

l(mo) = ao,

l(mz+l) = max(a, +l,l(m,) + I/R)
(3)

Intuitively, l(m) is the time m would arrive if workahead were not allowed.

ACM TransactIons on Computer Systems, Vol 11, No 3, August 1993

Metascheduling for Continuous Media . 231

w(t)

1
actual arrival times

3~

2-

N

$, “..
. . ‘.

\ .
. .

0 ~ A . \
1 1 T 1 1 I I I I >

0123456 789 time

logical arrival times

Fig. 3. The function w(t) quantifies the extent to which arrivals at an interface are “ahead of

schedule”. It is used to compute logical arriual times. In this example, R = 0.5; note that logical

arrival times are separated by at least I/R.

Definition. The logical delay d(m) of a message m between two interfaces

11 and Iz is

d(m) = lz(m) – n(m)

where 1~(m) is the logical arrival time of the message at interface i.

The actual delay of a message m between two interfaces may be greater

than l(m) (if m arrives ahead of schedule) or less than l(m) (if m is

completed ahead of schedule). It can be shown that l(m) is nonnegative.

2.3 Resources and Sessions

A resource handles streams of CM messages (and perhaps other workload as

well). The messages arrive at an input interface and, when their processing

by the resource is complete, at an output interface. A resource maybe a single

device (such as a CPU) or a set of interacting devices (such as a network).

A client must make a reservation with a resource prior to using it. These

reservations, called sessions, have the following parameters:

M = maximum message size (bytes),

R = maximum message rate (messages/second),

W,. = input workahead limit (messages),

WOUt= output workahead limit (messages),

D = maximum logical delay (seconds),

A = minimum actual delay (seconds), and

U = minimum unbuffered actual delay (seconds).

ACM TransactIons on Computer Systems, Vol. 11, No. 3, August 1993.

232 . Dawd P, Anderson

The arrival process at the input interface must obey the LBAP parameters

M, R and W,., and the arrival process at the output interface must obey the

LBAP parameters M, R and WOUt. D is an upper bound on the logical delay

between the input and output interfaces. A is a lower bound on the actual

delay. U is a lower bound on the actual delay during which the message is

not stored in host memory (this is nonzero for network resources, in which it

represents propagation delay).

Each resource exports a procedural interface of the following form for

creating sessions:

reserve(

input: maximum message size and rate

output:

success/failure flag

session ID

maximum logical delay

cost function
minimum actual delay

minimum unbuffered actual delay

)
rela-<(

input: session ID, new maximum logical delay

)

free(

input: session ID

)

These functions are used as follows:

(1)

(2)

(3)

(4)

A call to reserve () requests a session with the given workload parame-

ters and the smallest possible logical delay bound.

If it can accept the session, the resource returns the minimum possible

logical delay bound 11~,~ for the session, and reserves enough of its

capacity to provide this bound. It also returns a cost function C (D) (see

below) whose value at D is the cost per unit time of a session with delay

bound D.

The caller chooses a specific delay bound ~ > Dml,, and calls relax () to

increase the delay bound to ~.

The resource can then be used, subject to the session parameters. When

this usage is finished, free () deletes the session.

The details of the interface vary between resource types. For example, a

CPU resource’s reserve () operation has a “maximum CPU time per

message” parameter instead of the maximum message size, and a network

resource is given the peer address. The interface applies to resources that

handle CM data, either by processing it or by transporting it. Other types of

resources serve as sources or sinks of CM data. These include file systems

(disk drives and their associated software) and transducers (analog/digital

conversion units, video display devices, etc.). We model such resources as

providing a single input or output interface, with associated LBAP parame-

ACM TransactIons on Computer Systems, Vol 11, No 3, August 1993

Metascheduling for Continuous Media . 233

ters. Delay is not involved, so the reservation interface exported by such

resources is simpler than the one shown above.

The cost functions given by reserve () are used to divide end-to-end

delay between resources (see Section 4.1). Cost functions are nonincreasing:

for a given throughput, a session with a smaller delay bound is more “costly”

because it limits the resource’s ability to accommodate other low-delay ses-

sions. The functions may reflect real cost (e.g., for public networks) or

load-balancing preferences. For example, the cost function for the CPU of a

personal workstation might reflect the value to the owner of having “slack” in

the CPU scheduling.

Note that the interface does not refer to workahead limits. We assume that

resources on a host share a common pool of buffer memory, so workahead

limits are relevant only at the interface between hosts (i.e., in network

resources); see Section 3.3.

3. COMPOUND SESSIONS

In the remote playback application of Section 1, data is read from a disk,

traverses a CPU, a network, and another CPU, and is consumed by decom-

pression and display hardware. In the CM-resource model, such a situation is

represented as a “compound session” (see Figure 4):

Definition. A compound session S is a sequence of sessions S’l “”” S. in

which the output interface of S1 is the input interface of S,+ ~.

The resources in a compound session handle a stream of messages in

pipeline fashion. All the sessions must have the same throughput limit, and

the output workahead limit of session S, cannot exceed the input workahead

limit of session S,, ~. The input interface of S is that of S1, and the output

interface of S is that of S.. The logical delay d of a message m in S is the

difference in logical arrival time of m at these two interfaces. Logical delays,

and hence logical delay bounds, are additive in compound sessions:

CLAIM 3. Let d and S be as above. Then d s E;. ~D,, where D, is the

logical delay bound of S,.

PROOF. Let 1, be the logical completion time of m in S,, and 10 be the

logical arrival time in S1. Then

d = (1. – l.)

= (ln –l. _,) + (Zn-, –l. -,) + ““” +(1, –1,),

<D. + . . . +D1. ❑

3.1 Eliminating Starvation Due to Jitter

Suppose a client transfers messages from the output interface IOU, of a

compound session to an output device that requires data at periodic intervals.

The device is said to “starve” if, at some point, data is not available when it is

needed. Jitter (variation in delay) can cause starvation even if long-term

throughput is sufficient. We now show that the receiver can eliminate this

starvation by delaying the start of output.

ACM Transactions on Computer Systems, Vol 11, No. 3, August 1993.

234 .

dala source

David P, Anderson

.........,

s,
k

> ‘2) ““” -+--as”
....................-.......

compound session

Fig. 4, A compound session is a sequence of sessions S1 ~ ~ S. in which the output interface of

S, M the input interface of S,, ~.

Definition. The client is said to be conservative if it buffers data and waits

until time t~ = t~ + D to start output, where to is the arrival time of the first

message at the input interface 1, ~ of S, and D is the delay bound of S.

Definition. An arrival process is workahead-positive if w(t) >0 for all

t ● (aO, a.] (recall that a, is the actual arrival time of message m,).

CLAIM 4. If an arrival process is workahead-positive then for any t E

(aO, a.)

(4)i’V(aO, t) >Rlt – aO1.

PROOF. Suppose otherwise. Then there is some t > a. such that

iV(aO, t) < Rlt – sol.

Let tl be the least such t. Let t2E (aO, tl). Then i’V(t2,tl)< Rlt2 – tllsince

otherwise we would have AXaO, t ~) < RI t ~ – aO1,contradicting the minimality

of t ~. Now from Eq. 2, we have W(t ~) = O, contradicting the assumption that

the arrival process is workahead-positive, ❑

CLAIM 5. If the arrival process of a compound session is workahead-positive

at its input interface, and the receiver is conservative, then the device never

starves.

PROOF. Suppose otherwise. Then there is a time t2> tl at which starva-

tion occurs, i.e.,

(5)N(to, t2)<Ritz – tn.

Let t3= t2– D (see Figure 5). Then w(t~) >0, so by Eq. 4, N,n(to,t3)>

RI t ~ – t ~1. All messages arriving between t~ and t~ are completed between

to and tz, so A(oU,(tO, t,) > NLn(to,t3).Combining these inequalities with

t3 – to = t2 – tl, we get 2JOU~(t0, tz) > Ritz – tll, contradicting Eq. 5. ❑

A slightly more general result holds: Suppose the source of data has a

variable rate not exceeding R. If the sender stays “ahead of schedule” relative

to this variable rate, and the receiver waits until tl to start displaying,

starvation will not occur.

To do conservative output, the receiver must wait until at least to + D to

begin display. If the compound session spans multiple hosts, it may be

difficult for the receiver to know exactly what time (of its local clock)

ACM TransactIons on Computer Systems, Vol 11, No 3, August 1993

Metascheduling for Continuous Media . 235

to

Q 1D tl Fig. 5. Diagram for the proof of Claim 5. The
.

receiver delays output until t*, and is assumed to

t3

1 ~

starve at t2.This contradicts the assumption that

the input interface is workahead-positive.

D

... --- ----------------............... tz

v w

time

corresponds to to. There are several possible approaches that guarantee

conservatism:

(1)

(2)

(3)

Assume that all clocks are synchronized within S. The sender timestamps

the first message (i.e., includes to in the message). The receiver then

delays output until to + D + e.

Assume that the delays of the network links on the path from sender to

receiver are known. The first message has a “total delay” field D~O~~1,

initially zero. Just prior to sending the first message, each host adds its

local delay, plus the delay of the outgoing link, to DtOt~l. The receiving

host delays output by D – DtOt~l after it receives the first message.

In the absence of the above assumptions, the receiver can delay output by

D – A~,~, where A~l~ is the sum of the minimum actual delays of the

resources in S.

The extra buffer space required for conservative output (beyond that

needed to accommodate incoming workahead and delay, to be discussed in

Section 3.2) is eR in case 1, zero in case 2, and R(D – A~,n) in case 3.

3.2 Buffer Space Requirements

We now compute a bound on the buffer space in a host H used by a

compound session S. Let Xl “”” X. be the resources in S for which messages

are buffered in the main memory of H (see Figure 6). The incoming network

(if any) is not in this list, since its output interface corresponds to message

arrival in host memory. Let U be the minimum unbuffered time of X., let D,

be the logical delay bound of X,, let D = Z, D,, let W be the incoming

workahead limit of Xl, and let R be the maximum message rate of S.

CLAIM 6. The maximum number of messages buffered in host H for session

Sis W+ R(D– U).

PROOF, At a given time t, let m be the session’s oldest message in host

memory. Let a be the arrival time of m at Xl, and let w(a) be the workahead

ACM Transactions on Computer Systems, Vol. 11, No. 3, August 1993

236 . David P. Anderson

................

shared buffer space

network > x,
Fl_.Eh e

....

host

Fig. 6. A compound session includes resources Xl X. in a given host. The resources use a

common pool of buffer space for queued messages.

arrival exit from e~”t

atXl host buffers from X.

a

.

..$.
..-......-. ...-. -..... -...> .. ‘.. .

..:+
. .

-.-A‘.. .
..

other messages

............................

I

.(

b

time

Fig. 7. Diagram for the proof of Claim 6. The number of messages buffered at time t M AT a, t),

where a is the arrival time of the oldest message m memory at time t.

at Xl’s input interface at time a. The number of messages buffered in the

host at time t is IV(a, t),i.e., the number of arrivals to Xl in [a, t) (see

Figure 7). From Claim 2 we have

N(cz, t) < w(t) – w(a) +Rlt – al
(6)

<w–w(cz)+Rlt -al

since w(t) < W. Let b be the actual completion time of m in X., W(b) the

workahead at the output interface of X. at time b, and l(m) the logical delay

of m in Xl . . . X.. Then

D> Z(m)

= (b + w(b)/R) - (a + w(a)/’R)

> b – (CZ + zu(a)/R)

so

b – a <D + w(a)/R.

ACM Transactions on Computer Systems, Vol 11, No 3, August 1993

(7)

Metascheduling for Continuous Media . 237

Now from the definition of U,

t< b–U. (8)

Combining Eqs. 7 and 8 gives

t–a<D+w(a)/R– U. (9)

Combining equations Eqs. 6 and 9 gives

iV(a, t) < W – w(a) + R(D + w(a)/R – U),
(lo)

<W+ R(D– U). ❑

This bound is realized in the case where arrivals consist of an initial group of

W simultaneous messages followed by one message every l/R seconds, and

each resource uses its full delay for each message.

3.3 Limiting Workahead by Regulation

If a resource incurs variable delay, its outgoing workahead may exceed its

incoming workahead. However, it is possible for a resource to reduce its

outgoing workahead by doing regulation, i.e., by delaying outgoing messages

that are completed ahead of schedule. Regulation may be necessary in

compound sessions, since otherwise the workahead limit (and hence buffer

space requirements) would increase without bound in the downstream direc-

tion. If resources on a host share buffer space, the total host buffer space

requirement depends only on the workahead bound into the first resource in

the host. Limiting the workahead between resources within a host does not

affect buffer space requirements, so it need not be considered. Regulation is

therefore necessary only in network resources.

The reserve () operation of a network resource returns an outgoing

workahead limit, namely the smallest possible workahead limit that the

resource can provide. The re I ax () operation takes a new outgoing work-

ahead limit, which cannot be less than the existing limit.

4. ESTABLISHING COMPOUND SESSIONS

In creating compound sessions, the following issues must be addressed:

—How should a given bound on end-to-end delay be divided among re-

sources? (It may not be fair, or even possible, to divide it uniformly.)

—It is desirable to set workahead limits as high as possible, given buffer

space limits. How can this be done?

These issues are dealt with in the remainder of this section.

4.1 Compound Cost Functions

The cost of a compound session is the sum of the costs of its component

sessions. The division of delay among the component sessions should mini-

mize this cost. This minimal-cost delay problem can be formulated as follows.

ACM Transactions on Computer Systems, Vol. 11, No. 3, August 1993

238 . David P. Anderson

Given a set of cost functions Cl

per-resource delay bounds DI .

.” C. and an end-to-end delay bound D, find

D. that solve

subject to

C~N~ 7. The minimal-cost delay problem is NP-hard.

PROOF. We show this by reducing the NP-complete PARTITION problem

[19] to the minimal-cost delay problem. An instance of the PARTITION

problem is as follows: Given a finite set A and for each a e A a size

s(a) ● Z + , is there a subset A’ g A such that ~.. As(a) = ~as &As(a)?

Consider the following instance of the minimal-cost delay problem: for each

a ● A, let C. be the function

C.(d) = s(a), d <s(a),

= o, d> s(a)

and let ~ = ~(~.. As(a)). Let d(a), a = A be a solution to this instance of the

minimal-cost delay problem. Assume without loss of generality that, for all

a c A, either d(a) = s(a) or d(a) = O. Let C = X.G ~C~(d(a)). Then C = D iff

there is a solution to the original PARTITION problem. ❑

The C, produced in Claim 7 are piecewise constant. To make the minimal-

cost delay problem tractable, we require that cost functions have the follow-

ing property:

Definition. A cost function C is tractable if it is (1) piecewise linear with a

finite number of vertices; (2) monotonic decreasing, and (3) convex (that is,

C(adl + (1 – a)dz) < aC(dl) + (1 – a) C(d,)

for all a = [0, I] and all dl < dz).

A tractable cost function is defined on an interval [dl, dz], where dl is the

smallest delay bound that the resource can provide. Beyond dz, the “cost” of

extra buffer space exceeds the cost saved by the looser delay bound.

If cost functions are tractable, then the optimal delay assignment for a

given total delay can be obtained in an amount of time proportional to the

number of segments in the C,.

Definition. Suppose tractable cost functions Cl .”. C. corresponding to

resources RI “.. R. are given. The compound cost function C, a piecewise

linear function in which each segment is labeled with a resource name, is

defined by the following procedure (see Figure 8).

(1) Sort the segments of Cl .-. C. in order of increasing (less negativ) slope.

ACM TransactIons on Computer Systems, Vol. 11, No, 3. August 1993

Metascheduling for Continuous Media . 239

cost ;

k

2i

!R
1!

o:!
012

cost

delay

●

delay delay

Fig. 8. The cost functions for several resources can be combined to form a compound cost

function whose segments are labeled with the names of the resources. The function F(C, R, d)

returns the optimal amount by which to relax the reservation of resource R given a total delay

bound d. In this example, F’(C, Rl, 3) = 1, as shown by the shaded areas.

(2) Position the first (steepest) segment so that it begins at the sum of the

upper left endpoints of the C,.

(3) Position the remaining segments so that each begins where the previous

ends.

Definition. Given a compound cost function C, a resource R, and a delay

d, let F(C, R, d) be the length of the set

{x <d: (x, C(x)) k in a segment labeled with R}

(see Figure 8).

CWIM 8. Let d, denote the least delay for which C, is

delay assignment given by D, = d, -t F(C, R,, ~) solves

delay assignment problem.

The proof is simple; we omit it for brevity.

4.2 Compound Session Establishment

defined. Then the

the minimal-cost

The CM-resource model defines an algorithm for establishing compound

sessions. The algorithm is a protocol between sending and receiving clients,

resources, host resource managers (HRMs), and memory managers on each

host (see Figure 9).

The protocol has two phases. In phase one, a request message traverses the

hosts from the source towards the sink. The request message contains the

following items.

ACM Transactions on Computer Systems, Vol. 11, No. 3, August 1993.

240 . David P. Anderson

host 1 host 2 host 3

Fig. 9, The compound session establishment protocol involves clients, host resource managers

(HRMs), memory managers, and resources.

—The sequence of hosts and resources involved, and an identifier for the

receiving client.

—The message size S and rate R.

—End-to-end logical delay requirements: a target and maximum value,

denoted E,.,~,, and Em.,. The goal of the algorithm is to establish a

compound session with a logical delay bound as close to Et.,~ct as possible,

and no greater than Em,,; and, given this delay bound, to minimize the

cost of the session.

—The compound cost function C, the sum D of the delay bounds, and the

sum A of the minimum actual delays, of the resources traversed so far.

—A workahead limit W.

A client initiates the protocol by passing a request message to its local

HRM. In this message, C is empty and D and A are zero; the other fields are

set by the client. On receiving a request message, a HRM does the following

(Rl -“ R. denote the local resources involved in the compound session):

(1)

(2)

(3)

(4)

Call reserve () on RI . . . R. in any order or in parallel.

Reserve buffer space according to Eq. 10.

If any reservation request fails, or if the total delay exceeds E~.X, free all

reservations and return a failure message.

Prepare an outgoing request message with D, A, and C updated accord-

ing to the results of the reserve () operations. The outgoing workahead

W is returned by the reserve () operation on R.. Send this message to

the HRM in the next host or, if this is the last host, to the receiving client.

The receiving client, on receiving the request message, selects an end-to-end

delay E~C,U~l for the session. The excess logical delay E,zC,S~ is given by

E
excess

= max(O, Et~,~,t – EGCtU~l).

Phase two proceeds in the reverse direction. A reply message containing

E ,XCe,~ and a workahead limit W is passed back towards the source. The

receiving client initiates phase two by passing a reply message to its local

ACM Transactions on Computer Systems, Vol 11, No 3, August 1993

Metascheduling for Continuous Media . 241

HRM. On receiving a reply message, a HRM does the following:

(1) Reserve additional buffer space according to a host-specific policy; say the

total (including the phase-one reservation) is B bytes.

(2) For each resource R,, let x = F(C, R,, E, XC,~,), where C is the cost

function computed by this HRM In phase one. Reduce x if needed so that

total buffer space needs (see Eq. 10) do not exceed B. Call relax () on

R,, increasing its delay bound by x. Subtract x from E~XC,~~.

(3) Compute the largest value of W such that buffer space needs do not

exceed B. Prepare a new reply message, containing W and the new

E
excess.

If this is the first host, pass this message to the sending client.

Otherwise, pass it to the previous HRM.

At a given host, the period between phase one (reservation) and phase two

(relaxation) has nonzero duration. Suppose a request for a second session

Sz ,with overlapping resource requirements, arrives during this period. The

request for S’z could be needlessly rejected (that is, it would have been

accepted had it arrived after phase two). To avoid this situation, the following

policy can be used. If a reservation request fails while a compound session

establishment is in progress, the request is put in a FIFO queue of requests

for that resource, and retried when a relax () is done. If the request fails

when all relaxation is finished, it is rejected.

Suppose a compound session request reserves resources RI and Rz, and a

second request reserves the same resources but in a different order. If there is

enough capacity for only one of the two sessions, both sessions could be

rejected. This possibility can be eliminated by ordering the resources on a

host, and reserving them in that order.

The algorithm described here minimizes total cost if buffer space is avail-

able to accommodate the optimal delay bounds. A more complex algorithm

can minimize total cost given limits on buffer space in each host. This

algorithm would require propagating information about the sequence of

hosts, their available buffer space, and the locations of resources.

4.2.1 Multicast and Other Communication Topologies. The CM-resource

model does not directly provide multicast. However, compound sessions can

be combined to reflect situations in which data streams split or merge. The

session establishment algorithm described above provide two “hooks” for this

purpose: (1) the sending client request can include information about re-

sources that “precede” the new session: (2) the receiving client, after getting a

request message from the HRM, can do whatever it wants (including estab-

lishing more sessions) before it replies.

As an example, consider an application in which a stream of CM data

is sent to multiple receivers. This can be done efficiently using a multicast

tree [12]. If each edge of this tree is a compound session, the result is a tree-

structzmed compound session that guarantees the throughput and delay to

each of the recipients (see Figure 10).

The algorithm for establishing a tree-structured compound session is as

follows. A tree of multicast agents X1 . . . X. is given. The root is the data

ACM Transactions on Computer Systems, Vol 11, No. 3, August 1993.

242 . David P. Anderson

a) data flow

d
b) session establishment order ~

2a

1

4

3C

Fig. 10. A simple example of a tree-structured session. Multicast agent X2 receives CM data

from Xl and forwards It to X3, Xi and X5. When estabhshw the session, the order of messages

is shown in b; (2a, 2b, 2c) and (3a, 3b, 3c) occur in parallel.

source and the leaves are data sinks. Values Ef.r~,f and E~.X are given for

the end-to-end delay bound. The goal of the algorithm is to achieve a delay

bound no greater than E~.X, and as close to E,.rg.t as possible, along each

branch of the tree, and to minimize cost given these bounds.

Each agent receives a session request message M from the local HRM (the

root agent Xl receives its request from the client). For each child X,, the

agent calls the HRM, requesting a compound session traversing the CPU and

network resources to X,. The cumulative cost functions and delays for this

request are taken from M. The agent then waits for replies for all children.

Let D be the largest of the delays to the children, W the minimum of the

workaheads to the children, and E the minimum of the excess delays. The

agent forms a reply message containing D, W, and E, and passes this reply

message to the local HRM.

A similar approach handles situations where data streams merge, e.g., a

process receives data streams from several sources and uses a DSP processor

to mix the streams. In both examples, dynamically extending the nonlinear

session (e.g., to handle new participants in a conference or new data streams

to be mixed) is possible, but may not give an optimal delay assignment.

4.3 Compound Sessions in the Internet

As an example of how the CM-resource model impinges on a standard

network protocol hierarchy, we now describe the Session Reservation Protocol

(SRP), a realization of the compound session establishment protocol for 1P

networks [2]. Using SRP, a compound session can be created and associated

with a connection of TCP or any other upper-level protocol. The performance

guarantees of the compound session apply to the data sent in one direction on

the connection.

SRP acts as a host resource manager (HRM), but only for certain resources.

On the sending host, SRP reserves the outgoing network resource. On a

gateway, SRP all resources (CPU and outgoing network). On the receiving

host, SRP makes no reservations, and simply conveys the session request to

the receiving client. The clients of SRP are responsible for reserving all other

resources that handle the CM data, such as input and output devices and

ACM TransactIons on Computer Systems, Vol 11, No 3, August 1993

Metaschedu[ing for Continuous Media . 243

CPU on the end nodes. Thus, on the sending and receiving hosts the HRM

function is divided between the clients and SRP.

SRP does not involve changes to existing protocols. However, it requires

that a connection follow a static route through the network, so that the set of

resources is fixed. This in turn requires modifying 1P implementations to do

static routing for packets that are part of a session. In addition, the kernel on

a receiving host must associate packets with sessions (typically at the 1P

level) in order to correctly prioritize the handling of packets by the CPU.

5. IMPLEMENTING RESOURCES

We now discuss how typical resources (a CPU scheduler and a token-ring

network) might provide the interface specified by the CM-resource model. A

third example, a file system, is presented elsewhere [6].

5.1 CPU as Resource

Assume there is a single processor and that for each session S there is a

process P that does all the work for S and no other work. The input interface

for S is defined by message arrivals; if P is handling incoming messages

from a network connection, arrivals occur when the network interface re-

quests a receive interrupt. Message completion occurs when P makes a call

indicating that it has handled the packet.

To exploit the advantages of a workahead in the CM-resource model, we

propose the deadline-workahead scheduling policy. This policy classifies pro-

cesses as follows. A real-time process is one that is associated with a session.

At time t, a real-time process is called critical if it has an unprocessed

message m with l(m) s t (i.e., m’s logical arrival time has passed). Real-time

processes that have pending work but are not critical are called workahead

processes. There are two classes of nonreal-time processes: interactive (for

which fast response time is important) and background. The deadline-

workahead policy is as follows.

—Critical processes have priority over all others, and are preemptively

scheduled by earliest deadline (the deadline of a process is the logical

arrival time of its first unprocessed message plus the delay bound of its

session).

—Interactive processes have priority over workahead processes (but are

preempted when those processes become critical).

—Workahead processes have priority over background processes. They need

not be scheduled by earliest deadline; the policy might instead try to

minimize context switches or address space switches.

Nonreal-time processes can be scheduled by time-slicing or any other

general-purpose policy. Govindan and Anderson [15] describe split-level

scheduling, an implementation of deadline-workahead scheduling that mini-

mizes system call overhead.

The reserve () operation exported by the CPU scheduler takes an extra

input parameter: maximum CPU time per message. Suppose that a new

ACM Transactions on Computer Systems, Vol. 11, No. 3, August 1993.

244 . David P. Anderson

session S has been requested, and that sessions S’l “”” S, already exist. The

smallest possible delay bound D for S can be determined as follows. D is

initially zero. The operation of the CPU is simulated under a “worst-case”

workload [25]: all sessions generate maximum periodic workload starting at

the same time. If the simulation reaches a point where no processes are

runable, D is the desired delay bound. If a simulated message completion

violates its delay bound, D is increased by an amount sufficient to eliminate

the violation, and the simulation is restarted.

For this scheme to work, system software must be structured in a way that

allows CPU execution to be matched with the correct session and message.

For example, incoming protocol handling must be done by processes, rather

than by a software interrupt routine as in current BSD UNIX-based systems

[32]. When real-time processes run at the user level, they must correctly

report deadline changes to the kernel. There are several possible sources

of “priority inversion” in CPU scheduling: interrupt-handling overhead,

interrupts-masked periods, priority inversion during locking (including ker-

nel nonpreemption), etc. Methods for bounding these periods [40] can be used,

and the reservation algorithm modified accordingly.

5.2 FDDI Network as Resource

FDDI is a 100 Mbps token-ring network [38]. The FDDI media access protocol

has two data priorities. Asynchronous data uses a conventional token-passing

protocol. Synchronous data has higher priority: If a given station has not

seen the token within the Target Token Rotation Time (TTRT) then it may

not send asynchronous data. Each station i has an allotment A, for syn-

chronous data; it may send at most A, bytes each time it gets the token. The

allotments can be changed using a Station Management (SMT) protocol. SMT

ensures that

where B is the data rate of the network and P is the propagation time

around the ring. The maximum token rotation time is then 2(TTRT), the

average token rotation time is TTRT [39], and each station is guaranteed a

synchronous data throughput of

A,
RL=—

TTRT
(11)

bytes per second.

A session in an FDDI network “resource” is a point-to-point connection

between two hosts. Message arrival at a session occurs at a call to a

net work_s end () routine in the sender. Completion occurs when a receive

interrupt request is generated in the receiver. Two issues must be addressed:

how to guarantee performance, and how to limit workahead. We discuss these

separately.

ACM TransactIons on Computer Systems, Vol. 11, No 3, August 1993

Metascheduling for Continuous Media . 245

5.2.1 Scheduling and Reservation. There are two levels of scheduling of

the network medium: (1) contention by hosts for the medium and (2) schedul-

ing of outgoing packets within a particular host. The policy for (1) is specified

by the FDDI protocol; we propose using an earliest-deadline-first policy

for (2).

The algorithm for reserve () is as follows. The host uses SMT to request

the largest possible synchronous allotment A: If A– is not sufficient for this

host’s sessions (both existing and requested) by Eq. 11, the new session is

rejected. Otherwise, simulation is used to determine the least possible delay

bound D. The system is simulated under worst-case conditions (all sessions

begin simultaneously, 2TTRT elapses before the token arrives initially, and

TTRT elapses between subsequent token arrivals). If a deadline is missed

during the simulation, the delay bound D is increased by the smallest

amount that would result in a different transmission order, and the simula-

tion is restarted. The minimum unbuffered delay returned by reserve () is

the propagation time to the destination host. The workahead limit is RD,

where D is the maximum queueing delay within this host (computed as

above); this is the smallest workahead limit that can be guaranteed, given

the regulation scheme described below.

The re I ax () operation uses simulation to find the least possible allot-

ment A given a new delay bound. A is initially zero. Whenever a deadline is

missed, A is increased by the smallest amount that allows a packet to be

transmitted in an earlier round, and the simulation is restarted. The result-

ing allotment is registered with SMT. Likewise, free () computes the

minimum allotment for the new set of sessions and registers it with SMT.

5.2.2 Regulation of Packet Transmission. Network resources may need to

regulate packet transmission (see Section 3.3). This can be done as follows.

When a packet is passed to network_send () , the outgoing workahead of

the session S is computed according to Eq. 3. If the result exceeds the

workahead limit for S, the packet is enqueued in a separate delay queue, and

a per-session delayed-send timer is set for a time when the outgoing work-

ahead will fall below the limit. When the timer expires, packets on the delay

queue are sent or queued for sending.

6. DISCUSSION AND COMPARISON

This section defends the design decisions in the CM-resource model and

relates the model to existing work.

6.1 Design and Decision Rationale

The design of the CM-resource model was guided by the following assump-

tions:

(1) Resource capacity (CPU cycles, network bandwidth) usually exceeds ap-

plication requirements.

(2) Applications have delay bound requirements that are usually either very

low (teleconferencing) or moderately high (remote playback).

ACM Transactions on Computer Systems, Vol 11, No. 3, August 1993

246 . David P. Anderson

(3) Most hosts have enough extra buffer space to store a few seconds of CM

data.

(4) Most CM data types (audio and video encodings) have a fixed, or at least

a bounded, data rate.

(5) AH system components can make real-time guarantees.

These assumptions are feasible for future distributed systems based on

Gigabit networks and high-speed workstations with real-time CPU schedul-

ing. They do not hold for systems based on components that are nondetermin-

istic (Ethernet, UNIX) or low-capacity (ISDN). Other CM-oriented scheduling

models, such as that proposed by Hanko et al. [17] are more appropriate in

such cases.

Taking the above assumptions as given, we made design decisions in the

following areas.

Reseruationism. The CM-resource model is grounded in the idea of reser-

vation: 100 clients can reserve 1 Mbps sessions in a 100 Mbps network, and

the 10lst is turned away. Other models would give each client 100/101

Mbps, and require them to adjust their data rates accordingly. There are

advantages to each approach; arguments for “reservationism” include:

(1) Some applications (e.g., professional audio) absolutely require fixed per-

formance levels.

(2) In future consumer applications (e.g., video-on-demand) it is likely that

customers will be willing to pay for guaranteed quality levels.

(3) Dynamic data rate variation adds complexity. In applications that involve

playback from storage it may be impractical to change data rates at the

source.

One common argument against reservationism is that resource capacity is

wasted when reservations are not fully used. This argument does not apply to

the CM-resource model; unused resource capacity is unavailable for other

reservations, but can be used by nonreal-time traffic or by workahead real-

time traffic.

It would be possible to combine the two approaches by using reservation for

a “base” performance level (for low-frequency information), and using a

dynamic approach for high-frequency information that enhances but is not

vital to the CM data stream.

Data rate model. Many CM data representations are constant-rate. These

include uncompressed digital music (in which there are no silences) and video

compression schemes such as DVI. However, some CM streams have rate

variation; examples include silence-suppressed voice conversations [8], and

variable-rate compressed video [35]. The CM-resource model requires that

data streams have a bounded rate, and it makes reservations based on this

rate. We chose not to model rate variation because resource overbooking

(based on variable-rate data) implies packet loss and/or unbounded delays,

contrary to our goal of low losses (see the following).

ACM TransactIons on Computer Systems, Vol 11, No 3, August 1993

Metascheduling for Continuous Media . 247

Workahead and logical delay. While CM data streams must have a

bounded “underlying” rate, arrivals at an interface within the system may

have an arbitrarily high rate over short periods. This burstiness is due to

workahead and is reflected in the W parameter in the LBAP model. The

LBAP model is minimally restrictive: it limits workahead to avoid buffer

overrun, but it makes no other demands on the workload (e.g., there is no

minimum intermessage gap).

Many real-time systems assume that delay bounds are “backlog-avoiding”:

the delay within a resource is bounded by the message interarrival time [25].

The CM-resource model is more flexible than backlog-avoiding models in two

ways:

—The delay bound can differ from the interarrival time. In high-delay

applications like remote playback it is important to allow delay bounds to

exceed the interarrival time. In low-delay applications like telephony, the

delay bound in a resource may have to be less than the interarrival time:

Suppose a stream contains 33-millisecond frames and traverses 10 re-

sources. In the backlog-avoiding model, its delay bound would be at least

330 milliseconds, which may be several times too large.

—The bounds apply to logical (not actual) delay. If the input has worked

ahead, the actual delay may be greater than the logical delay bound. This

flexibility can improve the response time of bursty nonreal-time traffic, as

shown in Figure 11.

We used a hard upper bound on logical delay, rather than a statistical

bound (i.e., 9070 of messages are delayed less than X) to provide determinis-

tic performance; for many CM applications, lateness is equivalent to loss.

Message loss and corruption. The CM-resource model is designed to elimi-

nate data loss due to buffer overrun or lateness. Since the bit error rate of

future fiber-optic networks will be very low [42], it may be reasonable to

assume that errors in distributed compound sessions will occur at about the

same rate as in processors and memory. At the very least, error-correcting

codes, rather than retransmission protocols, can be used to provide required

data integrity [30].

This low-loss model is a worthy goal. If significant error rates were

allowed, low-delay applications (such as teleconferencing) would have to be

able to deal with missing data, since retransmission is not viable in this case,

Some data representations (e.g., differentially compressed video) do not toler-

ate data loss or corruption. High-delay applications that use these represen-

tations would have to use a retransmission protocol, at the cost of increased

overhead and complexity.

Flow control, jitter, and synchronization. The CM-resource model re-

quires that each network node “regulate” data transmission so that receiver

buffers never overflow. This eliminates the need for flow control protocols in

most cases (a possible exception is pausing during remote playback, but this

could be handled at higher levels).

ACM Transactions on Computer Systems, Vol. 11, No 3, August 1993,

248 . David P. Anderson

a) backlog-avoiding
scheduling

b) workahead scheduling

c) workahead w(t)
at output interface

0123~56+ i~lo

Fig. 11. A comparison of workahead and backlog-avoiding scheduling. A CPU is handling a

stream of CM data (hght boxes) that uses 50~o of the CPU capacity A two-second nonreal-time

task (dark boxes) arrives at time 4 Workahead scheduling is 2.5 seconds ahead of schedule

at this point and can handle the new task in single uninterrupted CPU burst. With backlog-

avoiding scheduling, the new task takes 4 seconds to complete.

Jitter (delay variation) is not inherently undesirable: it is the by-product of

workahead scheduling. Isochronous (jitter-free) models force resources to be

restrictively scheduled, as described above. The jitter on a compound session

is bounded by its delay bound. This allows starvation-free output by buffering

at the receiver, as described in Section 3.1.

The CM-resource model has no requirement for clock synchronization or a

global time source, even if a resource (such as a network) spans multiple

hosts. The workahead function can be computed based on local (unsynchro-

nized) clocks. However, these local clocks must run at approximately the

same rate. If the ratio of clock rates has an upper bound a, then reservations

must be made for a throughput of CYR, where R is the underlying data rate.

Many CM applications have synchronization requirements, e.g., that two

streams must be displayed simultaneously or that one must immediately

follow another [24, 34]. Some proposals have suggested providing synchro-

nization functions in the network protocol hierarchy [41]. However, we be-

lieve such functions are better left to CM 1/0 servers [4]. The CM-resource

model supports this by allowing the servers to know when to start 1/0 on a

group of parallel synchronized streams (see Section 3.1).

The economic analogy. The CM-resource uses the idea of “cost” to describe

how delay is divided among resources. This invocation of economics may seem

spurious: the objective functions may be based on load, for example, not

money. However, the economic analogy is important for several reasons:

(1) Future large-scale systems will include components, such as public data

networks, that charge real money.

ACM TransactIons on Computer Systems, Vol 11, No 3, August 1993

Metascheduling for Continuous Media . 249

(2) Dissimilar resources may have no common basis for measuring load.

(3) By extending the economic model to include “benefit” functions (e.g.,

CD-quality audio with 50 millisecond delay is worth X dollars per second

to the user) we can balance resource usage against the utility or impor-

tance of the workload.

6.2 Related Work

Much work has been devoted to the design of system components (networks,

processing, storage) with real-time semantics. In the area of CPU scheduling,

optimal uniprocessor policies are known [13, 25], and heuristic algorithms for

more complex situations (multiple processors, resource contention, etc.) have

been proposed [23, 45]. Issues of disk layout and scheduling are discussed in

[33, 37]. Real-time LAN media access protocols are surveyed in [21]. The goal

of end-to-end internetwork connections with meaningful “quality of service”

parameters is discussed in [36]. The idea of logical arrival time was indepen-

dently developed by Zhang [44], who applies it to fair queueing of data

streams in network gateways.

Economic approaches have been used for resource allocation problems such

as load-balancing [28], network access [22], and file placement [20]. More

recently, research has been directed towards systems in which agents are

selfish and competitive, and prices vary with demand [14, 29].

Finally, the idea of metascheduling is present in some distributed real-time

systems [31, 45]. This work differs from ours because it focuses on the

end-to-end latency of request/reply operations, rather than on the through-

put and delay of data streams.

7. CONCLUSION

The CM-resource model is a basis for metascheduling in distributed systems

that support integrated continuous media. The model includes a workload

model (linear bounded arrival processes), an abstraction of reservable subsys-

tems (resources), and a protocol for negotiating the parameters of end-to-end

resource configurations. We have shown that the abstract interface can be

implemented for a range of system components (CPU, network, file system).

Because the model allows system components to work ahead, bursty nonreal-

time traffic performs better. The model gives hard bounds on end-to-end

delay, allowing starvation-free output. Because the amount of buffer space

needed on a given host is known, buffer overrun can be eliminated, simplify-

ing error management.

The CM-resource model might be extended in several ways. Mechanisms

could be added to respond incrementally to changing conditions (resource

costs, buffer space, or client requirements), or to allow sessions to be reserved

“in advance” for specific periods. The economic model could be extended to

handle factors other than the division of delay. In the current model, through-

put and delay bounds are fixed by the client. Instead, “benefit functions”

could be associated with CM data types and delay limits, and economic

principles (i.e., maximizing benefit minus cost) could be used to determine

ACM Transactions on Computer Systems, Vol. 11, No. 3, August 1993.

250 . David P. Anderson

data types, message sizes, and other parameters. More generally, economic

principles could be used to determine the very structure of the application: for

example, to choose between alternative topologies for distributed audio

mixing [5, 9].

ACKNOWLEDGMENTS

The CM-resource model is a group effort. Martin Andrews and Robert Wahbe

devised the basic model (LBAPs, resources, and compound sessions). Ralf

Herrtwich, Shin-Yuan Tzou, Ramesh Govindan, Eric Barr, and Steve Lucco

contributed substantially, as well.

REFERENCES

1. ANDERSON, D. P. A software architecture for network communication. In Proceedings of the

8th International Conference on Distributed Computmg Systems (San Jose, Calif., June

1988).

2. ANDERSON, D. P., HERRTWICH, R. G., AND SCHAEFER, C. SRP: A resource reservation protocol

for guaranteed-performance communication in the Internet. Tech. Rep 90-006, International

Computer Science Institute, Feb. 1990,

3. ANDERSON, D. P., Tzou, S., WAHBE, R., GOVINDAN, R., AND ANDREWS, M. Support for

continuous media in the DASH System. In Proceedings of the 10th International Conference

on Dwtrzbuted Computmg Systems (Paris, May 1990), 54–61.

4. ANDERSON, D. P., AND HOMSY, G. A continuous media 1/0 server and its synchromzation

mechanism. IEEE Computer 24, 10 (Oct. 1991), 51–57.

5. ANDERSON, D. P., .mm Cm, P Toolkit support for multluser audio/video applications,

Comput. Commun. (Oct. 1992).

6. ANDERSON, D. P., OSAWA, Y., AND GOVINDAN, R. Real-time disk storage and retrieval of

digital audio and video. ACM Trans Comput. Syst,, to appear.

7. ANGEBRANNDT, S., HYDE, R, L., LUONG, D. H., SIRAVARA, N., AND SCHWDT, C. Integrating

audio and telephony in a distributed workstation envmonment. Proceednzgs of the 1991

Summer USENZX Conference (Dallas, Tex., Jan. 21-25, 1991), 419-434.

8. BwinY, P. T. A statistical analysis of on-off patterns in sixteen conversations. Bell Syst

Tech. J. 47, 1 (Jan. 1968)

9. CHOW, C. Resource allocation algorithms for multimedia multiparty connections Tech Rep

EAS-CS-92-1, Univ. of Colorado at Colorado Springs, Jan. 1991.

10. CRUZ, R. L. A calculus for network delay and a note on topologies of interconnection

networks. Ph.D. dissertation, Rep. UILU-ENG-87-2246, Univ. of Illinois, July 1987

11. CRUZ, R. L. A calculus for network delay. IEEE Trans. Inf. Theory 37, 1 (Jan. 1991).

12. DEERING, S. E., AND CHERITON, D. R. Multicast routing in datagram internetworks and

extended LANs. Trans. Comput, Syst. 8, 2 (May 1990), 85-110

13. DERTOUZOS, M. L. Control robotics: The procedural control of physical processes. IFIP

Congress (1974), 807-813.

14. FERGUSON,D., YEMINI, Y., AND NIKOLAOU, C. Macroeconomic algorithms for load balancing in

distributed computer systems. In Proceedings of the 8th International Co~ference on DLs-

trtbuted Cornputmg Systems (San Jose, Calif., June 1988), 491–499.

15. GOVINDAN, R., AND ANDERSON, D. P. Scheduling and IPC mechanisms for continuous media

In Proceedings of the 13th ACM Symposium on Operating System Pnnczples (Pacific Grove,

Calif, Ott 14-16, 1991), 68–80

16. GRUBER, J. Performance considerations for integrated voice and data networks, Comput.

Commun. 4, 3 (June 1981), 106-126.

ACM Transactions on Computer Systems, Vol. 11, No. 3, August 1993

Metascheduling for Continuous Media . 251

17. HANKO, J. G., KUERNER, E. M., NORTHCUTT, J. D., AND WALL, G. A. Workstation support for

time-critical applications. In Proceedings of the Second International Workshop on Network

and Operating Ssytems Support for Digital Audio and Video (Heidelberg, Nov. 1991).

18. JEFFAY, K. The real-time producer/consumer paradigm: Towards verifiable real-time com-

putations. Ph.D. thesis, Dept. of Computer Science, Univ. of Washington. Tech. Rep. 89-09-15.

19. KARP, R. Reducibility among combinatorial problems. In Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher (Eds.) Plenum Press, New York, 1972, 85-103.

20. KUROSE, J. F., AND SIMHA, R. A macroeconomic approach to optimal file allocation. In

Proceedings of the 6th International Conference on Distributed Computing Systems (Cam-

bridge, Mass., May 19-23, 1986).

21. KUROSE, J. F., SCHWARTZ, M., AND YEMINI, Y. Multiple-access protocols and time-constrained

communication. ACM Comput. Suru. 16, 1, 43–70.

22. KUROSE, J. F., SCHWARTZ,M., AND YEMINI, Y. A macroeconomic approach to optimization of

channel access policies in multiaccess networks. In Proceedings of the 5th International

Conference on Distributed Computing Systems (May 1985), 70-80.

23. LEINBAUGH, D. W., AND YAMINI, M. Guaranteed response time in a distributed hard real-time

environment. IEEE Trans. Softw. Eng. 12, 12 (Dec. 1986), 1139–1144.

24. LITTLE, T. D. C., AND GHAFOOR, A. Synchronization and storage models for multimedia

objects. IEEE J. Selected Areas Commun. 8, 3 (Apr. 1990), 413–427.

25. Lm, C. L., AND LAYLAND, J. W. Scheduling algorithms for multiprogramming in a hard-real-

time environment. J. ACM 20, 1 (1973), 47-61.

26. LOY, G. Designing an operating environment for a realtime performance processing system.

In Proceedings of the 1985 International Computer Music Conference (Burnaby, B. C.,

Canada, 1985), 9-13.

27. LUTHER, A. C. D~gital Video in the PC Environment. McGraw-Hill, New York, 1989.

28. MA, P., LEE, E., AND TSUCHIYA, M. A task allocation model for distributed computing

systems. IEEE Trans. Comput. 31, 1 (Jan. 1982), 41–47.

29. MALONE, T. W., FIKES, R. E., GRANT, K. R., AND HOWARD, M. T. The Ecology of Computation.

North Holland, Amsterdam, 1988.

30. MCAULEY, A. J. Reliable broadband communications using a burst erasure correcting code.

In Proceedings of ACM SIGCOMM 90 (Philadelphia Pa., Sept. 1990), 287-306.

31. MERCER, C. W., ISHDG%WA,Y., AND TOKUDA, H. Distributed Hartstone: A distributed real-time

benchmark suite. In proceedings of the 10th International Conference on Distributed Com-

puting Systems (Paris, May 1990), 70-77.

32. MERCER, C. W., AND TOKUDA, H. An evaluation of priority consistency in protocol architec-

tures. In Proceedings of the IEEE Conference on Local Area Networks (Oct. 1991).

33. MOORER, J. A. Hard-disk recording and editing of digital audio. In Proceedings of the 89th

Cormention of the Audio Engineering Soctety (Los Angeles, Sept. 21-25, 1990).

34. NICOLAU, C. An architecture for real-time multimedia communication systems. IEEE Se-

lected Areas Commun. 8, 3 (Apr. 1990), 391-400.

35. OHTA, N., NOMURA, M., AND FUJH, T. Variable rate video encoding using motion-compensated

DCT for asynchronous transfer mode networks. In IEEE International Conference on Com-

mumcatzons (1988).

36. PARULKAR, G. M., AND TURNER, J. S. Towards a framework for high-speed communication in

a heterogeneous networking environment. IEEE Network 4, 2 (Mar. 1990), 19–27.

37. ~GAN, P. V., AND VIN, H. M. Designing file systems for digital audio and video. In

Proceedings of the 13th ACM Symposium on Operating System Principles (Pacific Grove,

Calif., Oct. 1991), 81-94.

38. ROSS, F. E. An overview of FDDI: The fiber distributed data interface. IEEE J. Selected

Areas Commun. 7, 7 (Sept. 1989).

39. SEVCIK, K. C., AND JOHNSON, M. J. Cycle time properties of the FDDI token ring protocol.

IEEE Trans. Softw. Eng. 13, 3 (Mar. 1987), 376-385.

40. SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority inheritance protocols: An approach to

real-time synchronization. IEEE Trans. Comput. 39, 9 (Sept. 1990), 1175– 1185.

ACM Transactions on Computer Systems, Vol. 11, No 3, August 1993

252 . David P. Anderson

41. SHEPHERD, D., AND SALMONY, M. Extending 0S1 to support synchronization required by

multimedia applications, Cornput. Commun. 13, 7 (Sept. 1990), 399–406.

42. SHJMADA, S., NAKAGAWA, K., AND TAKESHI, L Gigabit/s optical fiber transmission

systems—Today and tomorrow, IEEE International Conference on Communication (June

1986), 1538-1542.

43. WRIGHT, D. J., AND To, M. Telecommunications applications of the 1990s and their trans-

port requirements. IEEE Network 4, 2 (Mar. 1990), 34-40.

44. ZHANG, L. VirtualClock: A new traffic control algorithm for packet-switched networks.

ACM Trans. Comput. Syst. 9, 2 (May 1991), 101-124.

45 ZHAO, W., RAMAMRITHAM, K., AND STANKOVIC, J A. Preemptive scheduling under time and

resource constraints, IEEE Trans. Comput. 36, 8 (Aug. 1987), 949–960.

Received November 1990; revised May 1992; accepted August 1992

ACM Transactions on Computer Systems, Vol 11, No 3, August 1993

