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Abstract

Background: The new research field of metagenomics is providing exciting insights into various, previously unclassified
ecological systems. Next-generation sequencing technologies are producing a rapid increase of environmental data in
public databases. There is great need for specialized software solutions and statistical methods for dealing with complex
metagenome data sets.

Methodology/Principal Findings: To facilitate the development and improvement of metagenomic tools and the planning
of metagenomic projects, we introduce a sequencing simulator called MetaSim. Our software can be used to generate
collections of synthetic reads that reflect the diverse taxonomical composition of typical metagenome data sets. Based on a
database of given genomes, the program allows the user to design a metagenome by specifying the number of genomes
present at different levels of the NCBI taxonomy, and then to collect reads from the metagenome using a simulation of a
number of different sequencing technologies. A population sampler optionally produces evolved sequences based on
source genomes and a given evolutionary tree.

Conclusions/Significance: MetaSim allows the user to simulate individual read datasets that can be used as standardized
test scenarios for planning sequencing projects or for benchmarking metagenomic software.

Citation: Richter DC, Ott F, Auch AF, Schmid R, Huson DH (2008) MetaSim—A Sequencing Simulator for Genomics and Metagenomics. PLoS ONE 3(10): e3373.
doi:10.1371/journal.pone.0003373

Editor: Dawn Field, NERC Centre for Ecology and Hydrology, United Kingdom

Received August 11, 2008; Accepted September 16, 2008; Published October 8, 2008

Copyright: � 2008 Richter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: drichter@informatik.uni-tuebingen.de

Introduction

Metagenomics is based on the isolation and characterization of

DNA from environmental samples without the need for prior

cultivation of microorganisms. In contrast to single genome studies,

analyses are applied to entire communities of microbes instead of only

few isolated organisms. It has already led to exciting insights into the

ecology of different habitats such as ocean [1], soil [2], acid mine [3],

human and mouse gut [4,5] and even into ancient DNA [6].

The research field of Metagenomics is spurred by the recent

development and improvement of next-generation sequencing

technologies like Roche’s 454 pyrosequencing [7]. Although these

high through-put technologies promise faster and relatively

inexpensive generation of reads, Sanger sequencing still has been

used in environmental genome projects [5] to avoid the drawbacks

of shorter read lengths.

In general, studies show that algorithms developed for single-

genome assembly are only suitable for environmental sequences

under special conditions, for example in low complexity

populations [2,8]. In particular, it is very difficult to assemble

reads from highly diverse ecologic systems [9]. The problem is that

the arrangement of reads into contigs fails or is misleading because

contigs are put together from reads from many different genomes.

Currently, the primary goals of metagenomic studies are the

investigation of the phylogenetic composition of the sample

(taxonomical binning, ‘‘Who is out there’’), the quantitive analysis

(‘‘How many are there?’’) and the prediction of genes and their

functions (functional binning, ‘‘What are they doing’’). Since the

amount of comparable environmental data is rapidly growing,

comparative studies of multiple metagenomic data sets are of great

interest as wells. As of September 2008, 44 metagenome studies have

already been conducted whereas 86 projects still are on-going [10].

Common strategies for taxonomical binning are for example: (1)

detecting phylogenetic markers like rRNA, RecA, heat shock protein

(HSP70) and elongation factors (EF-Tu, EF-G) [11], (2) comparing

reads against a reference database such as NCBI-nr [12] and then

analyzing the matches to place the reads in the NCBI taxonomy

[13] and (3) measuring the oligonucleotide frequency caused by

codon usage or restriction-site frequency [14–18].

When it comes to functional binning, sequences are compared

to known protein functions, families and pathways provided by

several databases, for example COG, KEGG, PFAM, SEED,

STRING and TIGRFAM [19–24]. A de novo search for (unknown)

functional units is only feasible if either long reads or contigs are

available for the detection of open reading frames.

Another challenge in metagenomic studies is the development of

robust statistical techniques [25]. Particularly with regard to

comparative metagenomics dealing with highly variable data,

these techniques are considered as indispensable for a well-

founded analysis.

Despite the enormous amount of sequence data that was

generated and analyzed in the past few years, the number of
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publicly available software specialized in metagenomic data

analysis is surprisingly low. Hence, many studies still make use

of classic methods, software or web services that originally were

not intended for metagenomic data analysis and have to be

adapted or pipelined to produce the desired results [8].

Thus, there is a great demand for specialized metagenomic

software supporting the analysis process. Because of the complex-

ity of metagenomic data, it is crucial to benchmark new and

existing software with standardized test cases using simulated and

verifiable data. A first study [9] provides three data sets with

varying complexity by selecting original sequence reads from 113

isolated genomes. In their paper, the authors anticipate that these

data sets will be used as standard test cases for software testing.

Some other publications already applied the software ReadSim

(pre-version of MetaSim, unpublished) to generate simulated read

data sets for testing their software [18,26].

Description of MetaSim
MetaSim takes as input a set of known genome sequences and

an abundance profile. This profile determines which genome

sequences are selected for the simulation and the relative

abundance of each genome sequence in the dataset.

MetaSim integrates an ’’induced tree view’’ of the NCBI

taxonomy [27] that can be used to interactively select taxa and

inner nodes of the taxonomy to configure their relative

abundances. Additionally, the user is able to simulate an ’’evolved’’

population of a single genome sequence, using a population

simulator. This feature is aimed at simulating the common real

world situation that many different, but closely related strains of a

lineage coexist in the same habitat.

Finally, for the construction of a realistic read data set, MetaSim

includes a versatile read sequencing simulator. The user is able to

choose from different (adaptable) error models of current

sequencing technologies (e.g. Sanger [28,29], Roche’s 454 [7]

and Illumina (former Solexa) [30]).

MetaSim allows one to construct verifiable read data sets, and

additionally, metagenomes variable in size, taxonomical compo-

sition and abundance to reflect the diverse and complex output of

real metagenomic studies. The resulting data sets can be used to

plan and design metagenomic studies and for evaluation and

improvement of metagenomics software tools, statistical methods

or assembly algorithms.

Availability
MetaSim is written in Java and can be run with a graphical user

interface or in command line mode. Installers for Linux/Unix,

MacOS X and Windows are freely available from our website at:

http://www-ab.informatik.uni-tuebingen.de/software/metasim.

Methods

MetaSim’s processing pipeline consists of several phases:

1. Selection of source genome sequences from the internal

database

2. Configuration of the species abundance profile by setting the

relative copy number of the genome sequences

3. Sampling sequencing of fragments according to the species

abundance profiles

4. Application of technology-specific error models to the frag-

ments to create sequencing reads

Configuration of Species Abundance Profiles
At the beginning, whole genome sequences available from

public database can be stored locally as source sequences in an

integrated database. The user specifies the relative abundance of

each genome sequence in a text-based profile file. An interesting

feature of MetaSim is the possibility of assigning frequency values

not only at the species level but also at higher taxonomical levels.

For example, if the genus Escherichia is assigned a certain amount

of genome copies, this amount is split and applied uniformly to all

descendant species whose sequences are available from the

internal database.

To facilitate this data composition process in GUI mode,

MetaSim provides an interactive taxonomy editor that visualizes the

induced NCBI taxonomy, i.e. the genome sequences listed in the

profile file are displayed as nodes in a rooted tree (Figure 1). Node

sizes reflect the relative number of genome copies for each given

taxon.

Figure 1. Taxonomy Editor. A clipping of the taxonomy editor view is shown. Three taxa are assigned an abundance value (number in
parenthesis). These settings can be either determined in a text-based abundance profile file or directly in the taxonomy editor by right-clicking on a
node.
doi:10.1371/journal.pone.0003373.g001

MetaSim
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Population sampling
The current genome databases reflect only a small part of

earth’s still unexplored microbial diversity. Thus, a simulated

metagenome only based on known genome sequences does not

adequately reflect the complexity of realistic data sets.

MetaSim therefore includes a population sampler that option-

ally generates a set of evolved (mutated) offsprings derived from

single source genomes, using a given evolutionary tree. This tree

describes how the offspring sequences descend from the source

sequence. By default, a random pyholgenetic tree is generated

under the Yule-Harding model [31,32], but alternatively, user-

defined trees can also be loaded. As a simple model of DNA

evolution, the Jukes-Cantor formula [33] is applied to estimate a

probability of change for each base pair, with a customizable

transition rate a (0.001 by default) and time t based on the edge

weights. MetaSim then generates the designated number of

evolved genomes and then adds them to the internal genome

database. As an example, a fragment recruitment plot (according

to [1]) shows 10000 sampled Sanger reads of 100 evolved offspring

sequences (a= 0.004) mapped to the source genome (Escherichia coli

K-12 substr. MG1655) using blastn (Figure 2). Read sequences

sampled directly from the source genome show a significantly

higher identity compared to the mutated sequencing reads.

Read sampling
MetaSim simulates both Sanger sequencing and Roche’s 454

(sequencing-by-synthesis) approach. Additionally, it provides a

flexible, empirical error model usable to simulate Illumina’s ultra-

short reads.

For the simulation of read sequences, statistical approaches are

adopted to simulate the distribution of read lengths, its frequency

rate and the use of error models depending on the chosen

sequencing technology.

To be able to model mate-pairs as well, MetaSim first extracts

large fragments called clones from the set of genomes with normally

or uniformly distributed lengths. For example, clones with a length

of 1000 bp and a standard deviation of 100 bp are modelled with

a normal distribution N(1000,100) (Figure 3). The overall number

of clones is determined by the number of reads or mate-pairs the

user desires to generate.

If only one source genome is present in the given profile, the

clones are randomly extracted from this single sequence. In

contrast, in a typical metagenome simulation, the clones have to

be sampled from many genomes of varying length, copy number

(e.g. to model the abundance of plasmids versus the organsim

genomes) and abundancies.

So, each genome sequence s is assigned a weight

ws~ls|cs|as ð1Þ

where ls is the length, cs is the copy number and as is the specified

relative abundance of the genome sequence s as determined in the

profile.

For each length of the clone length distribution, the weights of

all sequences are summed up to receive the summarized weight

wsum that is used to compute a sequence probability ps = ws/wsum.

Considering the overall lengths distribution, a frequency value for

each source sequence is then obtained.

After the clone sampling, the ends of the clones are the basis for

the subsequent sampling of the reads or mate-pairs, respectively.

Again, read lengths can be either uniformly or normally

distributed. Finally, read sequences are processed and modified

by applying the selected error model.

Simulation of Sanger sequencing
A widely-used approach to sequencing large DNA molecules is

Sanger sequencing, using a shotgun approach that involves

Figure 2. Fragment Recruitment Plot. Black dots represent 10,000 sequencing reads (Sanger technology, <800 bp) drawn from 100 evolved
offsprings (a= 0.004) of the source genome Escherichia coli K-12 substr. MG1655. Their sequence identity is lower compared to the mapped reads
sampled directly form the source genome (red dots).
doi:10.1371/journal.pone.0003373.g002
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cloning small pieces (or inserts) of DNA and then determining

their sequence using fluorescent dideoxynucleotides for termina-

tion and capillary electrophoresis.

To simulate Sanger sequencing, we closely followed the

implementation of celsim reported in [34]. Each read is

subjected to a linearly increasing error rate. We model fixed

Figure 3. Frequency distribution of clone lengths. As an example, 250,000 clones with mean length 1000 bp and standard deviation of 100 bp
were modelled with a normal distribution.
doi:10.1371/journal.pone.0003373.g003
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percentages of deletion errors, insertion errors and substitutions.

Further, the simulator is capable of modeling mate-pairs and one

can specify the length distribution of inserts.

Simulation of sequencing-by-synthesis
In pyrosequencing, the intensity of emitted light is used to

estimate the length of homopolymers, i.e. runs of identical nucleotides

in a sequence. During sequencing, the four DNA composing

nucleotides are periodically flowed over the inserts to be sequenced.

Within each flow, the intensity of the signal emitted (which is

linear up to 8 bp) reflects the number of nucleotides incorporated.

Thus, the addition of a single base or even homopolymer stretches

of multiple bases in a single flow can be detected.. For chemical

and technical reasons, this signal is subject to fluctuations that lead

to sequencing errors. In [7], an error rate of about 3% is reported.

Let r denote the length of a given homopolymer. We model the

emitted light intensity using a normal distribution N(m, s), with

mean m = r and standard deviation s~k:
ffiffi

r
p

, where k is a fixed

Figure 4. The graphical user interface of MetaSim is divided into three panels: a project tree on the left containing all simulation
settings and taxon profiles, an overview and edit panel on the right and a message panel at the bottom. Additionally, a configuration
window is shown.
doi:10.1371/journal.pone.0003373.g004

Table 1. Species abundance and percentage of sampled reads of the simLC dataset.

Abdce Species Mbp 454-100a 454-250b S-800c

90 Methanoculleus marisnigri JR1 2.5 82,70 82,61 82,71

10 Escherichia coli str. K-12 substr. MG1655 4.6 17,30 17,39 17,29

a454 technology, 150000 reads (length: 100 bp).
b454 technology, 60000 reads, (length: 250 bp).
cSanger technology, 18750 reads, (length: 800 bp).
doi:10.1371/journal.pone.0003373.t001

MetaSim
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proportionality factor. Following [7], by default we use k = 0.15.

Although basic statistics implies that the standard deviation should

grow with the square root of r, in [7] the standard deviation of the

light intensity emitted during 454-sequencing is reported to be

s = k?r. Both variants of the calculation are implemented in our

software.

A negative flow is a flow of nucleotides in which the sequence to

synthesize is not elongated. Light intensities of negative flows

follow a lognormal distribution, with mean m = 0.23, and standard

deviation s = 0.15, see [7]. A random variable X is said to be

lognormally distributed, if the random variable ln(X) is normally

distributed.

We simulate base-calling intensities of negative flows and model

the misinterpretation of null-mers as homopolymers of length = 1

(insertion). Our algorithm takes the order of the sequencing flows

into account. Since the nucleotides are cyclically flowed in the

order T,A,C,G, after a given base only two specific negative flows

in a specific order are allowed.

During base-calling the algorithm looks at each homopolymer,

generates a N(m, s) distributed random variable and, according to

this variable, decides which length to set for the observed

homopolymer.

The signal intensity space is separated into disjoint intervals by

probability density functions of all homopolymer signals. The

intersections of the density functions fN r1,sð Þ xð Þ, and fN r2,sð Þ xð Þ of

the normal distributions for different homopolymer lengths r1 and r2
are calculated and stored. In each interval one probability density

function is maximized. These values are used to decide which

homopolymer length is called given a certain signal intensity.

Simulation of reads with empirical models
As an additional feature, MetaSim includes an empirical error

model that allows the incorporation of user-defined error statistics.

The probability of an occurrence of a sequencing error often

depends on the position of the erroneous base and its surrounding

bases. The program GenFrag [35] originally developed an error

Table 2. Species abundance and percentage of sampled reads of the simMC dataset.

Abdce Species Mbpa 454-100b 454-250c S-800d

100 Pseudomonas fluorescens PfO-1 6.4 38,42 38,39 38,13

100 Shigella dysenteriae Sd197 4.6 27,07 27,47 27,25

80 Pasteurella multocida subsp. multocida str. Pm70 2.3 10,82 10,87 10,81

50 Buchnera aphidicola str. APS 6.6 1,97 1,94 1,78

50 Francisella tularensis subsp. tularensis Schu 4 1.9 5,69 5,60 5,56

25 Alcanivorax borkumensis SK2 3.1 4,68 4,57 4,60

25 Candidatus Blochmannia floridanus 7.1 1,03 1,08 1,21

25 Pseudomonas entomophila L48 5.9 8,89 8,65 9,26

5 Escherichia coli str. K-12 substr. MG1655 4.6 1,43 1,43 1,40

aThe length of plasmids is considered as well.
b454 technology, 150,000 reads (length: 100 bp).
c454 technology, 60,000 reads, (length: 250 bp).
dSanger technology, 18,750 reads, (length: 800 bp).
doi:10.1371/journal.pone.0003373.t002

Table 3. Species abundance and percentage of sampled reads of the simHC dataset.

Abdce Species Mbpa 454-100b 454-250c S-800d

100 Agrobacterium tumefaciens str. C58 5.7 11,7 11,7 11,3

100 Anabaena variabilis ATCC 29413 7.1 14,7 14,9 14,6

100 Archaeoglobus fulgidus DSM 4304 2.2 4,54 4,41 4,55

100 Bdellovibrio bacteriovorus HD100 3.8 7,84 7,79 7,83

100 Campylobacter jejuni subsp. jejuni 81-176 1.7 3,52 3,6 3,57

100 Clostridium acetobutylicum ATCC 824 4.1 8,6 8,56 8,49

100 Lactococcus lactis subsp. cremoris SK11 2.6 5,38 5,32 5,54

100 Nitrosomonas europaea ATCC 19718 2.8 5,81 5,66 5,59

100 Pseudomonas aeruginosa PA7 6.6 13,6 13,6 14

100 Streptomyces coelicolor A3(2) 9.1 18,7 18,9 18,9

100 Sulfolobus tokodaii str. 7 2.7 5,64 5,59 5,6

aThe length of plasmids is considered as well.
b454 technology, 150,000 reads (length: 100 bp).
c454 technology, 60,000 reads, (length: 250 bp).
dSanger technology, 18,750 reads, (length: 800 bp).
doi:10.1371/journal.pone.0003373.t003
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model which incorporates different error types (deletion, insertion,

substitution) at certain positions with empirical error probabilities.

MetaSim adopts this general approach. The error model is

based on mappings (error curves) that assign error rates to specific

base positions. Each mapping has three parameters (the last two

are optional):

N type of error,

N base at the position where the error occurs and

N base preceding the position where the error occurs.

In this way, 48 independent mappings can be individually

determined. In addition, in case of a substitution error the user can

specify the probability of integrating a particular base depending

on the type of the base at the error position and the preceding

base.

Using empirical data, MetaSim provides an error model for the

short reads of the Illumina technology.

Results

MetaSim can be controlled either by a graphical user interface

(Figure 4) or by command line. The command line mode provides

access to most of the functions needed for automatic simulation

runs. A simulation run generating 400,000 454 reads of length

<250 bp (a total of 100 Mbp) takes less than 80 seconds on a

2,13 GHz single processor computer.

To show the utility of this simulation software, for example, in

the benchmarking of new software, we generated 9 data sets using

a range of parameters and used them to test how well the MEGAN

software succeeded in successfully binning sequences based on

taxonomic classification by homology.

Simulation study
MetaSim was used to generate three simulated data sets of

different species compositions. These data sets were designed and

named simLC, simMC and simHC representing low, medium and

high complexity communities, respectively (in correspondence to

Mavromatis et al. [9]). For each data set, three runs were

conducted with different sequencing error models and read

lengths. Also, each resulting read data set comprises of

approximately 15 Mbp, so the number of reads differ accordingly:

for the 454 sequencing technology with read length <100 bp

(<250 bp), 150,000 (60,000) read sequences were generated. The

third data set consists of Sanger reads (<800 bp) and consisted of

18,750 reads. For a list with all simulation parameters of MetaSim

see Supplementary Information Text S1.

Table 1–3 show the relative abundancies and the resulting

number of sampled reads for each selected taxon. The simLC data

set (Table 1) consists of two taxonomically distant microbes whose

relative abundance values differ significantly. The simMC data set

(Table 2) is composed of nine microbial species (all from the phylum

c-Proteobacteria) with two dominant populations. The simHC data

set (Table 3) consists of 11 diverse microbial species covering several

phyla from the superkingdom bacteria. All species in the simHC

data set are sampled with the same relative abundance.

Obviously, the amount and ratio of sampled reads in each

simulation result reflects the configured abundances and genome

sizes. For example, in the simHC data set both Campylobacter jejuni

subsp. jejuni 81-176 and Streptomyces coelicolor A3(2) are assigned the

same relative abundance of 100. The percentage of sampled reads

differs about 15% which can be explained by the difference in

genome size (length of contained plasmids are considered as well).

Considering all simulations runs, the ratio of sampled reads is

almost equal for each species. For example in Table 1, 17,30%,

17,39% and 17,29% reads were sampled for Escherichia coli str. K12

substr. MG1655 when simulating 454 sequencing technology with

read length 100 bp and 250 bp and Sanger sequencing with read

length of 800 bp, respectively.

Taxonomical classification using MEGAN
Following the generation of the nine data sets, a taxonomical

assignment of the reads with the MEGAN software was conducted

to test its binning functionality. Therefore, all generated read sets

were blasted against the NCBI-nr database (downloaded March

2008). MEGAN then assigns these reads to taxa in such a way that

the taxonomical level of the assigned taxon reflects the level of

conservation of the sampled sequence (Parameter settings of

MEGAN: minscore: 0.0, toppercent: 1.0, minsupport: 2, winscore:

0.0).

The result for each simulation run is shown in Figure 5A–C.

(For a list of all results see Supplementary Information, Table S1.)

Summarizing all simulations, one observation can be made: The

amount of total assignments of reads to taxa correlates with the

read length. The longer the read sequence, the more assignments

for a taxon are found. This is also true for the correct assignments

(true positives) (Supplementary Information Table S1).

Accordingly, the fraction of reads that did not match anything

in the NCBI-nr database (% no hits) (Table 4) decreases

significantly in case of longer read sequences. These findings were

expected since longer read sequences generally give rise to more

significant high scoring pairs using BLAST.

Figure 5. Assignment curves of reads taxonomically classified by MEGAN. The precentage values refer to the number of sampled reads
generated for each organism. (A) The simLC dataset consists of only two organisms. The number of assigned reads to M. marisnigri JR1 almost equals
the number of its sampled reads whereas E. coli str. K-12 substr. MG1655 has only few assignmentss. (B) In the simMC dataset, the number of
assigned reads increases significantly with longer read lengths (except for Shigella dysenteriae Sd197, Francisella tularensis subsp. tularensis Schu 4
and E. coli str. K12 substr. MG1655). (C) In the simHC dataset, the fraction of assigned reads to Campylobacter jejuni subsp. jejuni 81-176, Lactococcus
lactis subsp. cremoris SK11 and Pseudomonas aeruginosa PA7 is rather low compared to the other organisms.
doi:10.1371/journal.pone.0003373.g005

Table 4. Percentage of assigned, unassigned and ‘‘No Hits’’
reads for all simulation runs.

Total
Reads

%Assigned
Reads

%Unassigned
Reads

%No
Hitsa

simLC-454-100 150000 83,14 0,46 16,40

simLC-454-250 60000 98,58 0,85 0,57

simLC-S-800 18750 99,45 0,55 0,00

simMC-454-100 150000 81,71 0,52 17,76

simMC-454-250 60000 98,08 1,02 0,91

simMC-S-800 18750 99,28 0,71 0,01

simHC-454-100 150000 81,68 0,51 17,81

simHC-454-250 60000 97,55 0,93 1,52

simHC-S-800 18750 99,08 0,87 0,05

aReads that did not match anything in the NCBI-nr database.
doi:10.1371/journal.pone.0003373.t004

MetaSim
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Independent of the read length, MEGAN is able to assign reads

with a high true positive rate. Except for E. coli str. K12 substr.

MG1655 and Shigella dysenteriae Sd197 in simMC, virtually all reads

(98–100%) are correctly classified.

It is important to mention that the composition of the

simulated data sets was explicitly intended as an example for a

benchmarking study, not for modelling real ecological environ-

ments. Thus, simLC consists of only two microbial species that

derive from two distinct superkingdoms of the taxonomy

(Bacteria and Archae) (Table 1 and Figure 5A). The majority

of the sampled reads of E.coli str. K12 substr. MG1655 were

assigned to other taxa and clades in the subtree of Bacteria

(Figure 6) leading to false positive hits in MEGAN. However,

many closely related strains in the subtree of genus Escherichia

were hit supporting the evidence that a high number of genetic

functions are shared among them.

Figure 6. MEGAN visualization of the simLC data set (Sanger technology, read length <800 bp). Two arrows point out the two source
genomes of the simulation run. The number of assigned reads to E.coli K12 (192) is rather small compared to the number of sampled reads from the
genome of E. coli str. K12 substr. MG1655 (192 assigned vs. 3214 sampled reads). Many reads have BLAST hits in multiple strains and clades, so that
MEGAN assigns them to an high-order level in the tree e.g. node Bacteria (3157 reads). M. marisnigri JR1 has only few related strains. In this case, the
assignment of reads is more specific (15,366 assigned vs. 15,509 sampled reads).
doi:10.1371/journal.pone.0003373.g006

MetaSim
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A similar problem can be observed in the simMC data set

(Figure 5B). To complicate the distinct classification of the reads,

all species were taken from the class c-Proteobacteria. In this

example, reads of S. dysenteriae Sd197, Francisella tularensis subsp.

tularensis Schu 4 and E. coli str. K12 substr. MG1655 could not be

completely assigned to the correct taxa. However, the high

assignment accuracy (correct hits, %TP (Supplementary Informa-

tion Table S1)) means that practically all assigned reads were

correctly classified by MEGAN.

Data set simHC contains sequences of many phyla assigned

with the same relative abundance of 100 (Table 3). This implies

that the amount of sampled reads depends mainly on the length

of the source genome sequences. At first sight, the fraction of

assigned reads for the three genomes Campylobacter jejuni subsp.

jejuni 81-176, Lactococcus lactis subsp. cremoris SK11 and Pseudomonas

aeruginosa PA7 is quite low (10.15%, 43.93% and 63.62% for

800 bp Sanger reads, respectively) (Figure 5C). Though, in the

taxonomic tree at genus level (Campylobacter, Lactococcus and

Figure 7. MEGAN visualization of the simHC data set (Sanger technology, read length <800 bp). Arrows point out three of the 11 source
genomes of the simulation run that show only few assigned reads at species level compared to the number of originally sampled reads. Due to the
fact that C. jejuni subsp. jejuni 81-176, L. lactis subsp. cremoris SK11 and P. aeruginosa PA7 share genes with many closely related strains, most of the
sampled reads were assigned by MEGAN to an high-order level in the tree (e.g. genus).
doi:10.1371/journal.pone.0003373.g007
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Pseudomonas), the number of assigned reads virtually equals the

number of sampled reads (Figure 7). This is due to the fact that

closely related organisms from the same genus share a lot of

genes. Again, the number of correct assignments is almost

optimal.

Summary of MEGAN results
The analysis of the nine artifical data sets help to reveal the pros

and cons of taxonomical binning based on homology as done by

MEGAN. All simulation runs indicated that MEGAN generally is

capable of binning the majority of all generated reads correctly.

Additionally, the number of unassigned reads i.e. reads that

actually hit sequences in the database but could not be assigned

due to MEGAN’s parameter settings, is very low. However, reads

having many homologous sequences in the database due to high

conservation among microbial families and lineages, lead to a

rather ’’diffuse’’, but still correct read assignment: due to gene

sharing, MEGAN assigns these reads to high-order taxa closer to

the root (e.g. at genus level), thus avoiding probable false-positive

assignments (MEGAN uses an LCA-based algorithm [13].). This

means that MEGAN classifies those reads rather ’’generally’’ but

the assignment still is adequate for interpreting metagenomic data

in sufficiency.

Another observation is that the amount of assigned reads

correlates strongly with the read length. Obviously, with reads

produced by Sanger sequencing (800 bp), taxonomical binning

becomes easier compared to short reads (100–250 bp). This

oberservation confirms the findings in [13]. Moreover, the positive

effect of better assignment and classification of long reads comes

with higher costs and workload in the sequencing phase.

The expense for sequencing with Sanger technology is about

$500/Mbp (800 bp reads), whereas e.g. pyrosequencing with

Roche’s 454 technology is only about $100/Mbp (250 bp reads)

yielding many more base pairs per run at the same time. On top of

the positive cost factor, compared to the Sanger technology, next-

generation sequencers do not suffer from cloning bias.

Discussion

The appearance of next-generation sequencers on the market

has boosted the number and scope of (meta-)genomic sequencing

projects. A lot of data can be generated in less time demanding fast

and precise analysis algorithms and software. However, especially

in the field of metagenomics, the problem of producing individual,

simulated test cases for benchmarking is open.

We try to fill this gap with MetaSim, a flexible tool for

producing simulated read data sets, useful for designing metagen-

ome projects and for testing and comparing metagenomic or

assembly software. A lot of parameters can be adapted to generate

user defined sequence sets that can serve as verified example data.

Currently, the Sanger and Roche’s 454 sequencing error model

can be selected, as well as the Illumina error model which is based

on empirical data. The empirical error model can easily be

configured and adapted to other sequencing technologies or error

probabilities.

Given this flexibility of the read simulator, it is possible to

construct many kinds of individual fragments like, for example

reads, contigs or expressed sequence tags (ESTs) derived from

existing sequences. We plan to integrate further error models of

upcoming sequencers. In addition, future version of MetaSim will

extend the population sampler by using more sophisticated models

for sequence evolution like HKY [36], as, e.g., already

implemented in Seq-Gen [37].

Supporting Information

Text S1 Parameter settings of MetaSim. For each of the three

each simulation runs, the simulation settings are listed.

Found at: doi:10.1371/journal.pone.0003373.s001 (0.00 MB

TXT)

Table S1 Complete list of simulation results. A complete list of

all results of the nine conducted simulation runs evaluated with

MEGAN.

Found at: doi:10.1371/journal.pone.0003373.s002 (0.04 MB

XLS)
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