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While metagenomics has emerged as a technology of choice for analyzing bacterial populations, the assembly of metage-
nomic data remains challenging, thus stifling biological discoveries. Moreover, recent studies revealed that complex bacterial
populations may be composed from dozens of related strains, thus further amplifying the challenge of metagenomic assem-
bly. metaSPAdes addresses various challenges of metagenomic assembly by capitalizing on computational ideas that proved
to be useful in assemblies of single cells and highly polymorphic diploid genomes. We benchmark metaSPAdes against other
state-of-the-art metagenome assemblers and demonstrate that it results in high-quality assemblies across diverse data sets.

[Supplemental material is available for this article.]

Metagenome sequencing has emerged as a technology of choice
for analyzing bacterial populations and the discovery of novel or-
ganisms and genes (Tyson et al. 2004; Venter et al. 2004; Yooseph
et al. 2007; Arumugamet al. 2011). In one of the earlymetagenom-
ics studies, Venter et al. (2004) attempted to assemble the complex
Sargasso Sea microbial community but, as the study stated, failed.
On the other side of the spectrum ofmetagenomics studies, Tyson
et al. (2004) succeeded in assembling a simple microbial commu-
nity consisting of a few species.

These landmark studies (Tyson et al. 2004; Venter et al. 2004)
used conventional assembly tools—namely, Celera (Myers et al.
2000) and JAZZ (Aparicio et al. 2002)—with minor modifications.
Since they were published, many specialized metagenomic assem-
blers have been developed (Koren et al. 2011; Laserson et al. 2011;
Peng et al. 2011, 2012; Boisvert et al. 2012; Namiki et al. 2012;
Haider et al. 2014; Li et al. 2016). However, bioinformaticians are
still struggling to bridge the gap between assembling simple and
complex microbial communities (for a review, see Gevers et al.
2012). Meanwhile, many researchers succeeded in isolating abun-
dant population genomes out of complex metagenomes (Hess
et al. 2011; Dupont et al. 2012; Iverson et al. 2012; CL Dupont,
D Kaul, A Bankevich, DB Rusch, RA Richter, J Zhang, J Stuzka, V
Montel, A Young, AE Allen, in prep.) by complementing de novo
assembly with a partition of contigs into bins based on coverage
depth, sequence composition, mate-pair information, and other
criteria (Dick et al. 2009; Wu and Ye 2011; Wu et al. 2014).
However, this approach often faces difficulties because high frag-
mentation of metagenomic assemblies negatively affects both
the accuracy of binning and the contiguity of genomes attributed
to specific bins. Thus, development of better assemblers remains
an important goal in metagenomics.

Recent applications of single-cell (Kashtan et al. 2014) and
TruSeq Synthetic Long Reads (TSLRs) (Sharon et al. 2015) technol-
ogies revealed an enormous microdiversity of related strains with-
in various microbial communities. While strains share most of the
genomic sequence, they often have significant variation arising
frommutations, insertions ofmobile elements, genome rearrange-
ments, or horizontal gene transfer. For example, single-cell se-

quencing revealed that the wild Prochlorococcus (the most
abundant photosynthetic bacteria on earth) population can be
viewed as a “federation” of hundreds of distinct subpopulations
(some differing in <5% of positions) (Kashtan et al. 2014; Biller
et al. 2015). Moreover, nearly all analyzed single cells carried at
least one gene cassette not found in other cells from the same sub-
population. By using TSLRs, Sharon et al. (2015) showed that the
most abundant species in their sediment samples are represented
by dozens of related strains. Moreover, investigators argued that
this microdiversity was responsible for the poor reconstruction
of the corresponding genomes from short-read libraries. Butmicro-
diversity is just one of many metagenomic assembly challenges
that we discuss below.

First, widely different abundance levels of various species in a
microbial sample result in a highly nonuniform read coverage
across different genomes. Moreover, coverage of most species in
a typical metagenomic data set is much lower than in a typical se-
quencing project of a cultivated sample. As a result, standard as-
sembly techniques aimed at isolate genomes with high and
rather uniform coverage generate fragmented and error-prone
metagenomic assemblies.

Second, various species within a microbial community often
share highly conserved genomic regions. Besides complicating the
assembly and fragmenting contigs, such “interspecies repeats,” to-
gether with low coverage of most species, may trigger intergeno-
mic assembly errors.

Third, many bacterial species in a microbial sample are repre-
sented by strain mixtures, that is, multiple related strains with vary-
ing abundances (Biller et al. 2014; Kashtan et al. 2014; Rosen et al.
2015; Sharon et al. 2015). Although various studies outside the
field of metagenomics extensively addressed a similar challenge
of assembling two haplomes within a highly polymorphic eukary-
otic genome (Dehal et al. 2002; Vinson et al. 2005; Donmez and
Brudno 2011; Kajitani et al. 2014; Safonova et al. 2015), assembly
of many closely related bacterial strains is a somewhat different
problemwith unique computational challenges.While some stud-
ies described the initial steps toward identification of complex
strain variants (Koren et al. 2011; Peng et al. 2011; Nijkamp et al.
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2013), popular metagenomic assembly tools (Boisvert et al. 2012;
Peng et al. 2012; Li et al. 2016) still include only rudimentary
procedures for assembling strain mixtures with high level of
microdiversity.

We note that each of the challenges described above has al-
ready been addressed in the course of development of the
SPAdes assembly toolkit, albeit in applications outside the field
of metagenomics. SPAdes was initially developed to assemble
data sets with nonuniform coverage, one of the key challenges of
single-cell assembly (Bankevich et al. 2012; Nurk et al. 2013).
exSPAnder repeat resolution module of SPAdes (Prjibelski et al.
2014; Vasilinetc et al. 2015; Antipov et al. 2016) was developed
to accurately resolve genomic repeats by combining multiple li-
braries sequenced with various technologies. Lastly, dipSPAdes
(Safonova et al. 2015) was developed to address the challenge of as-
sembling a two-haplome mixture within a highly polymorphic
diploid genome.

While these recently developed SPAdes tools address chal-
lenging assembly problems, metagenomic assembly is arguably
an even more difficult problem with data set sizes that dwarf
most other DNA sequencing projects. Nevertheless, despite the
fact that SPAdes was not designed for metagenomics applications,
various groups successfully applied it to their metagenomics stud-
ies (McLean et al. 2013; Nurk et al. 2013; Coates et al. 2014; Cotten
et al. 2014; Bertin et al. 2015; García-López et al. 2015; Kleigrewe
et al. 2015; Kleiner et al. 2015; Miller et al. 2016; Tsai et al. 2016;
Xie et al. 2016). However, while SPAdes indeed works well for
assembling low-complexity metagenomes like cyanobacterial
filaments (Coates et al. 2014), or MDA-amplified mixtures of a
small number of randomly selected bacterial cells (Nurk et al.
2013), its performance deteriorates in the case of complex bacterial
communities.

Our novel metaSPAdes software combines new algorithmic
ideas with proven solutions from the SPAdes toolkit to address var-
ious challenges ofmetagenomic assembly. Belowwe describe algo-
rithmic approaches used in metaSPAdes and benchmark it against
the state-of-the-art metagenomic assemblers IDBA-UD (Peng et al.
2012), Ray-Meta (Boisvert et al. 2012), and MEGAHIT (Li et al.
2015).

Results

Outline of metaSPAdes pipeline

metaSPAdes first constructs the de Bruijn graph of all reads using
SPAdes, transforms it into the assembly graph using various
graph simplification procedures, and reconstructs paths in the
assembly graph that correspond to long genomic fragmentswithin
a metagenome (Bankevich et al. 2012; Nurk et al. 2013).
metaSPAdes works across a wide range of coverage depths and at-
tempts to maintain a trade-off between the accuracy and the con-
tiguity of assemblies. Responding to the microdiversity challenge,
metaSPAdes focuses on reconstructing a consensus backbone of a
strain mixture, thus ignoring some strain-specific features corre-
sponding to rare strains.

Benchmarking challenge

Genome assemblers are usually benchmarked on isolates with
known reference genomes using various metrics (Salzberg et al.
2012; Gurevich et al. 2013). Benchmarking of metagenomic as-
semblers is a more difficult task because no reference metage-

nomes are available for microbial communities of even moderate
complexity.

One approach to address this issue relies on identifying refer-
ence genomes closely related to some genomes in a metagenome
(Koren et al. 2011; Treangen et al. 2013). However, this approach
is limited since (1) closely related reference genomes are available
only for a fraction of species in a metagenome, and (2) differences
between identified references and their counterparts in a metage-
nome are often misinterpreted as assembly errors (see “Analysis
of the HMP Dataset” in the Supplemental Material). Another ap-
proach to benchmarking metagenomic assemblers uses synthetic
data sets with known community members. Such data sets can
be obtained by sequencing the mixtures of bacteria with known
genomes (Turnbaugh et al. 2007; Shakya et al. 2013), mixed
from isolate sequencing data (Mavromatis et al. 2007), or simulat-
ed from reference sequences (Richter et al. 2008; Mende et al.
2012). However, while synthetic data sets proved to be useful in
various benchmarking efforts, they are typically less complex
than real metagenomes (Koren et al. 2011; Peng et al. 2012).

We benchmarked metaSPAdes against three popular metage-
nomic assemblers—IDBA-UD (Peng et al. 2012), Ray-Meta
(Boisvert et al. 2012), andMEGAHIT (Li et al. 2015)—across diverse
synthetic and real data sets using metaQUAST (Mikheenko et al.
2016). The data sets were preprocessed as described in “Data
Preprocessing” in the Supplemental Material.

Data sets

We analyzed the following data sets.

Synthetic community data set

Synthetic community data set (SYNTH) is a set of reads from the
genomic DNAmixture of 64 diverse bacterial and archaeal species
(SRA acc. no. SRX200676) (Shakya et al. 2013) that was used for
benchmarking the Omega assembler (Haider et al. 2014). It con-
tains 109 million Illumina HiSeq 100-bp paired-end reads with
mean insert size of 206 bp. Since the reference genomes for all
64 species forming the SYNTH data set are known, we used them
to assess the quality of various SYNTH assemblies.

Human Microbiome Project data set

HumanMicrobiome Project data set (HMP) is a female tongue dor-
sum data set (SRA acc. no. SRX024329) generated by the Human
Microbiome Project (The HumanMicrobiome Project Consortium
2012) that was used for benchmarking by Peng et al. (2011), Trean-
gen et al. (2013), and Mikheenko et al. (2016). It contains 75
million Illumina HiSeq 95-bp paired-end reads with mean insert
size of 213 bp. Although the genomes comprising theHMP sample
are unknown, we cautiously selected three reference genomes that
are similar to the genomes within the sample for benchmarking.

Marine metagenome data set

Marine metagenome data set (MARINE) is a 300-m-depth marine
metagenome data set (SRA acc. no. SRX1991080) originating from
the functional genomics study of an oxygenminimumzone in the
equatorial Pacific (http://genome.jgi.doe.gov/FungenequPacific/
FungenequPacific.info.html). It contains 48 million Illumina
HiSeq 150-bp paired-end reads with mean insert size of 245 bp.
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Aquifer sediment data set

Aquifer sediment data set (SOIL; SRA acc. no. SRX2021633) is one
of the Illumina data sets from the study of the sediment samples
collected in an aquifer adjacent to the Colorado River (Castelle
et al. 2013; Hug et al. 2013), containing 32 million Illumina
HiSeq 150-bp paired-end reads with mean insert size of 460 bp
(even though aquifer sediments represent a different environment
than soil, we took a liberty to refer to this data set as SOIL). Sharon
et al. (2015) improved on the original analysis using TSLR sequenc-
ing (Kuleshov et al. 2014; McCoy et al. 2014). Since the TSLR tech-
nology results in greatly improved metagenomics assemblies
(Kuleshov et al. 2015; Bankevich and Pevzner 2016; CL Dupont,
D Kaul, A Bankevich, DB Rusch, RA Richter, J Zhang, J Stuzka, V
Montel, A Young, AE Allen, in prep.), this data set provides a
unique opportunity to benchmark various metagenomic assem-
blers based on how well they reconstruct genomic regions cap-
tured by TSLRs.

Supplemental Materials “CAMI Datasets” and “Analysis of
CAMI Datasets” also present results of benchmarking on two syn-
thetic data sets, simulated from reference genomes within the
“Critical Assessment of Metagenome Interpretation” (CAMI) ini-
tiative (http://www.cami-challenge.org/).

Assembly parameters

metaSPAdes from SPAdes v3.10 prerelease package (see “Software
Availability” section), MEGAHIT v1.0.6.1, IDBA-UD v1.1.1, and
Ray-Meta v2.3.1 have been launched in 16 threads with (mostly)
default parameters. IDBA-UDwas launched with read error-correc-
tion enabled as recommended in the manual for metagenomic
data. Ray-Meta was launched with a k-mer size equal to 31.
Supplemental Table S1 provides information about the running
time and memory footprints of various assemblers. All assemblers
were benchmarked using metaQUAST from QUAST v4.5 package
(Gurevich et al. 2013) (with “-m 1000 –scaffolds” options).
metaQUAST classifies a position in a scaffold as an intragenomic
misassembly if its flanking regions align to nonconsecutive regions
of the same reference genome and as an intergenomic misassembly if
they align to different reference genomes.

Benchmarking

We benchmarked four assemblers (metaSPAdes, MEGAHIT,
UDBA-UD, and Ray-Meta) on four data sets (SYNTH, HMP,
MARINE, and SOIL) across a wide array of metrics described below.

Scaffold length statistics

Table 1 provides the scaffold length statistics and demonstrates
that, with respect to the total length of scaffolds (>1 kb), Ray-
Meta generated inferior results compared with other assemblers
on all data sets. metaSPAdes significantly improved the total scaf-
fold length in the case of the most diverse SOIL data set (21% and
40% increase compared with IDBA-UD andMEGAHIT, respective-
ly). Although all tools generated assemblies with similar total scaf-
fold length for the HMP data set, metaSPAdes significantly
improved on the length of the 1000 longest scaffolds (36.5 Mb)
compared with MEGAHIT (26.6 Mb) and IDBA-UD (29.4 Mb).
Similarly, while metaSPAdes and IDBA-UD resulted in assemblies
of similar total length on MARINE data set (269.5 and 273.7 Mb,
respectively), metaSPAdes significantly improved on the length
of the 1000 longest scaffolds compared with IDBA-UD (31.6 Mb

vs. 19.3Mb). MEGAHIT resulted in an inferior assembly compared
with metaSPAdes and IDBA-UD on this data set.

Figure 1 provides cumulative scaffold length plots illustrating
that metaSPAdes improves the contiguity of assemblies over all
other assemblers for the HMP, MARINE, and SOIL data sets. A sur-
prising conclusion of our benchmarking is that IDBA-UD (often
viewed as a slower predecessor of MEGAHIT) improved on the
contiguity of MEGAHIT assemblies on all data sets. “The summary
of Nx statistics” in the Supplemental Material presents Nx
plots across all data sets (for details on the Nx statistics, see
metaQUAST manual).

Gene prediction statistics

To further evaluate how fragmented the resulting assemblies are,
we usedMetaProdigal v2.6.2 (Hyatt et al. 2012) to predict the com-
plete genes (option -c) in each assembly. Predicted geneswere then
passed through CD-HIT v4.6 (Li and Godzik 2006; Fu et al. 2012)
clustering software (with 99% similarity) to correct for potential
advantage of more redundant assemblies and to retain only the
longest predicted gene in a cluster. Table 2 reports the number
and the total length of predicted genes >800 bp (length threshold
was set to filter less reliable short gene predictions). In the case of
the most complex MARINE and SOIL data sets, the number of
predicted long genes in metaSPAdes assemblies is significantly
larger compared with other assemblers (14% and 66% increase
for the MARINE data set and 17% and 49% increase for the SOIL
data set compared with IDBA-UD and MEGAHIT, respectively).
Althoughwe cannot rule outmany false-positive gene predictions,
there is no reason to believe that their rate significantly varies
across various assemblers.

Read alignment statistics

For each data set and assembler, we further aligned read-pairs
to scaffolds (>1 kb) with Bowtie 2 v2.2.4 (Langmead and Salzberg
2012). A read-pair is classified as aligned if both reads align to
the same scaffold within 1 kb from each other with proper
orientation. We further distinguished between uniquely and

Table 1. The total length of scaffolds (in megabases) for all data sets
and all assemblers

metaSPAdes MEGAHIT IDBA-UD Ray-Meta

SYNTH
10 9.4 6.8 7 6.4
1000 120.9 104.7 111.8 92.9
ALL 197 195.8 196.6 183.1

HMP
10 3.9 3 3.6 2.7
1000 36.5 26.6 29.4 32.9
ALL 73.8 73.6 76 67.3

MARINE
10 1.7 0.3 0.8 0.4
1000 31.6 10.8 19.3 14.5
ALL 269.5 203.2 273.7 87.7

SOIL
10 0.9 0.4 0.9 0.3
1000 18.5 10.6 19.9 4.1
ALL 203.9 145.7 168.7 11.1

Statistics are shown for 10 longest, 1000 longest, and all scaffolds >1 kb.
The colors of the cells reflect how much the results of various assemblers
differ from the median value (blue/red cells indicate that the results
improve/deteriorate compared with the median value).
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nonuniquely aligned read-pairs and reported the fractions of
aligned single reads and read-pairs for all data sets and assemblers.
Better assemblies are characterized by higher fractions of uniquely
aligned read-pairs and smaller fractions of nonuniquely aligned
read-pairs.

Table 3 illustrates that metaSPAdes resulted in a substantially
higher fraction of uniquely aligned read-pairs for the HMP and
MARINEdata sets comparedwith all other assemblers. It also shows
that only 15%, 11%, 13%, and 2% of read-pairs in the SOIL data
set align to assemblies generated by metaSPAdes, MEGAHIT,
IDBA-UD, and Ray-Meta, respectively, confirming high diversity
of this community. The small fraction of the uniquely aligned
read-pairs for this complex data set suggests that the vast majority
of genomes in this metagenome have low depth of read coverage,
thus preventing their assemblies. Table 3 also provides the fraction
of nonuniquely aligned read-pairs (that align tomultiple regions in
an assembly), thus revealing the potential redundancies (duplicat-
ed fragments) in the assemblies.metaSPAdes assemblies have lower
rates ofnonuniquepaired-readalignments, indicating that theyare
less redundant. For example, in the case of the HMP data set,
metaSPAdes had <9%of nonuniquely aligned read-pairs compared
with 14%, 19%, and 38% for IDBA-UD, MEGAHIT, and Ray-Meta,
respectively.

Below we discuss benchmarking results for each data set in
more details. metaQUAST reports the NGA50 statistics (NG50 sta-
tistics corrected for assembly errors) to evaluate the quality of as-

sembly of individual genomes within a metagenome. To
compute NGA50, the contigs are first broken into smaller seg-
ments at the identifiedmisassembly breakpoints. NGA50 for a giv-
en reference genome is the maximal value such that the broken
segments (that align to this reference) of at least that length cover
at least half of the bases of the reference.

SYNTH data set

Details about the references comprising the SYNTHdata set are giv-
en in Supplemental Table S2. Assembly statistics for all assemblers
and references is summarized in Supplemental Table S3. “Analysis

Table 2. Number (in thousands) and total length (inMb) of predict-
ed genes >800 bp for all data sets and all assemblers

Data set/
assembler metaSPAdes MEGAHIT IDBA-UD Ray-Meta

SYNTH 89.9 (125.8) 87.8 (122.2) 88.8 (123.8) 77.5 (108)
HMP 28.8 (39.3) 26.3 (34.6) 27.4 (36.3) 26.2 (35.8)
MARINE 95.2 (119) 57.3 (65.6) 83.2 (98.7) 31.8 (39.8)
SOIL 61.7 (74.7) 41.3 (48.4) 52.7 (64.2) 3.3 (4)

The colors of the cells reflect how much the number of predicted genes
differs from the median value for the particular data set across all the as-
semblers (blue/red cells indicate that the results improve/deteriorate
compared with the median value).

Figure 1. The cumulative scaffold lengths plots. On the x-axis, scaffolds are ordered from the longest to the shortest. The y-axis shows the total length of x
longest scaffolds in the assembly.
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of the SYNTHDataset” in the Supplemental Material discusses sig-
nificant differences in the performance of various assemblers even
for this rather simple data set. Assembly statistics for 20most abun-
dant references is summarized on Figure 2.

HMP data set

Since the genomes comprising bacterial communities are typically
unknown, the HMP consortium identified a number of reference
genomes (listed at HMP Shotgun Community profiling
SRS077736) similar to the genomes present in the HMP data set
(Treangen et al. 2013). However, our attempt to use this resource
for reliable quality assessment faced difficulties: Only three ge-
nomes in this list (Streptococcus salivarius SK126, Neisseria subflava
NJ9703, and Prevotella melaninogenica ATCC 25845) were at least
70% covered by contigs generated by assemblers included in this
study.Moreover, we revealed substantial differences between these
references and the genomes in the sample, making metaQUAST
analysis unreliable (see “Analysis of the HMP Dataset” in the
Supplemental Material).

MARINE data set

Based on the fraction of aligned reads (Table 3), we conclude that
MARINE data set represents a more diverse community than the
HMP data set but is less diverse that the SOIL data set. Tables 1
through 3 illustrate that metaSPAdes results in more contiguous
and complete assembly of the MARINE data set than all other
assemblers.

SOIL data set

Wecompared assemblies of the SOIL data set against the set of con-
tigs obtained by Bankevich and Pevzner (2016) from TSLRs for all
three samples described by Sharon et al. (2015) (which improves
on the TSLR assemblies from the original study). Contigs >20 kb
(total length 103 Mb) were selected as a “reference genome” for
computing metaQUAST statistics (with additional “–fragmented”
option). Results are summarized in Table 4. Only 27.6 Mb
(≈13.6%) of the total length of the metaSPAdes scaffolds >1 kb
(196 Mb) overlapped with TSLR contigs, covering just ≈26% of
the total length of the TSLR assembly (best result across all
assemblers).

Additional benchmarks

In addition to the benchmarking results presented above, the
Supplemental Materials also include benchmarking of all assem-
blers on two CAMI data sets (“CAMI Datasets” and “Analysis of
the CAMI Datasets”), comparison of metaSPAdes and SPAdes
assemblies on the SYNTH data set (“Benchmarking SPAdes against
metaSPAdes”), and discussion of how the novel algorithms
proposed in this work affect the quality of assemblies (“Effect of
Novel Algorithmic Approaches in metaSPAdes on Assembly
Quality”).

Discussion
metaSPAdes addresses a number of challenges in metagenomic as-
sembly and implemented several novel features, such as efficient
assembly graphprocessing to address themicrodiversity challenge,
a new repeat resolution approach that utilizes rare strain variants to
improve the consensus assembly of strain mixtures, and fast algo-
rithms forconstructingassemblygraphs anderror-correcting reads.

These features contributed to improvements in metaSPAdes
assemblies (compared with the state-of-the-art assemblers
MEGAHIT, IDBA-UD, and Ray-Meta) and enabled us to scale
metaSPAdes for analyzing large metagenomes.

In addition to the intrinsic biological challenges discussed in
this article, the field of metagenomic assembly also faces techno-
logical challenges caused by innovations in sequencing and library
preparation techniques. For example, recently introduced high-
quality jumping (mate-pair) libraries (such as Nextera Mate Pair
Libraries) have a potential to significantly improve assembly qual-
ity (Vasilinetc et al. 2015). However, metagenomic assemblers
have not caught up with this technological innovation yet.
Another example is the TSLR technology (Kuleshov et al. 2014;
McCoy et al. 2014), whose first metagenomic applications high-
lighted the need for developing methods to reliably combine it
with the paired-end libraries (Kuleshov et al. 2015; Sharon et al.
2015; Bankevich and Pevzner 2016). metaSPAdes now faces the
challenge of incorporating these emerging technologies into its as-
sembly pipeline.

Methods
Detecting and masking strain variation

Genomic differences between related strains often result in “bulg-
es” and “tips” in the de Bruijn graphs that are not unlike artifacts

Table 3. Fraction of aligned single and paired reads (both unique and nonunique) for all data sets and all assemblers (in percentages)

Data set Statistics metaSPAdes MEGAHIT IDBA-UD Ray-Meta

SYNTH Fraction of aligned single reads 98.14% 95.22% 97.82% 95.48%
Fraction of aligned paired reads (unique) 93.81% 90.44% 93.91% 86.52%
Fraction of aligned paired reads (nonunique) 3.18% 3.37% 2.60% 7.92%

HMP Fraction of aligned single reads 90.98% 72.65% 78.66% 93.25%
Fraction of aligned paired reads (unique) 79.69% 49.24% 58.40% 54.13%
Fraction of aligned paired reads (nonunique) 8.81% 18.84% 14.28% 37.86%

MARINE Fraction of aligned single reads 51.67% 21.84% 43.51% 32.91%
Fraction of aligned paired reads (unique) 45.87% 17.73% 31.22% 27.43%
Fraction of aligned paired reads (nonunique) 3.05% 1.85% 8.47% 3.96%

SOIL Fraction of aligned single reads 17.31% 13.30% 15.81% 2.34%
Fraction of aligned paired reads (unique) 14.69% 10.84% 13.08% 1.90%
Fraction of aligned paired reads (nonunique) 0.05% 0.09% 0.22% 0.05%

The colors of the cells reflect how much the results of various assemblers differ from the median value (blue/red cells indicate that the results improve/
deteriorate compared with the median value). We only aligned reads that were at least 75 bp long after preprocessing.
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caused by sequencing errors in genome assembly (Pevzner et al.
2004; Zerbino and Birney 2008). For example, a sequencing error
often results in a bulge formed by two short alternative paths be-
tween the same vertices in the de Bruijn graph, a “correct” path
with high coverage and an “erroneous” path with low coverage.
Similarly, a substitution or a small indel in a rare strain (compared
with an abundant strain) often results in a bulge formed by a high-
coverage path corresponding to the abundant strain and an alter-
native low-coverage path corresponding to the rare strain.

Aiming at the consensus assembly of a strain mixture,
metaSPAdes masks the majority of strain differences using a
modification of the SPAdes procedures for masking sequencing
errors (the algorithms for removal of tips, “simple” bulges
[Bankevich et al. 2012], and “complex” bulges [Nurk et al.
2013]). metaSPAdes uses more aggressive settings than the ones
used in assemblies of isolates; for example, it collapses larger bulges
and removes longer tips than SPAdes. We note that the bulge pro-
jection approach in SPAdes improves on the originally proposed
bulge removal approach (Pevzner et al. 2004; Zerbino and Birney
2008) used in most existing assemblers since it stores valuable in-

formation about the processed bulges (see “Bulge Projection
Approach” in the Supplemental Material). This feature is impor-
tant for the repeat resolution approach in metaSPAdes described
below.

Analyzing filigree edges in the assembly graph

In addition to single-nucleotide variants and small indels, strain
variation is oftenmanifested as highly diverged regions, insertions
of mobile elements, rearrangements, large deletions, parallel gene
transfer, etc. The green edges in the assembly graph shown in
Figure 3 result from an additional copy of a mobile element in a
rare strain2 (compared with the abundant strain1), while the blue
edge corresponds to a horizontally transferred gene (or a highly di-
verged genomic region) in a rare strain3 (compared to the abundant
strain1). Such edges fragment contigs corresponding to the abun-
dant strain1; for example, the green edges in Figure 3 (bottom right)
break the edge c into three shorter edges.We note that the edges in
the assembly graph are condensed; that is, they represent non-
branching paths formed by k-mers.

Figure 2. metaQUAST statistics for 20 most abundant species comprising the SYNTH data set. The NGA50 statistics (top left), the fraction of the recon-
structed genome compared with the total genome length (top right), the number of intragenomic misassemblies (bottom left), and the number of inter-
genomic misassemblies (bottom right) for 20 most abundant species comprising the SYNTH data set. References are denoted by their RefSeq IDs (see
Supplemental Table S2) and arranged in the decreasing order of the coverage depths.

metaSPAdes: a new versatile metagenomic assembler

Genome Research 829
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.213959.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.213959.116/-/DC1


We refer to edges originating from rare strain variants within
the assembly graph of a strain mixture as filigree edges. Traditional
genome assemblers use a global threshold on read coverage to
remove the low-coverage edges (that typically result from sequenc-
ing errors) from the assembly graph during the graph simplifi-
cation step. However, this approach does not work well for
metagenomic assemblies, since there is no global threshold that
(1) removes edges corresponding to rare strains and (2) preserves
edges corresponding to rare species. Similarly to IDBA-UD and
MEGAHIT, metaSPAdes analyzes the coverage ratios between adja-
cent edges in the assembly graph, classifying edges with low-cov-
erage ratios as potential filigree edges.

We denote the coverage of an edge e in the assembly graph
as cov(e) and define the coverage cov(v) of a vertex v as the max-
imum of cov(e) over all edges e incident to v. Given an edge e in-
cident to a vertex v and a threshold ratio (the default value is 10),
a vertex v predominates an edge e if its coverage is significantly
higher than the coverage of the edge e; that is, if ratio · cov(e) <
cov(v). An edge (v,w) is weak if it is predominated by either v
or w. Note that filigree edges are often classified as weak since
their coverage is much lower than the
coverage of adjacent edges resulting
from abundant strains.

metaSPAdes disconnects all weak
edges from their predominating vertices
in the assembly graph. Disconnection
of a weak edge (v,w) in the assembly
graph from its starting vertex v (ending
vertex w) is simply a removal of its first
(last) k-mer rather than removal of the
entire condensed edge. We emphasize
that, in contrast to IDBA-UD and
MEGAHIT, we disconnect rather than
remove weak edges in the assembly
graph since our goal is to preserve the
information about rare strains whenever
possible, that is, when it does not lead
to a deterioration of the consensus
backbone.

Repeat resolution with exSPAnder

exSPAnder (Prjibelski et al. 2014;
Vasilinetc et al. 2015; Antipov et al.
2016) is a module of SPAdes that com-
bines various sources of information
(e.g., paired reads or long error-prone
reads) for resolving repeats and scaffold-
ing in the assembly graph. Starting
from a path consisting of a single con-
densed edge in the assembly graph,
exSPAnder iteratively attempts to ex-
tend it to a longer path that represents
a contiguous segment of the genome

(genomic path). To extend a path, exSPAnder selects one of its ex-
tension edges (edges that start at the terminal vertex of this path).
Choice of the extension edge is controlled by the decision rule
that evaluates whether a particular extension edge is sufficiently
supported by the data, while other extension edges are not (giv-
en the existing path). exSPAnder further removes overlaps be-
tween generated genomic paths (overlap reduction step) and
outputs the strings spelled by the resulting paths as a set of
contigs.

metaSPAdes modifies the decision rule of exSPAnder to ac-
count for the local read coverage, denoted localCov, of the specific
genomic region that is being reconstructed during the path ex-
tension process. For details, see “Modifying the Decision Rule in
exSPAnder for Metagenomic Data” in the Supplemental
Material. The value localCov is estimated as the minimum across
the average coverages of the edges in the path that is being extend-
ed. Taking minimum (rather than the average) coverage excludes
the repetitive edges in the path from consideration and typically
underestimates the real coverage of the region, making the deci-
sion rule more conservative.

Table 4. Comparison of long scaffolds (>1 kb) generated by various metagenomic assemblers for the SOIL data set against TSLR contigs gen-
erated by Bankevich and Pevzner (2016)

metaSPAdes MEGAHIT IDBA-UD Ray-Meta

No. of misassemblies 215 216 318 29
Percentage of length of the TSLR contigs covered by the metagenomic contigs 26 21.7 24.5 4.5
Total length of the metagenomic assembly not aligned to the TSLR contigs (Mb) 176.7 122.9 142.8 6.2

metaSPAdes significantly improves over other assemblers in terms of the total length of long scaffolds.

Figure 3. The de Bruijn graphs of three strains and their strain mixture. The figure shows only a small
subgraph of the de Bruijn graph. The abundant strain (strain1) is shown by thick lines, and the rare strains
(strain2 and strain3) are shown by thin lines. The genomic repeat R is shown in red. (Top left) The de Bruijn
graph of the abundant strain1. (Top right) The rare strain2 differs from the abundant strain1 by an insertion
of an additional copy or repeat R. The two breakpoint edges resulting from this insertion are shown in
green. These filigree edges are not removed by the graph simplification procedures in the standard as-
sembly tools aimed at isolates. (Bottom left) The rare strain3 differs from the abundant strain1 by an inser-
tion of a horizontally transferred gene (or a highly diverged genomic region). (Bottom right) The de Bruijn
graph of the mixture of three strains.
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A new metagenomic decision rule in
metaSPAdes

Some intergenomic repeats between spe-
cies of different abundances can be re-
solved based on the differences in the
depth of read coverage (Haider et al.
2014; Namiki et al. 2012). metaSPAdes
introduces an additional metagenomics-
specific decision rule that filters out un-
likely path extensions using the coverage
estimate of the region that is being re-
constructed (Fig. 4). It often allows
metaSPAdes to pass through long inter-
species repeats during reconstruction of
abundant species. metaSPAdes applies a
new decision rule described below only
if the paired reads failed to provide suffi-
cient evidence to discriminate between
extension edges.

Figure 4. Applying the metagenomics-specific decision rule for repeat resolution. The figure shows
only a small subgraph of the assembly graph. (A) The path that is currently being extended (formed
by green edges) along with its blue extension edges e and e′. (B) The short-edge traversal from the
end of the extension edge e. The dotted curve shows the boundary frontier(e) of the traversal. The edges
in the set next(e) are shown in redwith low-coverage edges represented as dashed arrows (other edges in
next(e) are represented as solid arrows). Since all edges in next(e) have low coverage, the edge e is ruled
out as an unlikely extension candidate. (C) The short-edge traversal from the end of the extension edge
e′. (D) Since e′ is a single extension edge thatwas not ruled out (there is a solid edge in next(e′)), it is added
to the growing path and the extension process continues.

Figure 5. Repeat resolution in metagenomic assembly. (A) One of two identical copies of a long (longer than the insert size) repeat R (red) in the abun-
dant strain has mutated into a unique genomic “green” region R′ in the rare strain. (B) The assembly graph resulting from a mixture of reads from the
abundant and rare strains. Two alternative paths between the start and the end of the green edge (one formed by a single green edge and another formed
by two black and one red edge) form a bulge. (C) The strain-contig spanning R′ (shownby green dashed line) constructed by exSPAnder at the “generating
strain-contigs” step. (D) Masking of the strain variation at the “transforming assembly graph into consensus assembly graph” step leads to a projection of a
bulge (formed by red and green edges) and results in the consensus assembly graph shown in E. The blue arrows emphasize that SPAdes projects rather than
deletes bulges, facilitating the subsequent reconstruction of strain-paths in the consensus assembly graph. (E) Reconstruction of the strain-path (green dot-
ted line), corresponding to a strain-contig (green dashed line) at the “generating strain-paths in the consensus assembly graph” step. (F) At the “repeat
resolution using strain-paths” step, metaSPAdes utilizes both strain-paths and paired reads to resolve repeats in the consensus graph. The green dotted
strain-path from E is used as additional information to reconstruct the consensus contig cRd spanning the long repeat.
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An edge in the assembly graph is called long if its length ex-
ceeds a certain threshold (1500 bp by default) and short otherwise.
We say that a long edge e2 follows a long edge e1 in a genomic path
if all edges between the end of e1 and the start of e2 in this path are
short.

While considering an extension edge e, metaSPAdes performs
a directed traversal of the graph (Fig. 4B), starting from the end of e
and walking along the short edges. We define the set of all vertices
that are reached by this traversal as frontier(e) and consider the set
next(e) of all long edges starting in frontier(e). This procedure is
aimed at finding nonrepetitive long edges that can follow e in
the (unknown) genomic path.We classify an edge in the set next(e)
as a low-coverage edge if the coverage estimate of the region that is
being reconstructed, localCov, exceeds its coverage at least by a fac-
tor β (the default value β = 2). If all edges in next(e) are low-coverage
edges, then e is considered an unlikely candidate for an extension
of the current path. If all but a single edge e′ represent unlikely ex-
tensions, the path is extended by e′ (Fig. 4C).

Utilizing strain differences for repeat resolution in metaSPAdes

Safonova et al. (2015) showed that differences between haplomes
can be used to improve the quality of consensus assembly of a
highly polymorphic diploid genome. metaSPAdes capitalizes on
the similar observation that the differences between strains can
be, somewhat counter-intuitively, used to improve the quality of
consensus assembly of a strain mixture. In particular, contigs
generated prior to masking strain differences in assembly graph
and thus representing genomic fragments of individual strains
(strain-contigs) often provide additional long-range information
for reconstruction of a strain-mixture backbone.

Inspired by dipSPAdes (Safonova et al. 2015), metaSPAdes
uses the following pipeline that includes two launches of
exSPAnder (Fig. 5).

• Generating strain-contigs. After constructing the assembly graph
(that encodes both abundant and rare strains), we launch
exSPAnder to generate a set of strain-contigs representing both
rare and abundant strains (Fig. 5C). Strain-contigs are not sub-
jected to the default overlap reduction step in exSPAnder.

• Transforming assembly graph into consensus assembly graph.
metaSPAdes identifies and masks rare strain variants, resulting
in the consensus assembly graph (Fig. 5D).

• Generating strain-paths in the consensus assembly graph.
Capitalizing on the bulge projection approach (see “Bulge Pro-
jection Approach” in the Supplemental Material), metaSPAdes
reconstructs paths in the consensus assembly graph correspond-
ing to strain-contigs, referred to as strain-paths (Fig. 5E).

• Repeat resolution using strain-paths. This step utilizes the hybrid
mode of exSPAnder originally developed to incorporate long er-
ror-prone Pacific Biosciences and Oxford Nanopore reads in the
repeat resolution process (Ashton et al. 2014; Labonté et al.
2015; Antipov et al. 2016). Instead of working with long error-
prone reads, we modified exSPAnder to work with virtual reads
spelled by the strain-paths to facilitate resolution of repeats in
the consensus assembly graph (Fig. 5F).

Note that in the example in Figure 5, the long red repeat with
multiplicity 2 in the abundant strain is resolved because of the var-
iants (diverged green copy of the repeat) in the rare strain.

Scaling metaSPAdes

Since somemetagenomic data sets contain billions of reads, meta-
genomic assemblers have to be optimized with respect to
both speed and memory footprint (Nagarajan and Pop 2013).

“Reducing Running Time and Memory Footprint of
metaSPAdes” in the Supplemental Material describes efforts to
scale metaSPAdes for assembling large metagenomic data sets.

Software availability

The latest version of the SPAdes toolkit that includesmetaSPAdes is
available from http://cab.spbu.ru/software/spades. The source
code for the v3.10 prerelease package used for benchmarking in
this article is available as a Supplemental Material or alternatively
can be accessed as git revision 3d6df0c62ca31a187cb7c2209-
c892e6e5711229e at https://github.com/ablab/spades. The
QUAST v4.5 package is available from https://github.com/ablab/
quast/tree/release_4.5.
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