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A system of symmetrically coupled identical oscillators with phase lag is presented, which is

capable of generating a large repertoire of transient �metastable� “chimera” states in which syn-

chronization and desynchronization coexist. The oscillators are organized into communities, such

that each oscillator is connected to all its peers in the same community and to a subset of the

oscillators in other communities. Measures are introduced for quantifying metastability, the preva-

lence of chimera states, and the variety of such states a system generates. By simulation, it is shown

that each of these measures is maximized when the phase lag of the model is close, but not equal,

to � /2. The relevance of the model to a number of fields is briefly discussed with particular

emphasis on brain dynamics. © 2010 American Institute of Physics. �doi:10.1063/1.3305451�

Many complex systems, both natural and artificial, ex-

hibit synchronization phenomena, which can be modeled

using weakly coupled oscillators. Most previous synchro-

nization studies focus on stability. Yet many complex sys-

tems (such as the human brain) do not converge on stable

synchronized states. Rather they are metastable, tempo-

rarily dwelling in the vicinity of one stable state before

spontaneously migrating away from it toward another. A

second feature of many complex systems (including the

brain) is competition. In the context of synchronization,

this is manifest in so-called chimera states, where one

coalition of oscillators synchronizes while rival coalitions

of identical oscillators are desynchronized. This short pa-

per presents the first model to exhibit both chimera states

and metastability. This is achieved by organizing the os-

cillators into a community structured (or modular) net-

work (echoing established brain connectivity findings).

Measures are introduced to quantify the prevalence of

chimera states and metastability. These form the basis of

an empirical study that establishes the conditions in

which metastability and chimera states are most preva-

lent. The same study shows (using a novel measure) that

the repertoire of metastable states produced under these

conditions is also maximized.

I. INTRODUCTION

Periodic phenomena involving the synchronization of

multiple variables are prevalent both in nature and the human

environment, and can be modeled mathematically as systems

of coupled oscillators �Pikovsky et al., 2001�. Among the

rich variety of behaviors such systems exhibit are states in

which a set of identical symmetrically coupled oscillators

spontaneously partitions into one subset that is synchronized

and another subset that is desynchronized �Kuramoto and

Battogtokh, 2002; Abrams and Strogatz, 2004; Abrams et

al., 2008�. A system that gives rise to these so-called chimera

states is a plausible model for a competitive process wherein

a set of winners forms an alliance to the exclusion of the rest

of the population. Since competitive processes of this sort

dominate the dynamics of the brain, the economy, and the

ecosphere, they are of considerable scientific interest.

Typical studies of synchronization in systems of coupled

oscillators attempt to map their various dynamical regimes

and to pin down the conditions for entering those regimes

�Acebrón et al., 2005�. Stable states, in which some or all of

the oscillators are fully synchronized, have attracted particu-

lar attention. However, in many complex systems, extended

periods of synchronization are pathological. Prolonged syn-

chronization in the brain, for example, is a symptom of sei-

zure �Arthuis et al., 2009�. This motivates the study of meta-

stability in systems of coupled oscillators �Niebur et al.,

1991; Bressler and Kelso, 2001; Pluchino and Rapisarda,

2006; Kitzbichler et al., 2009�. A system of oscillators ex-

hibits metastability if some or all of its members linger in the

vicinity of a synchronized state without falling into such a

state permanently. Moreover, in a complex milieu such as the

brain, the economy, or the ecosphere, we should expect to

witness a large number of distinct metastable states.

The upshot of these considerations is that an adequate

model of competitive periodic phenomena in systems that

are not frozen, static, or in seizure should exhibit a nontrivial

repertoire of metastable chimera-like states. Although the

topic has been relatively neglected, metastability in oscillator

networks has been described in the literature before. For ex-

ample, Niebur et al. �1991� reported metastability in a large

network of weakly coupled oscillators. But their model in-

cluded a noise term, and metastability is promoted by the

resulting thermal fluctuations �Kuramoto, 1984, Chap. 5�.
More recently, Kitzbichler et al. �2009�, following the work

of Kuramoto �1984�, characterized the metastability of a net-

work of oscillators with critical coupling strength. But the

natural frequencies of the oscillators in their model are dis-

tributed while models of chimera states deploy identical os-

cillators.

Reinforcing the well-established view that there is a cru-

cial relationship between connectivity and dynamics �Stro-

gatz, 2001; Arenas et al., 2008; Müller-Linow et al., 2008�,
the required properties are exhibited by the present �deter-
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ministic� model because its oscillators �all identical� are ar-

ranged in a network with community structure �Girvan and

Newman, 2002�. That is to say, the nodes of the network �the

individual oscillators� are partitioned into subsets �communi-

ties or modules� whose members are more densely connected

with each other than with nodes outside their community.

Since both the functional and structural connectivity of the

human brain are similarly modular �Hagmann et al., 2008�,
the system of oscillators presented here is a plausible model

of metastable neural synchronization.

II. METHODS AND MEASURES

The present model comprises eight communities of 32

phase-lagged Kuramoto oscillators with identical natural fre-

quencies �Kuramoto, 1984; Acebrón et al., 2005�. Each os-

cillator is fully connected to its own community and has 32

random connections to oscillators in other communities. Fol-

lowing the model of Abrams et al. �2008�, the intracommu-

nity coupling strength is slightly higher than the intercom-

munity coupling strength. All connections are symmetrical.

The phase �i of each oscillator i is governed by the equa-

tion

d�i

dt
= � +

1

N + 1
�
j=1

N

Ki,j sin�� j − �i − �� ,

where � is the natural frequency of the oscillator, N is the

total number of connections per oscillator, Ki,j is the cou-

pling strength between oscillators i and j, and � is a fixed

phase lag. In the present model, �=1, N=63, Ki,j =u if i and

j belong to the same community, Ki,j =v if i and j belong to

different communities and are connected, and Ki,j =0 other-

wise. Like Abrams et al. �2008�, we define two parameters A

and � for the model, such that A=u−v, where u+v=1, and

�=� /2−�. For the experiment described here A was set at

0.2.

The level of synchrony within a community c at time t

may be quantified according to the measure

�c�t� = ��ei�k�t��k�c� ,

where �k�t� is the phase of oscillator k at time t and �f�k�c

denotes the average of f over all k in c. This measure ranges

from 0 to 1, where 0 is total desynchronization and 1 is full

synchronization. �Note that �c�t� quantifies instantaneous

synchrony and does not provide information about coher-

ence.�
By sampling �c�t� for all the communities at discrete

intervals, it is possible to quantify both the level of metasta-

bility in the system and the prevalence of chimera-like states

�Fig. 1�. Let C be the set of all M communities and assume

�c�t� is sampled at times t� 	1¯T
 for each c�C. If we fix

the community c and estimate the variance �met�c� of �c�t�
over all time points t� 	1¯T
, we get an indication of how

much the synchrony in c varies over time. The average of

this variance estimate over the set C of all communities is an

index of the metastability of the overall system �denoted ��.
So we have

� = ��met�C,

where

�met�c� =
1

T − 1
�
t	T

��c�t� − ��c�T�2.

Conversely, if we fix the time t and estimate the variance

�chi�t� of �c�t� over all communities in C, we get an instan-

taneous indication of how chimera-like the system is at time

t. The average of this variance estimate is an index of how

chimera-like a typical state of the system is �denoted 
�. So

we have


 = ��chi�T,

where

�chi�t� =
1

M − 1
�
c�C

��c�t� − ���t��C�2.

Note that if a population c of oscillators is either completely

synchronized or completely desynchronized then �met�c�=0.

If c spends equal time in all stages of synchronization then it

presents a uniformly distributed �c with �met�c�=
1

12
�0.083.

A value of �met�c� greater than
1

12
is possible if �c has a

multimodal distribution with high peaks at both shoulders.

But assuming such distributions do not arise, and as long as

the population size is large, we may regard a uniform distri-

bution as indicative of maximum metastability, yielding

�max=
1

12
�0.083. �The population size must be large, since,

for example, a pair of decoupled �free-running� oscillators

with different frequencies is not metastable, yet has uni-

formly distributed �c. By contrast, episodes of high syn-

chrony are rare in a large population of decoupled oscillators

with different frequencies, ensuring a nonuniformly distrib-

uted �c. In the present model, the community size is large,

and of course the oscillators are not decoupled.�
Similar considerations apply to �chi. If at some time t all

of the communities in the system are either fully synchro-

nized or fully desynchronized then �chi�t�=0. A “perfect”

chimera state might be characterized as one in which exactly
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FIG. 1. �Color online� The behavior of the model for randomly generated

values of � between 0 and � /4 over 500 trials. Initial phases were random-

ized for each trial. Both metastability index ��� and chimera index �
� are

close to zero for �=0, peak at around �=0.1, and tail off rapidly.
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half of the communities are fully synchronized and half are

fully desynchronized �as in the model of Abrams et al.

�2008��, which will yield �chi�t�=
2

7
�0.2857. Although high

values of �chi can be obtained in the present model, due to its

metastability they are only transient. So because 
 averages

�chi over time, we should not expect it to approach this maxi-

mum. Instead, a metastable system can be considered to at-

tain maximum 
 if it spends half of its time in a maximally

chimera-like state and half of its time in a minimally

chimera-like state, which yields 
max=
1

7
�0.1429.

In addition to assessing synchronization within a com-

munity, it is possible to quantify pairwise synchronization

across communities. In particular, for every pair of commu-

nities a and b, we can consider

�a,b�t� = � 1

2 ��ei�k�t��k�a + �ei�k�t��k�b
�� .

Note that �a,b�t�, which ranges from 0 to 1, will only be high

if �a�t� and �b�t� are individually high and communities a

and b are synchronized with each other. If a and b are fully

synchronized internally but 180° out of phase with each

other then �a,b�t�=0.

Although � and 
 taken together can detect the occur-

rence of metastable chimera states, neither measure can dis-

tinguish a system that repeatedly visits the same metastable

chimera state from a system that has a large repertoire of

metastable chimera states. One way to quantify this reper-

toire is to assess how “mixed up” is the set of coalitions a

system produces over a period of time. Accordingly, we de-

fine the �normalized� coalition entropy HC of a system by the

equation

HC = −
1

log2�S�
�
s�S

p�s�log2�p�s�� ,

where S is the set of distinct coalitions the system can gen-

erate and p�s� is the probability of coalition s arising in any

given time point. The measure is normalized to lie to be-

tween 0 and 1. In the context of the present model we can

consider coalitions of synchronized communities. A coalition

s is said to arise at time t if �c�t��
 for all c�s, where 
 is

a synchronization threshold �we shall use 
=0.8�. Clearly for

a system of M communities there are 2M possible coalitions,

so log2�S�=M. If all 2M possible coalitions arise with equal

probability, we have HC=1. On the other hand, if the system

resides permanently in the same state �whether fully synchro-

nized, fully desynchronized, or any sort of chimera-like

state�, then only one coalition arises and we have HC=0.

III. RESULTS

A series of 1000-step trials of for a range of values of �

was carried out. Five hundred trials were performed for ran-

domly generated values of � ranging from 0 to � /4. All

numerical simulation was carried out using the fourth-order

Runge–Kutta method with a step size of 0.05. Intracommu-

nity coupling assignments and initial phases were random-

ized for each trial. The internal synchrony �c�t� was calcu-

lated for each community at five-step intervals, and the

resulting data were used to compute �, 
, and HC. In addi-

tion, an index of global synchrony � was calculated, taken

as the average of �c�t� over all times and communities.

The results are presented in scatter plots of Figs. 1 and 2.

These figures suggest that the model behaves as advertised,

and is capable of generating a large repertoire of metastable

chimera-like states, but only when � falls within a certain

narrow range. Metastability and chimera indices are maxi-

mized when 0.05���0.15 �Fig. 1�, at which point

0.6���0.7 �Fig. 2�. When �=0 �i.e., the phase lag is ex-

actly � /2�, the system finds it hard to synchronize at all, and

each of the measures is correspondingly low. At the other

end of the scale, when ��� /8, the system tends toward full

synchronization in all communities, and metastability, chi-

mera index, and coalition entropy all tail off accordingly.

Coalition entropy peaks slightly later than the other two mea-

sures with 0.1���0.2 �Fig. 2�.
As with other systems of oscillators that exhibit metasta-

bility, fluctuations of synchronization and desynchronization

are prevalent only in a narrow, critical region that resembles

a thermodynamic phase transition from order to disorder

�Kuramoto, 1984, Chap. 5�. The area to the left of the critical

region is the disordered regime, wherein the phases of the

oscillators are subject to predominantly repelling forces,

while the area to the right of the critical region is the ordered

regime, wherein attracting forces dominate. In the critical

region there is a balance of repelling and attracting forces.

But this balance is not static, and the dominant force appli-

cable to each community alternates between phase attraction

and phase repulsion. Since the oscillators have identical

natural frequencies and there is no external stochastic pertur-

bation, the reasons for this are not clear, and further work is

required to understand the mechanisms underlying the mod-

el’s behavior.

To gain some preliminary insight into the behavior of the

model in the critical region, we shall examine a single run in

detail. Figure 3�a� shows the evolution of synchrony ���
within all eight oscillator communities over a 200 time-step

interval in a typical trial with ��0.1. The trial is represen-

tative of the dynamical regime of most interest to us here.

The statistics for this trial are 
=0.0525, �=0.0542,

HC=0.6341, and �=0.5798. The system exhibits several

chimera-like states in which some oscillator communities are

highly synchronized while others are desynchronized. From

time 250 to 270, for example, three communities are highly
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FIG. 2. �Color online� Global synchrony ��� and coalition entropy for the

set of trials depicted in Fig. 1. Coalition entropy presents a similar profile to

metastability and chimera index �Fig. 1�, although it peaks slightly later at

around �=0.15.
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synchronized ���0.8� and three are desynchronized

���0.4�, while two communities have intermediate values

of �. A similarly clear chimera-like state can be seen from

time 310 to 330, but with a different combination of synchro-

nized communities.

Figure 4 shows how synchrony is distributed over time

for each of the eight communities in the same sample run. As

expected from Fig. 3�a�, none of the communities spends the

majority of its time in any one stage of internal synchroni-

zation. Despite a tendency toward synchrony �a rightward

skew�, the resulting distributions all have high variance. It is

noteworthy, however, that different communities exhibit dif-

ferent profiles, with community 2, for example, showing a

more pronounced tendency to internally synchronize than its

peers.

The plots in Fig. 3�a� are highly irregular, and there is no

clear pattern to the coincidence of peaks and troughs, which

suggests that the system is capable of generating a large rep-

ertoire of coalitions of simultaneously synchronized commu-

nities. By contrast, the equivalent plot for a “breathing” chi-

mera state has a regular rhythm �see Fig. 2 of Abrams et al.

�2008��. The lack of any discernible regularity in the se-

quence of metastable states visited by the system hints at

both chaotic itinerancy �Kaneko and Tsuda, 2003; Tsuda et

al., 2004� and dynamical complexity �Tononi et al., 1998;

Seth et al., 2006; Shanahan, 2008b�, but further work would

be required to establish these properties rigorously.

Further insight into the generation of coalitions is gained

by examining the ebb and flow of pairwise synchronization

���. Figure 3�b� shows, for the same 200-step period of the

same trial, the pairwise synchrony �a,b between a selected

community a and all communities b �including a itself�. As

noted in Sec. II, the pairwise synchronization between two

oscillator communities will be low if either community has

low internal synchronization. In the troughs near times 260

and 340, all pairwise synchrony measures are low because

the internal synchrony of community a is itself low. At other

times, the internal synchrony of a is high, as is the pairwise

synchrony between a and various peers. Sets of such syn-

chronized peers constitute temporary coalitions, whose con-

stitution varies over time. At time 290, for example, a is in a

coalition alongside five of its peers, with two communities

excluded. But by time 320 three communities have been ex-

pelled from the coalition, while the two previous exclusions

have been recruited into its membership.

IV. DISCUSSION

Although the essential characteristic of the model—the

ability to generate a large repertoire of metastable chimera

states—reflects properties common to many real-world com-

plex dynamical systems, the task remains of mapping each of

those systems onto the model. For example, it has been pro-

posed that synchronized oscillations in the brain permit ef-

fective cooperation among distinct populations of neurons

�Fries, 2005, 2009; Womelsdorf et al., 2007�, while phenom-

ena such as binocular rivalry, inattentional blindness, and the

Stroop effect attest to their competitive character. In other

words, the dynamics of the brain seems to arise from the

interplay of cooperation and competition, resulting in the for-

mation of synchronized coalitions �Doesburg et al., 2009�.
Moreover, thanks to an animal’s ongoing activity, its brain is

endlessly subject to an open-ended variety of perturbations,

and to respond effectively these coalitions must be in con-

stant flux. The dynamics of the present model exhibits the

same combination of features. However, to date there is no

neurologically detailed model to match, although several ex-

isting spiking neuron models deal with relevant issues, such

as cortical competition �Dehaene et al., 2003; Deco and

Rolls, 2005; Shanahan, 2008a�, community structure �Shana-

han, 2008b�, and the interplay of synchronization and desyn-

chronization �Tsuda et al., 2004�.
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FIG. 3. �Color online� A 200 time-step period in a typical run with ��0.1.

�a� Intracommunity synchrony: the system exhibits several clear chimera-

like states. From time 250 to 270, for example, three communities are highly

synchronized and three are desynchronized. �b� Intercommunity synchrony:

pairwise synchrony is plotted between one selected community �shown in

black� and each of the eight communities �including itself�. From time 310

to 330 the selected community is synchronized with several others, forming

a temporary coalition.
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FIG. 4. The distribution of � for each community in the run depicted in Fig.

3. The distributions all have variances far from zero, indicating metastability

in the sense that the oscillator communities spend time in all stages of

synchronization.
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The findings reported here raise a number of questions to

be addressed in future work. The issues of chaotic itinerancy

and dynamical complexity have already been mentioned. An-

other urgent task is to develop a theoretical understanding of

the phenomena described. The obvious starting point is the

analytical treatment of Abrams et al. �2008�, whose model is

the basis for the present work. However, analogous results

may be difficult to obtain for the present model, given its

more complex network structure and the variety of synchro-

nization effects it displays. Finally, it would be fruitful to

investigate the occurrence of metastable chimera states in

networks with hierarchical community structure �especially

as brain networks exhibit this property �Zhou et al., 2006;

Ferrarini et al., 2009��, and to attempt to characterize the

“path” to such states in the manner of Arenas et al. �2006�.
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