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ABSTRACT

We show that the radial d-dimensional Sine-Gordon equation has localised
metastable breather-like solutions. We analyse some properties of these solutions
concentrating on their relative stability.

1. Introduction.

Some solutions of the d-dimensional sine-Gordon equation

8,0" f + psin(f) = 0,

(L1)

were studied in [1-3]. The authors of these papers demonstrated the existence of
time dependent solutions similar to breathers which they called pulsons. The pulsons
were not stable as they radiated away their energy and slowly died out. Geicke ¥ also
showed that a pulson can be thought of as a single radial 2r kink bouncing against
the boundary at the origin. During the bouncing process some energy was radiated

leading to the slow death of the soliton.

Recently 1), while studying the existence of non-topological solutions in the two
dimensional baby-skyrmion model, we have observed a formation of a metastable time
dependent localised field configuration, which appeared to be similar to a radially

symmetric solution of the (d + 1) dimensional sine-Gordon equation:
d-1 .
fio— for = ‘T—fr +u¥sin{f) =0,

with d =2 in the baby-skyrmion model case and where f, = ¥, 7,, = %;4.

(1.2)

We discoved it by observing that although our original configuration radiated away
relatively quickly some energy, it then settled to a nontrivial configuration which

resembled a breather-like solution of the sine-Gordon model.

When an appropriate initial condition was chosen for s the field oscillated with
frequency T slightly larger than 2r and radiated a small amount of energy to gradually

become a solution periodic in time and localised at the origin.
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In [5] we have decided to call this metastable solution a pseudo-breather because
of its similarity with the sine-Gordon breather solution.

2. Two-dimensional sine-Gordon model.

All our attempts to describe the pseudo-breather analytically have failed. Never-
theless, for large values of r, f is very small, in which case (1.2) can be approximated
by

d-1 \
fu=frr———L+4?f =0, (2.1)

and for d = 2 we thus have
£~ sin(wt)Jo((w? - u2)/%r)

if w? > u? or
f ~ sin(wt)Ko((p? — w?)}/?r)
otherwise.

The non-linearity of (1.2) makes it impossible to use a product ansatz to look for
periodic solutions, but when we looked at the time evolution of f obtained numerically,
we noticed that it oscillates in phase everywhere on the radial axis. This observation
made us devise the following method to derive an approximation for a pseudo-breather
profile. This method is loosely inspired by the geodesic approximation used to study
the scattering of two or three dimensional solitons.

The numerical solutions we have obtained suggest that the pseudo-breather are
quite close to the form

f(r,t) ~ sin{wt)g(r). (2.2)
Inserting this expression into (1.2) does not lead to an ordinary differential equation
for g(r). On the other hand, if we insert (2.2) into the action from which (1.2) is
derived and perform the time integration over one period of oscillation 7

T >
- d-1 2 42 oy _
s= [t [T e - g2 20 - cos()
T 20
= f dt/ ¢V dr [cos?(wt)w?g? ~ sin® (wt)d,98,g — 2(1 — cos(g sin(we)))]. (2.3)
=7 [l -+ a0 - S tar

we obtain a time independent action for g, where w = 2x/7T and J, is the 0-th Bessel
function. Using (2.3) we can now derive the following equation for ¢

. 4
ot (d=DE + 3 25 (0) =0 (24)

The profile of the pseudo-breather is thus approximately described by an ordinary
differential equation which can be solved numerically. Unfortunately, (2.4) depends
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on the period of oscillation T which we have to choose before solving the equation.
We have found that we can find a solution of (2.4) for any value of T larger than 2,
but none when T < 2r.

In Figure 1 we exhibit a few profiles g of the solutions of (2.4) , as well as the value
of the energy as a function of 7.
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Figure 1.a : Solution Profile ¢(r) for Figure 1.b : Energy as a function of
T=17 67, 6.5and 6.3. T.

We see that as the period comes closer to the lower value T = 2x, the amplitude goes
asymptotically to zero while the energy remains finite. The support of the solution
actually increases as the energy decreases. The energy on the other hand is a linear
function of 7.

To find solutions of (1.2) we have then used the solutions of (2.4) as the initial
conditions: f(r) = g(r); 8f/3¢t = 0, and we performed the time integration numerically.
We have found that the profiles obtained by solving (1.2) do indeed lead to nearly
periodic solutions. The profiles do oscillate with their time dependence well approxi-
mated by (2.2) . Moreover, the period of oscillation of the solution is given, at least
during the first few cycles, by the parameter T used to compute the profile. As shown
in Figure 2, when T < 6.5, the solutions are very stable. Even after 150000 cycles the
solutions have not spread out nor radiated any noticeable amount of energy. When
T is larger, the solutions of (2.4) give expressions which radiate away some energy
and slowly spread out but eventually settle to stable configurations.

In Figure 2 we show the time evolution of the energy and of the amplitude of
oscillation at the origin, defined as A(t) = maz;_r<r<: f(r = 0,7), for 4 different initial
conditions. To compute the time evolution of the energy, the waves radiated by the
pseudo-breathers were absorbed at the edge of the grid corresponding to large values
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of r. The amplitude of oscillation at the origin shows how, as time increases, the
pseudo-breathers slowly spread out.
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Figure 2.a : Time evolution for the Figure 2.b : Time evolution for the
Pseudo-breathers energy. Pseudo-breather amplitude
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Figure 3.a : Profiles for the pseudo- Figure 3.b : Pseudo-breather Energy
breather. density profile

In Figure 3. we present snapshots of the profiles f(r) and of the energy profiles
for a pseudo-breather solution at various times during the first half of the cycle. To
obtain these graphics we have integrated (1.2) numerically starting from an inital
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condition given by the solution of (2.4) with T = 6.4863. The amplitude at the origin
was then =/2 and the energy E = 3.969.

Looking at Figure 3.a, we see that the amplitude of the solution can be charac-
terised by the amplitude of oscillation at the origin (the largest value of f at the
origin during a full cycle). From now on we will use this parameter to study the time
evolution of pseudo-breathers.

Next we have analysed the stability of our periodic field configurations. For this
we have taken the profile corresponding to T = 6.5 and have run a few simulations
with this profile slightly perturbed: f(r) = gs5(0); 8f(r)/0t = K ezp(—c(r - R)?), where
K, c and R are parameters describing the perturbation. This initial condition (for
nonzero value of X} adds to the profile a kinetic contribution in the shape of a lump
located close to the pseudo-breather. We have run a few simulations for some values
of the parameters. In every case the wave created by the perturbation interacted with
the pseudo-breather, but it quickly dissipated and eventually left, leaving behind the
configuration in an exited mode: the amplitude at the origin was not constant but
it oscillated in time. Nevertheless, this excitation did not affect the stability of the
pseudo-breather.

In Figure 4 we present the time evolution of the amplitute of an excited pseudo-
breather, after the wave has left it. In this example, we chose K = 0.4,c = 3.16 and
R =25. The perturbation increased the energy of the profile by 15%. When comparing
Figure 4 with Figure 3.b we clearly see the modulation of the amplitude introduced
by the perturbation.
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Figure 4 : Perturbed pseudo-breather:
T=6.5; K=0.4; ¢=3.16; R=25. E=4.69

Finally, by trial and error, we have found that the expression

f(r,0) = 4atan(Cexp(—%atan(r/K))) (2.5)
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with K = 102 and C = tan(r/8), constitutes a good initial condition to describe
our metastable field configuration: it has roughly the correct energy and it settles
reasonably quickly to the solution.

In Figure 5 we present the time evolution of the energy and the amplitude of
oscillation of the field configuration over 1000000 units of time (which corresponds to
over 150000 cycles) for the initial condition (2.5) for some values of ¢ and K = 10V/2.
In all cases the configuration corresponds to a localised lump at the origin and the
amplitude of oscillation, shown in Figure 5.b, is modulated (hence the dark bands on
the figure) unless we take C ~ 0.4143.
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Figure 5.a : Energy for the Pseudo Figure 5.b : Amplitude of oscillation
Breather. for the Pseudo Breather.

We can thus conclude that the ansatze (2.5) describe exited pseudo-breathers
(except when C = 0.4143) which very slowly radiate their energies away to settle down
to stable pseudo-breathers.

To conclude this chapter let us summarise what we have done; we have shown that
the two-dimensional sine-Gordon equation has radially symmetric solutions which
are periodic or nearly periodic in time. It is impossible to prove numerically that the
solutions do not slowly die out. However, we have shown that over very long periods
of time, corresponding to more than 150000 cycles, the solutions are amazingly stable.

The main difference between the pseudo-breathers and the pulsons is the stability
of the pseudo-breathers as they do not die out. Moreover, the pseudo-breathers can
be of various size and their profile, modulo the time dependance (2.2) , does not
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change with time.

3. Three and Four dimensional sine-Gordon models.

Having demonstrated the existence of periodic solutions of the two-dimensional
sine-Gordon equation (1.2) , one may wonder whether such solutions exist also in
higher dimensions. The only difference in (1.2) for the three dimensional and four
dimensional equations is that d is now equal to 3 or 4, respectively. This small
difference gives us hope of finding similar solutions.

As for the two-dimensional equation we start by assuming that a periodic solu-
tion will be close to the form (2.2) . Inserting this expression in the action for the
sine-Gordon equation we can repeat our previous calculations (2.3) and derive the
equation (2.4) for the profile ¢ where we have now =3 or d = 4.

Equation (2.4) can be solved numerically and one can find a non trivial solution
for any T > 2r. In Figure 6 we present the profiles obtained for a few values of T
and the energies of the configuration as a function of 7. We notice immediately that
the energy of these configurations is much bigger than in the two dimensional case.
Moreaover, the energy is not, anymore, a linear function of T and the energy has a
minimum value around T = 6.7 when 4 = 3 and close to T = 6.5 when d = 4. The
amplitude of oscillation also goes to 0 as T goes to 2.
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Figure 6.a : d = 3: solution profile ¢ Figure 6.b : d = 3: Energy as a func-
for T=17, 6.7, 6.5 and 6.3. tion of T.
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Figure 6.c : d = 4: solution profile ¢ Figure 6.d : d = 4: Energy as a func-

for T=7, 6.7, 6.5 and 6.3. tion of T.

The configurations given by (2.4) when d =3 and d = 4 also lead to quasi periodic
solutions when T is just slightly larger than 27 but they are much less stable than
in the two dimensional case. The profile oscillates a few hundred or a few thousand
times but then it suddenly collapses and quickly decays into pure waves.
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Figure 7.a : Time evolution for the Figure 7.b : Time evolution for the
pseudo-breather amplitude for 4 pro- the amplitude of 4 dilated pseudo-
files (d = 3). breathers profiles (d = 3).

In Figure 7.a we plot the time evolution of the amplitude of oscillation for 4
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different profiles in the three dimensional case. It is clear that the field configurations
live longer as the parameter T gets closer to 2r. In Figure 6.b we present the plot
of the time evolution (in 3 dimensions) of the amplitude of profiles Ag(r) obtained
by multiplying the solution g of (2.4) (with T = 6.29) by a constant 4. It shows
that by multiplying a solution of (2.4) by an appropriate coefficient it is possible
to extend the life time of the resultant field configuration. When 4 is too large the
dilation introduces a perturbation producing an excitation at the origin which makes
the amplitude to increase.

All this suggests that the equation (1.2) has periodic solutions also in three di-
mensions but that these solutions are unstable. The solutions of (2.4) are good initial
conditions for seeking periodic solutions (when T is close enough to 2r).

The results in four dimensions were not that different from what we observed in
three dimensions. Again, we have found many quasistable field configurations which
were, however, even less stable. Like in the three dimensional case we can find the
profiles by solving (2.4) (also only for T > 2r) and then study their stability. We
have found that after relatively short period of time (¢ ~ 200) the amplitude decreases
and the fleld dissipates. Like in three dimension we can increase the lifetime of our
structures by multiplying the profiles by an appropriate value of 4. In figure 8 we
present the plots of the time evolution of the amplitude of our field configuration
(with the profile for T = 6.28438¢ multiplied by four values of 4). We note the strong
dependence on A (the tuning requires the accuracy to more decimal points than in
d =3 case.

Hence we conclude that in contradistinction to the d = 2 case the pseudobreathers
in d = 3,4 are unstable.
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Figure 8 : Time evolution for the am-
plitude of 4 dilated pseudo-breathers
profiles (d =4).

4. Conclusions

We have shown that the sine-Gordon equation in 2, 3 and 4 dimensions has localised
radially symmetric solutions which are periodic in time. These solutions are fairly
stable for the two dimensional equation but, on the other hand, they are unstable
in the three and four dimensional case. When the two dimensional solutions are
perturbed with a radially symmetric perturbations they exhibit interesting exited
modes of oscillation.
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